
Masteruppsats i matematisk statistik
Master Thesis in Mathematical Statistics

Multiple Measurement Error Regres-
sion with autocorrelated errors in pre-
dictors as a prediction method

Ekaterina Fetisova



Masteruppsats 2012:8

Matematisk statistik

September 2012

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm



Mathematical Statistics
Stockholm University
Master Thesis 2012:8

http://www.math.su.se

Multiple Measurement Error Regression with

autocorrelated errors in predictors as a prediction

method

Ekaterina Fetisova∗

September 2012

Abstract

The aim of this master thesis is to evaluate the performance of multiple
linear functional measurement error (ME) regression with autocorrelated
errors in predictors as a prediction method. Setting it in a climate context,
the aim is to investigate whether this method can be used for predictions
of past values of temperature over a large region. Using the primary data
representing true values a large number of datasets were generated by the
model of interest. Because multicollinearity was not detected all five given
true predictors have been included in the model. To achieve independency
in the errors an appropriate transformation has been applied. Based on
Monte-Carlo methods, the results have indicated that data do not sup-
port consistent parameter estimation under ME model with no error in
the equation independently of how strong autocorrelation is and how large
the error variation is. The same problem was present even under the ME
model with an error in the equation though not for data where the er-
ror variation accounted for 20% of the total variation in each observed
predictor (which was the lowest level of the error variation analysed). Us-
ing this type of data the model has demonstrated an adequate prediction
performance in terms of MSEP. However the long run analysis of confi-
dence intervals (CI’s) with the nominal confidence level 0.9 has indicated
a large variability in possible values of the actual coverage probability,
suggesting to use this model as a prediction method with great caution
even if the error variation is modest. Further the thesis aims to illustrate
the inappropriateness of the use of models, which either do not take into
consideration autocorrelation in measurement errors or do not allow for
errors in predictors at all, when data contain predictors with autocor-
related errors. Based on the same original datasets above, the analysis
has indicated the high probability of obtaining of extremely large estima-
tors under ME regression, assuming uncorrelated errors in each predictor,
both with no error in the equation and with an error in the equation.
The inappropriateness of ordinary multiple regression, whose estimators
turned out to take reasonable values, has been detected under the long
run analysis of 90% CI’s: the estimated coverage probabilities turned out
to be less than 0.45 for all magnitudes of the error variation.
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1 Background

In order to understand the current and future climate variations it is of great
importance to have a knowledge about the climate variation in the past. Unfor-
tunately, systematic instrumental measurements of different climate variables
such as precipitation, drought or near-surface temperature are mostly availablfe
only for the past 130-150 years, which corresponds to so called industrial pe-
riod. For getting an idea of pre-industrial climates, data from various climate
proxy ’archives’ like historical documents, annual growth rings in trees, sedi-
ments from lake bottoms and so on are used. In contrast to instrumental data,
proxies are available for a long time period, e.g. 1000 years. Usually data from
the industrial period, when both instrumental data and proxies are available,
are used for estimation of a statistical relationship between a climate variable
of interest and proxies, from which the name ”calibration period” arises. Proxy
data from the pre-industrial period together with estimated parameters are
used for reconstructions of past values of that climate variable, from which the
name ”reconstruction period” comes. However, the procedure of estimation and
reconstruction is not a clear-cut process and it has already caused numerous dis-
cussions, showing the importance of collaboration between palaeoclimatologists
and statisticians.

2 Introduction

The idea about this project arose during the discussions I had with my su-
pervisors Gudrun Brattström and Anders Moberg in December 2011 - January
2012. One of the main concerns for the modern palaeoclimatology is the devel-
oping of a reliable statistical method for reconstructions of the climate of the
past. Numerous reconstruction methods were suggested by different researches
depending on (1) what assumptions about errors in climate proxy and instru-
mental data were made and (2) the spatial characteristics of the data. One of
the methods, suggested by G. Brattström and A. Moberg ([9]), is a univariate
functional measurement error model that allows for white noise in instrumental
data (namely temperature) and autocorrelated errors in proxy variable mea-
sured at a certain location. The presence of only a single proxy variable made it
possible to apply the method of calibration for reconstruction of temperature,
which implies initially regression of a single proxy record on a single instrumen-
tal record. Naturally, this analysis has excited interest in further analysis of
measurement error model allowing climate reconstructions over a larger region
by using several proxy records from multiple sites.

3 Aim

From the palaeoclimate viewpoint, the aim is to investigate whether ME models
can be used as a reliable statistical method for reconstructions of temperature
of the past over a large region, given proxies from different locations within this
region and one sample of mean temperature over the same region. Furthermore,
the model should take into account that proxy data are contaminated with po-
sitive autocorrelated measurement errors and instrumental data (temperature)
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are contaminated with uncorrelated errors. The same assumptions were as-
sumed even in ([9]), although it can be a simplification of a real character of
measurement errors in instrumental data ([9], p.320). As several variables rep-
resenting proxies are involved, multiple ME regression of instrumental data on
proxy data has been suggested. So from the statistical point of view, the aim is
to evaluate the performance of multiple measurement error regression allowing
for autocorrelated errors in predictors as a prediction method. Two types of
the model will be analysed - with no error in the equation and with an error in
the equation. In addition, it is assumed that the true values of all variables are
constants, which means that the ME functional model should be analysed.

Further inspired by analyses performed by some other researches the thesis
aims to illustrate the inappropriateness of the use of models, which do not take
into account either the presence of measurement errors or autocorrelation in
errors, when data, they are fitted to, contain predictors with autocorrelated
errors. The models are: ordinary multiple regression, assuming fixed predictors
and ME regressions, both with no error in the equation and with an error in
the equation, assuming uncorrelated errors in each predictor.

4 Method for model validation

In this analysis the method for model validation is based on the idea of cross-
validation. According to this idea, a given dataset is divided into two subsets
in order to use one of them for model fitting and the other for prediction and
assessment of accuracy of prediction. In this work prediction is associated with
regression model which, as known, does not establish a causal connection be-
tween variables. It is defined as a new past value of temperature calculated from
the regression model and new past values of predictors (proxies). For assess-
ment of predictive abilities of the models, or accuracy of prediction, the known
predictand will be compared with the predicted one by means of Mean Squared
Error of Prediction, MSEP, (see section 6.3).

Data used in this analysis were generated in such a way that the assumptions
about error terms described in section Aim were satisfied. By simulating error
terms repeatedly a large number of sets of observed data can be formed (see
details in section Description of data). This enables one to apply Monte-Carlo
methods in order to perform a long run analysis of predictive abilities of the
models.

5 Theory

5.1 Multiple Measurement error model with no error in

the equation

The functional model with a single true response variable yt and the vector of
true values xt is defined as follows ([6], ch. 2.3):

yt = xtβ,

(Yt,Xt) = (yt,xt) + (ǫt,ut), (5.1.1)
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Yt = xtβ + ǫt

for t = 1, 2, . . . , n,

where {xt} is a fixed k-dimensional row vector

(Yt,Xt) are observed values

at = (ǫt,ut)
′ is the vector of measurement errors,

such that a′

t ∼ NI(0,Σaa).

Let Σaa to be known. Then the maximum likelihood estimator of β is

β̂ = (MXX − λ̂Σuu)
−1(MXY − λ̂Σuǫ) (5.1.2)

provided MXX − λ̂Σuu is nonsingular, where MXX = 1
n

∑n
t=1 X

′

tXt and λ̂ is
the smallest root of ∣∣∣MZZ − λΣaa

∣∣∣ = 0,

where Z = (Yt,Xt).

Furthemore, if n ≥ p and |Mxx| > 0, then

Γ
−1/2
ββ (β̂ − β)

L
→ N(0, I) (5.1.3)

as n → ∞ with covariance matrix

Γββ = n−1
(
M−1

xxσνν +M−1
xx (Σuuσνν −ΣuνΣνu)M

−1
xx

)
, (5.1.4)

where νt = ǫt − utβ, σνν = (1,−β′)Σaa(1,−β′)′, and Σuν = Σuǫ − Σuuβ

Remark : if Var(ǫt) = σǫǫ is unknown, the method of maximum likelihood fails
to yield consistent estimators for all parameters of the model. This illustrates
the problem of model identifiability. According to ([3], p.5) if Z is a random
vector whose distribution is from some family F = {Fθ;θ ∈ Θ}, then the pa-
rameter, θi, the ith component of the vector, θ, is identifiable if and only if no
two values of θ ∈ Θ, whose ith components differ, lead to the same distribution
of Z. The vector of parameters, θ, is said to be identifiable if and only if all its
components are identifiable. The model is said to be identifiable if θ is identifi-
able. The typical identifiability assumption for ME model with no error in the
equation is that the entire error covariance structure, including σǫǫ, is known or
is known up to a scalar multiple ([6], [3]). In practice, one often has an estimator
of Σaa. Oddly enough, identifiability is not sufficient for consistent estimation
([3], p.239). Other additional conditions should be available to support it. For
ME model with no error in the equation such a condition is a positive definite
denominator in the estimator of β (for the definition of consistent estimators
see [8], p.270).

5.2 Multiple Measurement error model with an error in

the equation

If the true values yt and xt are not perfectly related, in other words if there are
factors other than xt that are responsible for variation in yt, one might specify
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([6], p.106-108)
yt = xtβ + qt

(Yt,Xt) = (yt,xt) + (ǫt,ut), (5.2.1)

Yt = xtβ + et

where the qt are independent (0, σqq) random variables, and qt is independent
of xj for all t and j. The random variable qt is called the error in the equation.
(ǫt,ut)

′ = a′

t is a vector of measurement errors, a′

t ∼ NI(0,Σaa), and a′

t is
independent of (qj ,xj) for all t and j. Further, the random variable et is the
sum of an error made in measuring yt and an error in the equation, et = ǫt + qt
. Let Σaa to be known. Then the estimator of β is

β̃ = (MXX − Σuu)
−1(MXY − Σuǫ)

provided MXX − Σuu is nonsingular, and a consistent estimator of σqq is

σ̂qq = σ̂νν − (σǫǫ − 2β̂Σuǫ + β̂Σuuβ̂),

where νt = et − utβ,, σνν = (n− k)−1
∑n

t=1(Yt −Xtβ)
2.

Let θ = (β′, σqq)
′ and let θ̃ = (β̃

′

, σ̃qq)
′. If n ≥ p and Mxx is positive def-

inite, then

Γ−1/2(θ̃ − θ)
L
→ N(0, I),

where the submatrices of Γ are

Γββ = n−1
(
M−1

xxσνν +M−1
xx [Σuuσνν +ΣuνΣνu]M

−1
xx

)
,

Γqq = n−1Var(ν2)

Γβq = 2n−1M−1
xxΣuνσνν

where Σuv = Σuǫ − Σuuβ.

5.3 Univariate autoregressive process of order 1

The first order autoregressive process, AR(1), is given by ([1], p.17-18)

Xt = ρXt−1 + at, t = 0,±1,±2, . . . , (5.3.1)

where {at} ∼ WN(0, σ2
a), |ρ| < 1, and at is uncorrelated with Xs for each s < t.

It can be showed that E[Xt] = 0 and Var(Xt) =
σ2
a

1−ρ2 for all t.

5.4 Other definitions

5.4.1 White Noise Processes

A process {at} is called a white noise process if it is a sequence of uncorrelated
random variables, each with zero mean and variance σ2. This is indicated by
the notation ([1], ch.1)

{at} ∼ WN(0, σ2).
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5.4.2 Gaussian Filter Coefficients

Let σf be a nonnegative integer. By applying the Gaussian filter to a given
unsmoothed time series, Xt, t = 1, 2, . . . , n, a smoothed time series

X
(w)
t =

2σf∑

i=−2σf

wiXt−i, 2σf + 1 ≤ t ≤ n− 2σf ,

is obtained, where the Gaussian filter coefficients are given by ([9])

wi =
vi

2σf∑

j=−2σf

vj

,

where
vi = exp{−i2/(2 · σ2

f )}, i = −2σf ,−2σf + 1, . . . , 2σf .

For σf = 0 the filter has only one term, w = 1, implying an unsmoothed series.
Palaeoclimatologists use often this filter in order to study variations at larger
temporal scales than one year, provided the seasonality is not present. The
usual values of σf in palaeoclimatology are 3 and 9. Only σf = 9 is used in this
study.

The gaussian filter coefficients have the following properties:

wi = w−i, i ≤ |2σf |

2·σf∑

i=−2σf

wi = 1,

2·σf∑

i=−2σf

w2
i ≤ 1,

2·σf∑

i=−2σf

w2
i → 0 as σf → ∞.

As implied by its name, the Gaussian filter coefficients form a bell-shaped curve,
which is characteristic for the Gaussian (normal) distribution. The following
figure shows the Gaussian filter coefficients for σf = 9. Only σf = 9 is used in
this study.
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4
0
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w
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Figure 1. Gaussian filters coefficients for σf = 9.
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6 Statistical analysis

6.1 Description of data

Data for the present analysis were formed according to an approach known
among palaeoclimatologists as a pseudo-proxy experiment (PPE, [12]). This ap-
proach, firstly, reduces substantially the number of the sources of uncertainty, al-
lowing researches to evaluate the prediction performance of a statistical method
of interest for a certainty. Secondly, it provides a longer validation period than
that which can be achieved with real-world instrumental data. Lastly, the PPE
allows one to ”observe” data that are absolutely unobservable in reality, e.g.
temperature in the Middle Ages. According to the PPE observed data are
formed by adding simulated error terms with desired properties to the artifi-
cially produced primary data, representing true values. By simulation of error
terms repeatedly, a large number of sets of observed data can be formed. In this
analysis each set of observed data contains 490 observations of six variables:

(Y,Z
1
, Z

2
, Z

3
, Z

4
, Z

5︸ ︷︷ ︸
Observed variables

) =

= (y, z
1
, z

2
, z

3
, z

4
, z

5︸ ︷︷ ︸
True values (given)

) + (ǫ, u
1
, u

2
, u

3
, u

4
, u

5︸ ︷︷ ︸
Measurement errors

)

For the purpose of this analysis, {zi} for all i will represent the true predictors,
that implies directly that (Z

1
, Z

2
, Z

3
, Z

4
, Z

5
) will represent the observed pre-

dictors. Thus the true and observed predictand will be represented by {y} and
{Y } respectively.

6.1.1 True values

All samples of the primary data, representing true values, were selected from a
certain climate model 1 [7], which is a complex system developed specially for
simulations of climate at different spatial scales with respect to different sources
of external forcings like greenhouse gas concentrations in the atmosphere, solar
irradiance and volcanic aerosols. The given true values represent the June mean
temperature from 1501 to 1990 in Berlin (z

1
), Moscow (z

2
), Paris (z

3
), Stock-

holm (z4), Vienna (z5) and the June mean temperature averaged over the whole
of Europe (y). In Figure 2 all these series are shown. It appears that they are
stationary in the variance, but probably not in the mean, especially {yt} and
{zt,4}. Physically, this is essentially due to the influence from the temporally
increasing amount of atmospheric greenhouse gases applied in the simulation.
The analysis of the sample autocorrelation functions and the sample partial au-
tocorrelation functions with the following application of the Dickey-Fuller test
([1], p.194; [11], chapter 5) has indicated that all series are stationary around
their deterministic trend. Fitting the polynomials of different orders to each
time series has shown that either a linear or quadratic trend, depending on the
series, is statistically significant.

1The Regional Circulation Model (RCM) MM5 coupled to the Global Circulation Model
(GCM) ECHO-G
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Figure 2. The unsmoothed original true values in green. The smoothed
with the Gaussian filter original true values in red (σf = 9).

In Figure 3 the detrended time series are plotted (hereafter {yt}, {zt,1}, {zt,2},
{zt,3}, {zt,4}, {zt,5} are referred to as detrended true series). Apparently, af-
ter detrending all series resemble realizations of stationary time series. Their
sample variances (at lag 0) are equal to

V̂ar(y), V̂ar(z1), V̂ar(z2), V̂ar(z3), V̂ar(z4), V̂ar(z5) =

= (0.3017, 1.6203, 2.0073, 1.4068, 0.9360, 1.3216)
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Figure 3. The unsmoothed detrended true values in green. The smoothed with
the gaussian filter detrended true values in red (σf = 9).

The scatterplots in Figure 4 show all the correlations (crosscorrelations at lag
0) between the detrended true series. As one can see the correlations are pos-
itive, which is expected, with the highest correlation between Berlin (z1) and
Vienna (z5) that is equal to 0.842. Furthermore, the 5 scatterplots in the upper
row confirm the expectation of a linear relationship between true values of the
observed predictand and true values of the observed predictors over the whole
period.
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Figure 4. The 25 scatterplots of the detrended true values of the observed
predictand, yt, and true values of the observed predictors, zt.

6.1.2 Measurement errors

Measurement errors were simulated in R under assumptions that are supposed
to mimic (with certain simplifications, see the discussion in [9], p.320) the char-
acteristics of measurement errors in real-world data, namely errors in climate
proxy data and instrumental observations. In this analysis all predictors rep-
resent proxies and instrumental data is represented by the predictand. The
assumptions are:

• ǫt ∼NI 2(0, σǫǫ)
Note, errors in instrumental data are not only uncorrelated, but also nor-
mally distributed, which implies the independence among errors.

2NI is an abbreviation for ”distributed normally and independently”
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• {ut,i} is an AR(1) process with zero mean and Var(ut,i) = σuiui
for all t

and i = 1, 2, 3, 4, 5. When simulating AR(1) processes it was used that

u1,i =
δ1,i√

(1− ρ2)
,

ut,i = ρ · ut−1,i + δt,i, t > 1

where δt,i ∼ NI
(
0, σuiui

(1 − ρ2)
)

for all t and ρ is put to 0.5 or 0.8.

Assuming δt,i normally distributed the uncorrelated assumption (see 3.2.1)
automatically becomes an independence assumption.

• Cov(ǫt, ut,i) = Cov(ut,i, ut,j) = 0, {i, j} = 1, 2, . . . , 5, i 6= j

• Cov(ǫt, ut−1,i) =Cov(ut,i, ut−1,j) = 0 for t = 2, . . . , n.

To implement simulations it is necessary to determine (theoretical) error vari-
ances, σǫǫ, σuiui

, i = 1, 2, 3, 4, 5. Since each error term is supposed to account for
a certain amount of the total variation in the corresponding observed variable,
the variances were determined by the following relationship

Var(error) =
PNV

1− PNV
V̂ar(corresponding sample of true values),

where PNV (the Percent Noise by Variance, [12]) is defined as

PNV =
Var(error)

V̂ar(true values) + Var(error)

and its value is chosen in advance. The values of PNV used in the analysis are:
0.02, 0.1 for Y, which corresponds to 2% and 10% of the total variation in Y
and 0.2, 0.5, 0.8 and 0.94 for Z, which corresponds to 20%, 50%, 80% and 94%
of the total variation in Zi, i = 1, 2, 3, 4, 5.

In Figure 5 one can see a certain realization of observed data, whose error
terms satisfy the following combination: PNVY = 0.02, PNVZ = 0.5, i.e. 50%
of the total variation in each Z, and ρ = 0.5. Since the detrended true time
series as well as the added error terms are stationary processes with constant
variances, the observed time series are also stationary processes. Having in mind
that one subset of observed data will be used for model fitting and the other for
the prediction of Y , the fact that the observations follow the same model under
the whole period appears to be an advantage.

Observed data has been divided in the following way. The first dataset covers
the period from June 1861 to June 1990 (130 observations). That corresponds
to a calibration period. The observations from this period will be denoted by the
superscript (c). The second dataset covers the period from June 1501 to June
1860 (360 observations), which corresponds to a reconstruction period. The ob-
servations from this period will be denoted by the superscript (r). It is assumed
that these two periods are independent, which may be in fact a simplification
of reality.
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Figure 5. The unsmoothed observed data in blue and the smoothed with
gaussian filter observed data in red (σf = 9).
PNVY = 0.02, PNVZ = 0.5 for each Z and ρ = 0.5.

6.2 Assumptions and models

6.2.1 Assumption I - autocorrelated errors in predictors

Under the first (correct) assumption, measurement errors in the predictors are
highly correlated - each sequance {ut,i}, i = 1, 2, 3, 4, 5, constitutes an AR(1)
process (for how it was simulated see section 6.1.2). However, by transforming
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the observed series {Z} in the following way

V 1 =
√

(1− ρ2)Z1 =
√
(1− ρ2)z1︸ ︷︷ ︸

=v1

+
√
(1− ρ2)u1︸ ︷︷ ︸

=δ1

= v1 + δ1

V t = Zt − ρZt−1 = zt − ρzt−1︸ ︷︷ ︸
=vt

+ut − ρut−1︸ ︷︷ ︸
=δt

= vt + δt, t > 1,

for ρ = {0.5, 0.8}, the desired independence of the errors will be achived. As-
suming that the true values yt and vt are perfectly related, it makes it possible
to apply the measurement error regression with no error in the equation to the
transformed data:
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Y
(c)
t = v′(c)

t α+ ǫ
(c)
t

where the vector of transformed true values v(c)
t

is treated as fixed in repeated

sampling and a = (ǫ(c)
t

, 0, δ
(c)

t
)′ is the vector of measurement errors such that

at ∼ NI(0,Σaa), where

Σaa = diag
(
σǫǫ, 0, σδ1δ1 , . . . , σδ5δ5

)

= diag
(
σǫǫ, 0, σu1u1

(1− ρ2), . . . , σu5u5
(1− ρ2)

)
.

Setting Vt,0 ≡ 1 and Var(Vt,0) = Var(δt,0) = σδ0δ0 = 0, Σδδ is the lower right 6
× 6 portion of Σaa.

The choice of the functional model instead of the structural ME model, treat-
ing true values of predictors as random variables, seems most reasonable from
a palaeoclimate perspective. Indeed, the required conditions for the structural
model are normality and independency of the true values ([6], p.105). For the
real-world time series, representing either instrumental measurements or prox-
ies, the later condition is apparently inadequate. It worth mentioning that the
described transformation warrants the independency of the transformed errors,
not of the given transformed true time series.

In general, fitting multiple regression one has to be aware of the problem of
(multi)collinearities among predictors, say X. Collinearity arises if some pre-
dictors are exact or approximate linear combination of other, which leads to
a singular or close to singular second-order matrix of predictors, X ′X. This
causes problems with the estimation of regression coefficients and affects their
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asymptotic properties. One way to detect collinearity is to examine the eigen-
values, λ, of the matrix X ′X. Small eigenvalues indicate a problem. Further
one can calculate a condition number defined as

κ =
λmax

λmin
.

It serves as a measure of the dispersion of the eigenvalues of X ′X. In general,
if κ is less than 100, there are no serious problems with collinearity. Condition
number between 100 and 1000 indicates from moderate to strong collinearity,
while condition number larger than 1000 indicates serious collinearity ([10],
p.301).

In case of multiple measurement error regression collinearity is defined in terms
of the true values ([2]) and it affects first of all the asymptotic variance of the
estimator of α, which involves the inverse of the second-order moment matrix

of the true values, Mvv = 1
n

∑130
t=1(1,v

(c)
t )′(1,v

(c)
t ) (see 3.1.4). The existence

of collinearities among the unobservable true predictors will cause inflation of
the variances. In practice one will wish to investigate the hypothesis that this
matrix is positive definite. Under this analysis the true values are given, which
allows us to examine the eigensystem of Mvv right away. The result has shown
that when ρ = 0.5 and ρ = 0.8 the condition numbers of corresponding matrices
are 17.4 and 16.5 respectively, that is under the critical value of 100. So the
low degree of collinearity permits us to use all the transformed true variates v
as true predictors.

Assuming that the true predictand and the true transformed predictors are
not perfectly related, functional measurement error regression with an error in
the equation will be applied to the transformed data:
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t + q

(c)
t and unknown random variable q

(c)
t is NI(0,σqq).
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6.2.2 Assumption II - uncorrelated errors in each predictor

Under this (incorrect) assumption no transformation of observed data is needed
as under assumption I. Assuming that the true values yt and zt are perfectly
related, Measurement Error (ME) regression with no error in the equation is
applied to original data:
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where the vector of known true values z
(c)

t
is treated as fixed in repeated sam-

pling and a = (ǫ
t
, 0,u

(c)

t
)′ is the vector of known measurement errors, which are

independent of the true values zt, such that at ∼ NI(0,Σaa), where

Σaa = diag
(
σǫǫ, 0, σu1u1

, . . . , σu5u5

)
.

Setting Zt,0 ≡ 1 and Var(Zt,0) = Var(ut,0) = σu0u0
= 0, Σuu becomes the lower

right 6 × 6 portion of Σaa.

The analysis of the eigensystem of Mzz = 1
n

∑130
t=1(1, z

(c)
t )′(1, z

(c)
t ) showed that

its condition number is 22.7, which is much less than the critical value of 100.

Hence, all five z
(c)
t can be included in the ME regression above.

Assuming that the true predictand and the true predictors are not perfectly
related, the model under assumption II takes the form of functional measure-
ment error regression with an error in the equation:
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where et = ǫt + qt and unknown random variable qt is NI(0,σqq).

6.2.3 Assumption III - predictors are fixed

Assuming a linear relationship between observed values of Yt and Zt and the
absence of measurement errors in the observed values of Zt, ordinary multiple
linear regression is applied to original observed data:
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where ǫ
(c)
t ∼ NI(0, σǫǫ) are (known in this analysis) errors made in measuring yt,
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Var(Y
(c)
t ) = σǫǫ

Z
(c)
t,i , i = 1.2. . . . , 5, are fixed numbers observed without measurement errors.

In contrast to ME regression collinearities under ordinary multiple regression
is defined in terms of observed values and it affects both the estimation of the
parameters and their variances. Knowing that the degree of collinearity among
the given true variates is low, an even lower degree of collinearity among ob-
served variates is expected. This expectation has actually been confirmed by

inspection of condition numbers associated with 10000 matrices Z′(c)Z(c) with

Z
(c)
0 ≡ 1, obtained for each combination of PNVZ and ρ. As an example con-

sider Figure 6, showing the distribution of condition numbers associated with

10000 matrices Z′(c)Z(c) satisfying the combination: PNVZ = 0.2, ρ = 0.5.
One can see that the maximal condition number is substantially less than the
critical level of 100, which indicates a low degree of collinearity.
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Figure 6. Distribution of the largest condition number for 10000

matrices Z′(c)Z(c), where each error term accounts for
20% of the total variation in corresponding Zi,
i = 1, 2, . . . , 5 and ρ = 0.5.

Regardless of the values of ρ, addition of measurement errors with larger vari-
ances has led to a much lower degree of collinearity than in the example above.
Therefore, it can be concluded that all the five observed variables can be used
simultaneously as predictors in the regression under assumption III.
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6.3 Statistical analysis

In the previous section five models corresponding three assumptions about mea-
surement errors in the predictors have been presented. The models are:

Model 1 : ME regression with no error in the equation assuming
autocorrelated measurement errors in predictors

Model 2 : ME regression with an error in the equation assuming
autocorrelated measurement errors in predictors

Model 3 : ME regression with no error in the equation assuming
uncorrelated measurement errors in each predictor

Model 4 : ME regression with an error in the equation assuming
uncorrelated measurement errors in each predictor

Model 5 : Ordinary multiple regression assuming the absence of
measurement errors in predictors.

This section is devoted to the analysis of the models. The idea is to fit them
simultaneously to the same set of observed data with error terms simulated un-
der assumptions described in section 6.1.2. Further by simulating error terms
repeatedly, to form a large number of independent sets of observed data in order
to use data from the calibration period from each of them for the simultaneous
model fitting. This makes it possible to get an idea about the set of possible
values of the estimators of α under each model, given data with different mag-
nitudes of the error variation. In the next stage of the analysis using data from
the reconstruction period the predictive ability of the models will be assessed.

In total, 16 different types of observed data corresponding to 16 combinations
of PNVY , PNVZ (for each Z simultaneously) and ρ, have been analysed. The
combinations are:

PNVY ρ PNVZ PNVY ρ PNVZ

1. 0.02 0.5 0.2 5. 0.1 0.5 0.2
2. 0.5 6. 0.5
3. 0.8 7. 0.8
4 0.94 8. 0.94

9. 0.02 0.8 0.2 13. 0.1 0.8 0.2
10. 0.5 14. 0.5
11. 0.8 15. 0.8
12. 0.94 16. 0.94

For each combination 10000 sets of observed data have been formed. Figures 7-
11 contain histograms for 10000 maximum likelihood estimators for each model,
based on data with PNVY = 0.02, ρ = 0.5 and PNVZ = 0.2.
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Figure 7. Histogram for 10000 ML estimates of α under model 1
when PNVY = 0.02, ρ = 0.5, PNVZ = 0.2 (for each Z).
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Figure 8. Histogram for 10000 ML estimates of α under model 2
when PNVY = 0.02, ρ = 0.5, PNVZ = 0.2 (for each Z).
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Figure 9. Histogram for 10000 ML estimates of α under model 3
when PNVY = 0.02, ρ = 0.5, PNVZ = 0.2 (for each Z).
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Figure 10. Histogram for 10000 ML estimates of α under model 4
when PNVY = 0.02, ρ = 0.5, PNVZ = 0.2 (for each Z).
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Figure 11. Histogram for 10000 ML estimates of α under model 5
when PNVY = 0.02, ρ = 0.5, PNVZ = 0.2 (for each Z).

According to Figures 7-11 the qualitative difference between the marginal em-
pirical distributions of the estimators under the five models is obvious. Under
models 1, 3 and 4 extremly large values of the estimators of α are observed. Of
course, such values are unacceptable, in particular in the climate context. In
contrast, under model 2 and 5 the obtained values seem to be quite reasonable.
In the following table the results of the analogous analyses for data satisfying
each of 16 combinations are summarized.

Table 1. The result of the simultaneous model fitting in terms of
the obtained values of the estimators of α.

Model Combinations for which (extremely) large estimators of α
have not been observed have been observed

Model 1 - for all combinations

Model 2 for PNVZ = 0.2 for PNVZ ≥ 0.5
(4 combinations) (12 combinations)

Model 3 - for all combinations

Model 4 - for all combinations

Model 5 for all combinations -

It follows from Table 1 that among the two correct ME models (Model 1 and
Model 2) it is only under Model 2 acceptable values of the estimators of α
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have been observed in long run. Though only when the error variation is quite
moderate, i.e. when it accounts for 20% of the total variation in each observed
predictor (PNVZ = 0.2). As the error variation increases the problem of incon-
sistent estimation becomes actual even for this model. To understand the cause
of this situation consider the estimators of α under each model (see sections
5.1-2 and 6.2. for more details).
Model 1

α̂ =
(
M

V (c)V (c) − λ̂Σδδ

)
−1

M
V (c)Y (c)

=
(
M

V (c)V (c) − λ̂Σuu(1− ρ2)
)
−1

M
V (c)Y (c) ,

where λ̂ is the smallest root of
∣∣∣M (Y (c),V (c))(Y (c),V (c)) − λΣ(ǫ,δ)(ǫ,δ)

∣∣∣ = 0,

Model 2

α̂ =
(
M

V (c)V (c) − Σδδ

)
−1

M
V (c)Y (c)

(
M

V (c)V (c) − Σuu(1− ρ2)
)
−1

M
V (c)Y (c) ,

Model 3

α̂ =
(
M

Z(c)Z(c) − λ̂Σuu

)
−1

M
Z(c)Y (c) ,

where λ̂ is the smallest root of
∣∣∣M (Y (c),Z(c))(Y (c)Z(c)) − λΣ(ǫ,u)(ǫ,u)

∣∣∣ = 0,

Model 4

α̂ =
(
M

Z(c)Z(c) − Σuu

)
−1

M
Z(c)Y (c) ,

Model 5

α̂ =
(
Z′(c)Z(c)

)
−1

Z′(c)Y (c),

provided the matrices in the denominators are positive definite. The analysis of
the eigensystem of 10000 corresponding matrices under each model and for each
combination has shown that problems with estimation have a direct connection
with violation of this condition. As a consequence the problems of negative
V̂ar(α̂), negative prediction errors and negative estimators of σqq under ME
Error Equation model have arisen as well. In all cases when extremly large
estimators were obtained the matrices were either close (sometimes extremely
close) to singular or indefinite. For model 1 it was found out that unbounded

denominators arose when λ̂ was approximately equal to λ̂∗, the smallest root of∣∣∣MV (c)V (c)−λ∗Σδδ

∣∣∣ = 0, that is the smallest root of the determinantal equation

for the denominator itself! The analogous situation was also typical for model 3.
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As soon as the matrices in the denominators were positive definite and far
away from being singular, bounded sets of obtained values of the estimators
were observed as well as positive V̂ar(α̂), positive prediction errors and posi-
tive estimators of σqq under ME Error Equation model. As mentioned earlier,
it happened under Model 2, provided PNVZ = 0.2, and Model 5. Regarding

model 5 this result is not surprising because 10000 matrices Z′(c)Z(c) (for each
combination) were inspected earlier in section 6.2.3.

In light of the obtained result, it seems reasonable to keep only two models
for further comparative analysis. It is model 2 and 5. Their predictive abili-
ties will be analysed by the aid of Mean Squared Error of Prediction, MSEP,
provided data satisfy the four combinations of PNV values and ρ, namely

PNVY ρ PNVZ

0.02 0.5 0.2
0.02 0.8 0.2
0.1 0.5 0.2
0.1 0.8 0.2

MSEP is a useful tool for assessing of model’s prediction performance. The
smaller the observed MSEP value is, the better predictive ability the model in
question has. The definition of MSEP, based on separate validation data, is
([13], p.69)

MSEP =
1

n

n∑

i=1

(Ŷi − Yi)
2.

For the purpose of this analysis MSEP values were calculated on separate
smoothed validation data denoted by the supercript (w)

MSEP =
1

360− 4σf

360−4σf∑

t=1

(
̂

Y
(r,w)
t − Y

(r,w)
t

)2

, 2σf + 1 ≤ t ≤ 360− 2σf ,

where

̂Y (r,w)

t =
{
ŷ

(r,w)

t

}
=

2σf∑

i=−2σf

wiŶ
(r)

t−i =

2σf∑

i=−2σf

wiV
′(r)
t−iα̂ = V

′(r,w)
t α̂

for model 2 and

̂Y (r,w)

t =
{
ŷ

(r,w)

t

}
=

2σf∑

i=−2σf

wiŶ
(r)

t−i =

2σf∑

i=−2σf

wiZ
′(r)
t−iα̂ = Z

′(r,w)
t α̂

for model 5. By letting the gaussian filters have only one term, w = 1 or equiva-
lently σf = 0 in the expressions above, the data from the reconstruction period
remain unsmoothed. In this analysis only smoothed data (the gaussian filter
coefficient σf equal to 9) from the reconstruction period have been used. Note,
that no smoothing was applied to the data from the calibration period when
the parameters were estimated.
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As the result of the analysis of MSEP values in long run, 10000 MSEP va-
lues have obtained under each model and for each combination. The range of
the obtained values is given in the tabel below.

Table 2. The range of 10000 MSEP values for model 2 and 5,
given PNVZ = 0.2.

PNVY = 0.02, ρ = 0.5 PNVY = 0.02, ρ = 0.8

Model 2 Model 5 Model 2 Model 5
min(MSEP) 0.01 0.0038 0.024 0.0041
max(MSEP) 0.033 0.0305 0.0393 0.0572

PNVY = 0.1, ρ = 0.5 PNVY = 0.1, ρ = 0.8

Model 2 Model 5 Model 2 Model 5
min(MSEP) 0.01 0.005 0.023 0.006
max(MSEP) 0.0489 0.038 0.0483 0.072

The result presented in Table 2 suggests that there is no an essential difference
in the MSEP ranges for the two models. No observed MSEP value gives a
reason to reject any model as an unacceptable prediction method. Note, that
smoothing in general increases the precision compared to unsmoothed data, im-
plying larger MSEP values for smoothed data. However, in this case comparison
with MSEP values calculated on unsmoothed data showed that the increase was
modest.

Further, realizing that for each given true smoothed value from the reconstruc-

tion period, y
(r,w)
t , it can be constructed as many confidence intervals (CI’s)

as sets of observed data, i.e. 10000, appropriateness of the models can also be
analysed by the aid of a long run analysis of CI’s, in particular 90% CI’s. The

method used for construction of a 90% CI gives a CI which contains y
(r,w)
t with

probability 0.9 (for the formulas see Appendix), provided the distribution of
α̂ is exact, as under Model 5. If the distribution of α̂ is asymptotic, as under
Model 2, then the actual coverage probability can be either unknown in advance
or unequal to 0.9. In addition the any use of an asymptotic confidence interval
requires also knowledge of the expected length of the confidence interval. Under
both models the coverage probability at each time t can be estimated according

to the well-known recipe: the number of confidence intervals, containing y
(r,w)
t ,

is divided by the total number of confidence intervals available at time t. The
expected length at time t can be estimated by averaging the lengths of all con-
fidence intervals available at time t.

Althogether, 324 probabilities have been estimated (due to smoothing the num-
ber of the true values has decreased from 360 to 324). The result of estimations
is the following. Under Model 2 depending on the combination between 68 and
72 estimated coverage probabilities were at least as large as 0.9. Many estimated
probabilities were much lower than 0.9. This considerable variation is illustrated
in Figure 13(a), given data satisfying PNVY = 0.02, PNVZ = 0.2 (for each Z)
and ρ = 0.5. Under Model 5 the highest estimated coverage probabilities for
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four combinations were not larger than 0.45. As an example consider Figure
13(b), showing the estimated coverage probabilities under Model 5 calculated
on the same datasets as under Model 2 above.
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Figure 13. Estimated coverage probabilities for each time t,
t ∈ {Y ear : 1519, . . . , 1842} under model 2 in (a) and model 5
in (b) given smoothed data, (σf = 9), satisfying PNVY = 0.02,
PNVZ = 0.2 (for each Z) and ρ = 0.5.
The dotted line marks the (nominal) conf. level 0.9.

Under Model 2 the expected length of a confidence interval with the nomi-
nal confidence level 0.9 have been studied as well. Figure 14 contains the plot
of the mean length of 10000 confidence intervals calculated at each time t, given
data satisfying PNVY = 0.02, PNVZ = 0.2 (for each Z) and ρ = 0.5. Appar-
ently, the variation in the mean length is much more stable compared to the
variation in the estimated coverage probabilities under the same model (note,
the scale at the y-axis). This means that two CI’s with the nominal confidence
level 0.9 and with almost equal lenghts can have very different coverage proba-
bilities. The plot is dominated by a remarkable increase during the short time
period t = {Y ear : 1812 − 1818}. The longest mean length, 0.1809, observed
at time t = {Y ear : 1815}, corresponds to a quite low estimated coverage prob-
ability, namely 0.0233. The minimal mean length, 0.1617, observed at time
t = {Y ear : 1710} corresponds in its turn to a quite high estimated coverage
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probability, namely 0.7622. The similar variation pattern have also been ob-
served for the remaining three combinations. In Table 3 the results about the
range of the observed mean lengths, given data satisfying four combinations,
are summarized.
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Figure 14. Mean length of 10000 CI’s with the nominal conf. level 0.9
at time t, t ∈ {Y ear : 1519, . . . , 1842}, under Model 2,
given smoothed data (σf = 9), satisfying PNVY = 0.02,
PNVZ = 0.2, ρ = 0.5.

Table 3. The range of 324 mean lengths of 10000 CI’s with the nominal conf.
level 0.9 under Model 2 for 4 combinations with PNVZ = 0.2.

Combination min(the mean length) max (the mean length)
PNVY = 0.02, ρ = 0.5 0.1617 0.1809
PNVY = 0.02, ρ = 0.8 0.1101 0.1156
PNVY = 0.1, ρ = 0.5 0.1733 0.1975
PNVY = 0.1, ρ = 0.8 0.1221 0.1285

The results in Table 3 give some idea about expected length of a CI with the
nominal confidence level 0.9 under Model 2, given data with the abovementioned
properties. The short observed ranges, espessially for ρ = 0.8, allows one to de-
termine the expected length of a CI with a quite high precision. The results in
Table 3 suggests also that the expected length of a CI might be narrower as ρ
increases and PNVY decreases.

It is clear that under Model 2, which takes into accout the variation in the pre-
dictors, a confidence interval with the nominal confidence level 0.9 at time t will
be wider than a corresponding confidence interval under model 5. Nevertheless,
two plots, illustrating this difference are presented (see Figure 15-16). All the
calculations of the shown confidence intervals were carried out on the same set of
observed data, given PNVY = 0.02, PNVZ = 0.2, ρ = 0.5. Moreover, it was the
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first set of 10000 that satisfied the condition 0.9 <MSEPModel2/MSEPModel5 <
1.1, in other words, when the models’ prediction performances are almost equal.

Note that the known (observed) predictand, Y
(r,w)
t , is not plotted.
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Figure 15. Confidence interval with the nominal conf. level 0.9 for y
(r,w)
t ,

t ∈ {Y ear : 1519, . . . , 1842} under model 2 based on a certain
set of observed data with PNVY = 0.02, PNVZ = 0.2 and
ρ = 0.5. MSEP=0.01771.
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Figure 16. 90% confidence interval for y
(r,w)
t , t ∈ {Y ear : 1519, . . . , 1842}

under model 5 based on the same set of observed data
described in Figure 15. MSEP=0.01736.
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7 Discussion and Conclusions

This master thesis aims mainly to evaluate the performance of a multiple func-
tional measurement error regression model with autocorrelated errors in predic-
tors as a prediction method. The model assumes a linear relationship between
true values of a predictand (temperature) and predictors (proxies). Further-
more, the model falls into two classes; model with an error in the equation and
model with no error in the equation. The analysis is entirely based on synthetic
data, formed in such a way that the assumptions of uncorrelated errors in the
predictand and autocorrelated errors in the predictors were satisfied. In order to
achieve independency of the observations, an appropriate transformation of the
predictors has been performed. Based on Monte-Carlo methods, the analysis
has indicated an inapproppriateness of ME model with no error in the equation
(Model 1) as a prediction method regardless how large the error variation is and
how strong the autocorrelation is. It seems that data do not support consistent
estimation of the regression coefficients α. The main condition for consistent
estimation - a positive definite matrix in the denominator in the estimators -
was violated for the major part of the simulated sets of observed data. As a
consequence large and extremely large estimators were observed.

The ME regression with an error in the equation (Model 2) seems to be ad-
equate in terms of the obtained values of α̂ though only when the error terms in
the predictors account for 20% of the total variation in each observed predictor,
i.e. PNVZ = 0.2. Otherwise when measurement errors in the predictors account
for at least 50% of the total variation in each observed predictor, the problem of
inconsistent estimation becomes actual even for this model. Moreover, the num-
ber of such unacceptable estimators increases as the error variation increases,
which points out that the existence of the matrix inverse becomes less likely as
the error variation increases.

The analysis of ME regression with an error in the equation (Model 2), given that
errors in the predictors account for 20% of the total variation in each observed
predictor, has been continued in order to asses its prediction performance. It
was done with help of Mean Squared Error of Prediction, MSEP. The observed
minimum and maximum MSEP values (0.01 and 0.0489 respectively) gave no
reason to reject this model as an unacceptable prediction method, although the
conclusion to draw depends first of all on what criteria regarding MSEP values
palaeoclimatologists have themselves. Further it can be noted that the variation
in MSEP values exhibited a certain stability both when the autocorrelation ρ
and the error variation in the predictand increases. The long run analysis of
CI’s with the nominal confidence level 0.9 at each time t in the reconstruction
period has indicated, on the one hand, the rather narrow expected length of the
desired CI, which appears to be an advantage, but on the other hand a great un-
certainty about the actual coverage probability of the same CI. This uncertainty
arises due to the large variation in observed possible values of the actual cover-
age probability. Only around 21% of the estimated coverage probabilities were
at least as large as 0.9. All remaining estimated coverage probabilities turned
out to be less or much less than the nominal confidence level 0.9. Because the
smoothing of the data was taking into account when CI’s were calculated, the
same result is valid even for unsmoothed data. Hence, the observed results
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suggest to use this model as a prediction method with great caution, even if
the error variation is modest and all assumptions about uncorrelated errors in
istrumental data and autocorrelated errors in proxy data are satisfied.

In connection with the analysis of multiple (and univariate) ME models many
questions regarding both the finite-sample properties of the estimator of α such
as unbiasedness, minimum variance and the existence/the absence of finite mo-
ments have arisen. But I have not found it possible to perform a detailed study
of these questions within this project. It can be a topic of future projects, fo-
cusing only on multiple/univariate ME models.

The second aim of the thesis is to illustrate the inappropriateness of the use
of models, which either do not take into consideration autocorrelation in mea-
surement errors or do not allow for errors in predictors at all, when data in
effect contain predictors with autocorrelated errors. These models were: or-
dinary multiple regression assuming fixed predictors and ME regression, both
with no error in the equation and with an error in the equation, assuming un-
correlated errors in each predictor. They were fitted to the same datasets used
for the analysis of the ME models with autocorrelated errors in predictors but
without applying the transformation. The inappropriateness of the two ME
models, assuming uncorrelated errors in each predictor, was detected at the
first stage of the analysis. Large or extremely large values of the estimators of
α for the major part of available datasets were observed for all magnitudes of
the error variation. Realizing that ME regression estimators obtained on ME
Autocorrelated Errors model data are unreasonable estimators, this result is,
in fact, sufficient to confirm the inappropriateness of this model as a prediction
model when predictors are contaminated with autocorrelated errors.

In contrast, ordinary multiple regression estimators, which are both biased and
inconsistent when they are obtained on any ME model data, has exhibited a
good behaviour in terms of the observed values of α̂ regardless how large the
error variation is and how strong autocorrelation is. As a consequence only
positive variances of the estimators and positive prediction errors have been
observed. This depended on a linear independency between the observed pre-
dictors. So unless collinearity among observed predictors is present, this model
can produce reasonable values of unreasonable estimators for the parameters of
the ME model allowing for autocorrelated errors in predictors. Nevertheless, the
inappropriateness of this model has been detected under the long run analysis
of 90% confidence intervals. It turned out that no true single smoothed value
of the predictand has the probability to be within a 90% confidence interval
equal to at least 0.9. Moreover, the estimated probability for each of 324 true
smoothed values was less than 0.45.

Under the analysis the problem of collinearities among true or observed pre-
dictors (depending on the model) has been taken into consideration. Thanks
to the fact that only synthetic data with known properties were used, it was
possible to detect with the firm confidence the absence of collinearities under
each model. Regarding the ME model with autocorrelated errors it ensured
that the variances of the estimators were not inflated, which implied reliable
confidence intervals. On the whole, the use of synthetic data has substantially
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decreased the number of sources of uncertainty. In contrast to analysis based on
real-world data, this analysis has not required estimation of autocorrelation ρ or
testing the hypothesis if the second-order matrix of true values is positive def-
inite. Further working with real-world data, the detrending of observed values
does not necessary imply that true values will be detrended and will follow the
same model during both the calibration period and the reconstruction period.
In this analysis the availability of true values gave enough confidence in the as-
sumption that the relationship between detrended true values of the predictand
and detrended true values of the predictors is the same under both periods. All
these factors together makes the results of this analysis highly reliable.

31



8 Appendix

8.1 Confidence interval under ordinary multiple linear re-

gression

Given a vector of k + 1 (smoothed) values of observed predictors from the
reconstruction period, that is

X
′(r,w)
t =

(
1, X

(r,w)
t,1 , X

(r,w)
t,2 , . . . , X

(r,w)
t,k

)
,

a 100(1 − p)% confidence interval at the (1 − p) confidence level for the single

true smoothed value y
(r,w)
t is given by ([5])

̂
y
(r,w)
t ± tp/2(n− k − 1)

√
X′(r,w)

t Ĉov(α̂)X
(r,w)
t ,

where

α̂ =
(
X′(c)X(c)

)
−1

X′(c)Y (c),

Ĉov(α̂) = σ̂ǫǫ

(
X′(c)X(c)

)
−1

and
α̂ ∼ N

(
α,Cov(α̂)

)

Note, that no smoothing is applied to the data from the calibration period.
While when calculating the confidence interval the smoothed data from the
reconstruction period can be used, that is

X′(r,w)
t =

2·σf∑

i=−2σf

wiX
′(r)
t−i, 2σf + 1 ≤ t ≤ n− 2σf .

But letting the gaussian filters have only one term, w = 1, the data remain
unsmoothed.
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8.2 Confidence interval under multiple Measurement Er-

ror regression

Given a vector of observed (smoothed) values of k + 1 predictors from the
reconstruction period

X
′(r,w)
t =

(
1, X

(r,w)
t,1 , X

(r,w)
t,2 , . . . , X

(r,w)
t,k

)
′

,

a confidence interval with the nominal level 1− p for the single true smoothed

value y
(r,w)
t is given by

̂
y
(r,w)
t ± tp/2(n− k − 1))

√
S
(w)
true,

where S
(w)
true is an unbaised estimator of

Var
(
ŷ

(r,w)

t − y
(r,w)
t

)
= Var

(
ŷ

(r,w)

t

)
= Var

( ̂Y (r,w)

t

)
.

To obtained the expression of Var
( ̂Y (r,w)

t

)
, multivariate forms of

Var(W1) = E
[
Var

(
W1|W2

)]
+Var

(
E
[
W1|W2

])

and
E[W 2] = (E[W ])2 +Var(W ),

have been used. It leads to

Var

(
̂

Y
(r,w)
t

)
= Var

(
X′(r,w)

t α̂
)

= E
[
Cov

(
X′(r,w)

α̂|α̂
)]

+Cov
(
E
[
X′(r,w)

α̂|α̂
])

= E
[
α̂′Cov

(
X

(r,w)
t |α̂

)
α̂
]
+Cov

(
E
[
X′(r,w)

t |α̂
]
α̂
)

= E[α̂′] · Cov
(
X

(r,w)
t |α̂

)
· E[α̂] + tr

(
Cov(α̂)Cov

(
X

(r,w)
t |α̂

))
+

+ E
[
X′(r,w)

t |α̂
]
· Cov(α̂) · E

[
X

(r,w)
t |α̂

]
.

Estimating E[α̂] and E
[
X

(r,w)

|α̂
]
by α̂ and X

(r,w)

, respectively,

the estimated prediction error for the single true value becomes

S
(w)
true =α̂

′Cov
(
X

(r,w)
t

)
α̂+X′(r,w)

t Ĉov(α̂)X
(r,w)
t

+ trace
(
Ĉov(α̂)Cov

(
X

(r,w)
t

))
.
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Smoothing of the data influence on the variances of observed variables in the
followig way:

Var
(
X

(r,w)

t,i

)
= Var

( 2σf∑

l=−2σf

w
l
X

(r)

t−l,i

)
= Var

(
X

(r)

t,i

) 2σf∑

l=−2σf

w2
l

for i = 1, . . . , k and 2σf + 1 ≤ t ≤ n− 2σf ,

Cov
(
X

(r,w)

t,i
, X

(r,w)

t,j

)
= Cov

( 2σf∑

l=−2σf

w
l
X

(r)

t−l,i
,

2σf∑

s=−2σf

w
s
X

(r)

t−l,j

)

=

2σf∑

l=−2σf

wl ·

2σf∑

s=−2σf

ws · Cov
(
X

(r)

t,i
, X

(r)

t,j

)

= 1 · Cov
(
X

(r)

t,i
, X

(r)

t,j

)

for {i, j} = 1, . . . , k, i 6= j and 2σf + 1 ≤ t ≤ n− 2σf .
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