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Abstract

This paper studies macroeconomic forecasting with many predic-
tors, and primarily uses approximate dynamic factor models, in which
a small number of latent factors summarize the information of predic-
tors. Principal component analysis has been brought into widely use
to estimate factors, and four kind of principal component (PC) estima-
tors are examined in details, which are standard PCs, weighted PCs,
generalized PCs and dynamic PCs. Furthermore, targeted PC estima-
tion is proposed as another type of estimated factors in the paper, in
order to take into account the purpose of forecasting variables of inter-
est, which is accomplished by ordering PCs with their importance to
prediction and selecting a handful targeted PCs. Then all these esti-
mates are compared in the context of forecasting macroeconomic series
at various time horizons, meanwhile other many-predictors forecasting
methods are considered into the evaluation.The empirical data con-
sists of 132 U.S. monthly time series available from 1969:1 to 2003:12.
The results suggest that one or two estimated factors can valuably
summarize the information from many predictors; however, forecasts
are different and relative to variables of study.
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1. Introduction

During the past decade, there has been a great demand for macroeconomic
forecasts using many predictors which encourage the development of producing
accurate forecasts. To forecast macroeconomic variables of interest, for example
industrial production, employment rate, price index and so forth, the dataset
usually covers a huge number of observed time series for a long period. Whether
ignoring or considering all these relevant variables would definitely influence
forecasting accuracy and may result in suboptimal forecasts. Therefore,
econometricians have been developing effective ways to subtract information
available among these predictors to improve the performance of forecasting both

in the theoretical and empirical perspective.

Traditional econometric models, such as multivariate vector autoregressive
models, or univariate autoregressive models, have limitations when handling
many times series. Consequently, in order to relax restrictions to low dimensional
data and improve forecasting performance, there are plenty of studies that
introduce different methods and examine them both in their theoretical and
empirical aspects. In general, there are three classes of available methods (Stock
and Watson (2006)). The first class is combining a large panel of forecasts based
on relatively simple models, which compute individual forecasts based on
multivariate models and then produce a combination of these forecasts with
reasonable weights depending on some historical measure. Bates and Granger
(1969) originally proposed the theory of forecasts combination, and the
improvement of forecasting has been successfully examined in applications, such

as Timmerman (2004) and Stock and Watson (2006). The second class is taking
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account of several latent factors to cover the information in predictors, which
certainly involves factor analyses, and then factor augmented forecasts are

produced. We will detail and discuss both of methods in this paper.

The third class is to reduce the sample error and improve the forecast accuracy,
such as shrinkage, model selection and model averaging methods. In terms of
minimizing the mean squared sample error (MSE), many standard estimators can
be improved by combining them with other information. Shrinkage is the
reduction in the effects of sampling variation by shrinking them towards a fixed
constant, and then improved estimators are closer to values that other
information prefers. Shrinkage methods have become familiar from Stein (1955)
and James and Stein (1960), and the use in the regression analysis, where there
are a lot of explanatory variables, has been explained by Copas (1983). Besides,
Bayesian model averaging (BMA) is, generally speaking, an extension of combined
forecasting to a fully Bayesian setting, and Beyasian model selection suggest
selecting models based on Bayes factor in order to use aimed model as the basis
for forecasting. Originally, Leamer (1978) discussed BMA in regression models,
Min and Zellner (1990) developed BMA in macroeconomic forecasting, After that,
researches of prediction with large-n regressors in the Bayesian framework have
been active lately, meanwhile other model averaging methods are studied as well,

such as “bagging” (Breiman (1996)).

Along with development of methods, it is difficult to draw conclusions of
measuring the performance across these methods. In one hand, derivations and
relative results are certainly dependent on different modeling assumptions, which

lead to difficulties of comparison in the theoretical perspective. For instance, it is
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complicated to identify whether assumptions always hold or not in the whole
algorithms and processes. In another hand, the variability and applicability of data
sets could be one of many problems in empirical aspect. Therefore, the results of
the research are mixed and frail with regard to the model specification, data
requirement, forecast horizons and areas, implementation, etc. It is definitely an

issue to be worth investigating and analyzing in depth.

In this paper, we focus on the second class method, determining a small
number of latent factors that account for variations of observed variables.
Descriptive statistics can provide a simple summary of the sample, and principal
component analysis (PCA) is a standard tool for descriptive analysis (Anderson
(1984)). Usually, summarizing a large set of data with several factors might result
in missing information. Therefore, factor-based forecasting with principal
component (PC) estimation can be utilized to extract a small number of latent
factors which could contain the most information of data set and improve the
prediction accuracy for macroeconomic variables. According to recent literature,
the dynamic factor model (DFM) has received much attention, and become a

feasible solution to the forecasting problem of many potential useful predictors.

In economics, the initial contribution of this field derives from Burns and
Mitchell (1946) about business cycle analysis. Factor models were oringinally
extended to the DFMby Geweke (1977) and Sargent and Sims (1977), and they
exploit the dynamic interrelationship of variables and provide evidence in favor of
reducing the number of common factors. However, the approach does not yield
estimates of factors so that cannot be used for prediction. Furthermore, it is

based on a strong assumption regarding the uncorrelated idiosyncratic terms in
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models. Therefore, Chamberlain (1983) proposed the approximate DFM relaxing
the assumption, detailed in Section 3.2.1. Under additional conditions, Engle and
Watson (1981) and Stock and Watson (1989, 1991) estimated dynamic factors by
Kalman smoother. The use for forecasting is proposed by Stock and Watson
(1999), and they applied DFMs into U.S. macroeconomic data and suggested the
consistent PC estimators of latent factors (Stock and Watson (2002a, b)). Bovin
and Ng (2003) employ weighted PC estimates to improve standard PC forecasts,
and suggest that factor models outperform traditional economic models with a
limited number of predictors. Generalized DFMs developed PCs in the frequency
domain by Forni and Lippi (2001), Forni, Hallin, Lippi, and Reichlin (2000, 2003,
2004, 2005). In addition, there are a lot of studies of macroeconomic forecasting
with factor models, such as Bernanke and Boivin (2003), Bovin and Ng (2005,
2006), Bai and Ng (2006, 2008) and so forth, the DFM and PCA are seen to be
complementary to each other in a growing study of macroeconomic forecasting

methods.

Our goal is first to propose a method for factors estimation, named targeted
PCs, in which PCs are ordered by the importance for forecasting. Recall that the
goal of PCA, as a variable reduction procedure, is to simply obtain a relatively
small number of factors that account for most of variations in a large number of
observed variables. Rather than explaining most variations of many predictors,
targeted PCs consider information from variables of forecasted, which could
obtain more accurate forecasts. Aiming to forecasting, it is interesting to examine
which PCs are important for prediction, and it can be realized by ordering
correlations between PCs and forecasted series, or equivalently the individual t-

values of PCs in the regressions. And, targeted PCs are examined with four kinds
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of estimations together, which are standard PCs, weighted PCs, generalized PCs,
and dynamic PCs. The second purpose is to compare the performance of
forecasting methods, which include univariate autoregression as benchmark,
combined multivariate autoregression, and DFMs with all available PC estimations.
To evaluate the performance, mean squared of forecast error (MSE) and a ratio of
the MSE for a method to the MSE of the benchmark can be considered as the

criterion, which is defined as relative mean squared error (RMSE),

RMSE — MSE (method) .
MSE (benchmark)

The empirical analysis collects 131 U.S. monthly macroeconomic time series
during the 1960-2003. Two of these series, index of industry production (IP) and
consumer price index (CPl), are used to construct the forecasted variables, and
multi-step ahead out-of-sample forecasts are estimated at horizons of 6 and 12
months. The results confirm factor models can produce substantially more
accurate forecasts. IP forecasts using two factors outperform benchmark, while,
performance of forecasts with one targeted factor estimate and lagged IP
variables together can achieve comparable improvement. And CPI forecasts can
be constructed by lagged variables and only one factor, which are sensitive to the
dataset pretreatment. Forecasts with standard, generalized, and dynamic PC
estimates act analogously, and targeted PCs normally perform as similar as

corresponding non-targeted PCs.

The rest of the paper is organized as follows. In section 2, we introduce the
forecasting procedure and methods employed. As the key point of this paper, the
dynamic factor model is detailed in the way associated with four kinds of factor

estimations and their targeted PC estimations. Section 3 describes the data,
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explains how to construct forecasted variables, and details the forecasting
procedure. Section 4 provides the empirical results and illustrations for different
time horizons, estimated factors and forecasted variables. In section 5, we

present the conclusions and discuss the potential problems.

2. Forecasting Procedure and Methods

The forecasting experiment denotes the variable to be forecasted, Y,, and a set of
n predictors collected in the Nx1 vector X,. In the literature of forecasting
methods, X, and Y, are usually assumed to be stationary, which is also an

assumption we make in our paper as well. In addition, the predictors X, need to

be pretreated in a same way standardized to have zero mean and unit variance

through the whole empirical comparisons. Let h be the forecast horizon and

Ytih be the h-step-ahead forecasts. The regular forecasting regressions, in which
the forecast at time t is denoted by Ytimt, are the projections of an h-step-ahead
variable Ytih onto t-dated predictors, intercept, and lagged predictors if necessary.

. h . . .
For the multiple forecasts, let Yi,t+h|t be the i"individual of the all available

forecasts, such as the forecast combination described in the following. Now, we

turn to the detailed description of forecasting methods.
2.1 Univariate Autoregression

The direct way of forecasting a time series is using linear models based on its

previous observation, without any information from other variables, and it is easy
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to be applied by autoregressive (AR) models. Here consider a univariate AR(p)

model as a benchmark,

P iid
YtAR:a+Z¢th—i+gt ,&~N(0,06%), (1)
i=1
where the lag order p is determined by the information criteria of model selection,
such as Akaike information criteria (AIC) or Bayes information criteria (BIC).
The h-step-ahead forecast of the AR(p) model is the projection of thff’h onto

lagged variables with specified p orders, which is
YN = g+ g(L)Y, + &, (2)

where ¢(L)=¢, +4L+...+¢,L" is a lag polynomials of order p, and L is the lag-

operator such that LY, =Y_,I=1...,p.
. AR,h .
Then, the forecast at time T, YT+h|T , is estimated by

Y RN =G+ g(L)Y, 3)

T+h/T
where the coefficients are estimated by the ordinary least squares (OLS) based on
the model (2) fort=1,..., T-h.

2.2 Combined Multivariate Autoregression

To introducing other predictors, autoregressive distributed lag (ADL) models are
considered. For each predictor, an individual forecast is obtained using the ADL

model which only does involve historical data of this predictor and forecasted
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variable. Specifically, the i" individual forecast Yiﬁ\%’h can be constructed with
the corresponding i" elements of X,, X,., and variables, Y,. Both X, and Y,

include current and lagged variables if necessary. Thus, the i" forecast at time T

is described as follows
Yk =6+ A (L)X + (LY, (4)

where the coefficients are estimated by the OLS regression onto data fort=1,...,
T-h as well. And then, all individual forecasts are combined with the given weights,

that is the combined forecast at time T is constructed as follows
7 comb,h ° 7 h
comb,h ADL,
Yol =W+ D WY, (3)
i=1

where w, is the weight on the i" individual forecast of the i"" ADL model.

Granger and Ramanathan (1984) suggest that all the weights are estimated by

OLS or restricted least squares with the constraints w, =0 and zi”:lwi =1. However,

when n is large, the estimates of the combined weights are expected to perform
poorly, because estimating a large number of parameters can bring in
considerable sampling uncertainty. As a matter of fact, if n is proportional to the
sample size T, the OLS weight estimates are not consistent, and the combined
forecasts based on these estimates are not asymptotically optimal, leading to
large sampling errors and poor forecasts (Stock and Watson (2006)). In order to
handle the case of combing weights with large n, several methods are introduced,
depending on the various data requirement, such as simple combination, time-

varying parameter weights, discounted RMSE weights, etc. In our paper, the
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combined forecasts based on the ADL models serve as an alternative benchmark
rather than our focus, thus simple average combinations are used in the following
empirical experiment, where forecasts are weighted by the mean, median, and 2-
percentage-symmetrically-trimmed mean of the individual forecasts, as in Stock

and Watson (2005).
2.3 Dynamic Factor Model

Now turn to the key of our paper. In this sub section, start by introducing DFMs,
explain algorithms for various factor estimations, then lay out some concise
information to estimate the number of factors, and end up by mentioning several

other available methods of factor estimation besides PCA.
2.3.1 Specification of DFM

In DFM, each times series of a rich set of observed variables can be described as
two parts, which are a common component %;, explained by a small number of

dynamic factors, and an idiosyncratic disturbance in the following
Xi=xn+5=AL)f+§ (6)

where is f, the gxLlvector of dynamic factors, A(L)=A4, +4L+...+ AL’ is the
NX(Q matrix polynomials in the lag operator L with finite order s, called dynamic
factor loadings, and <& is the nxlvector of idiosyncratic disturbances, which are

specific for every time series. The factors and disturbances are assumed to be

mutually uncorrelated at all leads and lags, and both of them are considered to be
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stationary like all the variables. Direct h-step ahead forecast is the regression of

Ytﬂh onto factors and lagged observables
Yin=a+y(L)f +g(L)Y, +e, (7)
where y(L) is the lag polynomials.

Let F=(f,f_,,....f.) denote factors that include current and/or lagged
dynamic factors. We call the r entries of F, “static factors”, corresponding to the

g entries of f, “dynamic factors”, generally <. As the static representation of

the DFM, models (6) and (7) can be rewritten
X, =AF +¢ (8)
Y, =a+y'F+d(L)Y, +é&., (9)
where A= (4, 4,...4) isa NxT matrix of factor loadings.

Factors are loaded contemporaneously under a condition I' = q(s+1), and y is

a vector of parameters composed of the elements of y(L), that is

7= 70---»7) . In the sequel, the forecasts at time T are estimated by
YoM = G+ 7R+ g(L)Y, (10)

where F; is constructed from T-dated X, based on the model (8), and the

coefficients are OLS estimates based on the model (9) for sample period t = 1,...,

T-h, constructed in a similar way as before.

-10 -
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There is a problem to be addressed about approximate DFMs. When n is large,
different technical assumptions are made in the previous studies in order to keep
a tight rein on the contribution of the idiosyncratic covariance to the total
covariance. The concept of exact and approximate DFMs is introduced by
Chamberlain and Rothschild (1983). The idiosyncratic terms are taken to be
mutually uncorrelated at all leads and lags in the exact DFM, which is a strong
underlying assumption. In macroeconomic forecasting application, the condition
of exact DFMs cannot hold when dealing with large-n problems, and
computational problems for MLE over increasing number of parameters become
significant. Therefore, the approximate DFM allows for a limited amount of
correlation among idiosyncratic disturbances, both serially and weakly cross-
sectionally correlated, which relaxes the assumption of the exact DFM. And it
provides a feasible way, in practice, to consistently estimate potential factors by

employing non-parametric methods to approximate DFMs.

Facing the case of low-dimensional data, the maximum likelihood estimation
(MLE), as a parametric approach, is successfully used for estimating parameters of
exact DFMs (Stock and Watson (1991), Quah and Sargent (1993)), and has been
further developed and implemented. Non-parametric approaches deal with large-
n problems with a weakly correlation structure among idiosyncratic disturbances,

of which several PC estimations are described in the following.

In our paper, forecasting with DFM is carried out in a two-step procedure. At
first, a handful of appropriate factors are estimated, where five methods are used

for factors estimation and detailed in Section 2.3.2. Secondly, we employ each

-11-
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kind of factor estimate into models and produce pseudo out-of-sample forecasts

of our interests.
2.3.2 Estimations of Factors

In factor analysis, variability among observed variables can be described by a
small number of unobserved variables, called latent factors, and variables are
usually modeled as linear combinations of latent factors and “errors” terms
together, as descried in models (6) or (8). A reduced number of potential factors
can extracted from many variables to measure joint variations in a dataset,
meanwhile, error terms cover the part of variability that cannot be explained by

factors.

PCA performs an orthogonal transformation onto original data set, which takes
into account all variability of variables. The new created set, named PCs, are
ordered in variance, or considered as a variance-maximizing rotation of variable
space. PCs are computed by seeking a matrix V consisting of the set of all
eigenvectors of covariance matrix € such that vVcv =D, where D is the
diagonal matrix of eigenvalues of C. PCA and Factor analysis are closely related,
and theoretically they are equivalent if error terms are assumed to all have the
same variance in factor models. Moreover, similar empirical results yield in

practice.

In our case, latent factors can be estimated by PCs. Based on the model (8) and

its assumptions, the covariance matrix of X, is the sums of two parts,

Cov(X,)=A-Cov(F)-A"+Cov(&), where Cov(F) and Cov(&) are covariance

matrix of F and &, and it is well known as the variance decomposition in classic

-12-
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factor analysis. For large-n, the eigenvalues of Cov(&,) are O(1) and A'A is O(n),
and then first r eigenvalues of are Cov(X,) are O(n) and the rest eigenvalues are
O(1) . Connecting with the eigenvalues and eigenvectors of covariance matrix in
PCA, first r PCs of X are suggested being the estimate of A, subject to A'A=1.v
Next, PCs are obtained from all predictors and then a specific number of PCs can
be estimated factors. Several kinds of factor estimations are explained in details,
which are standard PCs, weighted PCs, generalized PCs, dynamic PCs, and
targeted PCs we propose. Besides, PCs depend on scaling of data, thus typically

we first standardize variables.
Standard Principal Component Estimation

Stock and Watson (2002a) show that, without further conditions on the relative
rates of n or T, the space of the dynamic factors is consistently estimated by the

PCs estimators as n and T towards infinite in the static form of the DFM. The

factor loadings, A, and factors, F., solve the following least square problem
. T
mInFl,...,FT,A,A'A:Ik Z(Xt _AFt),(Xt —AF) (112)
t=1

The solution is to set Ato be the first k eigenvectors of sample covariance

A 1 '
matrix of X,, F=ﬁ Ll)(t)(t . And estimated factor scores of r PCs are

calculated by F, =A'X,, which all information of predictors can approximately

transform to first r PCs of X.

-13-
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Weighted Principal Component Estimation

When PCs are estimated, original data have been standardized to have unit
sample variance. In another way, it can be considered being simply weighted by
the inverse sample variance. Involving different weighting schemes, weighted PC
estimates are proposed, and they are examined to improve upon conventional
PCs (Jones (2001)). Different weighting schemes onto the variables are developed,
like Bovin and Ng (2003), Forni, Hallin, Lippi, and Reichlin (2003), and the analyses
show that weighted PCA can improve upon conventional PCA, but the gains

depending on the particular of series under study.

Here we propose a weighting scheme that depends on the number of
predictors from same categories. For instance, there are five series of “Housing
Starts” in the U.S. macroeconomic data, but two series of “S&P’s Common Stock
Price Index”, which indicates the PCs relative to “housing starts” should obtain
more weight than those relative to common stock price. Given the assumption
that all category variables are of equal importance, all categories of predictors
need to be downweighted, which every series is divided by the square root of the
number of series in the corresponding category. More precisely, divide each
“Housing Starts” series by the square root of five and each “S&P’s Common Stock
Price Index” series by the square root of two as examples. Then weighted PC

estimations are first r PCs of weighted predictors.
Generalized Principal Component Estimation

In classical regression analysis, generalized least square (GLS) is more efficient

than OLS, thus we modify formula (11) and consider the GLS problem

-14 -
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T
minFl,...,FT ANA=I Z(Xt _AFt),Tg:l(xt ~AF) (12)
t=1

where 7; is the covariance matrix of idiosyncratic disturbance.

Because 7; is not observable in applications, the analogous GLS estimator can
be estimated by covariance matrix of sample residuals from the model with r

factors, fg. However, the matrix fg has the rank n-r, so it is not invertible, and
ZA'é is not diagonal in approximate DFMs. Although optimal GLS estimates is
impossible, Boivin and Ng (2003) propose a feasible approach to replace 7 with a

diagonal estimator, where off-diagonal elements of ZA'é are set to zero to

overcome the instability in the generalized PCs methodology. With this restriction,
generalized PC estimates can be considered as PCs of the transformed data, which

Boivin and Ng (2003) found perform well in the empirical application in U.S. data.
More specifically, at first, diagonal elements of ZA'g are estimated by the sample

variance of the residuals from the preliminary regression of X onto the fixed r

standard PC estimates based on the model (8), and then generalized PC

estimations are first r PCs of the transformed data )zt = (?5)*]/2 X,.

The generalized PC estimates would perform better than standard PCs, because
it introduces the inverse covariance matrix of idiosyncratic terms, which may be
considered as the weights. In principle, the larger weights are placed on the
variables with small idiosyncratic components, thus the idiosyncratic error is

minimized in the estimates.

-15-
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Dynamic Principal Component Estimation

Boivin and Ng (2004) and Forni, Hallin, Lippi, and Reichlin (2005) suggest a two-
step estimation algorithm for the dynamic factors through dynamic PCA. The first
step involves the dynamic techniques to estimate the covariance matrix of
common and idiosyncratic components. In the second step, the generalized
eigenvectors associated with these estimated covariances are obtained in order
to construct the dynamic PC estimates, which are the linear combinations of

contemporaneous X’s having the minimal idiosyncratic-common variance ratio.

By introducing the lag-k covariance matrix of X, I =E[X X/ ], the variance

decomposition, in the time domain, can be described as follows
k k k kK Ar k
I :FZ+F§:AFFA +F§ (13)

k . . .
where F'; and Fg are the lag-k covariance matrices of F, and &, respectively.

Thus, the covariance matrix of X, is the sum of two parts, one arisen out of the

common components, and the other arising from the idiosyncratic components.

Likewise, the frequency domain counterpart of the variance decomposition of

the factor model was introduced by Geweke (1977), in which the spectral density
matrix of X,at frequency @ can be decomposed into spectral densities of the

common and idiosyncratic components:

3(0) =%, (0)+2.(6) = A€ )L, (DA™Y +2,(0) , Oc[-mx]  (14)

where 2Z((6) and Z.(0) are the spectral density matrices of f and & at
frequency @, respectively.

-16 -
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In Forni, Lippi, and Reichlin (2005), dynamic PCA can be consider as a

generalized orthogonal transformation process, which involves estimating
eigenvalues and corresponding eigenvectors of spectral density of X,. Generally,

the spectral density is defined as a positive function of a frequency variable
associated with the stationary stochastic process, and it is generated to simplify
the information in a representation of frequency domain rather than time domain.
Speaking of frequency domain, a given time series can be converted between the
time and frequency domain with a pair of transform, and the spectral density can
be obtained by applying a Fourier transform to covariance of data. Therefore, the

spectral density is defined as
1 c k A—i6k
>(6) :Zkz e (15)

where i is the imaginary unit, and € = 27h/H with the ordinary frequency h/H .

In the first step, using dynamic techniques of Forni, Hallin, Lippi and Reichlin
(2000), an estimate of the lag-k covariance of common components, F;, is based
on the frequency domain PCs. Start with estimating the auto-covariance of X,,

Fk, and then calculate the spectral density of X, by using a Bartlett window and

applying the discrete Fourier transform,

- 1 &M L
(0)=— ) wI*e'*
(0) sz;A A (16)

-17 -
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:
where the auto-covariance matrix estimate [* = Z X, and w, —1—%
=k

as a Bartlett lag-window estimate weights with the window size M =[T¥]. In
practice, the window function is usually used to weight the covariances, which
can be considered averaging a given number M of covariances. The spectra are
evaluated at 101 equally spaced frequencies in the interval[—ﬂ,ﬁ], namely at a

27h
grid of frequencies «9,5%, h=-50,...,50 . For each given frequency, the

eigenvalues and eigenvectors of Z(€) are computed, and then the spectral

density matrix of common components driven by g dynamic factors is estimated
Z,(0) =V, (0)D,(0)V,(6) (17)

where D,(0) is a diagonal matrix with the diagonal of the first g eigenvalues of
3(0) and V,(0)is a nxq matrix of corresponding eigenvectors. Meanwhile, the

spectral matrix of idiosyncratic components can be seen as fl§ (0) = 2(9) —il 0).

Therefore, the covariance matrices of common and idiosyncratic components are

obtained using the inverse discrete Fourier transform

= Z 6, )e'*

=50

= 101hZ 2 (8¢ (19)

-18 -
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. ~0 . . .
However, in order to calculate Fg , Some spurious covariance estimates are

~

unavoidable. Then, consider Fg as an exception, which is estimated by

Fg =F—F?{ and off-diagonal elements of matrix are replaced by zeros. Under

this estimate, the forecasting performance can be significantly improved, even

when the actual matrix is not diagonal (Forni, Hallin, Lippi, and Reichlin (2005)).

In the second step, take the r generalized PCs of F?( with respect to Fg, which

~

compute the generalized eignvalues, £, of the couple matrices (F?(,Fg) along

with the corresponding generalized eignvectors, Zj , that is solution

Z I =puz1Y, ji=12...n (20)

with the normalizing constraints ijgzj' =1 and Zingj' =0for i# j. Ordering

the eigenvalues #; in descending order and taking the eignvectors 7= (21,...2r)'

~

corresponding to the r largest values, the linear combinations, F, =ZX,, are the

~ ~ -1 ~ ~
dynamic PC estimations of X relative to the Fj(rg) , or Fi/rg, that is the

linear combinations of the X’s having the small idiosyncratic-common variance

ratio.

One of advantages of dynamic PCs is that information of cross covariance
among all the predictors are used, both lagged and contemporaneous, because
estimates in the first step are based on the frequency domain. Furthermore, the
second step involves the preliminary estimation of covariance of common and

idiosyncratic components, as does the generalized PC estimates.
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Targeted Principal Component Estimation

Hawkins (1973) suggest the idea to obtain proper PCs by considering the predictor
variables and forecasted variable, Y,, together, rather than the set of predictors

alone. Actually, in order to improve the forecasting performance, it might not be
sufficient to use just several PCs that account for most of the variance in a set of
many observed predictors. Banerjee, Marcellino and Masten (2003) suggest one
factor, which does not have the highest explanatory power for predictors, could
be important for forecasting (a related fact is the first PC estimation of U.S data is
systematically deleted in model selections and the sixth PC performs well in

prediction). Therefore, we here propose a method reducing the influence of PCs
uninformative for predicting Y,. Consider all PCs based on available predictors,

which are estimated by the four kinds of estimation methods discussed above.

For each method, the estimated PCs are ordered by the importance of predicting,

Yth , and the first r PCs having most predictive power are obtained as the targeted

PCs. The correlation values between Y,and PCs, or equivalently the individual t-

values of PCs in the regressions, are used as criteria for ordering. Thus, those PCs

with small variance, which definitely are deleted in the classic PCA, may have
relatively high correlation toY,, and then they can be retained as targeted PC

estimation of factors.
2.3.3 Determination of the numbers of factors

Here we address some criteria to determine the numbers of factors. The widely
used one is based on PCA, where the eigenvalues of the sample correlation, or

covariance, matrix may indicate the number of common factors driving the
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dataset. The value of r should be chosen in order to explain a large fraction of
total variance; however, there is no generally accepted limit for how much
explained variance could suggest a sufficient fit. In the macroeconomic
applications, a variance ratio of 40% is usually considered as a reasonable fit
(Stock and Watson (2002)). Besides, there are also several available criteria based
on statistical tests, but with the restriction for the numbers of variables. An
alternative procedure is recently suggested by Onatski (2007), which is based on
the few largest eigenvalues of covariance matrix of a complex-valued sample
derived from the original dataset, which asymptotically distribute as a Tracy-

Widom.

Traditional information criteria, AIC and BIC, are only designed for small n. With
selection problems of number of factors for both large n and T, Bai and Ng (2002)
propose the information criteria in six forms, which modifies AIC and BIC by the

penalty function, P(N,T), in order to deal with overparameterization. Let

Vv, :%Z;(Xt —/A\lft)'(xt —/A\lft) be the variance of the estimated idiosyncratic
terms from the r-factor model. And the criterion is aimed at minimizing the
residual variance, V, . Bai and Ng (2002) suggest two classes of criterion. One is
the panel criteria, written as P,,C, and the other is the panel information

criteria, named as P, 1C . Both of them are explained in the following, with

three different choice of penalty function respectively

PiCL(1) =V, +1o* (D) InC ), 21

n+T
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P..C,(r)=V. +roc (—)In(mln{n T (22)
, In(min{n,T})
amelC (r) V +r6 min{n,T} (23)
Pret 1C,(r) =In(V, )+r( )In( ) (24)
Pyt 1Co(1) <INV, )+ F(CE) (i {, T} (25)
In(min{n,T})

anel IC (r) In(Vr) +r (26)

min{n,T}

And, the estimated number of factors, [ , is obtained from minimizing these

criterion in the range of all possible value of r, thatis r =0,1,...,T .,
r=argminP,C.(r), (27)
0<r<rpa
or,
r= agg min anel IC (r) with a= 1 2 3. (28)
<I <Inax

where I =min(n,T) is the pre-specified upper bond for the number of factors.

The minimums of these criteria yield the consistent estimates of r (Bai and Ng
(2002), and Alessi, Barigozzi and Capasso (2008)). Then, I numbers of common

factors are estimated into the model (8), and forecast estimates using these
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common factors, based on the model (10), are examined to compare the

performances.

2.3.4 Other estimations

Like PCA, partial least squares (PLS) also provide linear combinations of a reduced
number of factors, however, it consider the correlation information between
predictors and variables for forecasting. PLS and PCA are usually compared in
theoretical and empirical aspects, and with other variables selection methods,
such as Frank and Friedman (1993). The results normally suggest that PLS has
fewer components than PCs, however, they perform similarly in empirical
applications, and PCs are able to provide more stable forecasts. As another well-
know method, ridge regression can be seen as a shrinkage by imposing a penalty
on regression coefficients size, that is the sum-of-squares of parameters. Besides,
many methods are widely applied in application of macroeconomic forecasting,

for instance Lasso, pretest and information criterion methods and so forth.

3. Empirical Experimental Design

3.1 Data Description

The complete dataset consists of 132 monthly U.S. macroeconomic series, and
spans 1960:1 to 2003:12 for a total 528 observations.! All 132 series are dealt
with by three preliminary steps, as in Stock and Watson (2006). First, the series
are transformed to be stationary, whether taking logarithms and/or differencing
are made judgmentally by inspection of the data and unit root tests. Generally,

the first differences are used for nominal interest rates, the first differences of

! Data sources from Mark Watson’s website : http://www.princeton.edu/~mwatson
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logarithms (growth rates) are used for real activity variables, and second
differences of logarithms (changes in inflation) are used for price variables, which
are detailed in Table A.1 of the Appendix. As the second step, the transformed
series are screened for outliers. When deviations between observations and
absolute median exceed six times the inter quartile range, these observations are
replaced with the median value of the preceding five observations. Finally, all

series are further standardized to have zero mean and unit variance.
3.2 Simulated Forecasting

Two of all the predictors are used to construct the forecasted variables. One is
monthly IP total index, which is integrated of order one, (1), in logarithms. And

the h-month growth rate, in percentage points at an annual rate, is explained as
Y.Ly = (2200/h)In(IR,, /IP,), (29)
and Y, = In(IPI/IPtfl)

where the factor 1200/h transforms monthly decimal growth into annual

percentage growth.

The other is monthly CPI for all items, is integrated of order two, 1(2), in

logarithms as following
Y,", = (1200/h) In(CP1,,,,/CPI,)—1200In(CPI, /CPI _,), (30)

and Yt = AIn(CPIt/CPI t—1) .
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Out-of-sample forecasts are computed for each of two variables with all
methods mentioned at horizons h = 1, 6, 12 months, where the forecasting period
starts at 1970:1 and end at 2003:12. The forecasting procedure involves fully
recursive factor estimation, parameter estimation, model selection, and so forth.
For instance, in DFMs, the first simulated out-of-sample forecast is made at
1970:1. Factors are estimated using data for t = 1960:3,..., 1970:1 based on model
(8), and coefficient parameters of models (9) are estimated for sample period t =
1960:3,..., 1970:1-h. Then, as defined in model (10), values of regressors at t =

1970:1, and coefficient estimates together are used to obtain the estimated

~ ~

h . h
forecast at 1970:1, Yyg;01. For the next forecast estimate, Yig7g,, factors are re-

estimated using the full previous data, t = 1960:3,..., 1970:2, and parameters of

models are obtained for sample covering t = 1960:3,..., 1970:2-h, which is called

~

recursively estimated. Finally, to estimate final forecast, ngom, factors are
estimated using all data available from 1960:3 to 2003:12 and coefficients of
models are estimated using data t = 1960:3,..., 2003:12—-h. Especially, because
latent factors are selected and estimated based on different sample periods, it is
not necessary to restrict these factors to be the same for every time period.
Furthermore, in targeted PC estimates, factors having the predictive power during
this period might not be necessarily important for prediction in the next time

period.
4. Empirical Results

The benchmark is univariate forecast based on the model (4), and usually AR lags

order p is selected recursively by AIC and BIC with 1< p <12 for the monthly data,
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or pre-specified values P=4and P=12. In our case, the result of AR model
selection is four lags based on the full data, and we use this for models where the
lagged variables are involved. Then, fix four lags for both X and Y in ADL models,

as well as the DFM if lagged Y variables are necessary to be included.

By doing a standard PCA, six PCs can explain over 40% variance of all predictors,
where 40% is a reasonable fit for macroeconomic application (Stock and Watson

(2002a)). On the other hand, based on the sample errors of PCA with given values
I =10,20,30, six forms of criteria for determining number of factors can be

calculated, and the results confirm six factors. The estimate of the number of
factors seems to be relatively larger than results of previous literature and our
following results when forecasting as well. We think the space of factors appears
to be larger for the purpose of modeling. For the purpose of forecasting, our
results of forecast error variance decompositions suggest that relatively small
number of factors may be sufficient, which is consistent with Stock and Watson

(1999, 2002a).

Now, we turn to compare the performance of different factor estimations. The
RMSE of 12-month ahead forecasts of IP are summarized in Table 1, using four
kinds of factor estimates, where the best result is in bold type. The results confirm
the conclusion of Stock and Watson (2002a), where the factor-based forecast can
substantially improve the benchmark forecast, and the two factors are able to
capture most of forecasting improvement. Additionally, involving lagged IP
variables does not provide better forecasts; in contrast, the forecasts only with
factor estimates are more accurate, which implies IP forecasts could be estimated

by only two factors.
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The simple mean averaging of individual ADL models improves a little upon the
AR benchmark, but the simple combining forecasts do not provide more accuracy.
In another hand, these factor estimations share the similar performance of
forecasting. Comparing the minima of each kind of PCs, generalized and dynamic
PCs perform better than standard PCs, which is consistent with theoretical

arguments.

Table 1 RMSEs of 12-month ahead Forecasts of U.S. Industrial Production Growth
with r PC estimates for various methods

Factors PC, AR PC WPC,AR  WPC GPC,AR GPC DPC,AR DPC

1 0.9833 0.9592 0.9841 0.9608 0.9808 0.9520 0.9814 0.9612
2 0.6254 0.6114 0.6494 0.6262 0.6584 0.6064 0.6202 0.6110
3 0.6173 0.6250 0.6313 0.6267 0.6453 0.6173 0.6180 0.6260
4 0.6142 0.6162 0.6320 0.6267 0.6458 0.6178 0.6148 0.6266
5 0.6283 0.6420 0.6285 0.6388 0.6583 0.6437 0.6379 0.6602
6 0.6700 0.6301 0.6709 0.6320 0.7013 0.6528 0.6680 0.6326
Combined ADL with mean, median, trimmed mean : 0.9478, 1.0432, 1.0264

Benchmark AR (4) MSE : 1.0314

Note: Entries are relative MSE, relative to the MSE of benchmark AR (4) that is
given at the bottom, and the values less than one indicates an improvement over
than benchmark. Also the RMSE of combining forecast base on ADL models are
presented with three simple weighting methods. (PC, AR) indicates the forecasts
are constructed by PC estimates and 4 lagged variables, meanwhile, (PC) presents
the forecasts with only PC estimates. Other methods are labeled similarly.
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Then, forecasts using targeted PC estimations are listed in Table 2. As same as
those “original” PCs, targeted PC estimates make substantial improvement over
benchmark, and estimates perform similarly among methods. In contrast to non-
targeted PCs, targeted PCs with and lagged variables together perform better
than only PCs themselves. Targeted PCs make little improvement to the non-
targeted PCs; however, they could provide a reduced number of factors. The
results suggest using lagged variables and the first targeted PCs, which is the PC
most related with the forecasted variable or having most predictive power, could

achieve improving forecasts as much as those with two PCs .

Table 2 RMSEs of 12-month ahead Forecasts of U.S. Industrial Production Growth
with r targeted PC estimates for various methods

t-PC, t-WPC, t-GPC, t-DPC,
Factors t-PC t-WPC t-GPC t-DPC
AR AR AR AR

1 0.6524 0.7271 0.6662 0.7250 0.6117 0.6732 0.6484 0.7117

2 0.6117 0.7876 0.6271 0.8044 0.6585 0.7365 0.6146 0.7474

3 0.6013 0.8318 0.6357 0.8026 0.6762 0.8377 0.5906 0.7745

4 0.6329 0.8253 0.6559 0.7737 0.7063 0.9826 0.6174 0.7912

5 0.6181 0.8881 0.6233 0.8518 0.7221 1.0061 0.6092 0.8343

6 0.6148 0.8989 0.6293 0.9699 0.7203 1.0350 0.6124 0.8965

Table 3 summarizes the pseudo out-of-sample forecasting performance of
another variable, CPI, for various methods at 12-month forecast horizons. The
forecast with only PC estimates are worse than the benchmark, and others taking

account to lagged CPI variables and PCs together are much better. Besides, one
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factor might be able to make the improvement of forecast. Thus, unlike IP, one
factor estimation and lagged variables are used to obtain CPI forecasts, which the

results are consistent with Stock and Watson (2002a).

Table 3 RMSEs of 12-month ahead Forecasts of U.S. Customer Price Inflation
with r PC estimates for various methods

Factors PC, AR PC WPC, AR WPC GPC, AR  GPC DPCAR DPC

1 0.8519 1.2931 0.5657 1.2949 0.8534 1.2967 0.8569 1.2968
2 0.8435 1.2442 0.5845 1.2285 0.8565 1.2682 0.8540 1.2548
3 0.8639 1.2288 0.5967 1.2476 0.8731 1.2434 0.8673 1.2290
4 0.8409 1.1838 0.5808 1.0888 0.8535 1.1995 0.8399 1.1783
5 0.8176 1.0251 0.5812 1.0235 0.8354 1.0164 0.8176 1.0292
6 0.7919 1.0316 0.5619 1.0384 0.8104 1.0228 0.7891 1.0332
Combined ADL with mean, median, trimmed mean : 1.4678, 1.4771,1.4759

Benchmark AR (4) MSE : 0.8416

Interestingly, there is the evidence that some benefit might be obtained from
estimating factors using weighted PCs rather than other three. And it still happens
when applying targeted weighted PCs, as in Table 4. Unfortunately, compared to
non-targeted PCs, targeted PC estimations can neither make improvement, even
worse in the case of forecasting with only factors, nor reduce the number of

factor estimates.
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Table 4 RMSEs of 12-month ahead Forecasts of U.S. Customer Price Inflation
with r targeted PC estimates for various methods

Factors Ot EWPG T wee TOPC iape TPPC wope
AR
1 09744 2.8217 0.7540 3.1505 0.9231 2.7176 0.9472 2.7657
2 0.8285 3.0425 0.6437 3.4515 0.8679 2.8635 0.8327 2.9750
3 0.8097 3.0969 0.5745 3.4364 0.8188 2.9533 0.8057 3.0312
4 0.7846 3.2502 0.5862 3.5220 0.8088 3.0540 0.7825 3.1190
5  0.7620 3.3026 0.5789 3.5168 0.8216 3.1654 0.7727 3.1343
6  0.7488 3.3734 0.5614 3.5340 0.8427 3.3687 0.7436 3.1924

Table 5 The Rank of PCs (12-months)

IP CPI
Rank PCs# WPCs# GPCs# DPCs# PCs# WPCs# GPCs# DPCs#
1 2 2 2 2 4 4 4 4
2 132 132 122 132 3 12 12 3
3 1 1 118 1 12 2 129 12
4 5 5 1 5 1 1 3 1
5 8 8 108 8 2 5 128 2
6 6 23 5 6 5 3 122 5
7 128 10 127 45 21 8 130 129
8 124 7 82 10 7 81 1 21
9 45 4 115 124 8 55 123 7
10 10 126 70 13 129 128 132 8
As proposed in our paper, for estimating targeted PCs, all “original” PCs are

ordered according to the correlation with forecasted variables. Table 5 lists the

top ten PCs on the fully sample for two forecasted variables. The first six targeted

PCs are selected at the beginning of the model selection. As we seen, some PCs
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with the relative small variance are actually having predictive power, such as the
23th, 122th, and 132th PCs. Using these PCs as the targeted PCs, it is reasonable
to understand why targeted PCs perform better with lagged variables One reason

might be to cover the possible losses of the information from predictors.

Based on the previous results, the targeted PC estimates provide the similar
accuracy forecast, as do non-targeted PCs. Targeted PCs with lagged variables
together perform better, and they are able to use a relatively small number of
factors to forecast, like forecasting IP. However, targeted PCs do not have much
advantage when most of information of both predictors and forecasted variable
has been already summarized, for instance CPl forecasts already can be
constructed by only one factor and lagged variables. Besides, when one kind of PC
estimates performs better than other PCs, the same kind of targeted PCs usually
does better than other targeted PCs as well. Therefore, the performance of
targeted PC estimates depends on the forecasted variable of interests, as well as

the corresponding PC estimations certainly.

At forecasting horizon of 6 months, generally speaking, the IP forecasts based
on the PCs could improve approximately 30% accuracy to the benchmark, as
shown in Table 7 and 8, meanwhile 12-month ahead forecasts reduce the
benchmark by 35% to 40%. Besides, there is no significantly surprising finding
comparing with the results at horizon of 12 months, thus more detailed results,
CPI forecasts and rank of targeted PCs, are outlined in Table A.2, A.3, and A.4 of

the Appendix.
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Table 7 RMSEs of 6-month ahead Forecasts of U.S. Industrial Production Growth
with r PC estimates for various methods

Factors PC, AR PC WPC, AR WPC GPCL AR GPC DPCAR DPC

1 0.9168 0.8938 0.9176 0.8952 0.9175 0.8865 0.9194 0.8977
2 0.6722 0.6790 0.6834 0.6843 0.7124 0.6825 0.6730 0.6890
3 0.6693 0.6563 0.6710 0.6704 0.7193 0.6702 0.6690 0.6582
4 0.6739 0.6664 0.6743 0.6654 0.7261 0.6966 0.6733 0.6681
5 0.7030 0.7210 0.6920 0.7067 0.7400 0.7413 0.7089 0.7289
6 0.7986 0.7611 0.7864 0.7521 0.8258 0.7809 0.7953 0.7595
Combined ADL with mean, median, trimmed mean : 0.9872,1.0572,1.0445

Benchmark AR (4) MSE : 0.9015

Table 8 RMSEs of 6-month ahead Forecasts of U.S. Industrial Production Growth
with r targeted PC estimates for various methods

t-PC, t-WPC, t-GPC, t-DPC,
Factors t-PC t-WPC t-GPC t-DPC
AR AR AR AR

1 0.8161 0.8500 0.7877 0.7734 0.8212 0.8449 0.7914 0.8289

2 0.7114 0.8389 0.7595 0.9400 0.7993 0.8876 0.7639 0.7898

3 0.7350 0.9417 0.7098 0.9877 0.7635 0.9766 0.7149 0.8758

4 0.7144 1.0525 0.6940 1.0799 0.7495 1.0804 0.7127 0.9509

5 0.7053 1.0525 0.6834 1.0822 0.7485 1.2659 0.7282 1.1138

6 0.6953 1.0919 0.6836 1.1128 0.7152 1.3188 0.7256 1.1827
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5. Conclusion and Discussion

The empirical work in our paper has four main results. At first, most forecasts
based on the DFM improve benchmark forecast, and most performance of factor
estimations employed seem similar. Secondly, a small number of factors can be
needed to forecast IP, which generally can be extended into real activity variables
(Stock and Watson (2002a)), and furthermore a reduced number of targeted PC
estimations can construct accurate forecasts as well. Thirdly, CPl variable, or
saying inflation variables as in Stock and Watson (2002a), can be estimated by its
lagged variables and only one factor; meanwhile, targeted PC estimates do not
improve the performance as much as expected. At last, among targeted PCs,
those which are associated with the most effective PC estimations are able to
provide most accuracy forecasts, and the extent of forecasting improvement

depends on the variables of study.

There are several issues to future. At first, our forecasting procedure uses the
recursive sample, what if rolling sample? Stock and Watson (2005) suggest the
recursively estimated models generally outperform rolling estimates. Therefore,
we adopt recursive sample in the paper, which each forecast is constructed using
dataset from 1970:1 to the point T of forecasting. In contrast, the rolling sample
usually covers recent ten years till time T. Actually, the relationship between PCs
and forecasted variables are involved, which varies over time, and the rolling
sample might be considered to achieve effectiveness of forecasts. Next, when PCs
are ordered, most of the correlation values are low, generally smaller than 0.01,
thus a pretest or information criterion method could be introduced to make sure

PCs with both predictive and explanatory power so that improve forecasting
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accuracy. Thirdly, for two variables forecasted, we use the exactly same dataset
to obtain PCs, which also happens in most previous empirical analysis. However,
this may raise some problems. One possible solution to improve the accuracy is
the sub dataset only include variables which can explain most variance or have
predictive power with respect to the variable of interest. The fourth one is that
PCs are linear combinations, and forecasts are linear as well, which make the
nonlinear problems open to discuss. Fourthly, BMA is definitely one of hottest
issues in recent research, which we do not discuss more. In application of model
selection, there are still general problems when dealing with large number of
models based on many variables in Bayesian frame. However, some studies
suggested using orthogonal regressors to simplify the computation problems,
which bring into the new sight. Finally, we believe that performance of factor-
based methods depend on macroeconomic variables of study, for example real
activity or inflation, moreover, it is supposed to be related to areas and countries
of interest, the underlying dataset or sub-sample, forecasting horizons, aimed
short or long-term, etc. The assessment of all determinants of the forecasting

performance need to be further researched.
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Appendix

Table A.1 Data

Series Trans  Description

aOm052 Aln Personal Income (AR, Bil. Chain 2000 $ ) (TCB)

a0mO051 Aln Personal Incom Less Transfer Payments (AR, Bil. Chain 2000S$) (TCB)
aOm224 r Aln Real Consumption (AC) aOm224/gmdc (aOm224 in from TCB)
a0OmO057 Aln Manufacturing And Trade Sales (Mil. Chain 1996 $) (TCB)

a0Om059 Aln Sales of Retail Stores (Mil. Chain 2000 $) (TCB)

ips10 Aln Industrial Production Index — Total Index

ipsll Aln Industrial Production Index — Products, Total

lps299 Aln Industrial Production Index — Final Products

ips12 Aln Industrial Production Index — Consumer Goods

ips13 Aln Industrial Production Index — Durable Consumer Goods
ips18 Aln Industrial Production Index — Nondurable Consumer Goods
ips25 Aln Industrial Production Index - Business Equipment

ips32 Aln Industrial Production Index - Materials

ips34 Aln Industrial Production Index — Durable Goods Materials
ips38 Aln Industrial Production Index — Nondurable Goods Matertials
ips43 Aln Industrial Production Index — Manufacturing (Sic)

ips307 Aln Industrial Production Index — Residential Utilities

ips306 Aln Industrial Production Index - Fuels

pmp Iv Napm Production Index (Percent)
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aOmO082
lhel
Ihelx
lhem
Ihnag
lhur
lhu680
lhu5
lhuld
lhul5
lhu26
lhu27
aOmO005
ces002
ces003
ces006
cesO11
ces015
ces017
ces033
ces046
ces048

ces049

Alv

Alv

Alv

Aln

Aln

Alv

Alv

Aln

Aln

Aln

Aln

Aln

Aln

Aln

Aln

Aln

Aln

Aln

Aln

Aln

Aln

Aln

Aln

Capacity Utilization (Mfg) (TCB)

Index of Help-Wanted Advertising In Newspaper (1967=100;Sa)
Employment: Ratio; Help-Wanted Ads: No. Unemployed CIf
Civilian Labor Force: Employed, Total (Thous.,Sa)

Civilian Labor Force: Employed, Nonagric. Indutries (Thous.,Sa)
Unemployment Rate: All Workers, 16 Years & Over (%,Sa)
Unemploy.By Duration: Average (Mean) Duration In Weeks (Sa)
Unemploy.By Duration: Personal Unempl.Less Than 5 Wks (Thous,Sa)
Unemploy.By Duration: Personal Unempl.5 To 14 Wks (Thous,Sa)
Unemploy.By Duration: Personal Unempl.15 Wks + (Thous,Sa)
Unemploy.By Duration: Personal Unempl.15 To 26 Wks (Thous,Sa)
Unemploy.By Duration: Personal Unempl.27 Wks + (Thous,Sa)
Average Weekly Initial Claims, Unemploy. Insurance (Yhous.) (TCB)
Employees On Nonfarm Payrolls — Total Private

Employees On Nonfarm Payrolls — Good-producting

Employees On Nonfarm Payrolls — Mining

Employees On Nonfarm Payrolls — Construction

Employees On Nonfarm Payrolls — Manufacturing

Employees On Nonfarm Payrolls — Durable Goods

Employees On Nonfarm Payrolls — Nondurable Goods

Employees On Nonfarm Payrolls — Service-Providing

Employees On Nonfarm Payrolls — Trade, Transportation, and Utilities

Employees On Nonfarm Payrolls — Wholesale Trade
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ces053
ces088
ces140

aOm048

ces151

ces155

aom001

pmemp

hsfr

hsne
hsmw
hssou
hswst
hsbr
hsbne*
hsbmw*
hsbsou*
hsbwst*
pmi
pmno
pmdel

pmnv

Aln

Aln

Aln

Aln

Employees On Nonfarm Payrolls — Retail Trade

Employees On Nonfarm Payrolls — Financial Activities
Employees On Nonfarm Payrolls — Government

Employee Hours In Nonag. Establishments (AR, Bil. Hours) (TCB)

Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls-
Goods-Producing

Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls-
Mfg Overtime Hours

Average Weekly Hours, Mfg. (Hours) (TCB)
Napm Employment Index (Percent)

Housing Starts: Nonfarm (1947-58); Total Farm&Nonfarm (1959-)
(Thous.,Saar)

Housing Starts: Northeast (Thous.U.) S.A.

Housing Starts: Mideast(Thous.U.) S.A.

Housing Starts: South(Thous.U.) S.A.

Housing Starts: West (Thous.U.) S.A.

Housing Authorized: Total New Priv Housing Units (Thous.,Saar)
Housing Authorized By Built. Permits: Northeast (Thous.U.)S.A.
Housing Authorized By Built. Permits: Mideast (Thous.U.)S.A.
Housing Authorized By Built. Permits: South (Thous.U.)S.A.
Housing Authorized By Built. Permits: West (Thous.U.)S.A.
Purchasing Managers’ Index (Sa)

Napm New Orders Index (Percent)

Napm Vendor Deliveries Index (Percent)

Napm Inventories Index (Percent)
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a0OmO008

aOmO007
aOmO027
aOm092
aOmO070
aOmO077

fm1l

fm2

fm3

fm2dq
fmfba
fmrra
fmrnba
fclng
fclbmc
cinrv
a0OmO095
fspcom
fspin

fsdxp

Aln

Aln
Aln
Aln
Aln

Alv
A%lIn

A%lIn

A%In
Aln
A%In
A%In
A%In
A%In
Iv
A%In
Alv
Aln

Aln

Alv

Mfrs” New Orders, Consumer Goods and Materials (Bil. Chain 1982 %)
(TCB)

Mfrs’ New Orders, Durable Goods Industries (Bil. Chain 2000 $ ) (TCB)
Mfrs’ New Orders, Nondefense Capital Goods (Bil. Chain 1982 $ ) (TCB)
Mfrs’ New Orders, Durable Goods Indus. (Bil. Chain 2000 $ ) (TCB)
Manufacturing And Trade Inventories (Bil. Chain 2000 $ ) (TCB)

Ratio, Mfg. and Trade Inventories To Sales (Based On Chain 2000 $ ) (TCB)
Money Stock: M1 (Curr, Trav.Cks, Dem Dep, Other Ck’ale Dep)(Bil $,Sa)

Money Stock: M2 (M1+0’nite Rps, Euro $, G/P&B/D Mmmfs&Sav&Sm
Time Dep)(Bil $,Sa)

Money Stock: M3 (M2+Lg Time Dep, Term Rp’s&Inst Only Mmmfs)
(Bil $,5a)

Money Supply — M2 In 1996 Dollars (Bci)

Monetary Base, Adj For Reserve Requirement Changes (Mil $,5a)
Depository Inst Reserves: Total, Adj For Reserve Reg Chgs (Mil $,Sa)
Depository Inst Reserves: Nonborrowed,Adj Res Reg Chgs (Mil $,Sa)
Commercial & Industrial Loans Outstanding In 1996 Dollars (Bci)

Weekly Rp Lg Com’l Banks: Net Change Com’| & Indus Loans (Bil $, Saar)
Consumer Credit Outstanding — Nonrevolving (G19)

Ratio, Consumer Installment Credit To Personal Income (Pct.)(TCB)
S&P’s Common Stock Price Index: Composite (1941-43=10)

S&P’s Common Stock Price Index: Industries (1941-43=10)

S&P’s Composite Common Stock: Dividend Yield (% Per Annum)
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fspxe
fyff
cp90
fygm3
fygm6
fygtl
fygts
fygt10
fyaaac
fybaac
Scp90
sfygm3
sfygm6
sfygtl
sfygt5
sfygt10
fyaaac
fybaac
exrus
exrsw
exrjan
exryk

exrcan

Aln

Alv

Alv

Alv

Alv

Alv

Alv

Alv

Alv

Alv

Iv

Iv

Iv

Iv

Iv

Iv

Aln

Aln

Aln

Aln

Aln

S&P’s Composite Common Stock: Price-Earnings Ratio (%, Nsa)
Interest Rate: Federal Funds (Effective) (% Per Annum, Nsa)
Commercial Paper Rate (AC)

Interest Rate: U.S. Treasury Bills, Sec Mkt, 3-Mo. (% Per Ann, Nsa)
Interest Rate: U.S. Treasury Bills, Sec Mkt, 6-Mo. (% Per Ann, Nsa)
Interest Rate: U.S. Treasury Const Maturities, 1-Yr. (% Per Ann, Nsa)
Interest Rate: U.S. Treasury Const Maturities, 5-Yr. (% Per Ann, Nsa)
Interest Rate: U.S. Treasury Const Maturities, 10-Yr. (% Per Ann, Nsa)
Bond Yield: Moody’s Aaa Corporate (% Per Annum)

Bond Yield: Moody’s Baa Corporate (% Per Annum)

cp90-fyff

fygm3-fyff

fygmo-fyff

fygt1-fyff

fygt5=fyff

fygt10-fyff

fyaaac-fyff

fybaac-fyff

United States; Effective Exchange Rate (Merm)(Index No.)

Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S. $)
Foreign Exchange Rate: Japan (Yan Per US. $)

Foreign Exchange United Kingdom (Cents Per Pound)

Foreign Exchange Rate: Canada (Canadian Per U.S. $)
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pwfsa
pwfcsa
pwimsa
pwcmsa
pwm99q

pmcp

punew
pu83
pu84d
pu85
puc
pucd
pus
puxf
puxhs
puxm
gmdc
gmdcd
gmdcn
gmdcs

hhsntn

A%In
A%In
A%In
A%1In

A%In

A%In
A%In
A%In
A%In
A%In
A%In
A%In
A%In
A%In
A%In
A%In
A%In
A%In
A%In

Alv

Producer Price Index: Finished Goods (82=100,Sa)

Producer Price Index: Finished Consumer Goods (82=100,Sa)
Producer Price Index: Intermed Mat. Supplies & Components (82=100,Sa)
Producer Price Index: Crude Materials (82=100,Sa)

Index of Sensitive Materials Prices (1990=100)(Bci-99a)
Napm Commodity Price Index (Percent)

Cpi-U: All Items (82-84=100,Sa)

Cpi-U: Apparel & Upkeep (82-84=100,Sa)

Cpi-U: Transportation (82-84=100,Sa)

Cpi-U: Medical Care (82-84=100,Sa)

Cpi-U: Commodities (82-84=100,Sa)

Cpi-U: Durables (82-84=100,Sa)

Cpi-U: Serivces (82-84=100,Sa)

Cpi-U: All Items Less Food (82-84=100,Sa)

Cpi-U: All Items Less Shelter(82-84=100,5a)

Cpi-U: All Items Less Medical Care(82-84=100,Sa)

Pcs,Impl Pr Defl: Pce (1987=100)

Pcs,Impl Pr Defl: Pce; Durables (1987=100)

Pcs,Impl Pr Defl: Pce; Nondurables (1987=100)

Pcs,Impl Pr Defl: Pce; Services (1987=100)

U. Of Mich. Index Of Consumer Expectations (Bcd-83)
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ces275

ces277

ses278

A%In

A%In

A%In

Avg Hourly Earnings of Prod or Nonsup Workers On Private Nonfarm
Payrolls — Goods-Producing

Avg Hourly Earnings of Prod or Nonsup Workers On Private Nonfarm
Payrolls — Construction

Avg Hourly Earnings of Prod or Nonsup Workers On Private Nonfarm
Payrolls — Manufacturing

Table A.2 RMSEs of 6-month ahead Forecasts of U.S. Customer Price Inflation

with r PC estimates for various methods

Factors PC, AR PC WPC,AR WPC GPC,AR GPC DPC,AR DPC
1 0.9011  1.4146 0.6035 1.4158 0.9128 1.4176 0.9127 1.4161
2 0.9243 1.3820 0.6121 1.3724 0.9360 1.4003 0.9282 1.3871
3 0.9364  1.3656 0.6143 1.3789 0.9466 1.3800 0.9360 1.3644
4 0.9321  1.3023 0.6148 1.2096 0.9463 1.3114 0.9304 1.2966
5 0.9236  1.1458 0.6186 1.1453 0.9409 1.1340 0.9218 1.1482
6 0.9254  1.1633 0.6166 1.1662 0.9432 1.1533 0.9212 1.1634

Combined ADL with mean, median, trimmed mean : 1.5149, 1.5184, 1.5168

Benchmark AR (4) MSE : 0.7788

Table A.3 RMSEs of 6-month ahead Forecasts of U.S. Customer Price Inflation

with r targeted PC estimates for various methods

t-WPC, t-GPC, t-DPC,
Factors t-PC, AR t-PC t-WPC t-GPC t-DPC
AR AR AR
1 0.9857 3.2077 0.7506 3.5340 0.9816 3.0741 0.9928 3.1216
2 0.8882 3.4304 0.6992 3.6251 0.9276 3.3217 0.9525 3.1783
3 0.8430 3.5902 0.6582 3.6711 0.8822 3.4657 0.9012 3.3327
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0.8127 3.6211 0.6245 3.7136 0.8607 3.5619 0.8759 3.4682
0.8280 3.6178 0.5959 3.7475 0.8629 3.6175 0.8538 3.4915
0.8343 3.6879 0.5883 3.7784 0.8656 3.6862 0.8490 3.4821
Table A.4 Rank of four kinds of PCs (6-months)
IP CPI
Rank PCs# WPCs# GPCs# DPCs# PCs# WPCs# GPCs# DPCs#
1 1 1 122 132 4 4 4 4
2 2 2 1 1 12 12 12 12
3 132 132 2 2 3 2 3 3
4 8 8 132 8 7 1 110 7
5 5 5 127 5 1 57 33 1
6 56 56 118 56 2 8 78 2
7 6 114 108 6 21 19 129 21
8 33 36 82 44 33 7 128 33
9 44 67 116 33 35 81 92 35
10 62 54 129 124 65 22 61 65

-47 -




	iiiiiii.pdf
	thesis.pdf



