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Abstract

In commuting research, it has been shown that it is fruitful to model

choices as optimization over a discrete number of random variables. In

this essay we pass from the discrete to the continuous case, and con-

sider the limiting distribution as the number of offers grow to infinity.

The object we are looking for is an argmax measure, describing the

probability distribution of the location of the best offer.

Mathematically, we have Ω ⊆ Rk and seek a probability distri-

bution over Ω. The first argument of the argmax measure is Λ, a

probability distribution over Ω, which describes the relative intensity

of offers received from different parts of space. The second argument is

a measure index µ : Ω → PR which associates every point in Ω with a

distribution over R, and describes how the type of random offers varies

over space.

To define an argmax measure, we introduce a concept called point

process argmax measure, defined for deterministic point processes. The

general argmax measure is defined as the limit of such processes for

triangular arrays converging to the distribution Λ.

Introducing a theoretical concept called a max-field, we use con-

tinuity properties of this field to construct a method to calculate the

argmax measure. The usefulness of the method is demonstrated when

the offers are exponential with a deterministic additive disturbance

term – in this case the argmax measure can be explicitly calculated.

In the end simulations are presented to illustrate the points proved.

Moreover, it is shown that several research developments exist to ex-

tend the theory developed in the paper.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden. E-

mail:per.hannes.malmberg@googlemail.com. Supervisor: Ola Hössjer, Dmitrii Silvestrov.
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1 Introduction

The question which led to this essay came from commuting research. The
paper is a formalization of ideas which were first developed in the author’s
Bachelor Thesis (Malmberg, 2011). The question was whether commuting
choices could be explained as optimal choices over a very large number of
competing offers. This question led to an inquiry into a mathematical for-
malism of maximization over a potentially infinite number of random offers.

There are two inputs to such a theory. Firstly, we need the quality of
offers associated with each point – that is, the distribution of the value of
an offer associated with a particular point in space. Secondly, we need a
population distribution, which gives us the relative intensity with which offers
are received from different locations.

To put it more formally, let Ω ⊆ Rk be a borel measurable set (unless
otherwise stated, this will be the interpretation of Ω throughout the paper),
and let PR denote the set of probability measures on R. We index a set of
distributions by Ω,

µ : Ω→ PR

Such an indexation can for example state that the distribution of offers be-
come shifted to the left the further away from the origin we are, due to
travelling costs. Secondly, we have a population distribution Λ on Ω, giving
us the relative number of offers we can expect from different locations.

The task is to define an object corresponding to the idea of the probability
distribution of the location of the best offer, when we have a relative intensity
of offers given by Λ, and a relative quality of offers given by µ.

We build the theory by first noting that the probability distribution of the
location of the best offer is well-defined when we have a deterministic point
process. We construct the definition for a general probability distribution as
a limiting case from the distributions determined from deterministic point
processes.

In this paper we will show that this limiting process has interesting math-
ematical properties, and that for particular choices of µ (exponential distribu-
tions with deterministic additive disturbance), this limit is also very explicit
and interpretable. In the process of answering our posed question, a number
of theoretical tools are developed and results are derived that are interesting
in their own right.

In the end, we show that that the theory can potentially be extended
in a number of interesting directions, and we sketch research questions and
conjectures for some of these developments.
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1.1 Relation to previous theory

The closest relative to the theory developed in this paper is random utility
theory in economics. This is the branch of economics that has dealt most
with commuting decisions, and the theory postulates that we value options
according to a deterministic component and a stochastic disturbance term.
(Manski & McFadden, 1981)

The key difference between discrete choice theory and the theory outlined
in this paper is that this paper extends the discrete choice paradigm into a
random utility theory for choices over a continuous indexing set. In many
real life applications there is a very large number of offers which means that a
continuity assumption can be justified. Furthermore, it is often the case that
after having created a technical machinery, continuous theory allows for much
neater and clearer mathematical results which are more easily interpretable.
Indeed, the explicitness of the limits derived in this paper suggests that this
optimism is warranted.

2 Defining the argmax measure

In this section, we provide the definition of the argmax measure with respect
to µ and Λ. We will first define the relevant concepts needed to state the
definition.

Definition 1. Let Ω ⊆ Rk and let

µ : Ω→ PR

where PR is the space of probability measures on on R. Then µ is called an
absolutely continuous measure index on Ω if µ(x) is an absolutely continuous
probability measure for each x ∈ Ω.

Remark 1. Unless otherwise stated, µ will always refer to a absolutely con-
tinuous measure index.

The basic building block of our theory will be the argmax measure asso-
ciated with a deterministic point processes. We provide the following defini-
tion.

Definition 2. Let
Nn = {xn1, xn2, ..., xnn}

be a deterministic point process on Ω (with the xni’s not necessarily distinct).
Then we define the point process argmax-measure T̃N

n

µ as

T̃N
n

µ (A) = P
(

sup
xni∈Nn∩A

Yni > sup
xni∈Nn∩Ac

Yni

)
2



where Yni ∼ µ(xni) are independent random variables, for all borel measurable
sets A.

Remark 2. The paper contains a number of objects which can take both prob-
ability distributions and deterministic point processes as arguments. These
will have analogous, but not identical, properties. We will use the conven-
tion of putting a ∼ on top of objects taking deterministic point processes as
arguments.

Each deterministic point process has a corresponding probability distribu-
tion that is obtained by placing equal weight on all the points in the process.
We introduce the following notation.

Definition 3. For a given deterministic point process Nn = {xn1, xn2, ..., xnn},
the corresponding probability distribution, denoted PNn

is given by

PNn

(A) =
#{A ∩Nn}

n

for all borel measurable sets A.

We have now introduced all the concepts we need to define the argmax
measure. Using the point process argmax measure T̃N

n

µ defined for Nn,we

define the general argmax measure for Λ as the limit of T̃N
n

µ when the prob-
ability measure PNn

converges weakly to Λ. The formal definition of the key
concept of the paper is given below.

Definition 4 (General argmax measure). Let µ : Ω → PR be a continuous
measure index and let Λ be a probability distribution on the Borel σ-algebra
of Ω. Suppose now that there exists a probability measure TΛ

µ such that

T̃N
n

µ ⇒Λ T
Λ
µ

for all point processes Nn satisfying

PNn ⇒ Λ

where ⇒ denotes weak convergence and ⇒Λ means that the probability mea-
sure converges for all sets A with Λ(∂A) = 0.1 Then we call TΛ

µ the argmax
measure with respect to measure index µ and probability distribution Λ.

1Instead of all sets for which TΛ
µ (∂A) = 0, which is the definition of weak convergence.
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3 The max-field and the argmax measure

In this section we will derive the main methodology for finding the argmax
measure. Before proceeding, we will first provide a sketch of the formal
argument to clarify what will be achieved in this section.

When analysing the limiting behaviour of T̃N
n

µ , the key object of study
is the following random field (for a more general treatment of random fields,
see for example Khoshnevisan (2002)):

M̃Nn

µ = {M̃Nn

µ (A) = sup
xi∈Nn∩A

Yi : A ⊆ Ω A is measurable, and Yi ∼ µ(xi)}

Firstly, there is an immediate connection between this random field and the
point process argmax measure in the sense that T̃ nµ,Λ can be recovered from

M̃Nn

µ . Indeed

T̃N
n

µ (A) = P
(
M̃Nn

µ (A) > M̃Nn

µ (Ac)
)

(1)

Leveraging on this connection, we will turn around the problem and make
M̃Nn

µ the primary object of study. The reason of doing this, an idea that we
will develop in the following section, is that the relation (1) exhibits a certain
type of continuity which can help us calculate the argmax measure. That is,
if there exists a random field M such that

M̃Nn →M (2)

(where the exact sense in which convergence occurs will be specified formally
in a later section), then we can show that

T̃N
n

µ ⇒Λ F (. . . ;M) (3)

where F (. . . ,M) is a probability measure defined by

F (A;M) = P (M(A) > M(Ac)) (4)

where we clearly see the connection between (1) and (4).
Now, the important point is that the convergence in (2) sometimes can

be established when the only fact assumed of Nn is that

PNn ⇒ Λ (5)

If this is the case, it means that T̃N
n

µ ⇒Λ F (. . . ;M) for all Nn having prop-
erty (5) . Then, the conditions of Definition 4 are satisfied and have shown
that F (. . . ,M) = TΛ

µ , the argmax measure. Therefore, if we can prove that

4



the argument outlined above works, we have constructed a method for cal-
culating the argmax measure.

There are two important questions that need to be answered to prove these
results. First, can we provide conditions on a general random field M to
ensure that F (. . . ,M) as defined in (4) actually is a probability measure?
Secondly, what is the type of convergence that we have to require in (2) to
ensure that (2) implies (3)? These questions will be the topic of the following
section.

3.1 Definition of max-fields and connection to argmax-
measures

Our first task is to establish a set of sufficient conditions for a random field
to generate a probability measure as defined in (4). This is done by the
following definition and lemma.

Definition 5. Let S be the Borel σ-algebra on Ω, and let M : S → L, where
L is a space of random variables. Let Λ be a probability measure on Ω. We
call M an max-field with respect to Λ if the following six properties hold:

1. The max measures of disjoint sets are independent;

2. If I = A ∪B we have M(I) = max{M(A),M(B)};

3. |M(A)| <∞ almost surely if Λ(A) > 0;

4. If A1 ⊇ A2 . . . , and Λ(An)→ 0, then M(An)→ −∞ almost surely;

5. Λ(A) = 0⇒M(A) = −∞ almost surely.

6. M(A) is absolutely continuous for all A ∈ S with Λ(A) > 0;

Remark 3. Property 6 actually implies property 3 so the list is not minimal.
However, property 3 has an independent role in a number of proofs, and is
therefore included to more clearly illustrate the properties needed by the max-
field.

The assumptions in the Definition 5 have been chosen to enable us to
prove the following lemma.

Lemma 1. Let S be the class of measurable subsets of Ω and suppose we
have a max-field M with respect to some probability measure Λ. Consider the
set function F defined on S by

F (A;M) = P (M(A) > M(Ω \ A))

5



This set function is a probability measure on the σ-algebra S, which is abso-
lutely continuous with respect to Λ.

Proof. We start by proving that the set function F (A;M) is absolutely con-
tinuous with respect to Λ. Indeed, assume that Λ(A) = 0. In this case,
M(A) = −∞ almost surely using property 5 (whenever we refer to num-
bered properties and do not say otherwise, we are referring to the max-field
conditions of Definition 5). Also Λ(Ω\A) = 1, and therefore M(Ω\A) > −∞
almost surely by property 3. Therefore, we get that

F (A;M) = P (M(A) > M(Ω \ A)) = 0

as required.

To prove that F (. . . ;M) is a probability measure, we first note that

F (A;M) ∈ [0, 1]

for all measurable A ⊆ Ω. Furthermore, M(Ω) > −∞ almost surely, and
M(∅) = −∞ almost surely. Hence

F (Ω;M) = P (M(Ω) > M(∅)) = 1

The only step remaining is to prove countable additivity.

The first step is to establish that F is finitely additive on S. I.e., that if
A = ∪ni=1Ai, where the Ai’s are disjoint, we have

F (A;M) =
n∑
i=1

F (Ai;M)

To prove finite additivity, introduce a new notation for the residual set

An+1 = Ω \
n⋃
i=1

Ai

we can now introduce the events

Bi = P (M(Ai) > M (Ω \ Ai)) for i = 1, 2, ..., n+ 1

We note that because of absolute continuity, P(Bi ∩ Bj) = 0 for all i 6= j.

6



Therefore

F (A;M) =P

(
n⋃
i=1

Bi

)

=
n∑
i=1

P(Bi)

=
n∑
i=1

F (Ai;M)

as required.

Having proved finite additivity, we now need to prove countable additivity.
It suffices to show that if we have a decreasing chain of subsets

A1 ⊇ A2 ⊇ A3 . . . .

such that ∩nAn = ∅, then F (An;M)→ 0. The technical assumptions we have
made on the max measure M make the result simple. Indeed, if ∩nAn = ∅,
we have that Λ(An)→ 0, which means that

M(An)→ −∞

almost surely. But by property 3, M(Ω \ An) > −∞ almost surely if
Λ(An) < 1, and hence

F (An;M) = P (M(An) ≥M(Ω \ An))→ 0

as n→∞ which completes the proof.

3.2 Convergence of max-field implies convergence of
argmax measure

The second question we need to address is the sense in which convergence in
max-fields implies convergence in argmax measure. This is addressed by the
following theorem.

Theorem 1. Fix a measure index

µ : Ω→ PR

and let Nn be a deterministic point process with PNn ⇒ Λ. Let

M̃Nn

µ (A) = max
xni∈A∩Nn

Yni

7



with Yni ∼ µ(xni) are independent random variables. be an empirical max-
field. Let MΛ

µ be a max-field with respect to Λ and let F (. . . ;MΛ
µ ) be defined

by
F (A;MΛ

µ ) = P
(
MΛ

µ (A) > MΛ
µ (Ω \ A)

)
Now, suppose there exists a sequence of strictly increasing functions gn,

such that
M̃ ′Nn

µ (A) = gn

(
M̃Nn

µ (A)
)
⇒MΛ

µ (A)

for all measurable A ⊆ Ω with Λ(∂A) = 0. Then,

T̃N
n

µ ⇒Λ F (. . . ;MΛ
µ )

where T̃N
n

µ are the point process argmax measures associated with Nn.

Proof. By Lemma 1, F (. . . ,MΛ
µ ) defines a probability measure. Now, let

A ⊆ Ω be measurable with Λ(∂A) = 0 We go through three different cases
to prove our result.

Case 1. Λ(A) ∈ (0, 1).
By assumption, there exists a sequence of strictly increasing functions gn
such that:

gn(M̃Nn

µ (A))⇒MΛ
µ (A)

gn(M̃Nn

µ (Ac))⇒MΛ
µ (Ac)

hold simultaneously. As gn(M̃Nn

µ (A)) and gn(M̃Nn

µ (Ac)) are independent for
all n, this means that

gn(M̃Nn

µ (A))− gn(M̃Nn

µ (Ac))⇒MΛ
µ (A)−MΛ

µ (Ac)

We note that MΛ
µ (A) − MΛ

µ (Ac) is absolutely continuous. Indeed, by the
property of max-fields MΛ

µ (A) and MΛ
µ (Ac) are absolutely continuous and

independent, and therefore their difference is absolutely continuous. We can
therefore deduce that

T̃N
n

µ (A) =P(M̃Nn

µ (A) > M̃Nn

µ (Ac))

=P(gn(M̃Nn

µ (A)) > gn(M̃Nn

µ (Ac)))

=P(gn(M̃Nn

µ (A))− gn(M̃Nn

µ (Ac)) > 0)

→P(MΛ
µ (A)−MΛ

µ (Ac) > 0)

=F (A;MΛ
µ )

8



where the convergence step uses absolute continuity to conclude that 0 is a
point of continuity of MΛ

µ (A)−MΛ
µ (Ac). Therefore, we we have shown that

T̃N
n

µ (A)→ F (A;MΛ
µ )

for all measurable subsets A with Λ(∂A) = 0 and Λ(A) ∈ (0, 1).

Case 2. Λ(A) = 0
Suppose that Λ(A) = 0. In Lemma 1, we showed that F (. . . ;MΛ

µ ) was abso-
lutely continuous with respect to Λ when MΛ

µ was a max-field, and hence we
know that F (A;MΛ

µ ) = 0. Furthermore, as MΛ
µ is a max-field with respect

to Λ, we know that MΛ
µ (A) = −∞ almost surely, and that MΛ

µ (Ac) > −∞
almost surely. Thus, we know that

gn
(
MNn

µ (A)
)
⇒ −∞

gn
(
MNn

µ (Ac)
)
⇒MΛ

µ (Ac) > −∞ a.s

We can find K such that P(MΛ
µ (Ac) > K) = 1 − ε, and then find N such

that for all n ≥ N

P
(
gn
(
MNn

µ (A)
)
< K

)
> 1− ε P

(
gn
(
MNn

µ (Ac)
)
> K

)
> 1− 2ε

Then, for all n ≥ N ,

P(MNn

µ (A) > MNn

µ (Ac)) < 3ε

and we have proved that

T̃N
n

µ (A)→ 0 = F (A;MΛ
µ )

as required.

Case 3. Λ(A) = 1
In this case, we can use that ∂A = ∂Ac to conclude that Λ(∂Ac) = 0. Fur-
thermore, we have that

T̃N
n

µ (A) = 1− T̃Nn

µ (Ac)

and we can apply the reasoning from case 2 to argue that

T̃N
n

µ (A)→ 1

Lastly, F (A;MΛ
µ ) = 1 as

F (A;MΛ
µ ) =F (A;MΛ

µ ) + F (Ac;MΛ
µ )

=F (Ω;MΛ
µ )

=1

9



where the first step uses absolute continuity of F (. . . ;MΛ
µ ) and the second

step uses finite additivity of F (. . . ,MΛ
µ ).

Having gone through the three cases, we have showed that for all A with
Λ(∂A) = 0, it holds that

T̃N
n

µ (A)→ F (A;MΛ
µ )

and we conclude that
T̃N

n

µ ⇒Λ F (. . . ;MΛ
µ )

Corollary 1. If there exists a max-field MΛ
µ such that for all Nn with

PNn ⇒ Λ

it holds that
M̃Nn

µ (A)→MΛ
µ (A)

for all measurable A ⊆ Ω with Λ(∂A) = 0. Then, the argmax measure TΛ
µ

exists and is given by

TΛ
µ (A) = F (A;MΛ

µ ) = P(MΛ
µ (A) > MΛ

µ (Ω \ A))

.

Proof. A direct consequence of Theorem 1 and Definition 4.

4 Argmax measure for exponential offers

The result in Corollary 1 shows that the methods developed in the previous
section gives a calculation method for the argmax measure that is workable
insofar it is possible to find a max-field MΛ

µ to which M̃Nn

µ is converging for
all Nn with PNn ⇒ Λ.

In this section we make a particular choice for µ and show that under
this measure index, such a convergence can indeed be established. As in the
previous section, we will start by giving a brief sketch of the argument that
subsequently will be developed in full.

In this section we will assume that

µ(x) = m(x) + Exp(1)

10



where the notation should be interpreted as µ(x) being the law of a random
variable Y with the property that

Y −m(x) ∼ Exp(1)

From the previous section we know that the object of interest is the empirical
max-field M̃Nn

µ which in this case is given for measurable A ⊆ Ω as

M̃Nn

µ (A) = sup
xni∈A∩Nn

Yni

with Yni −m(xni) ∼ Exp(1) being independent random variables.
Our task is to find the limiting behaviour of this random field. We note

that for all A with Λ(A) > 0, |A ∩ Nn| → ∞ as n → ∞ which means that
we have a problem involving taking the maximum over a large number of
independent random variables. Thus, the natural choice is to apply extreme
value theory.

We will have three parts in this section. First we state a general result
in extreme value theory, and its specific counterpart related to exponential
offers. The second subsection develops the extreme value theory to deal with
the fact that m(x) is varying, and we calculate a max-field MΛ

µ to which

M̃Nn

µ is converging (after a sequence of monotone transformations). The
third subsection uses MΛ

µ and applies Corollary 1 to calculate the argmax
measure TΛ

µ .

4.1 A primer on extreme value theory

The following theorem a key result in extreme value theory.

Theorem 2 (Fisher-Tippet-Gnedenko Theorem (Extreme Value Theorem)).
Let {Xn} be a sequence of independent and identically distributed random
variables and let Mn = max{X1, X2, . . . , Xn}. If there exist sequences {an}
and {bn} with an > 0 such that:

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= H(x)

then H(x) belongs to either the Gumbel, the Frechet, or the Weibull family.
(Leadbetter et al., 1983)

Remark 4. Under a wide range of distributions of Xn, convergence does oc-
cur, and for most common distributions the convergence is to the Gumbel(µ, β)-

distribution, which has the form Gumbel(x) = exp
(
− exp(−x−µ

β
)
)

for some

parameters µ, β.

11



We can give a more precise statement when the random variables have
an exponential distribution.

Proposition 1. Let {Xi}ni=1 be a sequence of i.i.d. random variables with
Xi ∼ Exp(1). Then:

max
1≤i≤n

Xi − log(n)⇒ Gumbel(0, 1)

Proof. Let F be the distribution function of Exp(1), and consider Gn(x) =
F (x+ log(n))n. Then

Gn(x) =F (x+ log(n))n

=
(
1− e−x−log(n)

)n
=

(
1− e−x

n

)n
→e−e−x

as required (we use the fact that for real valued random variables, pointwise
convergence in distribution function implies weak convergence).

4.2 Limiting max-field with varying m(x)

Ordinary extreme value theory assumes that random variables are indepen-
dently and identically distributed. In our case we do not have identically
distributed random variables, as the additive term m(x) varies over space.
Hence, we need to establish how the convergence in Proposition 1 works when
we take the maximum over independent random variables with varying m(x).
We will prove a lemma characterizing this convergence, but we first need a
definition and a proposition from the theory of Prohorov metrics which we
will use in our proof.

Definition 6. Let (M,d) be a metric space and let P(M) denote the set of
all probability measures on M . For an arbitrary A ⊆M , we define

Aε =
⋃
x∈A

Bε(x)

Given this definition, the Prohorov metric on P(M) is defined as (see for
example Billingsley (2004))

π(µ, ν) = inf{ε > 0 : µ(A) ≤ ν(Aε) + ε for all measurable A ⊆M}

12



The Prohorov metric has the following important property (the result is
included to make the paper mathematically self-contained)

Proposition 2. If two random variables X and Y taking values in Mhave
the property that d(X, Y ) < ε almost surely, then

π(µX , µY ) ≤ ε

where µXand µY are the laws of X and Y .

Proof. We note that if X belongs to A, then apart from a set of measure 0,
Y will be less than ε away. Thus

{X ∈ A} ⊆ {Y ∈ Aε} ∪ V

where V has measure 0. Hence,

µX(A) ≤ µY (Aε) < µY (Aε) + ε

As this property holds for all measurable sets A, π(µX , µY ) ≤ ε.

We now have the mathematical preliminaries to give a full characteriza-
tion of the limit when m(x) varies.

Theorem 3. Let M̃Nn

µ (A) = maxxni∈A∩Nn Yni where Yni − m(x) ∼ Exp(1)
independently. Suppose that Λ is a probability measure on the Borel σ-algebra
on Ω and that the following properties hold

1. m is bounded

2. PNn ⇒ Λ

3.
∫

Ω
λ(x)em(x)ν(dx) <∞

4. For all a < b, we have that Λ(∂m−1[a, b)) = 02

Then
M̃
′Nn

µ (A) = M̃Nn

µ (A)− log(n)⇒MΛ
µ (A)

for all A with Λ(∂A) = 0, where

MΛ
µ (A) = log

(∫
A

λ(x) exp(m(x))ν(dx)

)
+Gumbel(A)

Here, Gumbel(A) is a standard Gumbel random variable, where the A-notation
denotes that Gumbel(A) and Gumbel(B) are independent for all A ∩ B =
∅. ν(dx) indicates that the integral is of Lebesgue type with respect to the
Lebesgue measure of Ω ⊆ Rk.

2The last point says that the boundary measure of the pre-images of intervals under
m has Λ-measure 0 (this holds for example for all continuous functions with finitely many
turning points).
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Proof. We seek to show that d(M ′Nn

µ (A),M(A))→ 0 where d is the Prohorov
metric. To prove this, we first make the following preliminary observations.

As m is bounded, we know that we can find K such that

−K ≤ m(x) < K

for all x ∈ Ω. Then, for any δ > 0, we can define

mδ(x) =

d2K/δe−1∑
n=0

(−K + nδ)I(−K + nδ ≤ m(x) < −K + (n+ 1)δ)

This function has the property that

sup
x∈Ω
|mδ(x)−m(x)| ≤ δ

Analogously, we define

µδ(x) = mδ(x) + Exp(1)

M̃ ′Nn

µδ (A) = M̃Nn

µδ (A)− log(n)

MΛ
µδ(A) = log

(∫
A

λ(x) exp(mδ(x))dx

)
+Gumbel(A)

We will also use the notation

Y (x) = m(x) + Expx(1)

Y δ(x) = mδ(x) + Expx(1)

Here, Expx(1) denotes a random variable having distribution Exp(1), and
we remember the fact that we have allowed the point process to have non-
distinct value, and if we have xni = xnj for xni, xnj ∈ Nn with i 6= j then
Y (xni) and Y (xnj) are still independent (as the xni’s in the expression only
index which probability measure on R we are supposed to use). This slight
notational imprecision does not yield a problem the times the notation is
used.

We can use the triangle inequality for the Prohorov metric to conclude
that

d(M ′Nn

µ (A),MΛ
µ (A))

≤ d(M ′Nn

µ (A),M ′Nn

µδ (A)) + d(M ′Nn

µδ (A),MΛ
µδ(A)) + d(MΛ

µδ(A),MΛ
µ (A))

14



and we have reduced the problem to show that for an arbitrary ε > 0 we can
bring the right hand side below ε for all sufficiently large n.

To prove the result, we will first use Proposition 2 to bound the first and the
last of the three terms. Indeed,

|M ′Nn

µδ (A)−M ′Nn

µ (A)| =| max
x∈A∩Nn

Y δ(x)− max
x∈A∩Nn

Y (x)|

=| max
x∈A∩Nn

mδ(x) + Expx(1)− max
x∈A∩Nn

m(x) + Expx(1)|

≤ sup
x∈A∩Nn

|mδ(x)−m(x)|

≤ sup
x∈Ω
|mδ(x)−m(x)|

≤δ

On the second line, Expx(1) refers to the same random variable in both the
max-expressions
Similarly, we have that

|MΛ
µδ(A)−MΛ

µ (A)| =
∣∣∣∣log

(∫
A

λ(x)em
δ(x)ν(dx)

)
− log

(∫
A

λ(x)em(x)ν(dx)

)∣∣∣∣
=

∣∣∣∣∣log

(∫
A
λ(x)em

δ(x)ν(dx)∫
A
λ(x)em(x)ν(dx)

)∣∣∣∣∣
=

∣∣∣∣∣log

(∫
A
λ(x)em(x)em

δ(x)−m(x)ν(dx)∫
A
λ(x)em(x)ν(dx)

)∣∣∣∣∣
≤

∣∣∣∣∣log

(
esupx∈Ω |mδ(x)−m(x)|

∫
A
λ(x)em(x)ν(dx)∫

A
λ(x)em(x)ν(dx)

)∣∣∣∣∣
≤δ

Thus, we have shown that we can make the first and last term arbitrarily
small. The remaining step is to show that for any δ, we have that

d(M ′Nn

µδ (A),MΛ
µδ(A))→ 0

as n → ∞. We will use the fact that convergence in the Prohorov metric
is equivalent to weak convergence, and show that weak convergence holds.
First we give two preliminary results, and include the proofs to make the
exposition self-contained.

Claim 1. Let X i
n ⇒ X i for i = 1, 2.., k, where X i is absolutely continuous,

and P (X i > −∞) = 1 for all i. Furthermore, let Zi
n ⇒ −∞ for i = 1, ..,m.

15



Then

MXn,Zn = max
{
X1
n, .., X

k
n, Z

1
n, .., Z

m
n

}
⇒ max{X1, .., Xk}

Proof of claim. We prove this by convergence of distribution functions. In-
deed,

FMXn,Zn (x) =P (max
{
X1
n, .., X

k
n, Z

1
n, .., Z

m
n

}
≤ x)

=Fmax{X1
n,..,X

k
n}(x)P (max

{
X1
n, .., X

k
n

}
≥ max

{
Z1
n, .., Z

m
n

}
)

+F−max{Z1
n,..,Z

m
n }

(x)P (max
{
X1
n, .., X

k
n

}
< max

{
Z1
n, .., Z

m
n

}
)

→Fmax{X1,..,Xk}(x)× 1 + 0

=Fmax{X1,..,Xk}(x)

which proves the result.

Claim 2. If Xi ∼ Gumbel(µi, 1) for i = 1, .., k, then

X̃ = max
1≤i≤k

Xi ∼ Gumbel

(
log

(
k∑
i=1

eµi

)
, 1

)

Proof. We prove this directly by the distribution function.

FX̃(x) =
∏

1≤i≤k

FXi(x)

=
∏

1≤i≤k

e−e
−x+µi

=e−
Pk
i=1 e

−x+µi

=e−e
−x+log(Pk

i=1 e
µi)

and we recognize the expression on the last line as the distribution function

of Gumbel
(

log
(∑k

i=1 e
µi

)
, 1
)

.

We now return to the original problem of showing that

M ′Nn

µδ (A) = max
x∈A∩Nn

{
mδ(x) + Expx(1)

}
− log(n)

⇒ log

(∫
A

λ(x)em
δ(x)ν(dx)

)
+Gumbel(A)
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Introduce the following notation

k = d2K
δ
e

Ai = {x ∈ Ω : m(x) ∈ [−K + iδ,−K + (i+ 1)δ)} i = 0, 1.., k − 1

J = {i ∈ {0, 1, 2.., k − 1} : Λ(Ai) > 0}

We note that

M̃ ′Nn

µδ (A) = max
0≤i≤k−1

{
max

x∈Ai∩Nn
mδ(x) + Expx(1)− log(n)

}
= max

0≤i≤k−1
M̃ ′Nn

µδ (Ai)

As
Ai = m−1[−K + δi,−K + δ(i+ 1))

the conditions given in the statement of the theorem ensures that Λ(∂Ai) = 0.
Therefore, as we have assumed that PNn ⇒ Λ, we know that

PNn

(Ai)→ Λ(Ai) =

∫
A

λ(x)ν(dx)

We will find the limiting behaviour for M̃ ′Nn

µδ
(A) for both i ∈ J and i /∈ J .

We start with i /∈ J . In this case, we want to show that M̃ ′Nn

µδ
(A) ⇒ −∞.

Using that mδ(x) is constant over Ai, we get

M̃ ′Nn

µδ (A) = mδ(x) + max
x∈Nn∩A

Expx(1)− log(n)

If |Nn ∩ A| is bounded as n → ∞, this expression clearly tends to −∞. If
|Nn ∩ A| is not bounded above we can rewrite the expression as follows

M̃ ′Nn

µδ (A) = mδ(x) + max
x∈Nn∩A

{Expx(1)− log(|Nn ∩ A|)}+ log

(
|Nn ∩ A|

n

)
The expression in the curly brackets converges to a Gumbel distribution and
the last expression in the logarithm tends to −∞, so again the whole expres-
sion tends to −∞.
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We now look at i ∈ J . If we write Sin = |Ai ∩Nn|, then

M̃ ′Nn

µ (Ai) = max
x∈Ai∩Nn

{
mδ(x) + Expx(1)

}
− log (n)

= (K + δi) + max
x∈Ai∩Nn

{
Expx(1)− log(Sin)

}
+ log

(
Sin
n

)
⇒ (K + δi) +Gumbel(Ai) +

∫
A

λ(x)ν(dx)

= log

(
eK+δi

∫
A

λ(x)ν(dx)

)
+Gumbel(Ai)

= log

(∫
A

λ(x)em
δ(x)ν(dx)

)
+Gumbel(Ai)

Combining our findings with the results in Claim 1 and 2, we get that.

M ′Nn

µδ (A) = max
0≤i≤k−1

M ′Nn

µδ (Ai)

= max{max
i∈J

M ′Nn

µδ (Ai),max
i/∈J

M ′Nn

µδ (Ai)}

⇒max
i∈J

(
log

(∫
Ai

λ(x)em
δ(x)ν(dx)

)
+Gumbel(Ai)

)
= log

(∑
i∈J

e
log
“R
Ai
λ(x)em

δ(x)ν(dx)
”)

+Gumbel(A)

= log

(∑
i∈J

∫
Ai

λ(x)em
δ(x)ν(dx)

)
+Gumbel(A)

= log

(∑
i∈J

∫
Ai

λ(x)em
δ(x)ν(dx) +

∑
i/∈J

∫
Ai

λ(x)em
δ(x)ν(dx)

)
+Gumbel(A)

= log

(∫
A

λ(x)em
δ(x)ν(dx)

)
+Gumbel(A)

where the second to last line uses that Λ(Ai) = 0 for i /∈ J . Therefore, we
have shown that

M̃ ′Nn

µδ (A)⇒MΛ
µδ(A))

we can use the equivalence of weak convergence and convergence in Prohorov
metric to conclude that

d(M̃ ′Nn

µδ (A),MΛ
µδ(A))→ 0

18



as n→∞.

By picking δ < ε/3 and S such that d(M ′δ,Nn

µ (A),M δ(A)) < ε/3 for all
n ≥ S, we get

d(M ′Nn

µ (A),MΛ
µ (A))

≤ d(M ′Nn

µ (A),M ′Nn

µδ (A)) + d(M ′Nn

µδ (A),MΛ
µδ(A)) + d(MΛ

µδ(A),MΛ
µ (A))

< ε

and we are done.

Proposition 3. The random field defined by

M(A) = log

(∫
A

λ(x)em(x)ν(dx)

)
+Gumbel(A)

fulfills the conditions of Definition 5 when m and λ satisfy the conditions of
Theorem 3.

Proof. We note that property 1 clearly holds as the M(A) and M(B) are
measurable with respect to independent σ-algebras. Property 2 holds by the
properties of the Gumbel distribution. To prove that property 3 holds, it
suffices to prove that property 6 holds as the latter implies the former. And,
indeed,

log

(∫
A

λ(x)em(x)ν(dx)

)
+Gumbel(A)

is absolutely continuous when
∫
An
λ(x)em(x)ν(dx) > 0, which in turn is true

when

Λ(A) =

∫
A

λ(x)dx > 0

Property number 4 holds as

log

(∫
An

λ(x)em(x)ν(dx)

)
→ −∞

as
∫
An
λ(x)dx→ 0.

Lastly, property 5 holds. If Λ(A) = 0, it is clear that
∫
A
λ(x)em(x)ν(dx) = 0,

and we get M(A) = −∞ almost surely.
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4.3 Argmax density with exponential offers

In Corollary 1, it was shown that the limiting behaviour of M̃Nn

µ determines
the argmax measure. Thus, we can use the limit derived in Theorem 3
together with Corollary 1 to derive the argmax measure associated with µ
and Λ.

Theorem 4. Let µ(x) = m(x) + Exp(1) and let Λ be a probability measure
with density λ(x). Suppose that λ(x) and m(x) jointly satisfy the conditions
in Theorem 3. Then, argmax measure TΛ

µ exists, and has density

TΛ
µ (x) = Cλ(x) exp(m(x))

where

C =

(∫
Ω

λ(x)em(x)ν(dx)

)−1

is a normalizing constant.

Proof. We first note that Theorem 3 imples that for all point processes Nn

with PNn ⇒ Λ, it holds that

M̃Nn

µ (A)− log(n)⇒MΛ
µ (A)

for all measurable A with Λ(∂A) = 0, where MΛ
µ is defined as in Theorem

3. As Proposition 3 states that MΛ
µ is a max-field, we can apply Corollary 1

and conclude that the argmax measure TΛ
µ exists and is given by

TΛ
µ (A) = P

(
MΛ

µ (A) > MΛ
µ (Ac)

)
We can now derive the density of the argmax-measure. Let A be measurable
and let

G(x) = e−e
−x

denote the distribution function of a standard Gumbel distribution. For
notational brevity, let

L(A) =

(
log(

∫
A

λ(x)em(x)dν(x)

)
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We then get:

TΛ
µ (A)

= P
(
MΛ

µ (A) > MΛ
µ (Ω \ A)

)
=

∫ ∞
−∞

P (M(A) ∈ dr) P (M(Ω \ A) < r)

=

∫ ∞
−∞

G′ (r + L(A))G (r + L(Ω \ A)) dr

=

∫ ∞
−∞

e−r+L(A)e−e
−r+L(A)

e−e
−r+L(Ω\A)

dr

= eL(A)

∫ ∞
−∞

exp(−r) exp
(
−e−r+L(Ω)

)
dr

= C

(∫
A

λ(x)em(x)ν(dx)

)
As this holds for all measurable sets A, Cλ(x)em(x) is the density of the
argmax measure with respect to the Lebesgue measure.

5 Verification by Simulation

What we have done is to show that if offers are exponentially distributed with
an additive, position dependent, term, we have solved the distribution for
the argmax for all density distributions. We will show how it works for some
examples by simulation. What we do is that we generate 1000 random points
xi on R or R2 according to some probability distribution, then we generate
1000 points yi(xi) by yi = m(xi) + Exp(1) for some predefined function m.
We then return arg maxxi y(xi). We repeat the procedure 10, 000 times and
draw a histogram with the result together with the theoretically predicted
density. For one case, we also plot the values y(xi) and check these against
the theoretically predicted distribution.

The first graph comes from the commuting example. We sample from a
uniform distribution over a disc on R2 with radius 100. We let

m(x) = −0.05×
√
x2

1 + x2
2

be a function to describe travel costs and the density λ(x) is given by

λ(x) =
1

1002π
for ||x|| < 100
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We record the distance to the origin of the best offer, and plot the result.
We note that the argmax density in two dimensions in this case is given by

tΛµ(x) = Cλ(x) exp(−cr)

where r =
√
x2

1 + x2
2, r ∈ (0, 100), c = 0.05 and C is a normalizing constant.

When we integrate to get the density of the distance, we get that it it is

t′Λµ (r) = 2πCrλ(x) exp(−cr) =
2r exp(−cr)

1002

We also plot the best value, which in general case should distributed as

Gumbel(log

(∫
Ω

λ(x)em(x)dν(x)

)
, 1) = Gumbel(log

(
1

C

)
, 1)

By the definition of C in our case, we get that

C =

(∫ 100

0

2s exp(−cs)
1002

dr

)−1

Hence, the best value is distributed as

Gumbel

(
log

(∫ 100

0

s

0.5× 1002
e−csds

)
, 1

)
After this, we display the generality of the result by using very different
sampling intensities λ and mean-value functions m in one dimension. We
summarize the results in the three graphs below which show the results for
uniform, Weibull and lognormal sampling densities with mean-value func-
tions m(x) = |x|, m(x) =

√
x+ 1 and m(x) = −x2. In all cases, our theoret-

ical predictions bear out. This illustrates the generality of the results proved
in the Section 4.
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Figure 1: Argmax distribution of distance to origin for a uniform sample on
D((0, 0), 100) ⊆ R2 with m(x) = −0.05×

√
x2

1 + x2
2 (line theoretical result))
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Figure 2: Distribution of best value on D((0, 0), 100) ⊆ R2 with m(x) =
−0.05×

√
x2

1 + x2
2 (line theoretical result))
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6 Conclusion

In this paper we set out to define and prove results about the concept of
an argmax measure over a continuous index of probability distributions. A
reasonable definition has been provided, and we have expanded the toolbox
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Figure 3: Argmax distribution for sampling intensity U [−1, 1] andm(x) = |x|
(line theoretical result)
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Figure 4: Argmax measure with sampling intensity Weibull(2,1) and m(x) =√
x+ 1 (line theoretical result)
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available to address these types of problems by introducing the max-field
calculation method. The usefulness of the developed method is shown when
it is applied to the case of taking the argmax over what can be described as
exponential white noise.

Many of the results have been proved under quite restrictive assumptions
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Figure 5: Argmax measure for a standard lognormal distribution with
m(x) = −x2 (line theoretical result)
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of independence, deterministic point processes, and exponential distributions.
This means that there are plenty of potential generalizations and extensions
of the theory available on the basis of the work done in this paper.

We have identified three different avenues of further research. Firstly, it is
possible to have more general distributional assumptions regarding indepen-
dence and type of distributions. Secondly, it is possible to construct a theory
where we do not have deterministic point processes as our basic building
blocks, but rather allow there to be stochasticity in the selection of points,
leading to a doubly stochastic problem. Lastly, extending on the second
point there is a slightly more radical reformulation of the theory, where the
process of taking the argmax is viewed as a measure transformation, starting
with a probability measure Λ and getting a new probability distribution TΛ

µ .
The problem can then be studied from the viewpoint of continuity properties
of this rather abstract map.

We will conclude the paper with a short exposition of these different
ideas. We sketch what we believe could be good ways of proceeding along
these different lines, and along the way highlight the problems that have to
be addressed if such a theory were to be developed.
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6.1 More general stochasticity in offered values

In this paper we have defined the max-field by

M̃Nn

µ =

{
MNn

µ (A) = sup
xni∈A∩Nn

Yni : A is measurable

}
where Yni ∼ µ(xni) are independent random variables. When we made ex-
plicit calculations we assumed that µ(x) was a perturbed exponential distri-
bution for all x ∈ Ω.

It is important that the specific distributional assumptions and the inde-
pendence assumption can be relaxed. We want the unconditional distribution
of offers to be much more general than just exponential (wage distributions
are for example much closer to lognormal) and most random processes in
space have some sort of spatial autocorrelation which would violate the in-
dependence assumption.

The possibilities for generalization also look good. The results given
in Theorem 1 and Corollary 1 do not use any distributional assumption or
independence assumption. The only important thing is to find an appropriate
max-field MΛ

µ to which M̃Nn

µ converges in the sense outlined in Theorem 1.
The property of the exponential distribution that we used in our proofs

was that the extreme value behaviour of the exponential distribution is es-
pecially nice. If we retain the independence assumption but with a more
general µ, the generality of extreme value theory still applies, and we can
therefore hope to get a convergence to a max-field.

There are somewhat larger obstacles if we drop the independence assump-
tion. The behaviour of the random variable M̃Nn

µ (A) can indeed be good for
individual sets A as n→∞ (especially if we let A become infinitesimal, think
for example of the Brownian motion where the distribution of the supremum
over a very small interval [t, t+δ) is likely to be close to N(0, t) under suitable
regularity conditions). On the other hand, the resulting random field MΛ

µ

would not necessarily be a max-field, as M(A) and M(B) would not neces-
sarily be independent for disjoint sets A and B. Thus, in order to drop the
independence assumption, we have to carefully go through all proofs involv-
ing the max-field, check the exact way in which the independence assumption
is used, and see whether it can be weakened in our proofs, or see if there are
alternative ways of proving the same results.

6.2 Stochasticity in the choice of test points

Our current theory uses a definition of argmax measure that depends on a
certain limiting behaviour for all deterministic point processes Nn having
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certain properties (that is, PNn ⇒ Λ). An alternative way would be to have
some sort of stochasticity in the selection of points, for example we could
define

Nn = {Xn1, Xn2, ..., Xnn}

where Xni ∼ Λ independently and identically. This sort of procedure would
induce a form of double stochasticity which would increase the complexity of
the problem, but also make it slightly more intuitive. In the current paper,
the pre-limiting and limiting objects are of very different types. The pre-
limiting probability distribution is conditioned on a particular deterministic
point process, and it should converge to a single probability distribution for
all such deterministic point processes. It is for example not generally the

case that T̃N
n

µ is the same object as T P
Nn

µ . This difference in what they are
is what necessitates the ∼-notation distinguishing between objects taking
point processes as arguments, and objects taking probability distributions as
arguments.

If the point processes are generated by a random process, we have a
single random probability measure that should converge almost surely to
another probability measure, a case which would have more symmetry in
the treatment of limiting and prelimiting objects. We will sketch how such
a theory could look. In the i.i.d. case, for example, we could define the
following two objects:

Definition 7. Let µ : Ω→ PR be a measure index and let Λ be a probability
measure on Ω. We define a couple sample {Xi, Yi}ni=1 with respect to Λ
and µ by drawing an i.i.d. sample X1, .., Xn from Λ and generate another
independent sample Y1, .., Yn with

Yi ∼ µ(Xi)

Definition 8. Suppose we have a measure index µ : Ω→ PR and a probabil-
ity distribution Λ on Ω. We then define the sample argmax transformation
T nµ,Λ to be the law associated with the random variable Xn

I where

I = arg max
1≤i≤n

Yi

and {Xi, Yi}ni=1 is a coupled sample with respect to Λ and µ.

Having done this definition, the problem could now be to find a random
variable TΛ

µ such that

TΛ
µ = lim

n→∞
T nµ,Λ
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almost surely. It does introduce a number of problems in exactly what sense
this problem can be reduced to the problem we have already proved. How-
ever, if this could be done, the theory would be representable in a more
compact way.

Lastly, we could even depart from letting the triangular array Nn be
the result of i.i.d. draws from Λ. An interesting thing would be to see if
well-behaved limits could be defined even if Nn was generated by a Markov
Chain or some other more general stochastic process. It is likely that, possibly
under somewhat stronger regularity conditions, there will be convergence for
a larger class of processes than just i.i.d.-processes.

6.3 Argmax as a measure transformation

One way of re-conceptualize the problem of taking the argmax is to see it as
a measure transformation indexed by a measure index. Indeed, for a fixed µ,
what our theory does is to start with one probability distribution Λ, and end
up with another probability distribution TΛ

µ . In a more abstract setting, the
study of the argmax-measure would be the study of this map. Section 6.2.
hints at this map being the limit of the measure transformation T nµ,Λ which
is obtained by taking a finite sample of points Xn1, .., Xnn from Λ and then
draw the associated offers Yn1, .., Ynn and return the Xni associated with the
highest Yni. As the sample size grow, the empirical distribution will almost
surely converge to the true distribution, so the problem can potentially be
cast in continuity terms.

Also, an interesting question would then be to find correspondences be-
tween the measure index µ and the effect our mapping has on the initial
distribution. We can for example note that in the exponential case our new
distribution has a density proportional to λ(x)em(x) and taking the argmax
therefore corresponds to exponential tilting of the initial distribution. It
might be possible to explore more connections between µ and the effect of
TΛ
µ .
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