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Abstract

This master thesis presents three different approximation lattice

methods, namely binomial sum model, trinomial sum model and skele-

ton model, for pricing of American options. The underlying stock price

process is assumed to be a geometric Gaussian random walk. First

we study reward functions for American options and impose certain

conditions on simulating price processes to insure the existence of cor-

responding reward functions. The conditions un- der which the reward

functions for approximating price process converge to the correspond-

ing limiting rewards are also presented. Also backward recur- rence

algorithm, for reward functions is discussed. The convergence condi-

tions of these three approximation models are tested. Then numerical

tests based on the methods are implemented in MATLAB and some

comparisons are made.
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1 Introduction

1.1 Background

This paper is devoted to present three different approximation lattice
methods for pricing American options. The corresponding convergence con-
ditions are tested, and some numerical tests based on those three methods
are implemented in MATLAB and then comparisons are made.

An European option gives the holder the right to buy or sell the under-
lying asset by a certain date for a certain price. It is well-known that for
European options, there is an explicit formula for its value given by Black
and Scholes (1973) and Merton (1973). Among others, one way to derive
this formula is by solving the so called Black-Scholes fundamental partial
differential equation (PDE):

∂C

∂t
+

1

2
σ2S2 +

∂2C

∂t2
+ rS

∂C

∂S
= rC (1)

with
C(0, t) = 0, C(S, t) ∼ S as S →∞, (2)

for a European call option with value C(S, t) on a non-dividend paying stock,
and the boundary condition

C(ST , T ) = max(ST −K, 0). (3)

The solution is the celebrated Black-Scholes pricing formulas, shown be-
low, for this option price at time zero.

c = S0N(d1)−Ke−rTN(d2) (4)

where {
d1 = ln(S0/K)+(r+σ2/2)T

σ
√
T

d2 = ln(S0/K)+(r−σ2/2)T

σ
√
T

= d1 − σ
√
T

(5)

and N(·) is the cumulative probability distribution function for a standard-
ized normal distribution.

But situations will be more complicated with the American options. The
American options can be exercised at any time up to their maturity. But the
European options can only be exercised at their maturity time.
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Figure 1: Standard binomial tree

To American options, at each time up to it’s maturity, we have to de-
termine not only the option value, but also, for each value of S, whether or
not it should be exercised. So in contrast with the boundary condition for
European options, formula (3), for American options, we get free boundary
conditions. We don’t know which boundary conditions to apply, and equally
importantly, neither where to apply boundary conditions. Up until now,
there is no simple closed-form solution to the American type options. Some
recent detailed survey in this field are Broadie and Detemple(2004), Pauly
(2004) and Ahn et al. (2011).

Stochastical simulation methods are one of those among which the re-
searchers and practitioners can apply to compute the prices of American Op-
tions. Further more, these methods can mainly be subdivided into the cate-
gories of Monte-Carlo-Simulation (MCS) and approximation lattice methods,
such as the binomial and the trinomial model.

The standard binomial medal, see Figure 1, was introduced by Cox, Ross,
and Rubinstein (1979) and has won widespread acceptance by its simplicity
and efficiency. In pricing the European options, when the stock price param-
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eters are set to u = eσ
√

∆t for up movement, d = 1/u down-movement, where
∆t = T/n, and n is the number of time steps between time 0 and the matu-
rity time T , the probability of an upmove is set to p = (er∆t − d)/(u − d).
Under such settings, Cox, Ross, and Rubinstein (1979) have proved that
the Black-Scholes option pricing formula, formula (4), is the limiting case of
binomial model as n→∞.

The trinomial tree has also been developed by Boyel (1986, 1988), as
shown in Figure 2.

Figure 2: Standard trinomial tree

Based on the binomial method, new improved methods are developed
and their rate of convergence are tested, for examples by Broadie and De-
temple(1996), Heston and Zhou (2000).

In a perfect market, every kinds of prices, from stocks, real estates to
different commodities, are unpredictable. It means that based on the whole
information we have gathered until now, we cannot with certainty to know
what those prices will be in next month, next week, next day, even in the
next minute! In order to handle this kind of questions, in the field of finan-
cial mathematics, the price process S(t), t ≥ 0, is usually assumed to be a
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geometric Brownian motion,

S(t) = S(0)eµt+σB(t), t ≥ 0, (6)

where µ ∈ R, σ > 0 , are real numbers, B(t) is standard Brownian motion
and S(0) is a positive constant.

It is often that we take the logarithm of S(t) and consider so-called log-
price price process

Y (t) = lnS(t) = lnS(0) + µt+ σB(t), t ≥ 0. (7)

This treatment will simplify our calculation in the later sections. The
main benefit of this treatment is that the multiplicative increments in the
case of S(t) changes to additive increments in Y(t). At the same time, because
S(t) is just a continuous and well defined function of Y (t), so any conclusion
we got for Y (t) can be translated on S(t).

Its own value has also the discrete time analogue of the geometrical Gaus-
sian random walk, which is a discrete time price process given by the following
relation,

Sn+1 = Sne
µn+σnBn , n = 0, 1, . . . , (8)

and the corresponding log-price process,

Yn+1 = lnSn+1 = Yn + µn + σnBn, n = 0, 1, . . . , (9)

where µn ∈ R and σn > 0, n = 1, 2, . . . are real numbers; Bn, n = 1, 2, . . .
is a sequence of independent and identically distributed (i.i.d.) random vari-
ables with standard normal distribution, Y (0) and S(0) are, respectively,
real-value and positive constants connected by the formula Y (0) = lnS(0).

1.2 Outline

In the next section of this paper, we first present the reward functions
for American options in discrete time, and their convergence conditions. Af-
ter that, we describe three models, namely Binomial-Sum, Trinomial-Sum
and Skeleton model, which will be tested to calculate the reward price. In
section 3, numerical tests and comparisons with related models are given.
Section 4 contains some notations we get from our MATLAB programming.
Concluding remarks are given in Section 5. MATLAB codes are collected in
Appendix B.
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2 Approximation and Convergence for Amer-

ican Type Options

2.1 Models of price processes represented by random
walks

In this paper only discrete time setting is studied, so the price and the
log-price processes can be written, respectively, as

Sn+1 = Sne
Wn+1 , n = 0, 1, . . . , (10)

and
Yn+1 = lnSn+1 = Yn +Wn+1, n = 0, 1, . . . , (11)

where: (a) Wn, n = 1, 2, . . . is a sequence of real-valued independent and
identically distributed (i.i.d.) random variables, and (b) Y0 and S0 are, re-
spectively, real-value and positive random variables connected by the formula
Y0 = lnS0 and independent of random variables Wn, n = 1, 2, . . . .

The log-price process can also be written in the following integral form,

Yn = Y0 +
n∑
k=1

Wk, n = 0, 1, . . . . (12)

The log-price process Yn defined above is a random walk, i.e. a discrete
time Markov price process with independent increments.

As was mentioned in the introduction, the standard variant of this model
is where: (c) random variables Wn = µn + σnBn, n = 1, . . ., where µn ∈ R
and σn > 0, n = 1, 2, . . . are real numbers and (d) Bn, n = 1, 2, . . . is a
sequence of independent and identically distributed (i.i.d.) random variables
with standard normal distribution.

2.2 American type options

Let Fn = σ[Y0, . . . , Yn], n = 0, 1, . . . be a natural filtration generated by
the log-price process Yn.

It is worth to mention that the price process Sn and the log-price process
Yn will generate the same nature filtration Fn, because these two process are
connected by formula (11) .
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A nonnegative random variable τ is called an (optional) stopping time
with respect to the filtration Fn if it satisfies the following relation

{τ > n} ∈ Fn, for every n = 0, 1, . . . . (13)

Let also denote by Mn,N the class of all stopping times τn such that
n ≤ τn ≤ N .

Let us also introduce a payoff function g(n, y), which is a real-valued
continuous function in y, defined for (n, y) ∈ N× R, where N = {0, 1, . . . }.

The American type option contract in which an option holder has the
right, but not the obligation, to execute the contract at any stopping time
τ ∈ Mn,N and to get in this case the payoff g(τ, Yτ ). The parameter N is
called a maturity of the option.

One of the goals for an option holder is to find so called reward functions
φn(y), y ∈ R for the option contract defined by the following relation, for
n = 0, . . . , N ,

φn(y) = sup
τn∈Mn,N

Ey,ng(τn, Yτn). (14)

Here and henceforth, Py,n and Ey,n denote, respectively, conditional prob-
ability and expectation under condition Yn = y.

Below, we shall impose some conditions on the log-price process Yn and
the payoff function g(n, y), which would guarantee that

Ey,n max
n≤k≤N

|g(k, Yk)| <∞, (15)

where y ∈ R, n = 0, . . . , N and, thus, the optimal expected reward |φ(y)| <
∞, y ∈ R, n = 0, . . . , N .

A standard examples of payoff functions related to so-called call and put
option contracts are, respectively,

g(n, y) = e−rn max(0, ey −K) = e−rn[ey −K]+, (16)

and
g(n, y) = e−rn max(0, K − ey) = e−rn[K − ey]+. (17)

Here, K, r > 0 are positive constants, which are a strike price and a
risk-free interest rate respectively.
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2.3 Reward functions for American options

We impose the following condition on the the log-price process Yn, which
is assumed to hold for some β ≥ 0:

A[β] : max0≤n≤N Ee±βWn < K, where 1 < K <∞.

We also impose the following condition on the payoff function g(n, y),
which is assumed to hold for some γ ≥ 0:

B[γ] : max0≤n≤N supy∈R
|g(n, y)|

1+L′′eγ|y|
< L′, where 0 < L′ <∞ and 0 ≤ L′′ <∞.

This condition will make sure that we only study those payoff functions
which have not more than polynomial rate of growth in argument of e|y|. For
example, in the case of the call option contract, defined by formula (16), by
setting γ = 1, condition B[γ] will be fulfilled. In the case of the put option
contract with formula (17), γ can be set to zero to fulfill this condition.

The following theorem is given in Lundgren and Silvestrov (2010).

Theorem 1. Let conditions A[β] and B[γ] holds for parameters 0 ≤ γ ≤
β <∞. Then there exist constants 0 ≤M ′,M ′′ <∞ such that the following
inequalities hold for any y ∈ R, n = 0, . . . , N ,

|φn(y)| = sup
τn∈Mn,N

Ey,n|g(τn, Yτn)|

≤ Ey,n max
n≤r≤N

|g(r, Yr)| ≤M ′ +M ′′eγ|y|. (18)

2.4 A backward recurrence algorithm for reward func-
tions

Let assume now that the following condition holds:

C: Wn, n = 1, . . . , N are independent discrete random variables such that
Wn takes values of lδ, l = −rn,−rn + 1, . . . , rn, for every n = 1, . . . , N ,
where δ and rn, n = 1, . . . , N are, respectively a positive real and
positive integer numbers.

In this case, the conditional distribution of the random variable Ym,
under the condition Yn = y, is symmetrical and concentrated in points
y + lδ, l = −rn,m,−rn,m + 1, . . . , rn,m, for every 0 ≤ n ≤ m ≤ N , where
rn,m =

∑m
k=n+1 rk, 0 ≤ n ≤ m ≤ N .
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Note that we assume that δ is not changing with n, n = 1, . . . , N , which
leads to that the so-called recombining condition for Yn is fulfilled. We can
see that, for example, assuming the change of Yn at moment n+1 is a upmove
with l = 1 and downmove with l = −1 at n+ 2, or contrary, l = −1 at n+ 1
and l = 1 at n+ 2, the value of Yn+2 will be the same in those two cases! By
such assumption, at time moment m, n < m, we will only have a number
of rn,m =

∑m
k=n+1 rk, 0 ≤ n ≤ m ≤ N values of the reward function to

calculate! But if the recombining condition is violated, in the extrem case,
we will have rn,m =

∏m
k=n+1 rk values of the reward function to handle with.

The calculation will be gigantic if we want to get a acceptable simulation
result without recombining condition!

Under condition C, we get

Ee±βWn =
rn∑

l=−rn

e±βlδP (Wn = lδ) (19)

Obviously condition C implies that condition A[β] holds for any β ≥ 0.
The following theorem is a variant of the corresponding results from

Chow, Robbins and Siegmund (1971) and Shiryaev (1976).

Theorem 2. Let conditions C holds. Then the reward functions satisfy
the following recurrence backward relations for every y ∈ R and 0 ≤ n ≤ N ,

φN(y + lδ) = g(N, y + lδ), l = −rn,N , . . . , rn,N ,
φm(y + lδ) = max

(
g(m, y + lδ),∑rm+1

k=−rm+1
φm+1(y + lδ + kδ))P(Wm+1 = kδ)

)
,

l = −rn,m, . . . , rn,m, m = N − 1, . . . , n.

(20)

2.5 Convergence of reward functions

Let consider now the family of log-price processes, which depend on some
perturbation parameter ε ≥ 0 and are defined for every ε by the following
relation similar with (11),

Yε,n+1 = Yε,n +Wε,n+1, n = 0, 1, . . . , (21)

where: (a) Wε,n, n = 1, 2, . . . is a sequence of real-valued independent and
identically distributed (i.i.d.) random variables, and (b) Yε,0 is a real-valued
constant.
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Let Fε,n = σ[Yε,0, . . . , Yε,n], n = 0, 1, . . . be a natural filtration generated
by the log-price process Yε,n.

Let also denote by Mε,n,N the class of all stopping times τε,n for the
process Yε,n such that n ≤ τε,n ≤ N .

The following condition will replace condition A[β] in this case:

A′[β] : limε→0 max0≤n≤N Ee±βWε,n < K ′, where 1 < K ′ <∞.

Condition A′[β] obviously implies that there exists ε0 > 0 such that
condition A[β] holds for every ε ∈ [0, ε0]. In such case, according Theorem
1, there exists, the reward functions φε,n(y), y ∈ R for the option contract
defined by the following relation, for ε ∈ [0, ε0] and n = 0, . . . , N ,

φε,n(y) = sup
τε,n∈Mε,n,N

Ey,ng(τε,n, Yε,τε,n). (22)

We also impose the following condition of convergence in distribution for
jumps of log-price processes:

D: Wε,n
d−→ W0,n as ε→ 0, for n = 1, . . . , N .

The following theorem is a direct corollary of results given in Lundgren
and Silvestrov (2010).

Theorem 3. Let conditions A′[β] and B[γ] holds for parameters 0 <
γ < β < ∞ or γ = β = 0, and also condition D holds. Then the following
relation holds for any y ∈ R, n = 0, . . . , N ,

φε,n(y)→ φ0,n(y) as ε→ 0. (23)

2.6 Approximation algorithms for reward functions

Let assume now that the following conditions holds:

C′: Wε,n, n = 1, . . . , N are, for every ε ∈ (0, ε0], independent discrete
random variables such that the random variable Wε,n takes values
lδε, l = −rε,n,−rε,n + 1, . . . , rε,n, for n = 1, . . . , N , where δε and
rε,n, n = 1, , . . . , N are, respectively a positive real and positive integer
numbers.
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As was mentioned above, the conditional distribution of the random vari-
able Yε,m under the condition Yε,n = y is symmetrical and concentrated in
points y + lδε, l = −rε,n,m,−rε,n,m + 1, . . . , rε,n,m, for every 0 ≤ n ≤ m ≤ N ,
where rε,n,m =

∑m
k=n+1 rε,k, 0 ≤ n ≤ m ≤ N .

The following approximation algorithm for computing the reward func-
tions φ0,n(y) takes place. One should sequentially apply the following two
theorems, which are corollaries of Theorems 2 and 3 respectively.

Theorem 4. Let the the log-price processes Yε,n satisfy condition C′.
Then the following recurrence backward relations hold for every y ∈ R, 0 ≤
n ≤ N and ε ∈ (0, ε0],

φε,N(y + lδε) = g(N, y + lδε), l = −rε,n,N , . . . , rε,n,N ,
φε,m(y + lδε) = max

(
g(m, y + lδε),∑rε,m+1

k=−rε,m+1
φε,m+1(y + lδε + kδε))P(Wε,m+1 = kδε)

)
,

l = −rε,n,m, . . . , rε,n,m, where m = N − 1, . . . , n.

(24)

Theorem 5. Let the the log-price processes Yε,n satisfy condition A′[β], B[γ]
and C′, with parameters 0 < γ < β < ∞ or γ = β = 0, and also condition
D holds. Then the following relation holds for any y ∈ R, n = 0, . . . , N ,

φε,n(y)→ φ0,n(y) as ε→ 0. (25)

2.7 American type options for log-price processes rep-
resented by Gaussian random walks

Let assume that the following condition holds:

E: (a) W0,n = µn + σnBn, n = 1, . . . , n = 1, . . . , N , where µn ∈ R
and σn > 0, n = 1, 2, . . . are real numbers and Bn, n = 1, 2, . . . is
a sequence of independent and identically distributed (i.i.d.) random
variables with standard normal distribution; (b) Y0 = y0 = const ∈ R
with probability 1.

In this case the process Y0,n can be represented in the following form,

Y0,n = y0 + αn + Ỹ0,n, n = 0, 1, . . . (26)
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where (a) αn =
∑n

k=1 µk, n = 0, 1, . . . is a non-random function; (b) Ỹ0,n =∑n
k=1 σkBk, n = 0, 1, . . . is a centered Gaussian random walk with the initial

value Ỹ0,0 = 0.
It is obvious the both price processes Y0,n and Ỹ0,n generate the same

natural filtration F0,n = σ[Y0,n, . . . , Y0,N ] = σ[Ỹ0,n, . . . , Ỹ0,N ], n = 0, 1, . . .
and, therefore, have the same classes of stopping times M0,n,N , 0 ≤ n ≤ N .

In this case, one can use the following transformation formula for the
reward functions

φn(y) = sup
τn∈Mn,N

Ey,ng(τn, Y0,τn)

= sup
τn∈Mn,N

Ey,ng(τn, y0 + ατn + Ỹ0,τn)

= sup
τn∈Mn,N

Ey,ng̃(τn, Ỹ0,τn). (27)

where g̃(n, y) is a new payoff function defined for y ∈ R, n = 0, . . . , N , by
the following formula,

g̃(n, y) = g(n, y0 + αn + y). (28)

Relation (27) shows that one can always reduce the approximation option
problem for log-price processes represented by Gaussian random walk with
non-zero initial value and non-zero trend to the the approximation option
problem for log-price processes represented by Gaussian random walk with
zero initial value and zero trend. This can be done using the appropriate
transformations of the log-price process and the payoff function.

Thus, without loss of generality, we can assume, if necessary, that the
following condition holds:

F: (a) µn = 0, n = 1, 2, . . . ; (b) Y0 = 0 with probability 1.

Under condition F, we can rewriten

W0,n = W̃0,n = σnBn (29)

We are going to investigate three alternative approximation models for
log-price processes represented by Gaussian random walks.
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2.8 A binomial sum approximation model

In this model, random variables Wε,n, n = 1, . . . are defined for every
ε > 0 by the following relation

Wε,n = Xε,n,1 + · · ·+Xε,n,rε,n (30)

where (a) rε,n, n = 1, . . . are positive integers, and (b) Xε,n,k, k, n =
1, 2, . . . , rε,n are independent binary random variables with parameters δε > 0
and 0 ≤ pε,n ≤ 1, i.e.,

Xε,n,k =

{
+δε with probability pε,n
−δε with probability 1− pε,n.

(31)

Here we only assume that the jump step δε is a function of ε, not depend-
ing of n. This implies that the recombination condition holds.

In order to fit parameters, we should provide the asymptotic fitting of
the moments for random variables Wε,n and W0,n, for every n = 1, . . . , N .
According the remarks made in Section 2.7, we can restrict consideration by
the case where condition F holds. In this case, fitting is provided by the
following relations, which should hold for every n = 1, . . . , N ,{

EW̃ε,n = rε,n(δεpε,n − δε(1− pε,n))→ 0, as ε→ 0,

V arW̃ε,n = rε,n(δ2
εpε,n + δ2

ε(1− pε,n) = rε,nδ
2
ε → σ2

n, as ε→ 0.
(32)

It is readily seen that the asymptotic fitting relations (32) holds if we
chose parameters δε and rε,n, n = 1, . . . , N in the following forms,

rε,n = [rεσ
2
n], pε,n =

1

2
, δε =

1
√
rε
, (33)

where rε is a positive integer, we can assume that rε = 1
ε
, such that rε →∞

as ε→ 0, and rε,n is the rounded value [rεσ
2
n]. We can check that:

V arW̃ε,n = rε,n(δ2
εpε,n + δ2

ε(1− pε,n) = [rεσ
2
n]

1

rε
→ σ2

n, as rε →∞. (34)

where −0.5 ≤ θ ≤ 0.5. So now, we can simulate W̃ε,n as Bin(rε,n, pε,n), with
jump step δε = 1√

rε
, up or down.
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Let us now prove that, under conditions E and F, the choice of the above
parameters according relation (33) implies that conditions A′[β] (with any
parameter β ≥ 0) and C hold.

The random variable W0,n has the normal distribution with parameters
0 and σ2

n, for every n = 1, . . . , N . Thus, for any n = 1, . . . , N and β ≥ 0,

Ee±βW0,n = e
β2σ2n

2 <∞. (35)

Also, random variable Wε,n has the binomial distribution with parameters
given in relation (33), for every ε > 0 and n = 1, . . . , N . Thus, for any
n = 1, . . . , N and β ≥ 0, using Taylor expansion for expected function we
get,

Ee±βWε,n =
(
Ee±βXε,n,1

)[rεσ2
n]

=
(
e
±β 1√

rε
1

2
+ e

∓β 1√
rε

1

2

)[rεσ2
n]

=
(

1 +
β2

2rε
+ o(

1

rε
)
)[rεσ2

n]

→ e
β2σ2n

2 <∞, as ε→ 0. (36)

Relation (36) implies condition A′[β] (with any parameter β ≥ 0) and
Wε,n W0,n have same moment generating function which lead to that condi-
tion D holds.

Condition C′ also holds, so by Theorem 4, we get the the following re-
currence backward relations, for every y ∈ R, 0 ≤ n ≤ N and ε ∈ (0, ε0],

φε,N(y + δεl) = g(N, y + δεl), l = −rε,n,N , . . . , rε,n,N ,
φε,m(y + δεl) = max

(
g(m, y + δεl),∑rε,m+1

k=0 φε,m+1(y + δεl + δε (2k − rε,m+1))f(k; rε,m+1, pε,m+1)
)
,

l = −rε,n,m, . . . , rε,n,m,m = N − 1, . . . , n.

(37)
where f(k; rε,m+1, pε,m+1) =

(
rε,m+1

k

)
pkε,m+1 (1− pε,m+1)rε,m+1−k.

We can also apply Theorem 3 that yields the following theorem.

Theorem 6. Let the log-price processes Yε,n be constructed using the bi-
nomial approximation scheme satisfying conditions E and F with parameters
given by relation (33). Also let condition B[γ] hold with some parameter
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γ ≥ 0 and rε → ∞ as ε → 0. Then the following relation holds for any
y ∈ R, n = 0, . . . , N ,

φε,n(y)→ φ0,n(y) as ε→ 0. (38)

2.9 A trinomial sum approximation model

In this model, random variables Wε,n, n = 1, . . . are defined for every ε > 0
by the following relation

Wε,n = Xε,n,1 + · · ·+Xε,n,rε,n (39)

where (a) rε,n, n = 1, . . . are positive integers, and (b) Xε,n,k, k, n = 1, 2, . . .
are independent trinomial random variables with parameters δε > 0 and
0 ≤ pε,n ≤ 1, i.e.,

Xε,n,k =


+δε with probability 1−pε,n

2

0 with probability pε,n
−δε with probability 1−pε,n

2
.

(40)

So Wε,n ∈ [−rε,nδε, rε,nδε] .
According the remarks made in Section 2.7, we can restrict consideration

by the case where condition F holds. In order to fit parameters, we should
provide the asymptotic fitting of the moments for random variables W̃ε,n,
some we did with binomial sum model, for every n = 1, . . . , N . This fitting is
provided by the following relations, which should hold for every n = 1, . . . , N ,{

EW̃ε,n = rε,n(δε
1−pε,n

2
+ 0− δε 1−pε,n

2
) = 0 for every ε

V arW̃ε,n = rε,nδ
2
ε(1− pε,n)→ σ2

n as ε→ 0.
(41)

Let us take δε = 1√
rε

, where rε are positive integers such that rε →∞ as

ε→ 0, same as in Binomial model. So parameters can take values as

rε,n = [
rεσ

2
n

1− pε,n
], 0 < pε,n < 1, δε =

1
√
rε

(42)

Let us now prove that, under conditions E and F, the choice of the above
parameters according relation (42) implies that conditions A′[β] (with any
parameter β ≥ 0) and D hold.
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Random variable W̃ε,n here has the trinomial-sum distribution with pa-
rameters given in relation (42), for every ε > 0 and n = 1, . . . , N . Thus, for
any n = 1, . . . , N and β ≥ 0,

Ee±βW̃ε,n =
(
Ee±βXε,n,1

)[
rεσ

2
n

1−pε,n
]

=
(
e
±β 1√

rε
1− pε,n

2
+ pε,n + e

∓β 1√
rε

1− pε,n
2

)[
rεσ

2
n

1−pε,n
]

=
(

1 +
(1− pε,n)β2

2rε
+ o

(
1

rε

))[
rεσ

2
n

1−pε,n
]

→ e
β2σ2n

2 <∞ as ε→∞. (43)

Relation (43) implies both conditions A′[β] (with any parameter β ≥ 0)
and D to hold. Condition C′ also holds.

The recurrence backward relations in this case, by Theorem 4, for every
y ∈ R, 0 ≤ n ≤ N and ε ∈ (0, ε0] is following:

φε,N(y + δεl) = g(N, y + δεl), l = −rε,n,N , . . . , rε,n,N ,
φε,m(y + δεl) = max

(
g(m, y + δεl),∑rε,m+1

k=−rε,m+1
φε,m+1(y + δεl + δεk)P{Wε,m+1 = δεk}

)
,

l = −rε,n,m, . . . , rε,n,m,m = N − 1, . . . , n.

(44)

where

P{Wε,m+1 = δεk} =
∑
k+,k−

rε,m+1!

k+!k−! (rε,m+1 − k+ − k−)!
p
k+
+ p

k−
− p

rε,m+1−k+−k−
0

(45)
and k+, k− fulfill conditions

k+, k− ≥ 0

k+ + k− ≤ rε,m+1

k+ + k− = k

(46)

at the same time p+ = p− = 1−pε,n
2

, p0 = pε,n.

We can also apply Theorem 3 that yields the following theorem.
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Theorem 7. Let the log-price processes Yε,n be constructed using the tri-
nomial approximation scheme satisfying conditions E and F with parameters
given by relation (42). Also let condition B[γ] hold with some parameter
γ ≥ 0 and rε → ∞ as ε → 0. Then the following relation holds for any
y ∈ R, n = 0, . . . , N ,

φε,n(y)→ φ0,n(y) as ε→ 0. (47)

2.10 A skeleton approximation model

In this model, random variables Wε,n, n = 1, . . . are defined for every ε > 0
by the following relation

Wε,n =


+rε,nδε with probability 1− Φ(

(rε,n− 1
2

)δε
σn

)

lδε with probability Φ(
(l+ 1

2
)δε

σn
)− Φ(

(l− 1
2

)δε
σn

)

−rε,nδε with probability Φ(
(−rε,n+ 1

2
)δε

σn
).

(48)

where (a) rε,n, n = 1, . . . are positive integers, (b) −rε,n < l < rε,n, and (c)
Φ(x) is the standard normal culmaltive distribution function. We can set

rε,n = [rεσ
2
n], δε =

1
√
rε
, (49)

where rε are positive integers such that rε →∞ as ε→ 0. And we also have
rε,nδε ∼ σ2

n

√
rε →∞, as ε→ 0.

Let us now prove that, under conditions E and F, the choice of the above
parameters according relation (49) implies that conditions A′[β] (with any
parameter β ≥ 0) and D hold.

The method of proof below is learned from Silvestrov (2012).
As the formula (48), we can define, for ε and n = 0, 1, . . . , functions as

h̃ε,n(y) =


+rε,nδε if y ≥ (rε,n − 1

2
)δε

lδε if (−rε,n + 1
2
)δε ≤ y ≤ (rε,n − 1

2
)δε

−rε,nδε if y ≤ (−rε,n + 1
2
)δε

(50)

where (a) rε,n, n = 1, . . . are positive integers, (b) −rε,n < l < rε,n. So the
relation between Wε,n and W0,n can be written as:

Wε,n = h̃ε,n(W0,n) (51)
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We can also get the following inequality for every ε and y ∈ R,∣∣∣h̃ε,n(y)
∣∣∣ ≤ |y|I(y /∈ A) + (|y|+ δε)I(y ∈ A) ≤ |y|+ δε (52)

where interval A = [(−rε,n + 1
2
)δε, (rε,n − 1

2
)δε].

Under condition F, W0,n ∼ N(0, σ2
n) for every n = 1, . . . , N , thus for

β ≤ 0,

Ee±βW̃ε,n = Ee±βh̃ε,n(W0,n) ≤ eβδεEe±βW0,n = eβδεe
β2σ2n

2 <∞ (53)

So condition A′[β] (with any parameter β ≥ 0) is fulfilled. For condition
D, we have

|h̃ε,n(y)− y| ≤ ((−rε,n +
1

2
)δε − y)I(y ≤ (−rε,n +

1

2
)δε)

+ δεI(y ∈ A) + (y − (rε,n +
1

2
)δε)I((−rε,n +

1

2
)δε ≤ y) (54)

By setting (49), we have rε,nδε ∼ σ2
n

√
rε → ∞ and δε → 0, as ε → 0,

hence relation (54) implies, for every y ∈ R, and n = 0, 1, 2 . . . N ,

|h̃ε,n(y)− y| → 0, as ε→ 0 (55)

So we get the almost sure convergence:

h̃ε,n(y)
a.s.→ y, as ε→ 0 =⇒ W̃ε,n = h̃ε,n(W0,n)

a.s.→ W0,n, as ε→ 0 (56)

Relation (56) implies that condition of convergence in distribution D for this
model holds.

Condition C′ also holds. The recurrence backward relations in this case,
by Theorem 4, for every y ∈ R, 0 ≤ n ≤ N and ε ∈ (0, ε0] is following:

φε,N(y + δεl) = g(N, y + δεl), l = −rε,n,N , . . . , rε,n,N ,
φε,m(y + δεl) = max

(
g(m, y + δεl),∑rε,m+1

k=−rε,m+1
φε,m+1(y + δεl + δεk)P{Wε,m+1 = δεk}

)
,

l = −rε,n,m, . . . , rε,n,m,m = N − 1, . . . , n.

(57)

where P{Wε,m+1 = δεk} is discribted by relations (48).
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We can also apply Theorem 3 that yields the following theorem.

Theorem 8. Let the log-price processes Yε,n be constructed by using the
skeleton approximation scheme satisfying conditions E and F with parame-
ters given by relation (49). Also let condition B[γ] hold with some parameter
γ ≥ 0 and rε → ∞ as ε → 0. Then the following relation holds for any
y ∈ R, n = 0, . . . , N ,

φε,n(y)→ φ0,n(y) as ε→ 0. (58)

3 Rate of Convergence for Approximations

of American Type Options

Based on the standard binomial tree method, we can define a changing
unit for log-price Yn, 0 ≤ n ≤ N , as shown in Figure 3.

Figure 3: Log price developments of std. binomial tree model

The changing unit shows every possible results of Yn, 0 ≤ n ≤ N , after
just one time step ∆t, ∆t = T/N . For example, in the case of the standard
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binomial tree model, we can see that Yn will change either to Yn + δ with
probability p or to Yn − δ with probability 1− p.

In the present paper, the changing unit is assumed to be according to the
binomial-sum, trinomial-sum and skeleton model respectively. More possible
changing results after one time interval (∆t) are concerned, not only two
as in the case of standard binomial model. The number of nodes, rε,n, is a
function of rε. If needed, rε,n can be very large. So the normal distribution
assumption for W0,n is catched better in our models.

In this section, we will first test the rate of convergence of a call option
in these three models with the following parameters, which are denoted as
standard conditions. We assume, a risk-free interest rate r = 5%, a initial
stock price S0 = 10, and a stock price process, defined by formula (6), having
a drift µ = 0.25% , and a yearly volatility σ = 30%. In our experimental
studies, we assume:

µ =
r − σ2/2

2

instead of µ = r − σ2/2 in risk neurual situation.
We assume also that the strike price K = 10 and the days to maturity

are 90 days, or T = 90/365 ≈ 0.24657. At the end, we set N = 12 in the
standard conditions, so one time interval is almost equal to one week, then
we set N = 100, N = 1000 which makes the time interval become almost
one day, and one hour respectively.

Recall that in formulas (33), (42), and (49) for these three models, under
the standard conditions, rε is the only changing parameter, and we will in-
vestigate the development of the value of the reward function φε,n(y), or in
other words the option price, as a function of rε = 1

ε
, and rε →∞ as ε→ 0.

All the simulations in this thesis are performed in double precision in
MATLAB R2007B, on a laptop with 1.3 GHZ Intel Mobile Core 2 Duo
SU7300 CPU and 4 GB of internal memory, and the operation system is
Windows 7 Home Premium 64 bit.

We will also emphasize the importance of programming in MATLAB. For
example, have the code utilized the advantages which the MATLAB has in
terms of vectors and matrix calculations? Such factors have significant effect
on execution speed.

Higham (2002) presents nine ways to implement the standard binomial
method for pricing European option in MATLAB. He showed that, by work-
ing on vectors instead of ’for’ loops, the execution time was dramatically
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improved. It was reduced more than 50 times compared to the initial version
which is based on ’for’ loops. And further more, by little extra rewriting
of the binomial probability function, he showed that the execution time was
reduced another ten times.

Figure 4: Different changing units in binomial sum model

3.1 Rate of convergence for the binomial sum approx-
imation model

Recall that in this model, the changing unit at time nth is a binomial
distribution Bin(rε,n, pε,n), and its parameters are assume as:

rε,n = [rεσ
2
n], pε,n =

1

2
, δε =

1
√
rε
, (59)

Some examples for this model are shown in Figure 4, with different num-
ber of possible jumps, rε,n, and different jump magnitude, δε, under one time
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interval. Both rε,n and δε are depended on parameter rε and volatility σn, as
shown in formula (59).

Note that in the standard binomial model, the options can be exercised
only at these time moment points, but between the time moments, no oper-
ations can be made. The same dicipline is applied here too. So the points
shown between two time moments, are just used to illustrate how we choose
out the possible results of log price and how to calculate the corresponding
probabilities after one time interval, ∆t.

We can see that, when the recombination condition is fulfilled, after one
time step, we say at time point n+1 for Yn = y, there will be rε,n+1 possible
values for Yn+1. The total number of price points, at maturity, N , will be
1 +

∑N
i=1 rε,i.

Be aware of that, if by choosing some special value on rε we can get
rε,n = 1, for n = 1, 2, . . . , N . In such a situation, the price development tree
structure in this model will be the same as in standard Binomial model, which
is shown in Figure 3. Structures are same, but pay attention that they have
different parameter vaules, namely δε = 1√

rε
here, but u = 1/d = δ = eσ

√
δt

in standard binomial model.
In order to compare the rate of convergence, the limit value is needed. As

we showed above, when rε →∞, the option price will converge to a certain
value. In practice, we only need a value, a benchmark value, which is closed
to this limit value. How close it should be is defined according to the need
in reality.

The method, we use, to find this benchmark value is following. We know
that larger values of rε leads us to this value. So we can set large values on
rε, with big increament and study the their difference in percentage. If the
value of percentage fulfill our requirment, we will take the last option value,
which is calculated from the largest rε we used, as our benchmark.

Note that for some cases, such as N=1000, to find the benchmark can be
very time-consuming. But we don’t need to worry about that, because such
values can be prepared in advance.

Option Value rε rε,n Diff. (% of option value)
0.649606557847695 210000 388 0
0.649647576161140 230000 425 0.0063
0.649681970751150 250000 462 0.0053

Table 1: Benchmark, N=12 in binomial sum model.
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In Table 1, it shows a example of how benchmark can be choosed. We can
see that the change scope of the option price becomes smaller and smaller
with larger rε. For the last value of rε, the difference is less than 0.006%. In
the later, we will only consider 5% and 1% precision. So the accuracy on the
benchmark value is enough.

We will use the same method to find the benchmark values for cases of
N = 100 and N = 1000.

Figure 5: Convergence of the call-option price in binomial sum model

Figure 5 shows that how the option price changes with a increasing rε.
Y-axle shows the call-option price, and on X-axle the value of rε is shown
in log-scale. We can see that when rε is bigger than 3 × 103 roughly, our
simulated option price changes only between ±5% of the limit value, when
rε passes 1.6× 104 roughly, the changes is within ±1%, and finally when rε
moves toward 106, the option price is almost converging to a certain value,
which is also proved by Theorem 6 for this model.

So some very interesting questions needed to be answered here are, when
the option value will fall into the ±5% precision interval of its ”true value”,
how about ±1% precision. In such cases, and if we will have a ±1% precision
of option value, what is the corresponding calculation time of it?

In order to answer those questions, Table 2 and Table 3 are build under
the standard conditions.
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N= 12 N= 100 N = 1000
Lim. Value 0.649682 0.649951 0,65002
rε 3000 2.6× 104 2.2× 105

rε,n = [rεσ
2
n] 6 6 5

Times (Sec.) 0.078 0.125 1.08

Table 2: Rate of convergence in binomial sum model, 5% precision

N= 12 N= 100 N = 1000
Lim. Value 0.649682 0.649951 0,65002
rε 1.35× 104 1.2× 105 1.16× 106

rε,n = [rεσ
2
n] 25 27 26

Times (Sec.) 0.094 0.203 7.05

Table 3: Rate of convergence in binomial sum model, 1% precision

For example, the Table 2 focuses on ±5% precision for different N . We
can read, from the first column, that the limit value of a call option, with
N = 12, is 0.649681970751150, same as shown above. One limit value for
rε is 3000, which means when rε is bigger than this value, the deviation of
option value from the ”true value” is less than ±5%. This development is
also illustrated in Figure 5.

To provide a more detailed picture of the simulation of log price, related
to this rε, i.e. rε = 3000, we also figure out how many number of nodes in
every changing union, as we defined in Figure 4. The answer is 5.

So the whole picture for this simulation will be a triangle matrix with 11
columns. The first column consists of only one point, which is related to Y0

certainly. The second column is composed of six points, which are:

Y0 + 5δε, Y0 + 3δε, Y0 + 1δε, . . . , Y0 − 5δε

In the same manner, the last column contains of 11 × 5 + 1 = 56 points,
which are

Y0 + 55δε, Y0 + 53δε, . . . , Y0 − 55δε.

Now going back to Table 2 and Table 3, the last row of them present how
many seconds the MATLAB programme needs to calculate the corresponding
option price. We are not very interested in the exact calculation time but
just to get an idea of times’ quantity.
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From these two tables, we can see that the convergency processes for
different values of N are similar, because rε,n has almost same value for
differnt N, in both 5% and 1% percent cases. It will be very useful to find
the right rε when we try to reach the wished precision with different N.

3.2 Rate of convergence for the trinomial sum approx-
imation model

Recall in this model, the changing unit for nth becomes a trinomial-sum
distribution Tri(rε,n, pε,n), with parameters:

rε,n = [
rεσ

2
n

1− pε,n
], 0 ≤ pε,n < 1, δε =

1
√
rε

(60)

Figure 6: Changing units in trinomial sum model

Some examples of changing units are shown in Figure 6. Here, when the
recombination condition is fulfilled, after one time step, say at time point
n + 1, there will be 2rε,n + 1 possible values for Yn = y. The total numbers

at maturity N is 1 +
∑N

i=1 2 × rε,i. So it is clear that, in this model more
values should be calculated, which leads to more calculation time.
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In formula (60), it shows that we get some free hand to choose pε,n, defined
as the probability of no changing. So the question is, which value shall we
choose?

pε,n 1/10 1/3 2/3 4/5 9/10 99/100
rε 12500 9600 4500 2800 2000 580

rε,n = [ rεσ2
n

1−pε,n ] 25 27 25 26 32 107

Table 4: Rate of convergence in trinomial sum model, 5% precision.

In Table 4, we set different values for pε,n , and show at which values
of rε and corresponding number of nodes rε,n, the option price will reach
±1% precision. It seems that up to pε,n = 0.8, there are no any noticeable
differences for this model. Just when pε,n increases to 0.9 and beyond, the
efficiency of this model decreases (the more the number of nodes, the more
calculation time is needed). As there is still no a clear choice for pε,n, we
choose pε,n = 2/3.

The calculations of P(Wε,m+1 = kδε) in this model is shown in formula
(45), and it can be rewrited as a sum of products of two binomial probability
functions. One example from the combination in formula (45) can be

Prob(X+ = k1, X− = k2, X0 = n− k1 − k2) =

=
n!

k1!k2! (n− k1 − k2)!
ak1bk2cn−k1−k2

=
n!

k1! (n− k1)!
ak1bn−k1 · bk2−n+k1

(n− k1)!

k2! (n− k1 − k2)!
cn−k1−k2

=

(
n

k1

)
ak1bn−k1 · (n− k1)!

k2! (n− k1 − k2)!
bk2cn−k1−k2b−n+k1

=

(
n

k1

)
ak1bn−k1 ·

(
n− k1

k2

)
bk2cn−k1−k2 · b−n+k1 (61)

where

k1−k2 = k, Xi =


1,with probability a

−1,with probability b

0,with probability c

i = 1, 2 . . . n, and a+b+c = 1

and X+ is the number of Xi = 1, X− the number of Xi = −1, X0 the number
of Xi = 0. Last X+ +X− +X0 = n.

28



Notice that this is just one of many combinations in formula (45). So it is
quite sure that the trinomial sum model should have higher calculation-time
requirement, if we actually program this model in this way, i.e. to calculate
the sum of products of two binomial probability functions.

Here is our solution of how to simplify the calculation. Let’s first go back
to Figure 6, and take a look the picture of rε,n = 2. We can see that there
are three points in the middle of ∆t. With probabilities (P+ P0 P−)′, log
price Yn will reach those three different points. Every one of them in their
turn have the same opportunity to go up, stay or to go down. We will utilize
this feature to calculate the probabilities of which price the stock price will
be after ∆t. Our solution for rε,n = 2 is:

P++

P+0

P00

P−0

P−−

 = P+ ·


P+

P0

P−
0
0

+ P0 ·


0
P+

P0

P−
0

+ P− ·


0
0
P+

P0

P−

 (62)

Here, the left side of formula (62) is the respective probabilities to reach
those 5 different points after ∆t in the picture of rε,n = 2. It shows that based
on the information one step before, namely (P+ P0 P−)′, we can figure out the
followed probabilities very simple. We just need to build three vectors with
suitable length, times related probability and add them up. If we continue
in this way, the probabilities for rε,n = 3, 4, . . . can also be calculated easily
and quickly. It is a general solution and working for every value of rε,n. We
can call such algorithm as a forward calculation and such vector-calculation
match MATLAB just great and it is very efficient. The related MATLAB
code is shown in Appendix B, ProbMatrixTrioFuc.

In Figure 7, we can see how the option price changes as a function of rε.
Careful readers will wonder why the option-price follows different patterns as
rε increasing beyond 103. The explanation is different increments of choosen
rε values. In order to illustrate the convergence, we use different increment
steps for rε. So when rε is less the one thousand, the changing step is just
one hundred, beyond that we just increase it to one thousand.

In this model, under the standard conditions described above, by the
same principle of choosing the limit-value of option price in binomial sum
model, the limit value we find here is 0, 649931361, no noticeable difference
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Figure 7: Convergence of the call-option price in trinomial sum model

from the value in binomial sum model.
Two similar tables, Table 5 and Table 6, are made up as we did with the

binomial sum model.

N= 12 N= 100 N = 1000
Lim. Value 0.649950 0.649943676 0.6500834
rε 900 7× 103 7× 104

rε,n = [ rεσ2
n

1−pε,n ] 5 5 5

Time Sec. 0.062 0.078 1.778

Table 5: Rate of convergence in trinomial sum model, 5% precision

N= 12 N= 100 N = 1000
Lim. Value 0.649950 0.649943676 0.6500834
rε 4.5× 103 4.2× 104 3× 105

rε,n = [ rεσ2
n

1−pε,n ] 26 28 20

Time Sec. 0.0624 0.374 13.822

Table 6: Rate of convergence in trinomial sum model, 1% precision
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3.3 Rate of convergence for the skeleton approxima-
tion model

Figure 8: Skeleton Simulation

In this model, parameters are assumed as

rε,n = [rεσ
2
n], δε =

1
√
rε
, (63)

for n = 1, 2, 3 . . . , where rε are positive, such that rε →∞ as ε→ 0.
In Figure 8, a case with rε = 4 is shown to illustrate how the skeleton

model simulates the standard normal N(0, 1). In this case, we have:

rε,n = [rεσ
2
n] = [4× 12] = 4, and δε =

1
√
rε

=
1

2
. (64)

Wε,n+1 can then take values of {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}. By
Skeleton model, the x-axle is divided, into intervals as (−∞,−1.75] (−1.75−
1.25] , ..., (1.75,∞), as suggested by the formula (50) . For example, if Wε,n

is equal to −2, and the probability of it is

P{Wε,n+1 = −2} = Φ(−1.75) = 1− Φ(1.75) = 0.0401
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Figure 9 shows that how the option price changes as a function of rε. It
is clear that the convergence of option price in this model is very smooth and
quick in comparing with the other models.

Figure 9: Convergence of the call-option price in skeleton model

To compare the calculation time, and the convergence with different val-
ues of N in this model, the same style tables are also built, namely Table 7
and Table 8.

N= 12 N= 100 N = 1000
Lim. Value 0.64997178 0.64996949 0.6500674
rε 1900 1.6× 104 1.7× 105

rε,n = [rεσ
2
n] 4 4 4

Time Sec. 0.0468 0.1404 1.92

Table 7: Rate of convergence in skeleton model, 5% precision
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N= 12 N= 100 N = 1000
Lim. Value 0.64997178 0.64996949 0.6500674
rε 3600 3× 104 3× 105

rε,n = [rεσ
2
n] 7 7 7

Time Sec. 0.0624 0.2028 3.87

Table 8: Rate of convergence in skeleton model, 1% precision

3.4 Comparison of binomial sum, trinomial sum and
skeleton approximation model

For the three models, the limit values we get are almost same, and it
should be so! Another thing we notice is that the limit value is not affected
so much by N !

Remark that the trinomial sum model with pε,n = 0 is actually equal to
binomial sum model. So the comparison between those two model becomes
easy, if we can use this feature. We can just use this specific case in trinomial
sum model to compete with binomial sum model under standard conditions
and play around little with N to get a more general picture!

So the test environment is set like this, under the standard conditions, rε
takes values from (50000 : 500 : 100000), 11 different values. The calculation
time will be recorded. N will take values as before, namely 12, 100, 1000. In
order to reduce error, every case will run 5 times, the calculation time the
mean value of these 5 runnings. The results are shown in Table 9.

N= 12 N= 100 N = 1000
Bino. Model 0.559 1.154 6.471
Bino. Model1 0.52104 0.77064 2,9328
Trino. Model 1.248 1.622 5.014

Table 9: Execution times in bino. and trino. sum models

In Table 9, we use two different methods to calculate probabilities for
different jumps in binomial sum model. We begin by using the MATLAB
function binopdf ( ) to calculate probability of each jump. In second method,
we use the same algorithm as in the trinomial sum model, so the comparison

1Same model but instead of using existing MATLAB func. binopdf(), we use the same
algorithm as we did with trinomial sum model, see formula (62).
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between those two models becomes more fair. The related MATLAB code is
shown in Appendix B, ProbMatrixBinoFuc.

In Table 9, it is clearly shown that the binomial sum model is the winner
between them, in terms of speed.

By comparing Table 2, Table 3 in binomial sum model with Table 5,
Table 6 in Trinomial model, we can see that both of the two models reach
the 5% and 1% precision with almost same rε,n. We can say that in terms of
precision, the two models have the same efficency.

So in total, the binomial sum model will be the winner among them.
By comparing the convergence pictures above and in the Appendix A, of

those three models, we can see that the skeleton model has less oscillation
for high values of rε. The skeleton model is also the most efficient model
among those three models. Table 7 and Table 8 show that this model needs
the lowest rε,n to reach the required precision. The less rε,n is, the faster the
calculation becomes. Clearly the skeleton model is the best of the three in
terms of efficiency and speed.

In Appendix A, convergence of option prices are shown for all the three
models based on very high volatility σ = 300% with, N = 12 and N = 100.

4 MATLAB Implementation

4.1 MATLAB application program

Based on these three models, an application programme in MATLAB has
been written. The program has two main functions, the first is to calculate
option price depended on the input parameters, such as initial stock price,
strike price and so on, and the model one chooses. The second function is
to show how the option value is changing as a function of rε, the parameter
’Gamma’ in the Figure 10, program interface.

Here, we can input those related parameters, such as initial stock price,
strike price and so on. Besides them, we can choose the value of Gamma,
i.e. rε, and which model we will use. There is a checking box, ”To Show
the Development”, if we want to calculate just one option price related to a
specific Gamma, we can left the checking box blank!

By clicking the ”Calculate” button, the result will be shown in the left
corner of this grafic interface, namely the ”Result” box. The corresponding
number of nodes and the option value based on Black-Scholes formula are
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Figure 10: Application program based on these three models

given too.
If we want to show the development option price with an increasing

Gamma, we just need to cross the checking box, ”To Show the Develop-
ment”, and input the minimal and maximal values of Gamma and the in-
creasing step of it in the ”Convergence Test”. By clicking the ”Calculate”
button, the option price trend is shown in the plotting area. We can save
the picture by push the ”Save Figure” button. The ”Clear” button erease
all input information and result, so we can start again easily.
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4.2 Rounding errors

MATLAB stores numeric data as a double by default. Otherwise single-
precision can be used too. By input following commandos respectively in
Command Window in MATLAB2,

-realmax -realmin realmin realmax

-realmax(’single’) -realmin(’single’)

realmin(’single’) realmax(’single’)

we can get the ranges for both double- and single-precision, and they are, for
double:

−1.79769e308 ∼ −2.22507e−308 and 2.22507e−308 ∼ 1.79769e308

The range for single is:

−3.40282e038 ∼ −1.17549e−038 and 1.17549e−038 ∼ 3.40282e038

An other difference between them is, in single-precision we can get only a
8-digit floating value but in double-precision we can a 16-digit floating vaule.
For example,

>> single(2/3)

ans =

0.6666667

and

>> double(2/3)

ans =

0.666666666666667

When we calculate the probaility in formula (57), for example, when the
number of nodes rε,n becomes large, we want to have high precision in the
calculation, because the value of the probabilities are very small especially
for tail values. Based on this concern, we will test, if the rounding error has
a significent effect on our calculation result!

In MATLAB, it supplies a good envirment to apply a such test. We have
seen the difference between single- and double-precision. We will ask, can

2http://www.mathworks.se/help/techdoc/matlab prog/f2-12135.html
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Bino. Model N= 12 N= 100 N = 1000
rε 104 105 106

Op. V. (Sing.) 0,6398935 0,6467319 0,645829
Op. V. (Doub.) 0,6398811347236 0,6468344630263 0,6468593861018
Diff. < 10−4 1.6× 10−4 1.6× 10−3

Time for Single 0.078 0.296 8.58
Time for Double 0.0936 0.2184 5.7096

Table 10: Option prices in single- and double-precision

we find any significent rounding error if we change from double- to single-
precision? If it is not, then we can say that this kind of error is negligible
when we use double precision.

So we choose three examples under the standard condition with different
rε and N , in Binomial model. The result is shown in Table 10.

Here, we can see that the difference3 of option values between single- and
double-precisions is less than 0.02% up to N = 100, far below our precision
concern for simulation results, which is just 1%. Even for N = 1000, the
difference is less than 0.2%. So we can say that the rounding error in our
case is negligible. We did not find the speed advantage with the single-
precision neither. The reason, maybe, is that the double-precision is the
default setting in MATLAB.

5 Concluding Remarks

5.1 Conclusion

Because of the free boundary problem for American options, there is no
simple closed-form solution to them, except for some special cases. In the
present paper, we tried to apply lattice methods to compute the prices of
American options.

Three different models, the binomial sum model, trinomial sum model
and skeleton model are tested for pricing American options. The convergence
conditions for them are tested, and some numerical tests based on those three
methods are implemented in MATLAB.

Our conclusion is:

3It is the absolut value of rate of difference.
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• All of these three models are, theoretically and practically, suitable to
price American options.

• Skeleton Model is the most efficient model among them.

• The rounding error problem is tested, and it does not have significient
effect in our calcultion of option price.

5.2 Discussion and further development

In this paper, the stock price process we simulate is a standard geometric
Brownian Motion, with constant drift and volatility. But there are other
kinds of processes which are more suitable in the economical reality, for
example, the mean-reversion model. The constraint of constant volatility
can also be released, and instead be treated as a stochastic process. Those
kinds of price process models can be suitable for further studies by using the
models studied here.

Another direction could to be focus on different reward functions, for
exampel barrier option, Asian option or other so-called exotic options. There
the exercise conditions are more flexible and also path-dependent, so lattice
method will be suitable for them too.
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Appendix A: Convergence of Option Prices,

σ = 300%.

Here, the pictures in the three models under the standard condition, except
the high standard volatility are shown below. In some pictures, we changed
the value on step for large rε.

Figure 11: Call-opt. converg. in binomial sum model, N=12, σ = 300%.

Figure 12: Call-opt. converg. in binomial sum model, N=100, σ = 300%.
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Figure 13: Call-opt. converg. in triomial sum model, N=12, σ = 300%.

Figure 14: Call-opt. converg. in trinomial sum model, N=100, σ = 300%.
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Figure 15: Call-opt. converg. in skeleton model, N=12, σ = 300%.

Figure 16: Call-opt. converg. in skeleton model, N=100, σ = 300%.
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Appendix B: MATLAB Codes

We write our program in the standard GUI Layout Editor (GUIDE) in MAT-
LAB, and the interface of our program is shown in Figure 10. Here we will
just present the core functional programs of our MATLAB program for cu-
rious readers. These functional programs are:

• ProbMatrixBinoFuc

• ProbMatrixTrioFuc

• BinoSumCallFuc

• TriSumCallFuc

• SkeletonCallFuc

• ProbMatrixBinoFuc:4

function PMatrix = ProbMatrixBinoFuc(P,N)

% P=1/2, N is the time steps

% \delta_t= T/N;

P_Plus = P;

P_Minus = P;

PMatrix{1,1} = 1; % To build a Probability Cell Array

for i = 2:(N+1)

tempMatrix = PMatrix{i-1,1};

tempMatrixPlus = [tempMatrix 0]*P_Plus;

tempMatrixMinus = [0 tempMatrix]*P_Minus;

PMatrix{i,1} = tempMatrixPlus + tempMatrixMinus;

end

4A detailed decribetion of similar algorithm is referred to formula (62).
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PMatrix(1,:) = []; % To get rid of the first row of the

% Pmatrix cell arry, which constains

% just numberal 1.

• ProbMatrixTrioFuc:5

function PMatrix = ProbMatrixTrioFuc(P,N)

% P_0=2/3, the probability of no changing;

% N is the time steps, \delta_t= T/N.

P_0 = P; % Probability for no-changing.

P_Minus = (1-P_0)/2; % Probability for "down" movement.

P_Plus = (1-P_0)/2; % Probability for "up" movement.

PMatrix{1,1} = 1; % To build a Probability Cell Array

for i = 2:(N+1)

tempMatrix = PMatrix{i-1,1};

tempMatrixPlus = [tempMatrix 0 0]*P_Plus;

tempMatrix0 = [0 tempMatrix 0]*P_0;

tempMatrixMinus = [0 0 tempMatrix]*P_Minus;

PMatrix{i,1} = tempMatrixPlus + tempMatrix0 + tempMatrixMinus;

end

PMatrix(1,:) = []; % To get rid of the first row of the

% Pmatrix cell arry, which constains

% just numberal 1.

• BinoSumCallFuc:

function PutPrice = BinoSumCallFuc(gamma,N,Stock_0,strikeP,...

mu,sigma,alfa,PMatrix)

5A detailed decribetion of this algorithm is referred to formula (62).
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s0 = Stock_0; % The Initial Stock Price.

K = strikeP; % Strike Price.

delta = 1/sqrt(gamma); % Jump magnitude.

muM = (mu)*ones(N,1); % Trend for Stock Price Process.

sigmaM = (sigma)*ones(N,1); % Volatility of Stock Price.

alfaM = (alfa)*ones(N,1); % Risk Free Interest Rate.

%% Changing Probilities for every time interval.

gamma_n = round(sigmaM.*sigmaM.*gamma); % Num. of Nodes in

% one Changing Unit.

for i = 1:N

SubProbability{i,1} = PMatrix{gamma_n(i),1};

end

%% Total Possible Jumping Numbers.

M = sum(gamma_n);

dpowers = -delta*((0:M)’);

upowers = delta*((M:-1:0)’);

%%Option Price at maturity, ’N’.

priceN = max(s0*exp(dpowers+upowers+sum(muM))-K,0); %Call Option

%% Re-trace to get option value at time zero

for i = N:-1:1

expPrice = 0;

prob = SubProbability{i,1};

% to calculation exp. value of Option Price at moment ’i-1’.

for j = 1:(gamma_n(i)+1)

expPrice = expPrice+prob(j)*priceN(j:(M-gamma_n(i)+j));

end

% to calculation Stock-price at moment ’i-1’.
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M = sum(gamma_n(1:(i-1)));

dpowers = -delta*((0:M)’);

upowers = delta*((M:-1:0)’);

Si = s0*exp(dpowers+upowers+(i-1)*muM(i));

% max(excercised option price at moment (i-1), present value

% of expected option value at moment (i-1)). So this is

% option price at moment ’i-1’.

priceN = max(max(Si-K,0),expPrice*exp(-alfaM(i)));

end

PutPrice = priceN;

• TriSumCallFuc:

function PutPrice = TriSumCallFuc(gamma,N,Stock_0,StrikeP,mu,...

sigma,alfa,PMatrix,P_2)

s0 = Stock_0; % The Initial Stock Price.

K = StrikeP; % Strike price.

PP = PMatrix;

delta = sqrt(1/gamma); % Jump magnitude.

muM = (mu)*ones(N,1); % Trend for Stock Price Process.

sigmaM = (sigma)*ones(N,1); % Volatility of Stock Price.

alfaM = (alfa)*ones(N,1); % Risk Free Interest Rate.

%% Changing Probilities for every time interval.

gamma_n = round(sigmaM.*sigmaM.*gamma/(1-P_2));

for i = 1:N

SubProbability{i,1} = PP{gamma_n(i),1};

end

%% Total Possible Jumping Numbers.
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M = sum(gamma_n);

powers = delta*((M:-1:-M)’);

%%Option Price at maturity, ’N’.

priceN = max(s0*exp(powers+sum(muM))-K,0);

%% Re-trace to get option value at time zero

for i = N:-1:1

expPrice = 0;

prob = SubProbability{i,1}’;

% to calculation exp. value of Option Price at moment ’i-1’.

for j = 1:(2*gamma_n(i)+1)

expPrice = expPrice+prob(j)*priceN(j:(2*M-2*gamma_n(i)+j));

end

% to calculation Stock-price at moment ’i-1’.

M = sum(gamma_n(1:(i-1)));

powers = delta*((M:-1:-M)’);

Si = s0*exp(powers+sum(muM(1:(i-1))));

% max(excercised option price at moment (i-1), present value

% of expected option value at moment (i-1)). So this is

% option price at moment ’i-1’.

priceN = max(max(Si-K,0),expPrice*exp(-alfaM(i)));

end

PutPrice = priceN;

• SkeletonCallFuc:

function PutPrice = SkeletonCallFuc(gamma,N,Stock_0,strikeP,...

mu,sigma,alfa)
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s0 = Stock_0; % The Initial Stock Price.

K = strikeP; % Strike price

endPlus = inf;

endMinus = -inf;

delta = 1/sqrt(gamma); % Jump magnitude.

muM = (mu)*ones(N,1); % Trend for Stock Price Process.

sigmaM = (sigma)*ones(N,1); % Volatility of Stock Price.

alfaM = (alfa)*ones(N,1); % Risk Free Interest Rate.

%% Changing Probilities for every time interval.

gamma_n = round(sigmaM.*sigmaM.*gamma);

for i = 1:N

A = (gamma_n(i)-0.5):-1:(-gamma_n(i)+0.5);

D = [endPlus A endMinus];

for j = 1:(2*gamma_n(i)+1)

temp1 = D(j)*delta/sigmaM(i);

temp2 = D(j+1)*delta/sigmaM(i);

temp3 = normcdf([temp1 temp2]);

Prob(j) = temp3(1)-temp3(2);

end

SubProbability{i,1} = Prob;

end

%% Total Possible Jumping Numbers.

M = sum(gamma_n);

powers = delta*((M:-1:-M)’);

%%Option Price at maturity, ’N’.

priceN = max(s0*exp(powers+sum(muM))-K,0);

%% Re-trace to get option value at time zero
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for i = N:-1:1

expPrice = 0;

prob = SubProbability{i,1}’;

% to calculation exp. value of Option Price at moment ’i-1’.

for j = 1:(2*gamma_n(i)+1)

expPrice = expPrice+prob(j)*priceN(j:(2*M-2*gamma_n(i)+j));

end

% to calculation Stock-price at moment ’i-1’.

M = sum(gamma_n(1:(i-1)));

powers = delta*((M:-1:-M)’);

Si = s0*exp(powers+sum(muM(1:(i-1))));

% max(excercised option price at moment (i-1), present value

% of expected option value at moment (i-1)). So this is

% option price at moment ’i-1’.

priceN = max(max(Si-K,0),expPrice*exp(-alfaM(i)));

end

PutPrice = priceN;
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