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Abstract

It is very common that an equity fund is measured against a spec-
ified benchmark. To ensure that such a portfolio does not deviate too
much from its benchmark, statistical risk measures such as Tracking
Error and Value at Risk (VaR) can be applied to the corresponding
active portfolio, i.e. the combination of a long position in the portfolio
and a short position in the benchmark portfolio. The main purpose of
this paper is to study the market risk of active portfolios containing
equities. In particular, we wish to investigate how small errors in his-
torical data may affect the VaR calculation. Following an index with
a tracker portfolio is never exact. This paper investigates by means of
both calculation and simulation (a) what values are at risk compared
to the index if different kinds of errors occur, such as missing data,
time lags or small random errors, and (b) different modeling choices
for the estimation of the Value at Risk (VaR). In the simulations, we
use the variance-covariance method for calculating the VaR. The most
surprising result of the simulations is that simple linear interpolation
gives at least as good results as using the Brownian Bridge approach,
no matter what σ is used to calculate the Brownian Bridge. The dom-
inating factor in calculating the VaR is the variance of the index time
series. Simulations and calculations have shown that the effects of
missing data and time lags are roughly proportional to the prevailing
volatility.
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1 Introduction

According to a Swedish engineering proverb, to know is to measure. From
1987 and onwards, both the European and the American financial systems
went through a number of crises, different in conception but common in risk
taking beyond capacity. These events brought forward the need to measure
risk quantitatively, in order to both aid the decision making in financial in-
stitutions, and help regulatory authorities to prevent system failures. While
it is an ongoing process, the practitioners in banks, financial institutions
and regulatory bodies alike, must use the commonly accepted methods of
the day to measure and to an extent manage financial risk.

The first widespread and also the best known of quantitative risk measures
is Value at Risk (VaR), made popular by Dennis Weatherstone1 through his
4:15 report [18]. JP Morgan has even published their methodology, which
subsequently won industry-wide acceptance. It was therefore a logical step
to create legislation and regulation, which built on the same ground. Legis-
lation is nationwide, while business is international. This insight triggered
first the Capital Adequacy Framework, more known under the name Basel
accord, and then the New Capital Adequacy Framework, i.e. Basel II [31]
(and later on, the Basel III) agreements, to be implemented in national leg-
islation according to agreed schedules. In the course of implementing the
Basel agreements I and II, VaR became the de facto standard for estimating
market risk [10].

1.1 Background

Mutual fund management in the European Union is regulated by the UCITS
III (’Undertakings For The Collective Investment Of Transferable Securi-
ties’) rules [22]. These rules in turn refer to the risk management system of
banks, which confirms to the Basel rules. We shall therefore limit us to use
VaR for the actual risk calculations.

The risks we are investigating are specific to the active portfolio (see section
2.1), in the sense that they arise in the process of constructing, updating
and evaluating the active portfolio. We also limit ourselves to market risks.

1.1.1 Market risk

Market risk [19] is the risk which stems from movements in financial market
variables. In general, it includes interest rates, exchange rates, commodity
prices, equity prices, etc., but in our case, we will restrict ourselves to equity
prices, or more specifically, to a variable constructed from equity prices, i.e.

1Dennis Weatherstone was a CEO at JP Morgan during nineties.
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an index. Risk is another word for potential financial loss. Market risk in
this context means potential financial loss due to positions in financial in-
struments.

The financial instruments in which we will have positions are stocks and
an index. The risks we will investigate are those which are coming from
missing stock prices or index values, time lags between price changes and
their use in choosing trades, and small random errors in the data underlying
buy and sell decisions. These will be investigated one by one. For the bank
it is only one step in the process of estimating overall risk. Since the chosen
risk measure is not sub-additive it is not possible to estimate risks factor by
factor and then take their sum for an overall risk [18], the lesson to learn
from such an investigation is the behavior and relative importance of these
risk factors, more than just the numerical value from the actual calculations.

1.1.2 Fund management

Fund management is the management of various securities such as shares,
derivatives or bonds and other assets in order to meet specified investment
goals. These goals are usually given in relation to a specific benchmark.
This benchmark in case of a stock portfolio is usually also mainly composed
of stocks. The most often used benchmarks are stock indices, essentially
imaginary stock portfolios where the portfolio weights might be periodically
adjusted to reflect changes in the value of the company in question [32]. How
these weights are calculated, and whether they take dividends into account,
is not relevant for our investigation. The important thing is that method-
ologies to calculate these indices are standardized and published. The stock
prices that are the basis of the calculations are taken at a specific time on a
specific exchange, often the last trade of the day. The relative proportions
of the constituent securities are calculated at specified intervals, and they
are changing due to the change of stock prices, the number of outstanding
stocks, and other factors. They are not usually resulting in proportions
which would prompt selling or buying posts of shares. Shares of a specific
company may enter and leave the index.

A tracker portfolio is a portfolio that tries to mimic its benchmark. Ide-
ally, it should change its value in the exact proportion its benchmark does
(see e.g. [11]). If we invest in the same securities in the exact same propor-
tions the figure in the benchmark, and each time the benchmark composition
changes, we succeed to change our investment in the same proportion and
at the exact same prices which were used in the benchmark calculations
then the tracker portfolio follows the benchmark performance to the letter.
Due to the factors mentioned above, maintaining a tracking portfolio is a
qualified task, which never succeeds to perfection.
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An obvious case when such a portfolio is needed is when an index fund
is sold by a financial institute. Tracker portfolios are also needed when
derivative products based on indices are sold [3].

1.2 Problems with tracking

Small errors creep in, because it is seldom possible to buy and sell exactly at
the prices the benchmark calculations use, and even the proportions are not
exactly the same. We would of course like to know how small these errors
are, or rather, what their compound magnitude is likely to be – in short,
we would like to estimate error inherent in the procedure, and investigate
the effect of different sources of errors. These risks sometimes tend to be
overestimated [25].

Some of these errors are inherent to the procedure, and we shall not in-
vestigate them in detail.

Notably,� The exact proportion in the index cannot always be followed – only
whole posts are bought and sold, certainly not fractions of shares.� When a company enters or leaves the index, all the index followers
should buy or sell in unison, at the closing price of that day, which is
practically impossible.� Exactly replicating the index requires transactions (buying and selling
the securities) which in turn implies transaction costs. [24] estimates
these at 0.5 % per transaction. High transaction frequency can signif-
icantly add to the tracking cost.

In the literature on the tracker portfolio, and its risk measures, the securities
in the tracker portfolio are often a fixed subset of the securities in the index
[2], [11], [7]. Understandably, managing a portfolio with all 500 companies
in S&P 500 is quite tedious; a smaller index like the OMXS30 consisting
only of 30 stocks is more manageable. With the advent of robot trading
it became possible to track even the indices with hundreds of securities in
them with portfolios consisting all those securities, and funds employing this
strategy pressed the prices on index funds [8], [27]. Of this reason also, we
are here mainly interested in other sources of tracking error than using a
subset of the benchmark.
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1.3 Importance of the research

The Basel II framework places heavy emphasize on the concept of VaR. De-
posit taking institutions are obliged to report VaR figures concerning their
market risk daily to the regulatory authorities [17], [1]. Under the Ad-
vanced Measurement Approach (AMA), Basel II even prescribes that there
can be certain risk measures generated by the bank’s internal operational
risk measurement system. These in turn are commonly realized using the
loss distribution [9]. In any case, the financial institutions have to possess
a regulatory capital in proportion to their reported VaR. If the daily losses
exceed the daily VaR more than a certain number of times during a 60 days
period, the institution has to pay fines to the regulatory authority. To esti-
mate the parameters in a parametric VaR model on historic samples alone
has its drawbacks, as demonstrated by [10]. Instead, we can investigate the
effect of various factors on the VaR, and draw our conclusions based on their
possible or likely values. This is the approach chosen for this paper.

The remainder of this paper is organized as follows. First, we introduce
the concept of active2 portfolio and discuss what kinds of tracking errors
shall be investigated in this paper, and which methods will be used to model
them. Then we describe the mathematics to model the errors, followed by
the mathematics to measure the errors. Following the mathematical models
there is a short discussion about the data we use, including a short investi-
gation of Swedish stock market volatilities.

After these preparations, we describe the results of our simulations of these
error sources. Both missing data and time lags are simulated in a number of
ways: interpolating and extrapolating, linearly or using the standard (Black-
Scholes) model, and varying the volatility within its historical bounds. After
simulating to investigate the effects of missing data, time lags and small er-
rors on the data series for one selected year of OMXS30 data, we are ready
to draw conclusions and provide a simplified description of these effects. Fi-
nally, we suggest further studies to both refine our results and make them
more robust.

2 Theoretical Framework

2.1 Active portfolio

To gauge the tracker portfolio against its index, the concept of active port-
folio is used. A combination of a long position in the tracker portfolio and
a short position in the benchmark portfolio is called the active portfolio in

2Also called differential portfolio, see e.g. [21].
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this paper. To measure the deviation of the tracker portfolio from its bench-
mark, it is customary to apply risk measures to the active portfolio. The
simplest risk measure is the Tracking Error [2], which is defined as

E =

[

∑

tǫS

|rt −Rt|2
] 1

2

T
, (2.1)

where rt is the return of the tracking portfolio during a time period, Rt is
the return of the index, S is the set of time periods, and T is the number
of time periods in S. Tracking Error does not take the drift (of the active
portfolio in our case) into account, but the drift is usually much smaller
than the volatility, so that is only a minor problem. The variance of the
active portfolio is

s2 =

∑

tǫS

|rt −Rt − µr−R|2

T − 1
, where µr−R =

∑

tǫS

(rt −Rt)

T
, (2.2)

a value that takes even the drift into account, but it is not a meaningful
value for non-mathematicians, and does not fit into an overall system of
risk management, being specific to just the active portfolio. VaR eliminates
both these shortcomings, providing a threshold value for a certain risk level.
The risk measure we shall apply in this paper will therefore be VaR. For
its definition, see section 3.2.1. VaR and other risk measures are discussed
more in detail in e.g. [23] and [28].

To estimate the aforementioned measures, we have to evaluate historical
data: we need a time series for the active portfolio, i.e. a difference between
a time series for the tracking portfolio, say PF, and a time series for the
benchmark, say BM.

In the remaining of the paper, if not stated otherwise, Yt will denote the
value of the benchmark at time t, Ŷt will denote the value of the tracking
portfolio at time t, Vt will denote the value of the active portfolio at time t.

To show what relation the VaR values of the index respective the active
portfolio have, we include here their value for the data we were given. In
this paper we assume that the value of the portfolio is equal to one unit
of currency, e.g. 1 SEK, 1 USD or 1 EUR. Using the variance-covariance
method, the VaR (99% confidence level) of the index was 0.029, while the
VaR of the active portfolio was 0.0015. Other methods could be used to cal-
culate VaR. We have used the parametric method (fitting a t-distribution
to the data and using the parameters from it to calculate VaR) which gave
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0.0348, and the empirical method (counting how many times lost the index
more than a certain value) which gave 0.0312. The details of these methods
are beyond the scope of the present paper.

The active portfolio is very sensitive to even small errors in the tracking
portfolio. Two3 of these were briefly mentioned in section 1.2, but will not
be further discussed. Other sources of errors, which will be investigated in
detail, are described below.

Noise Small errors in the data like rounding errors can be simulated by
reversing the rounding process. The value 100 can be anything from
99,5 to 100,4 – we just pick a random decimal value from a uniform
distribution to each data item in PF. BM can be taken as exact as
published. Another, and more general way of dealing with small errors,
if rounding errors are not the dominating type of them, is to form the
tracker portfolio with help of an error term Ŷt = Yte

εZt , where Zt

are i.i.d. standard normal random variables, and ε is a small positive
number. The use of this latter procedure to estimate the impact of
small errors is motivated by the fact that not being able to buy and
sell at the exact closing prices widely outpaces the effects of rounding
errors.

Time lags between the two time series arise if they are traded, or based
on securities traded, on different exchanges. Usually only end-of-day
prices are stored in the available data bases, but exchange rates are
published with another time perspective. For example, the Swedish
central bank, Riksbanken publishes the exchange rates each day 12:15.
The Swedish banks calculate a rate as the mean of buy and sell rates
9:30, the Stockholm stock exchange compiles a rate from those figures
10:05, and that will be the rate published by Riksbanken [33]. This
makes the effect of time lag difficult to measure very precisely.� For simplicity, we assume a time lag between 0 and 1 for the index

investigated. The interpretation of this number is not important
to our investigation. What is important and makes the approach
feasible is that the price of the same security at the same time
on two different exchanges follows each other closely enough to
motivate the replacement of a price on a foreign exchange with
the price of the security on the home exchange at the same time
(if traded at the same time).

Missing data in the PF time series is the error source which is investigated
at the greatest detail in this paper. If trading in a share is suspended,

3Errors coming from companies leaving or entering the index and errors due to trans-
action costs.
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there is no price published that day, but the index calculation usually
takes the last day’s average value for the daily price [32], depending on
the index methodology. This can be taken into account in the tracking
portfolio. If the tracker portfolio by some reason does not include the
share, there is no data in the PF for it – but the index takes the share
into account. Missing data can even stem from simple clerical error.� If we simply supply the BM value for the missing PF values,

we may underestimate the risks. If there are only a few miss-
ing values, this can still provide a rather realistic estimation.
However, we usually prefer a slight over-estimation to a slight
under-estimation when we talk about risks.� We can also supply estimation for the missing value

– It can be done by means of a linear interpolation.

– We assume that the asset price develops according to the
standard model4

YT = Yte
µ(T−t)+σ(WT −Wt) (2.3)

where Yt is the asset price at time t, Wt is a standard Wiener
process, σ is a nonnegative real quantity called the volatility,
and µ is a real number called the drift. Knowing σ and µ we
can use the Brownian Bridge (see section 3.3.2) to construct
an estimation for the asset price at time t, u < t < T if we
know the prices at T and u.

– We can even use linear extrapolation, or we can extrapolate
with help of the Brownian motion.

In the rest of this paper, we will mainly concentrate on linear and Brownian
interpolations.

2.2 Modeling the errors

It would be too complicated to model the price development of every se-
curity and introduce errors in them. Instead, we recourse to introducing
errors in the value of the tracking portfolio in a way that mimics the impact
of errors mentioned above, namely missing data, time lags and (white) noise.

As a starting point, assume that everything went as good as theoretically
(but not practically) possible, and the tracking portfolio has exactly the
same value all the time as the benchmark. Then let us introduce various
sorts of errors by changing the value of the tracking portfolio, and investigate
what the effect is.

4By standard model we mean the Black-Scholes model or geometric Brownian motion
[15].
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2.2.1 Modeling missing data

Data can be missing, as mentioned, for several reasons: simple clerical er-
ror, suspension of trade for a stock or for the whole trade session if certain
conditions are met, different holidays in different countries, etc. We model
all of them the same way, disregarding the reasons for them. Instead of
constructing a tracking portfolio with all 30 stocks of the OMXS30 index,
with some data missing for specific stocks at certain days, we just take one
asset: the index and regard its value as missing at certain days.

There are then two questions to answer: how to generate missing dates
and what value to assume on those dates.

First, the question of what the missing dates are. We can regard miss-
ing data tomorrow as independent of whether data is missing today, or not.
Our choice is to suppose a weak dependence on the day before, and only
on the day before, i.e. we treat days with missing data as Markov chains,
which is described in more detail in section 3.1. Once we know when data
is missing, we can estimate it by linear interpolation or extrapolation, by
means of Brownian Bridge as a more sophisticated approach, or using the
standard model to extrapolate. These technics will further be described in
section 3.

2.2.2 Modeling time lags

As mentioned above, we suppose that there is the same time lag each day.
It is expressed as a fraction of a day, e.g. 0.5 day.

2.2.3 Modeling noise

Noise will be modeled by setting Ŷt = Yte
εZt , where Zt are i.i.d. standard

normal random variables, ε is a suitable small positive number, and for all
t 6= u the random variables Zt and Zu are independent; eεZt is called the
error term.

3 Mathematical Models

We need mathematical models to realize the modeling specified in the pre-
vious section. Choosing the mathematical models for generating missing
values has two dimensions. One is simplicity: shall we use the simplest pos-
sible approach, i.e. linear inter- or extrapolation, or a more sophisticated
approach, based on the standard model as described at the end of section
2.1? The other is between interpolation and extrapolation: shall we gen-
erate the missing data for today from an interpolation of yesterdays and
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tomorrows data (possible only for a historical data set), or shall we pretend
to be part of the bank’s daily VaR generating process, and extrapolate from
data up until yesterday? To be on the safe side, we made models for all four
possibilities.

Choosing models for time lags leads to similar questions. We shall com-
pare the efficiency of different choices for it.

Finally, error can be modeled by choosing its distribution.

We need also a mathematical model for quantifying the risk, i.e. a model to
calculate VaR. Observe that the concept of VaR in itself is not constructive
[18], [31]: it does neither specify the distribution family nor the sampling
and estimation process. We have to choose those.

3.1 Markov chain

A Markov chain [26] is a stochastic process {ξi, i = 1, 2, ...} that takes on a
finite or countable number of possible values, usually denoted by the set of
nonnegative integers {0, 1, 2, ...}. If ξi = j, then the process is said to be in
state j. We suppose that whenever the process is in state j, there is a fixed
probability pjk, 0 ≤ pjk ≤ 1, that it will be next in state k independently of
in which states the process was before.

Since the value pjk represents the probability that the process will make
the transition from j to k and it has to make the transition to some state,

it holds that
∑

k

pjk = 1 .

A Markov chain is usually described by its transition matrix 3.1

P =







p00 p01 . . .

p10 p11 . . .
...

...
. . .






(3.1)

The simplest non-trivial Markov chain (i.e. the simplest with more than one
state) is the Markov chain with two possible states. This will be our tool to
find the days when data is supposed to be missing.

There are two states (missing and not missing, 0 and 1), and therefore a
2x2 transition matrix 3.2 is needed.

P =

(

p00 p01
p10 p11

)

(3.2)

The transition probabilities p00 (missing data yesterday; also missing data
today) and p11 (data available yesterday and also available today) can be
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arbitrarily chosen, and they determine the rest of the matrix. These will be
the probabilities to vary when we want to better understand the effect of
missing values.

Given the transition matrix 3.2 (or, equivalently, the two probabilities men-
tioned above), and an initial state (i.e. if data is missing on the very first day
or not), it is easy to generate a realisation of the Markov chain. Suppose we
are in state j. MATLAB provides us with a uniformly distributed random
number between 0 and 1, and if this number is smaller than pj0, then the
next state will be 0; otherwise, it will be 1. This can be done starting from
day 1 to the last day in the series.

Once we have the series of states, i.e. we know which days we have missing
data, all that remains is to provide values for the missing data. Clearly we
have to interpolate (or extrapolate) from known data, the question is how
to make this interpolation. Linear interpolation, and (based on the stan-
dard Black-Scholes model for price development) Brownian Bridge are the
obvious choices. This will be discussed in greater detail in section 3.3.

3.2 Risk measures

As mentioned in section 1, VaR is the most popular and widespread risk
measure. It tells basically that with a certain probability, the loss will
not be greater than the measure tells. It does not say how big the actual
loss is likely to be, in the event a loss occurs; for that purpose, there is
the concept of Expected Shortfall. For continuous distributions, Expected
Shortfall is the expected value of loss incurred when the VaR loss limit –
threshold is exceeded. This concept may be closer to what a layman would
call VaR, but the naming convention has been different. In any case, the
actual risk measurement process in the actual bank decides what measure
to use. Although VaR is the most widespread implementation of Basel
II requirements, it is still a choice and not a regulatory or mathematical
requirement.

3.2.1 Variance-covariance method for VaR calculations

Let V be the value of the portfolio, and let RV denote the return of the
portfolio during a period of length ∂t, and let 0 < ξ < 1 be a given number.
The portfolio’s VaR – VaR is such a number that P (RV < −VaR) = ξ [15].

An alternative definition is that for a confidence level α the VaR at this level
is the smallest number l such that the probability that the loss L = −RV

exceeds l is no larger than (1−α) [23]. In other words, it is a quantile of the
loss distribution. Formally, using the notation in the present paragraph, we
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can define it as

VaRα = inf{lǫℜ : P (L > l) ≤ 1− α} = inf{lǫℜ : FL(l) ≥ α}, (3.3)

where FL is the cumulative distribution function for losses [23].

To define expected shortfall we need to define the quantile function first.
Let F be a cumulative probability distribution function. For αǫ(0, 1) the α

quantile of F is defined as

qα(F ) = inf{xǫℜ : F (x) ≥ α}. (3.4)

We can then define expected shortfall at confidence level α, denoted as ESα
as

ESα =
1

1− α

∫ 1

α

qu(FL)du. (3.5)

From 3.3, 3.4 and 3.5 follows immediately that

ESα =
1

1− α

∫ 1

α

VaRα(L)du. (3.6)

Since VaRα as the function of α is obviously monotone non-decreasing,
ESα ≥ VaRα. Both expected shortfall and VaR answers the question of
what we can expect in the worst case. VaR answers that the loss in those
cases will be at least this much. Expected shortfall answers that the loss
will be at average this much. We shall not estimate expected shortfall in
this paper, we shall concentrate on VaR instead.

Given the returns of the active portfolio, we can either take the upper α

quantile of the empirical loss distribution, or fit a parametric distribution
and calculate VaR from the distribution parameters. There are several meth-
ods to fit a parametric distribution to a given set of data. One of the most
popular ones is the variance-covariance method. Its application to stock
returns is described e.g. in [23]. Here is a practical summary of what is
actually done.

We shall use logarithmic returns instead of returns, which is a good ap-
proximation and provides a result which is easier to interpret.

Let assume that the logarithmic returns of the components of the active
portfolio have a multivariate normal distribution, i.e. Xt+1 ∼ Nd(µt,Σ),
where µ is the drift vector (for the active portfolio), and Σ is the variance-
covariance matrix. The linearized loss operator then takes the form

l∆[t](x) = −Vtω
′

tx, (3.7)
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where Vt is the portfolio value at time t, and ωt is the weight vector. From
the general rules for normal distributions, follows that the loss distribution
[23] for the active portfolio, which is the weighted sum of the benchmark
and the tracker portfolio, is

L∆
t+1 = l∆[t](Xt+1) ∼ N(−ω

′

tµ, ω
′

tΣωt). (3.8)

The weight vector ω is always [1 -1] since V = Ŷ − Y .

To use formula 3.8, we need the values of the mean vector (a 1x2 row vector)
and the variance-covariance matrix (a 2x2 matrix). The components of the
mean vector are the mean values for the respective log returns of time series
(tracker portfolio and benchmark), while the variance-covariance matrix is
that of the log returns of these two time series.

From here the VaR is easily calculated as the appropriate quantile. Usually,
only the variance of this distribution is relevant, since it gives at least an
order of magnitude greater contribution to the VaR value than the mean
[15]

VaRα = z1−ασ
√
∂t− µ∂t, (3.9)

where z1−α is the 1− α quantile of the cumulative normal distribution and
σ is the appropriate standard deviation.

The variance-covariance method for calculating the VaR for a portfoliio of
securities consists of the following steps:

1. Assume that the logarithmic returns have the distributionXt ∼ Nd(µ,Σ)
and estimate µ and Σ from the available data.

2. Set σ =
√

ω
′

tΣωt and µ = −ω
′

µ.

3. Use formula 3.9 to calculate VaR.

We have calculated the variance-covariance matrix, and the mean, for a daily
data, so day is the unit of time measurement, which sets ∂t to 1. To put it
into one equation calculating daily risk from daily data, we have

VaRα = z1−α

√

ω
′

tΣωt − ω
′

µ, (3.10)

In the literature, this approach5 is called the Relative VaR, see [21]. The
meaning of this measure is as follows: if we try to match our short index
holding worth $1 with a long tracking portfolio also worth $1, then the VaR
for this combination is the calculated relative VaR.

5I.e. using the daily logarithmic return data or the daily return data, to estimate the
risk in relative terms.
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3.3 Mathematical models to model missing data

If we do not have a price for a security today, the simplest assumption
is that it is the same as it was yesterday. A slightly more sophisticated
approach is to assume it has added a value to its price according to the drift
(in the standard model). It is a form of linear extrapolation. Even more
sophisticated is to simulate its value from the standard model, what we call
Brownian extrapolation. A completely different question arises when we
look back at a time series, and see that certain values are missing. Then we
can say a missing price (if the prices immediately before and after are not
missing) is simply the average of the prices captured on the days immediately
before and after the missing value. This is linear interpolation; even this
can be done more sophisticated, like with help of a Brownian Bridge if we
assume the standard model (with fixed drift and volatility), or even more
sophisticated with using time series modeling, which is beyond the scope of
the present paper.

3.3.1 Linear models

Linear interpolation is principally easy: assume the prices Yt are known days
t and t + k, k > 1, but unknown in between. Linear interpolation applied
to the daily prices means that the estimated values are

Ŷt+j = Yt + j
Yt+k − Yt

k
, j = 1, . . . , k − 1. (3.11)

Linear extrapolation is another form of saying the last known value is used,
but with adding the drift. Let us again assume that the index prices Yt are
known days t and t+k, k > 1, but unknown in between. Formally, we define
extrapolated values as

Ŷt = Yt; Ŷt+j = Ŷt+j−1e
µ, j = 1, . . . , k − 1. (3.12)

3.3.2 Standard Model and Brownian Bridge

Since the Brownian Bridge plays an important role for this paper, we de-
scribe here what it is, why it is used here and also the algorithm involved.

We assume that the index develops according to the standard model given
by formula 2.3. In some cases, we shall write W (t) instead of Wt to improve
readability.

In this section, we will use the business day as unit. The drift is noto-
riously difficult to estimate, at least with both meaningful accuracy and
statistical significance. The volatility changes: there are periods of higher
and lower volatility on the market, the best we can do is to find a sensible
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volatility range and then investigate the effects with different choices of σ.
We shall later show that as long as the volatility stays within sensible bounds
it does not really matter for the purposes of this paper exactly how large
it is. We shall therefore not investigate the problem of correctly estimating
the present volatility further. We simply estimate both drift and volatility
from the given time series.

Missing data and time lag requires essentially the same simulation tool in
this respect.

If there is missing data somewhere in the middle of the time series, say
k days are missing, then you can simulate the last missing day with help
of the Brownian Bridge, noting that you are seeking Yt+k−1|Yt+k, then
Yt+k−2|Yt+k−1, and so on until all missing values have been set.

Let τ be a time lag, 0 < τ < 1. To simulate from a time lag, we have
to simulate from the conditional distribution Yt+τ |Yt+1. The value of Yt is
known in both cases. So is the value at the end of the period. To further
simplify the equations, we can assume that t = 0. Then both cases can be
described as simulating from

Ys|Yu, 0 < s < u (3.13)

or equivalently and more in detail,

Y0e
µs+σW (s)|Y0e

µu+σW (u). (3.14)

Here, we know the values of Y0, s, u, and µu + σW (u), and suppose that
the values of µ, σ and W (u) are fixed, but not known to us. We have to
simulate from W (s). Of the values µ, σ and W (u) we can choose two; the
third can be calculated. Since we are going to go through this simulation for
a given time series several times assuming the same µ and σ values, these
two will be set and W (u) be calculated.

To simulate from W (s) we note that (see [26]) it has a normal distribu-
tion, and

E[W (s)|W (u) = B] =
s

u
B Var[W (s)|W (u) = B] =

s

u
(u− s). (3.15)

A Brownian motion process within an interval, with its values fixed at both
ends, is called a Brownian Bridge [12].

All that remains before we can begin the simulations using Brownian bridges
is to choose the drift and volatility values. Drift is usually taken as a few
percent; per day, as we have it in our time series, it changes the price of
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the asset (the index) with less than three hundredths of a percent. The
volatility must lead to at least an order of magnitude bigger changes; there
are very few days when the index does not change at least a few tenths of a
percent (and quite often, more than one percent). This seems to imply that
the drift is not critical for our investigations; we could even set it to zero,
without affecting the outcome much.

The volatility is on the other hand is seemingly very important; even with-
out calculating specific values; we can see that the bigger the volatility, the
bigger the errors are likely to be.

Sometimes the missing data is at the beginning or at the end of the time
series. Then no Brownian Bridge is needed, just the standard Wiener pro-
cess.

The reasoning above gives the shortest, most transparent calculations. To
see the effect of volatility changes without unnecessarily many simulations,
we have to note how 3.15 can be modified if the volatility, i.e. the square
root of variance changes. If we instead consider the Brownian motion pro-
cess with V ar(W (t)) = σ2t on the unit interval and pin down both ends,
the first to 0, we can replace 3.15 with 3.16 below:

E[W (s)|W (u) = B] =
s

u
B Var[W (s)|W (u) = B] = σ2 s

u
(u− s). (3.16)

3.4 Time lags

Let τ be a time lag, 0 < τ < 1. The linearly interpolated tracking portfolio
has a value which can be closely approximated as

Ŷt+τ = e(µ(t+τ)+σ((1−τ)Wt+τWt+1)). (3.17)

Since we do not know the time lagged value of the index, we have to use a
Brownian Bridge to set a value for it,

Ỹt+τ = e

(

µ(t+τ)+σ
(

Wt+τ(Wt+1−Wt)+
√

τ(1−τ)u
))

, (3.18)

where u has a standard normal distribution, in accordance with formulas
3.15 and 3.16. In other words,

Ỹt+τ = Ŷt+τ e

(

σ
√

τ(1−τ)u
)

. (3.19)

Therefore

log(Ŷt+τ ) = (µ(t+ τ) + σ((1− τ)Wt + τWt+1)) (3.20)
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and

at = ∆log(Ŷt+τ ) = ∆ (µ(t+ τ) + σ((1 − τ)Wt + τWt+1))

= µ+ σ(τWt+2 −Wt+1 + (1− τ)Wt). (3.21)

And

bt = ∆log(Ỹt+τ ) = ∆
(

µ(t+ τ) + σ
(

(1− τ)Wt + τWt+1 +
√

τ(1− τ)
)

u
)

= µ+ σ(τWt+2 −Wt+1 + (1− τ)Wt) + σ
√

τ(1− τ)(u− v), (3.22)

where u and v are independent standard normal variables.

We need the variances and the covariance of at and bt.

We can assume without loss of generality that t = 0. The relative risk
should be the same on the first day as on any other day. Then we can see
that

V ar[at] = σ2((1 − τ)2 + τ2)

V ar[bt] = σ2((1 − τ)2 + τ2 + 2τ(1 − τ)). (3.23)

And finally, their covariance is

Cov(at, bt) = E[atbt]− E[at]E[bt]

≈ {since µ is two order of magnitude smaller than σ}
≈ E[σ2{τW2 −W1}{τW2 −W1 +

√

τ(1− τ)(u− v)}]
= {since W2 = W1 + Z1 independent}
= σ2E[(τ − 1)2W 2

1 + τ2Z2
1 ] = σ2((τ − 1)2 + τ2) (3.24)

Combining 3.23 and 3.24, we can calculate σ̂2 = ω
′

Σω for the variance-
covariance method:

σ̂2 = ω
′

Σω

= [1 − 1]

[

σ2((τ − 1)2 + τ2) σ2((τ − 1)2 + τ2)
σ2((τ − 1)2 + τ2) σ2((1− τ)2 + τ2 + 2τ(1− τ))

] [

1
−1

]

= 2τ(1 − τ)σ2, (3.25)

which is quite close to the results achieved by simulations. For example,
with half a day’s time lag, this formula gives 0.0205 for the active portfolio,
while simulation at average gave 0.0200.

How does interpolation with Brownian Bridges compare to this result? Ob-
viously, bt will not change, but at will since Ŷt+τ changes:

Ŷt+τ = e

(

µ(t+τ)+σ
(

(1−τ)Wt+τWt+1+
√

τ(1−τ)u
′
))

, (3.26)
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where u
′

is a standard normal variable independent of the process Wt and
from the process u. Consequently, at = bt. Further calculations show that
the covariance also remains the same, and so for the Brownian Bridge case,
we have

σ̂2 = ω
′

Σω

= [1 − 1]

[

a1,1 a1,2

a2,1 a2,2

] [

1
−1

]

= 4τ(1 − τ)σ2, (3.27)

where

a1,1 = a2,2 = σ2((1 − τ)2 + τ2) + 2τ(1− τ)

a1,2 = a2,1 = σ2((1 − τ)2 + τ2). (3.28)

This shows analytically that there is nothing to gain from the Brownian
Bridge, in fact, it deteriorates the result from linear interpolation with a
factor of

√
2.

Similar calculations could be made for both extrapolation and Brownian
extrapolation, but it is outside the scope. What remain is simulation, and
a statistical analysis of the simulation results, to further underpin this con-
clusion. This will be done in section 5. There we shall perform simulations
for all four possible algorithms, linear interpolation and extrapolation, and
Brownian Bridge and Brownian extrapolation. The outcome of these sim-
ulations will also undergo hypothesis testing to show that indeed, the best
we can do is linear interpolation.

3.5 The error term

Earlier in section 2.2, we have defined the error term as eεZt with a suffi-
ciently small ε and a standard normal variable Zt. It is also straightforward
to calculate the variance-covariance matrix for this case, using the well-
known identities for variance and covariance, see e.g. [13]. Since for small
values of x we have ex ≈ 1 + x, a small error in the data is adequately
approximated with a small error in logarithmic return. In other words, we
can use the approximation Ŷt ≈ Yt(1 + εZt).

Consequently, the value of the active portfolio is Vt = Ŷt − Yt ≈ YtεZt.
Since Yt itself is a random variable, it is difficult to estimate the variance
of Vt. The only thing that we can deduce from this approximation that the
effect of small errors is proportional to ε.

If we had an additive error term, i.e. Ŷt = Yt + εZt, then we could make an
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explicit estimation of the effect of the error term. In this case, the variance-
covariance matrix would have the value

Σ =

[

σ2 + ε2 σ2

σ2 σ2

]

. (3.29)

Since the weight vector is ωt = [1− 1]
′

we can explicitly calculate the actual
daily VaR value, using of course daily data for the drift as well:

VaRα = z1−α

√

ω
′

tΣωt − ωtµ = z1−αε, (3.30)

i.e. the variance to be used in the VaR calculation is simply ε2 – if the error
term is additive.

We could have arrived to the same result noting that the active portfo-
lio should not have any drift, and its variance is approximately ε2 so we can
calculate the theoretical VaR value of the active portfolio for α = 0.99 as

VaR0.99 ≈ z0.01ε. (3.31)

3.6 Determining the volatility range

According to the standard model described earlier in equation 2.3, the price
of an asset like the index of our choice can be modeled by the stochastic
equation

YT = Yte
µ(T−t)+σ(WT −Wt), (3.32)

where µ and σ are deterministic constants, denoting the local rate of return
and the volatility, respectively, and Wt is a standard Wiener process. So far
in this paper we have taken µ and σ given, but they are not immediately
observable at any time.

Their values have to be determined from the available data in a more or
less roundabout way, much depending on what the model will be used for.
Implied volatility is determined from the observable variables above, and
the price of a derivative asset. Historic volatility is determined from a time
series of historic asset prices. Here we use the volatility to simulate missing
asset prices from a Brownian bridge. Historic volatility [4] seems to be a
straightforward choice. It is calculated as follows.

At the n+1 equidistant points in time t0, ..., tn we observe the index prices,
and calculate the log-returns

ξi = ln

(

Yti

Yti−1

)

i = 1, . . . , n; ∆t = ti − ti−1. (3.33)
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The sample variance Sξ for the log-returns so calculated is

S2
ξ =

1

n− 1

n
∑

i=1

(ξi − ξ)2, (3.34)

where ξ =
1

n∆t

n
∑

i=1

ξn is the sample mean. Finally, the volatility is estimated

as

σ∗ =
Sξ√
∆t

. (3.35)

3.7 Hypothesis testing and P-value

Testing two methods against each other, such as linear interpolation and
Brownian Bridge, we shall alway use samples with matched pairs. To com-
pare the samples {a1, . . . , an} and {b1, . . . , bn}, we shall investigate the sam-
ple differences {x1, . . . , xn} = {a1 − b1, . . . , an − bn}.

Throughout the paper, we are interested in comparing VaR values. All
the simulations will be performed so that we can compare samples with
matched pairs (of VaR values). Each time, we shall perform 100 simulations
to obtain a suitably large sample size.

There are several ways of doing this, depending on how much we know
of the distribution of the difference of the pairs in the sample. Tests for
normality have shown that normality can not be taken for granted, so we
use a simple sign test.

If there is no difference between the samples, the median of their difference
should be 0. This means that for the samples {a1, . . . , an} and {b1, . . . , bn}

P (ai − bi > 0) = 1
2 where i = 1, . . . , n.

Now assume that we have k pairs, k < n
2 , where ai > bi. What is the

probability Pk that we have a result that is at least this extreme? This is
the question a two-sided simple sign test [5] answers. Observe that this test
is not specific about the distribution of differences; it only requires that the
mean should exist.

The result would be equally extreme if we had n − k pairs or more where
ai > bi, or k pairs or less where ai > bi.

The probability that xi > yi for exactly j pairs is

pj =

(

n

j

)(

1

2

)j (1

2

)n−j

=

(

n

j

)(

1

2

)n

(3.36)
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so

Pk =

k
∑

j=0

(

n

j

)(

1

2

)n

+

n
∑

j=n−k

(

n

j

)(

1

2

)n

. (3.37)

Let the null hypothesis be that there is no difference, i.e. if we denote the
mean with m,

H0: m = 0

and the alternative hypothesis

H1: m 6= 0.

When we test for difference between two matched pair samples, Pk will be
the observed level of significance or P-value. This means that for any given
α we can reject H0 on the significance level α if α > Pk.

The program we use to calculate the observed level of significance, MAT-
LAB, sometimes only shows this value to four decimal places. This means
that the value Pk = 0 means only that Pk < 0.00005.

This was the two-sided test. If on the other hand we had

H0: m ≤ 0

and

H1: m > 0.

then

Pk =

k
∑

j=0

(

n

j

)(

1

2

)n

(3.38)

i.e. the observed level of significance would be exactly half as much as in
the case of a two-sided test.

4 Data

The same data set and the same algorithms can lead to different results
depending on exactly how the data is used.

4.1 Market data set

The first and obvious use of the given data sets (OMXS30 data for one
year, tracker portfolio value for one year, 2010) is to calculate the drift and
the volatility of this index and to calculate the VaR for the active portfolio
using the variance-covariance method. The drift and volatility will be used
in subsequent calculations. All three sources of error need their own analysis
and consideration. As before, the daily average return or daily drift will be
denoted µ and the daily variance or daily volatility with σ.
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4.2 Missing data

If there is just one day of missing data, and we are interested in the VaR
on that day, the daily drift and volatility provides the distribution for the
logarithmic return even without simulation.

First consider linear interpolation from adjacent values. Then we tacitly
supposed that the tracker portfolio coincided with the index the day before.
Using first order approximation to ex we can write

Ŷt ≈ Y0e
µt+σ( 1

2
Wt+1+

1

2
Wt−1) (4.1)

and estimate the actual loss from having to estimate the missing data as

L ≈ Yt − Ŷt = Y0e
µt
(

eσWt − eσ(
1

2
Wt+1+

1

2
Wt−1)

)

= Y0e
µt+σWt

(

1− eσ(
1

2
Wt+1−Wt+

1

2
Wt−1)

)

= Yt

(

σ

(

1

2
(Wt+1 −Wt)−

1

2
(Wt −Wt−1)

))

. (4.2)

In formula 4.2 we have the daily changes in paranthesis, and those are inde-
pendent of each other. Their variances add upp. If X is a random variable
and c is a constant, V ar[cX] = c2V ar[X]. Therefore the variance to be used
in the relative VaR calculation is

V ar

[

σ

(

1

2
(Wt+1 −Wt)−

1

2
(Wt −Wt−1)

)]

= σ2

(

1

4
+

1

4

)

=
1

2
σ2. (4.3)

If we simply put the last day’s index price into today’s tracker portfolio
price, then we have

Vt = Ŷt − Yt = Yt−1 − Yt. (4.4)

Noting that the value of the active portfolio was in this case 0 on the pre-
vious day, we can conclude that it has exactly the same VaR as the index
itself, i.e. σ2 – which is obvious even without calculations.

Now let us consider a more sophisticated interpolation, that with a Brown-
ian Bridge. Is it more efficient? The value of the active portfolio on a day
when there is no data, but when there is data on the adjacent days, is

Vt = Ŷt − Yt = eµt+σŴt − eµt+σWt ≈ σ(Ŵt −Wt). (4.5)

The quantity Ŵt is calculated by simulating from a Brownian Bridge. To
get an explicit expression, note that Ŵt = Wt−1 + B̂1 and Wt = Wt−1 +
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(Wt−Wt−1) = Wt−1+B1 where B is a standard Wiener process. B̂1 is then
a (standard) Brownian Bridge, with s = 1 and u = 2 using the notation in
formula 3.15. This means it has an expected value of 1

2 (Wt+1 −Wt−1) and

a variance of 1
2 . This means we can express Ŵt −Wt the following way:

Ŵt −Wt =

(

Wt−1 +
1

2
(Wt+1 −Wt−1) +

1√
2
B̃1

)

−Wt

=
1

2
(Wt+1 −Wt)−

1

2
(Wt −Wt−1) +

1√
2
B̃1, (4.6)

which in turn means that the compound variance is exactly σ2.

Extrapolation with the standard model will result in an even larger vari-
ance, 2σ2.

This answers the question what effect one day of missing data has just
on the day in question. A completely different question is what effect one
day of missing data has on the expected daily VaR. To answer this question
analytically is not so easy, since the resulting distribution is far from being
normal. We have to resort to simulation, and use the variance-covariance
method with parameters estimated from the values the simulation provides.

While it is true that even this calculation builds on a premise which is
not true, namely that the active portfolio as constructed has a joint normal
distribution, it can be argued that this is a good approximation. We have
used the index, generated missing data days and replaced the index value
with generated values.

Even if we do not have an analytical result for the expected daily VaR
in case of missing data, the calculations in this section suggest that the
smallest VaR comes from linear interpolation.

4.3 The volatility range

The historic values of OMXS30 are available from the NASDAQ OMX web-
site for the last 20 years. For a bigger sample, we can calculate the volatility
of the AFGX for which there is readily available data (at least monthly)
from 1949 to 2004 (at the website of the Swedish periodic Affärsvärlden);
that gives another forty-one volatility figures, if we assume that these in-
dices have about the same volatility range, and choose only one value for
the years when both are available.

For the years we have both OMXS30 and AFGX, the daily volatility ranges
of these two indices are:
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{σOMXS30|0.006 ≤ σOMXS30 ≤ 0.021}

and

{σAFGX |0.006 ≤ σAFGX ≤ 0.021}

respectively; the same to the third decimal point. For the longer time frame,
the AFGX volatility range is

{σAFGX |0.003 ≤ σAFGX ≤ 0.024}.

Considering this, we can say that the sensible volatility range to use is

{σ|0.003 ≤ σ ≤ 0.03};

the histogram in Figure 1 suggests (although not proves in any way) that
volatility comes from a log-normal distribution, in accordance with the find-
ings in [20].
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Figure 1: Histogram depicting the daily volatilities of the AFGX index,
calculated from monthly data, for 1949-2004.

5 Simulations

5.1 First round: missing data, linearly interpolated

In the first round of simulations we have varied the parameters for the
Markov chain, p00 went from 0.5 to 1, while p11 varied from 0.9 to 1, all in
0.01 increments. The confidence level remained the same, 0.99, throughout
these simulations.
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The result is 561 (i.e. 51 times 11) VaR0.99 values, corresponding to the
possible combinations of p00 and p11 values.
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Figure 2: Hundred simulated VaR values, linear interpolation.

Figure 2 tells the story about how the transition probabilities work. It shows
that the relative VaRαvalue for p11 = 0.9 and p00 = 1 is circa 0.0275, and
that the VaRα value for p11 = 0.9 and p00 = 0.5 is around 0.01. Of course
if the probability that we generate another missing data day after a missing
data day is high, VaR will also be high. Even if the probability of getting
missing data after a day with data is high, i.e. the probability of getting
another day with data is low, will the VaR be high. If a missing data day
means there is no more data in the rest of the period, then VaR will be about
the same order of magnitude as e.g. the tracker portfolio. It is interesting
to note that the effect of p00 is more marked than the effect of p11 as Figure
2 shows.

Linear interpolation is ”nicer” than the Brownian Bridge; it always ends
up between the neighboring values. On the other hand, the stock market
does not behave that nicely. It is then interesting to see what generating the
missing values by means of Brownian Bridges changes. Earlier, calculations
in sections 3.4 and 4.2 have shown that at least for time lags and for one
day of missing data, linear interpolation resulted in a lower VaR value than
interpolation with Brownian Bridges. The design of the Brownian Bridge is
principally adding an independent random variable to the value calculated
by linear interpolation. It results therefore in a larger variance (than linear
interpolation itself), and (if variance is the dominating factor in the calcula-
tion of the VaR) a larger VaR. In the next section, we shall show by means
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of simulation that this indeed is the case even for missing days.

5.2 Second round: missing data, using Brownian Bridge

To make the results easier to compare, we have used the same missing values
as in the previous simulations, but now Brownian Bridges bridged the gaps
instead of linear interpolation. The general shape of the surface describing
the effects of varying transition probabilities in Figure 3 is about the same
as in Figure 2, but the magnitude is different. For example, the value for
p11 = 0.9 and p00 = 1 is circa 0.0395. It is very close to the value which
we obtain if we multiply the corresponding value from Figure 2 with

√
2

(which would yield 0.0389). We have seen when analysing time lag effects
that there the multiplier between linear interpolation and Brownian Bridge
was indeed

√
2. Is there a similar connection in this case also? We have
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Figure 3: Hundred simulations with Brownian Bridges, with historical
volatility from the sample (circa 1.2 %).

made two sets of statistical tests. In total, there were 224400 simulations
made6: for each pair of p11 and p00 values, we made 100 Markov chains, and
for each Markov chain, we have simulated from all four cases.

First set of statistical tests We have first wanted to see if linear inter-
polation is different from Brownian Bridge interpolation. For this pur-
pose, we have made a two-sided test for all 550 interesting pairs (of
course, when p11 = 1, there is not much to compare). Each of this pairs
utilised hundred simulated Markov chains. For each Markov chain, we

6Each point on the surface, in e.g. Figure 2 or Figure 3, represents a mean value of
100 simulated VaR values and there are 561 such points in each simulation, i.e. in linear
interpolation, Brownian Bridge, linear extrapolation and Brownian extrapolation.
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have calculated the interpolated tracker portfolio and the Brownian
Bridge tracker portfolio. The null hypothesis was that (for the par of
values within one test run, i.e. the same Markov chain) there is no
difference, i.e. that the difference is 0.

H0: There is no difference between linear interpolation and
Brownian Bridge.

H1: There is a difference between linear interpolation and
Brownian Bridge.

First, we have tested if the distribution of the differences in VaR values
were normally distributed. We have used the Jarque-Bera [16] test for this
purpose. We will not in depth describe the Jarque-Bera test in this paper,
but rather briefly present an overview.

This test is a two-sided goodness-of-fit test suitable when a fully-specified
null distribution is unknown and its parameters must be estimated. The
test statistic is

JB =
n

6

(

s2 +
(k − 3)2

4

)

, (5.1)

where n is the sample size, s is the sample skewness, and k is the sample
kurtosis. For large sample sizes, the test statistic has a χ2-distribution with
two degrees of freedom.

In testing for normality, the null hypothesis that the sample comes from
a normal distribution with unknown mean and variance, against the alter-
native that it does not come from a normal distribution. In more than 30%
of cases, the result was that one could reject the normality hypothesis on a
99% confidence level.

Since the differences between the VaR values were not normally distributed
in about a third of the cases, we have used a two-sided simple sign test to
see if they are significantly different (see e.g. [5]).

All these differences were significant on at least 99.9% confidence level. In
fact, even the least significant result showed a significance level under 10−6.
Having established that there indeed is a difference, we have made a one-
sided test to see if the null hypothesis

H0: VaRBB ≤ VaRlin int

could be rejected on the 99.9% confidence level.

The answer was affirmative in all the 550 interesting cases (i.e. when p11
was different from 1).
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Second set of statistical tests The next question was if we can reject
the hypothesis that indeed the Brownian Bridge entails a

√
2 times

worse result, hence

H0:
√
2xlin int − xBB = 0

H1:
√
2xlin int − xBB 6= 0

There we could not reject the null hypothesis on at least 99.9% confidence
level in the majority of cases. The connection between these two methods
is not as simple as it is for the time lag case. A detailed investigation of this
relation is outside the scope of this paper.

To summarize, statistical tests proved that linear interpolation provides
lower VaR values than using the Brownian Bridge method in the missing
data case.

What happens if the volatility is higher? Of course it only matters for
the Brownian Bridge, the interpolation does not change. To see the overall
effect we have also included simulations (with the same Markov chains) us-
ing ten times the variance, hence

√
10 times the volatility, in the given index

series. The result is depicted in Figure 4. It is clear from comparing Figures
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Figure 4: Missing data with Brownian Bridge using
√
10 times the historical

volatility.

3 and 4 that higher volatility results in higher VaR values as expected, but
is the effect proportional to σ? Noting that 0.0395

√
10 = 0.1249 and not

0.92 (as the upper right corner of Figure 4 would suggest) shows that pro-
portionality does not seem to hold, at least not if we change the volatility
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but use the same index series. Still, the question of how the volatility used
in the calculations affects the results is an interesting one.

To see at least some of the effects, we fix the transition probabilities7 and
let σ vary. In Table 1, the first column contains the volatility, the second
column contains the linearly interpolated VaR values (at average), while the
third column shows Brownian Bridge interpolated VaR values (at average).
In all cases, the difference between the last two columns was significant at
the 99.9% confidence level. The volatility does not come in play with linear

Volatility Linear Brownian

Interpolation Bridge

0.0030 0.0087 0.0089

0.0060 0.0090 0.0100

0.0090 0.0090 0.0114

0.0120 0.0088 0.0126

0.0150 0.0087 0.0138

0.0180 0.0088 0.0161

0.0210 0.0085 0.0172

0.0240 0.0089 0.0196

0.0270 0.0093 0.0217

0.0300 0.0088 0.0237

Table 1: The effect of volatility.

interpolation; the differences there come from the different outcomes from
simulating the Markov chain.

It is difficult to see from a table if the effect is linear. We have there-
fore included a graph, Figure 5, where we have plotted VaR values, resulted
from the simulation using Brownian Bridge, as a function of volatility. As
we can see, the effect is not strictly linear, but quite close to being linear8.

There is one more area to investigate. What if there is only a sporadic
day of missing data due to e.g. clerical error, and those days come inde-
pendently of each other? These conditions can be realised if p11 = p01 (and
consequently p10 = p00) and p11 is relatively high. To make it a little more
general, we let both p11 and p01 vary between 0.98 and 1, in 0.001 increments.
Up until p11 = 0.994 the linear interpolation resulted in significantly lower
VaR values than Brownian Bridges, on a 99.9% confidence level, indepen-
dently of what p01 was chosen. Then for p11 = 0.994 and p11 = 0.995 there
were two instances each (i.e. 2 of 20) where the confidence level dropped

7We set p11 = 0.9 and p00 = 0.1.
8Investigating linearity is not in the scope of this paper.
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The effect of volatility

Figure 5: The effect of varying the volatility.

under 99.9%. For p11 = 0.996 and for higher p11 values, the results were
inconclusive.

We have used one year long time series, 252 days. In terms of days – p11 =
0.994 means one and a half missing days per year at average; p11 = 0.995
means a little over one day. Higher p11 values mean not even one day per
year missing at average. It is natural that the results are then thrown by
single days.

5.3 Third round: missing data, linearly extrapolated

Figure 6 shows average VaR values for missing data with extrapolation.
Compare with Figures 2 and 3, containing missing data simulations with
linear interpolation and Brownian Bridge. It is not obvious form the figures
what the relations between these three methods are. We have performed
the same kind of statistical analysis (two sided simple sign test) as we used
to compare linear interpolation and Brownian Bridge. The VaR values cal-
culated from linear extrapolation were in all 550 cases significantly higher
than the values calculated from linear interpolation, as expected.

More surprisingly, the VaR values from linear extrapolation were lower than
those obtained using the Brownian Bridges, in a majority of cases.

5.4 Fourth round: missing data, Brownian motion

We have not found a straightforward analytical description which would de-
scribe our four ways of providing missing data. We have expected to find
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Figure 6: Hundred simulated VaR values, linear extrapolation.

the same kind of difference between linear extrapolation and Brownian ex-
trapolations as we have found between linear interpolation and Brownian
Bridge. Figure 7 displays the results from Brownian extrapolation.

Indeed, the same kind of statistical analysis, as in sections 5.2 and 5.3,
showed that linear extrapolation resulted in lower VaR values than Brown-
ian extrapolation, and the differences were significant at least on the 99.9%
confidence level in each of the 550 simulated matched pair samples.

0.9
0.92

0.94
0.96

0.98
1

0.4

0.6

0.8

1
0

0.01

0.02

0.03

0.04

0.05

p11

Active portfolio VaR

p00

V
aR

 v
al

ue
s

Figure 7: Missing data, Brownian extrapolation.
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5.5 Fifth round: time lag

We have previously in section 3.4 calculated the effects of time lags using
linear interpolation and Brownian Bridge. We have also performed simula-
tions to show what the results really look like. These results are displayed
in Tables 3-6, but first take a look at Table 2, where we present estimated
volatility and VaR for the OMXS30 index years 2008-2010.

Year σ VaRα

2008 0.02505 0.05828

2009 0.01825 0.04246

2010 0.01216 0.02828

Table 2: OMXS30 volatility and VaR years 2008-2010.

Linear Interpolation

Year τ = 0.25 τ = 0.5 τ = 0.75

2008 0.0359 0.0419 0.0357

2009 0.0262 0.0300 0.0259

2010 0.0174 0.0202 0.0173

Table 3: VaR calculated for the active portfolio varying τ values using Linear
Interpolation years 2008-2010.

Linear Extrapolation

Year τ = 0.25 τ = 0.5 τ = 0.75

2008 0.0415 0.0593 0.0725

2009 0.0303 0.0428 0.0530

2010 0.0202 0.0287 0.0350

Table 4: VaR calculated for the active portfolio varying τ values using Linear
Extrapolation years 2008-2010.

Brownian Bridge

Year τ = 0.25 τ = 0.5 τ = 0.75

2008 0.0506 0.0585 0.0511

2009 0.0368 0.0423 0.0367

2010 0.0246 0.0285 0.0245

Table 5: VaR calculated for the active portfolio varying τ values using Brow-
nian Bridge years 2008-2010.

We have simulated from the data for three consequtive years, 2008-2010.
The goal was in part to compare even with simulation which methods are
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best in estimating the time lagged value, in part to see what the effects are.
Not surprisingly, using linear interpolation gives the best result. That linear

Brownian Extrapolation

Year τ = 0.25 τ = 0.5 τ = 0.75

2008 0.0580 0.0837 0.1020

2009 0.0424 0.0602 0.0738

2010 0.0285 0.0399 0.0490

Table 6: VaR calculated for the active portfolio varying τ values using Brow-
nian Extrapolation years 2008-2010.

interpolation gave the best result is also confirmed statistically. The differ-
ences between linear interpolation and any of the other three were significant
on the 99.9% confidence level. More precisely, both the null hypothesis that
the other methods are as good as linear interpolation, and the null hypoth-
esis that they are at least as good as linear interpolation could be rejected
at the 99.9% confidence level.

The simulation results are quite close to the predictions, when such could
be made from our previous calculations, i.e. the results from applying equa-
tions 3.25 and 3.27 to e.g. equation 3.10 (either with the appropriate µ

values, or taking µ = 0).

Only considering 2010 data, the difference between linear extrapolation and
Brownian Bridge for τ = 0.5 seemed to be significant. However, in the
other years, it was not. Table 7 summarizes the results of significance test-
ing. Note that types of test in Table 7 are ranked in such a way that tests

Type of test τ = 0.25 τ = 0.5 τ = 0.75

Brownian Bridge vs. Linear Inter *** *** ***

Linear Extra vs. Linear Inter *** *** ***

Brownian Extra vs. Linear Inter *** *** ***

Linear Extra vs. Brownian Bridge (***) — ***

Brownian Extra vs. Brownian Bridge *** *** ***

Brownian Extra vs. Linear Extra *** *** ***

Table 7: The significances of differences between methods in the time lag
case.*** means significance on the 0.001 level. — means no significance.
(***) means significant but in opposite direction.

with VaR being significantly higher are ranked first and then in a decreasing
order9.

9I.e. for Brownian Bridge compared to Linear interpolation first, followed by Linear
extra compared to Linear interpolation etc.
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5.6 Sixth round: normally distributed small errors

Normally distributed small errors of the portfolio values correspond to a
good precision to normally distributed small errors of the logarithmic re-
turns. Therefore, we just used the logarithmic returns and attached an
additive error term.

Making the simulation, we get the results illustrated in Figure 8. For
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Figure 8: The effect of small errors.

ε = 0.005 the daily relative VaR from simulations was 0.0117, actually very
close to the theoretical value of an additive error term to the normed index
(i.e. index which begins with the value of 1), which is 0.0116.

5.7 Seventh round: other historic data

In section 5.2 we have briefly investigated what happens if we change the
volatility used in the simulations. The historic volatility of the data re-
mained the same. Now we shall also investigate what happens if the histor-
ical volatility changes. As linear interpolation provided significantly lower
VaR values than any other approach, we shall do it using linear interpolation
only.

We have downloaded data about the OMXS30 index for 20 years10, 1991-
2010, and calculated the volatilities (see Table 8). As we can see, the highest
(daily) volatility occurred in 2008, when it was 0.025. The year with the
lowest daily volatility was 2005 with 0.008. Historically, it was a very tur-
bulent twenty years period.

10Data was downloaded from www.nasdaqomxnordic.com.
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Year Volatility

1991 0.013

1992 0.016

1993 0.011

1994 0.011

1995 0.009

1996 0.009

1997 0.014

1998 0.020

1999 0.013

2000 0.020

2001 0.022

2002 0.022

2003 0.014

2004 0.010

2005 0.008

2006 0.012

2007 0.013

2008 0.025

2009 0.018

2010 0.012

Table 8: Historical OMXS30 daily volatilities, years 1991-2010.

To see the effect of historical volatilities (i.e. the prevailing volatilities, as
opposed to volatilities used in calculation, which are always a guesswork), we
choose three years, 2008, 2009, and 2010. Their volatilities were 0.025, 0.018
and 0.012 respectively, pretty much an even series. We have seen earlier that

Year Missing data Missing data Missing data Half day’s Small
p11 = 0.9 p11 = 0.99 p11 = 0.9945 time lag errors
p00 = 0.5 p00 = 0.5 p00 = 0.0055 ε = 0.001

2008 0.0243 0.0067 0.0031 0.0419 0.0023

2009 0.0174 0.005 0.0029 0.0300 0.0023

2010 0.0115 0.0034 0.0015 0.0202 0.0023

Table 9: Effects of missing data, time lag and small errors when calculating
VaR for the active portfolio.

the effects of time lags (calculated or simulated by linear interpolation) are
roughly proportional to historic volatility. It seems logical that the effect of
missing data and half a day’s time lag (for a fixed set of other parameters)
should also vary proportional to the volatility. Table 9 indeed indicates that
such is the case, except for when we have very few missing days.
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6 Conclusions

Decision makers need short, concise and easy to understand summaries.
It is because they have to collate information from many sources and dif-
ferent specialists. Here we attempt to summarize the effects of sources of
errors, and provide some simple rules. In the table which summarizes all
the calculations in a comprehensive yet easy to understand way, we have
included three cases of missing data, each with 100 simulations and taking
the average; time lag with linear interpolation; and the effect of small er-
rors. Analyzing Table 9 we can see that the relation between some of the
columns is quite stable (not to the last decimal, but in most cases, with
around a tenth relative precision). We can derive a small number of simple,
but potentially useful rules from here.

Rule 1 The effect of time lags and missing data where the probability of a
missing day is not too small is proportional to the volatility. If there
are less than two missing days per year at average, then there is no
such proportionality.

Rule 2 The effect of small errors on the other hand is proportional to the
standard error of the white noise (or error term).

Rule 3 The effect of time lag τ is a multiplicative factor
√

2τ(1 − τ) on
the VaR of the index, if we can use linear interpolation.

Rule 4 Introducing a new source of uncertainty increases VaR. For exam-
ple, if we replace linear interpolation with Brownian Bridge interpola-
tion, the calculated VaR increases.

7 Further Research

Although the Basel and UTICS frameworks emphasize VaR, other risk mea-
sures such as the Expected Shortfall can be more adequate in certain sit-
uations. Regulatory regimes come and go; even now there is a critic of
the Basel II framework, for its potentially destabilizing effects on the very
markets it aims to stabilize [14]. It may therefore be prudent to investigate
other risk measures, perhaps based on other, more fat-tailed distributions.

Another possibility is to systematically compare empirical VaR (and other
measures) to their parametric counterparts.

A third question is how much the assumptions of normality and indepen-
dence really matter. Clearly, the active portfolio does not possess a two-
dimensional normal distribution in the missing data case, although one can
argue that normality holds for the other cases (provided logarithmic returns
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are normally distributed). With the introduction of Markov chains we have
introduced a measure of temporal dependence. A more thorough analysis
of what happens would perhaps involve GARCH models [6]. Before making
such an analysis, however, we should investigate if just randomly distribut-
ing a number of missing data days would not give essentially the same result
as the Markov chain based approach. The less assumptions we make, the
more robust are the results.

We have seen in this paper that linear interpolation leads to the lowest
VaR values for the active portfolio. We have derived analytical expressions
for the effects of time lags and one day of missing data using the historical
volatility. No such expression was derived for missing data cases in general.
To see the effect of prevailing volatility on missing data VaR in general, one
could make the same calculations for a number of years (i.e. for time series
with different historical volatilities). To make the results comparable, one
should use the same Markov chains for all those years.

When we in section 5.2 plot VaR values simulated using Brownian Bridge,
as a function of volatility – the effect is quite close to being linear. However
to investigate this further, a test on linearity can be performed.
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Studentlitteratur, Lund, Tredje utg̊ava

[6] Brockwell P. J., Davis R. A. (2002): Introduction to Time Se-
ries and Forecasting. Springer Texts in Statistics, Springer Verlag, New
York, Second edition

[7] Colwell D., El-Hassan N., Kwon Oh Kang (2007): Hedging dif-
fusion processes by local risk minimization with applications to index
tracking. Journal of Economic Dynamics and Control, Vol. 31, Issue 7,
pp. 2135-2151

[8] Crowder G. B., Kazemi H., Schneeweis T. (2010): Asset Class
and Strategy Investment Tracking Based Approaches. Journal Of Alter-
native Investments, 13(3), pp. 81-101

[9] Embrechts P., Hofert M. (2011): Practices and issues in opera-
tional risk modeling under Basel II. Lithuanian Mathematical Journal,
Vol. 51, No. 2, pp. 180-193

[10] Escanciano J. C., Olmo J. (2010): Parametric Value-at-Risk With
Estimation Risk. Journal of Business & Economic Statistics, Vol. 28,
No. 1
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