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Abstract

Sweden is the fifth largest country in Europe and has considerable

regional differences with respect to geography, demography and mete-

orological conditions. From relative flat terrain in the south to larger

hills and mountains in the north-west, higher level of precipitation

along the west border and larger cities and densely populated areas

by the coastal line. In an attempt to explain the increased number

of water-damage claims during the past years we want to know how

these are related to differences in geography. We investigate how one

can create rating territories using generalized linear models, credibil-

ity theory, smoothing and clustering techniques.

Under the hypothesis that all residual variation in a generalized

linear model for claim frequency is a pure effect of geography we are

able to estimate the relative risk of water-damage in each municipal-

ity. The estimates are used in order to aggregate the municipalities

into larger territories reflecting an elevation and similarity of risk. We

can conclude that the best way to group geographical units is using

a minimum within territory variance criterion and aggregate by adja-

cency. Included in a generalized linear model the zone-variable turns

out highly significant and there are no remaining detectable differences

between the geographical units.
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1 PRELIMINARIES

1 Preliminaries

1.1 Introduction

Insurance is the business of transferring risk from one party – the policy-
holder, onto another – the insurer for a predetermined premium, which in
turn provides the service of financial reimbursement in case of loss under pol-
icy coverage. Determination of a fair premium is of outmost importance for
an insurer considering retention of current customers, acquiring new busi-
ness and gaining a competitive edge. When the policy is targeting a large
population and in addition spread over a considerable land areal there are
a number of factors generating differences in risk of a claim, whereof some
could be derived to or classified as geographical. In most lines of business
we could expect that location is important as explanatory of the loss expe-
rience since the geographical perils differs a great deal between regions. If
an insurer uses rating territories it is wise to keep the definitions up to date
as relativities change as a result of competitive market forces [3].

In most non-life insurance companies a private customer can sign a home
insurance policy that covers the building, property or both in case of loss.
The contract usually covers water-damages incurred as a result of heavy
rains, snow melting, rising lakes or rivers and a wide variety of leakages
that might occur. Water-damages generally make up a large part of the
total claim costs for any insurer. In order to provide the customers with
the most fair priced product the loss must be distributed onto the groups
that account for it. This is done by including new rating factors or updating
the current variable definitions. This thesis will therefore be addressing the
question of how geographical classification can be used in order to take into
account within collective differences for water-damages related claims in pri-
vate housing insurance. We will study a couple of smoothing and clustering
routines that can be used for construction of rating territories.

1.2 Purpose

The primary objective for this thesis is to establish a methodology for the
creation of rating territories and in particular to apply the method on water-
damage claims that can be seen as geographically contingent. The questions
to be answered are listed below.

1. Where are water claims located spatially?

2. Is there any distinctive pattern, such as if water claims are located
close to rivers and lakes?

3. How should a water claim zone variable, for both frequency and sever-
ity, optimally be constructed using credibility theory?

1



1.3 General pricing 1 PRELIMINARIES

4. How does a GLM including a zone variable contribute to a non-spatial
GLM?

5. Is non-random pattern in model residual reduced when the zone vari-
able is added?

1.3 General pricing

The premium for an insurance contract is determined by calculating the
expected loss that the contract will incur during the policy duration. The
premium calculated this way is called the pure premium. Compared to the
actual premium charged additional considerations are taken into account,
such as administrative expenses. If an insurer has n identical contracts with
the same policy duration, whereas each contract will incur a claim cost of
X1, X2, ..., Xn,

Xi =
{

0, if there is no claim associated with contract i
> 0, if contract is aquired at least one claim.

The pure premium for each contract should equal an amount of,

E[Xi] = µ with V ar(Xi) = σ2.

Since an insurer has several policies, on average a reduction variance for
each contract together with a greater predictability is gained due to the law
of large numbers,

E[X] = µ and V ar(X) =
σ2

n
.

We could thus set the pure premium by calculating the observed average
claim cost 1

n

∑n
i=1 xi = x for past years and apply onto new business. In

order for the premium to be fair we need to take into account individual
differences in risk. These differences can be classified into three general
groups.

(1) Policyholder characteristics

• Age

(2) Insured object characteristics

• Value of house

• Type of house

• Building year

(3) Geographical characteristics

2



1.3 General pricing 1 PRELIMINARIES

• Urban/rural area

• Demographical (population density, education, income etc.)

• Environment

Factors considered in the process of pricing – premium arguments, yield the
individual premiums,

E[Xi] = µi. (1)

Each contract/individual has an associated exposure – the duration wi, a
measure of how long a contract has been in force, expressed in the number of
insurance years. In the language of statistics, the collective pure premium for
a specific contract could be expressed as having a set of independent random
variables N,X1, X2, ... where N is the number of claims during a period of
e.g. one calendar year. The set of random variables {Xi} represent the cost
of claim i = 1, 2, ... with aggregated duration D =

∑
j∈J wj , where J is the

set of all contracts. We want to determine the expected cost per policy and
have the following definitions.

Claim severity

S =
Claim cost

Number of claims
=
∑N

i=1 Xi

N

Claim frequency

F =
Number of claims

Duration
=

N

D

Pure premium

P =
Claim cost
Duration

=
∑N

i=1 Xi

D
= S × F.

Above quantities is referred to a key ratios which are of the general form,

Y =
X

w
=

Random variable
Exposure

. (2)

Exposure is a measure of how much the insurer is subjected to loss in a
particular variable e.g. claim cost or number of claims. These quantities
should preferably fulfill the conditions of being practical (easy to obtain and
verify) and proportional to loss i.e. two exposures should lead to two times
the expected loss of one exposure [13]. Because one usually has an idea of the
amount of policies there are for a particular line of business, the duration
is considered constant. We are left with the challenge of calculating the

3



1.4 Territorial ratemaking 1 PRELIMINARIES

expectation of a compound distribution SN =
∑N

i=1 Xi. Start by assuming
that E[Xi] = µX for all i, we get the following result,

E[S] = E (E[S|N ]) = E

(
E

[
N∑

i=1

Xi

N

∣∣∣∣∣N
])

= E

(
NE[Xi|N ]

N

)
=

= E

(
NE[Xi]

N

)
= µX . (3)

Using equation (3) the expected pure premium can now be calculated,

E[P ] = E

[∑N
i=1 Xi

D

]
= E

(
E

[∑N
i=1 Xi

D

∣∣∣∣∣N
])

=

= E

(
N

D
E[Xi|N ]

)
= E

[
N

D

]
× µX = E[F ]× E[S]. (4)

This means that we can divide the pure premium calculation into two parts,
expected claim frequency and claim severity. For a given set of rating vari-
ables we can construct a tariff i.e. ”pricing chart”. Each tariff cell provides
us with the amount that in relation to a constant should be charged a pol-
icyholder whom hold the given characteristics. Continuing in line with [10]
we specify three basic model assumptions needed in order to proceed.

(i) Policy independence – policy events does not affect one another.

(ii) Time independence – policies (response) are independent of which time
interval a event occurs.

(iii) Homogeneity – the risks within a tariff cell are similar i.e. homogeneity
of risks in tariff cells.

In order for a risk to be insurable the above requisites should be fulfilled as
well as a criteria of mass or risk exposure. As a consequence of the law of
large numbers, with enought exposure we will be able to make reasonable
estimations of the actual risk at hand [15].

1.4 Territorial ratemaking

Geographical location is considered one of the most important factors influ-
encing the claims experience in a home insurance policy and is also heavily
correlated with other rating factors such as value of home [13]. The process
of creating rating territories is termed territorial ratemaking and is split up
into two separate parts.

(1) Establishing boundaries

(2) Determination of relativities

4



1.4 Territorial ratemaking 1 PRELIMINARIES

In establishing boundaries for a territory, we have at first to decide which
geographic unit that should be used. Geographical units are small distinct
areas used as building blocks for aggregation into larger territories reflecting
a joint effect of location that cannot be explained by the other rating factors.
The territorial effects does not necessarily shed light on physical factors
influencing claims experience, but rather that the individuals/objects within
a territory has something in common and is intuitively physical in nature.
We have to consider that the units should satisfy the two prerequisites.

(1) Each unit should be small enough to reflect homogenous geographical
risk.

(2) Each unit should preferably be static i.e. does not change with time.

The most frequently used units in the literature are post codes [1], [3], [6],
[14], because it is small enough to reflect homogenous risks and usually
readily available for implementation. Unfortunately post codes suffer from
the disadvantage of being subject to change over time, the same applies to
parishes. At the same time we should keep in mind that these units are con-
structed for administrative reasons or in order to achieve a effective postal
delivery. Two houses close in distance, but in different postcodes, have more
in common than houses on opposite sides of the same postcode. There are
about 9000 post codes and 1200 parishes in Sweden, which potentially could
be used as geographical units. Another option would be using municipal-
ities or counties, where the former are likely to have and the latter might
have heterogeneous risks within geographic unit due to their substantial size.
Some further guidelines in how we should choose geographical units [13].

(3) Unit should be large enough to produce credible estimates.

(4) Easy to assign company data to unit.

(5) Easy to map external data to unit.

(6) Easy to understand unit construction.

(7) Politically acceptable

(8) Verifiable

The claims process is hypothesized to depend on both geographical as well
as non geographical factors and we can also to expect to observe a fair
amount of random noise in the actual experience. Geographical factors can
be divided into geo-demographic factors, such as demography and popula-
tion density and geo-physical, such as altitude, access to water within the
vicinity or farmed land. One could go about investigating geography with a
multivariate approach, using a set of explanatory variables to explain some

5



1.5 Generalized linear models 1 PRELIMINARIES

of the variation in claim experience and examine how the residual variation
varies by geographic location. If some locations have something(s) in com-
mon in excess of explanatory variables, clusters of higher residual variation
in these areas might be observed, i.e. if observed experience is not in line
with predicted. In order to take a set of explanatory variables into account
we suggest using generalized linear models.

1.5 Generalized linear models

The exponential family is a large class of probability models including some
of the most important and frequently used, such as the Poisson-, Gamma-,
Bernoulli- and Normal distributions. The following is a general definition of
the class of exponential distributions taken from [11].

Definition 1.1. A statistical model for data set y = (y1, ..., yn) is an ex-
ponential family(or of exponential type) with canonical parameter vector
θ = (θ1, ..., θk) and canonical statistic t(y) = (t1(y), ..., tk(y)), if f has the
structure

f(y;θ) = a(θ)h(y)eθT t(y), (5)

with the normalizing constant a(θ) = 1/C(θ),

C(θ) =
∫

h(y)eθt(y)dy.

�

The expression in equation (5) can be written for a single observation as,

f(yi;θ) = exp
{
θT t(yi)− log(C(θ)) + log(h(yi))

}
. (6)

A generalization when t(yi) = yi, including a dispersion parameter φ [8]

f(yi, θ) = exp
{

yiθ − b(θ)
a(φ)

+ c(yi, φ)
}

(7)

for some functions a(·), b(·), c(·) having the properties,

E[Y ] = b′(θ) = µ V ar(Y ) = b′′(θ)a(φ) v(µ) = b′′(b′−1(µ)). (8)

The function v(µ) – the variance function, fully specifies the probability
distribution that has the form as in equation (7) [10]. A common version
of the function a(φ) used e.g. by [10], a(φ) = φ/wi where wi is a prior
weight and implemented in (7) gives rise to the exponential dispersion model
(EDM). A subclass of models with restriction that the variance function has
the form

v(µ) = µp, p ∈ (−∞,∞) (9)

6



1.5 Generalized linear models 1 PRELIMINARIES

called Tweedie models, include Poisson (p = 1) and gamma distribution
(p = 2) among others. The Tweedie models possess the desirable property of
being scale invariant, i.e. Y and cY follows the same family of distributions.
This is useful in insurance applications for example if we were to change
currency or correct for inflation in the response variable.

7



2 DATA

2 Data

Data has been obtained from a large insurance company, containing records
of individual insurances and events of water-damage claims in Sweden for
the period 2004 – 2010. The material consists of over 360’000 policies,
exposed in total to an amount of 1’250’000 policy years for which there
has occurred 15’492 cases of damage. A water-damage can occur in many
forms, e.g. pipes can rupture, machinery or home appliances might break
down. In this study we are primarily interested in claims that can be seen as
geographically contingent and impose a restriction on the claim definition.

The claims to be investigated are of damages to both personal property
and buildings which are classified as one of the following two kinds.

1. Inflowing water, which can be attributed to precipitation, meltwater
or rising level of a nearby lake.

2. Drainage system, water flowing from the sewer, usually as a conse-
quence of how efficiently the municipality handles excess precipitation.

Because the policies has multiple insured objects and the causes of damage
can be different, one claim is defined as a unique date of damage and for a
specific policy id, one claim will hence not be counted twice.

Next we need to determine the geographical units. Sweden is Europe’s
fourth largest country (excluding Russia) with a land area of 449’946 km2

and does have varying geographical conditions. The country is fairly flat
in the south with higher hills and mountains in the north. To construct
a homogeneous geographical unit one should optimally divide the country
into a grid of equal size squares. If each square have a side of 500m it
would have a corresponding area of 0.25 km2 i.e. in order to cover the whole
country we need about 1.8 million squares, which is more than the total
amount of exposure in terms of policy years. Even squares with a side of
1km would be quite unsatisfactory in rural areas, since there are not enough
exposure. We have to violate the condition of optimal homogeneity and
decide that it is reasonable to use municipalities instead, mainly because
the ease of implementation and that the division fulfill requirement (1) – 8)
in section 1.4. As previously noted, there are 290 municipalities in Sweden,
which correspond to an average size of 1’151km2, exposure of 4’300 years
and 53 claims. The average municipality area corresponds to a square with
a side of about 34km. Even after having used a much rougher division
than optimal there is still great variation between geographical units. The
minimum amount of exposure, 257 years and 4 cases of damage occurs in
the municipality of Ydre just east of Lake Vättern, slightly more exposed is
Bjurholm, west of Ume̊a in the north, with 273 policy years and 2 cases of
water-damage. The overall average claim frequency amount to 0.0124 per
policy year. Since a case is a quite rare event occurring on average once

8



2 DATA

Figure 1: Histogram of the municipality claim frequency per 1000 years of
exposure, for the years 2004 – 2010.

every 80th year there are a lot of randomness in a intensity estimate for
the municipalities with little exposure. At the other end, the most exposed
unit – Stockholm municipality, has 63’082 policy years and 1’085 claims.
In order to get a better picture of the variation of estimates amongst our
chosen units we depict the empirical frequencies per 1000 policy years in
a histogram, seen above in Figure 1. The values on the horizontal axis
correspond to the midpoint of a one unit interval except for the largest and
smallest values, the vertical axis represent the number of municipalities that
fall into each bin. By the same classification levels as in the histogram we
plot the claim frequencies on a map, with graduated colors from dark green
for the lowest frequencies to fierce red for the ones classified by the highest
category, Figure 24. The empirical claim frequencies for municipalities have
a median value of 0.0108 and vary between 0.0031 and 0.0268 i.e. with a
factor of 8.6 between the smallest and largest values.

9



2.1 Modeling 2 DATA

2.1 Modeling

We employ the approach of dividing the data into two samples by the amount
of exposure. We generate a uniform random number between zero and one,
sort in ascending order and choose the first observations which constitute
one-seventh of the total exposure, we refer to this sample as the ”control
sample”. All the other observations make up the ”model sample”. All anal-
ysis and modeling is done with the model data sample, resulting estimates
are thereafter used in an evaluation of the model fit and appropriateness
against the control data sample. The prime motivation for dividing the data
set into two samples randomly and not by year is under the assumption that
the number of claims is not stationary by year and hence a difficulty to de-
termine the calendar year effect. For each observation we have records of
policyholder and insured object characteristics as well as duration and date
variables. Along with these, we have also gathered data that reflect general
geographical conditions, that are implemented in section 5. The variables
we believe have the greatest impact on the size and number of claims are
the following.

Table 1: Characteristics that can be attributed to each policy.

Characteristics

Policyholder Object Geographical

• Age • Building age • None
• Living area size
• Ground floor size
• Number of buildings
• Basement

Building and policyholder age are discrete variables, of which building
age adopt values in the range 0 to 80 and policyholder age even include
values above. Whereas a value of 80 include all ages greater or equal to 80.
The higher age of a building, the greater risk for damage if not properly
maintained. The reverse relationship is more plausible for policyholder age
since the older one gets the more experience is acquired as well as more time
and funds might be allocated to house maintenance tasks and renovations.
Since owning a house is uncommon amongst younger policy holders, it is
reasonable to group ages in the interval [0,30] into a first category, and for
ages above into 10 year bands up to the age of 80. Building age has a quite
large group of policies of age 0 (8’122 years) which at a first stage will form
one group and values above are divided into 5 year classes.

Basement is a four level categorical variable with values, yes, no, missing
and split-level home (swe. souterränghus). If the damp insulation on the
outside of the basement walls and floor do not keep the interior of the base-

10



2.1 Modeling 2 DATA

ment sufficiently dry, the moisture will penetrate the walls and any organic
material exposed in the basement will get damaged. For both basements
and split-level houses problems with water-damage might arise if rain and
melt-water is not properly drained from the construction. A basement is
moreover a vulnerable part of a house in case of a flood. Detailed infor-
mation regarding the characteristics of a particular insured object must be
supplied or collected from the policyholder himself. During the studied pe-
riod, the collection of the basement variable has been disrupted and which
in effect has led to a large missing category. Since we consider basement
as one of the most important factors an attempt to decrease the amount of
exposure in the missing category and hence increase the reliability of the
non-missing factor levels estimates is undertaken. It is most likely that a
single policyholder only possess one building with a certain sized living area.
If the same policyholder has a policies for multiple periods whereof at least
one has a non-missing basement variable it is probable that variable level
value should apply to both earlier and later periods with missing values.
First off, we retain the non-missing values by assuming that given a non-
missing basement value, all earlier periods with missing level classification
has the same level value. Second, assuming that the reverse relationship
applies. The result of our efforts can be seen in Table. 2, which also has
been depicted in Figure. 2.

Table 2: The amount of exposure in the new and old basement variable.

Basement No basement Split-level Missing

New variable 445 831 572 653 36 888 191 394
Old variable 226 011 291 051 16 265 713 440

Category exposure (new) 36% 46% 3% 15%

We manage to decrease the missing category by more than 500’000 policy
years, mainly because there are a great number of loyal customers. Another
dimension in need to be account for in the basement variable is how much
of the exposure that is distributed into the missing category by year. The
missing category should be a fairly good mixture of the three non-missing
level values. The development of the amount of known exposure together
with yearly claim frequency estimates can be seen in Figure. 3. We can
conclude that the average claim frequency increases at the same time as the
missing category gets relatively larger, which is a result of new business that
is signed in periods where specification of the variable is not required.

Size of living area, a discrete variable adopting values in the range [0,∞),
with the largest observed value of 800m2. However, the exposure is very
limited for buildings larger than 300m2, we consequently group all policies
with a larger living area than 300m2 into one category, all values below are
divided into equal sized classes of 50m2 intervals.

11



2.1 Modeling 2 DATA

Figure 2: Bar chart comparison of new and old basement variable for the
years 2004 – 2010.

Figure 3: Relationship between claim frequency development and the pro-
portion of known exposure for the new basement variable, 2004 – 2010.

12



2.1 Modeling 2 DATA

The number of buildings is also a natural factor influencing the risk of
obtaining a water-damage of some kind. This factor adopt discrete values
between 1 and 7. whereas policies classified into group seven are the ones
with the number of buildings ≥ 7. Group seven only constitutes of 860 pol-
icy years and is therefore merged together with the sixth buildings class.
The initial classification is quite rough as our variables adopt a wide range
of values with varying level of exposure. The parameter dimension needs to
be reduced in order for us to obtain reasonably valid estimates.

By using above factors we construct a multiplicative GLM model, at first for
claim frequency, assuming a Poisson distribution for the number of claims
Xij , and in the terminology of [10] a Relative-Poisson distribution for the
key ratio Xij

wij
, with a log-link and the dispersion parameter fixed to φ = 1.

µi = µ0γ
1
i . . . γm

i , i = 1, ..., N

Here, i is the classification level of a combination of the m explanatory vari-
ables and N is the number of levels. For each factor, the class level with the
most exposure is appointed as a base level i.e. γk

BASE = 1, since it is the level
we can determine with the highest precision. The other estimates will there-
fore be determined in relation to the base level. We estimate the parameters
in the initial model and examine the results by plotting the multiplicative
relativities together with their corresponding 95% Wald confidence inter-
vals. The first noticeable discrepancy from what we would expect is a larger
estimate for the basement factors missing category than of the others. A
probable explanation is that it is an effect of calendar year, since the propor-
tion of known exposure is lower for years with higher claim frequency, which
is supported by Figure 3. In the same figure we can observe an apparent
increasing trend in the frequencies by year which suggest that a calendar
year effect should be included. For both age variables there seem to be a
threshold at the ages > 60 and > 45 respectively, which therefore are clas-
sified as the highest categories. Building age categories (5, 10], (10, 15] and
(15, 20], (20, 25] have overlapping 95% confidence intervals and are grouped
into two categories. As for the building size, the estimates also levels out at
the highest levels together with a relatively small amount of exposure and
overlapping confidence intervals above 200m2. We reclassify the data and
once again re-fit the model including a calendar year effect. By doing so
the distribution of exposures amongst classification levels will change and
hence also the base levels, as well as the relatively determined estimates.
The model is re-fitted and we conduct a likelihood ratio test of type III,
we denote the additive factors in the log-link by λA

j , where A refers to the
factor and j to the level.

13
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Table 3: Likelihood ratio test - Type III

Rating factor DF χ2-statistic p-value

Basement 3 374.92 <0.0001
Policyholder age 4 715.56 <0.0001

Size of living area 5 446.53 <0.0001
Number of buildings 2 16.61 0.0002

Building age 7 679.72 <0.0001
Calendar year 6 588.99 <0.0001

H0 : λA
j = 0 for all j

HA : At least one λA
j 6= 0, j = 1, ..., J

All factor effects turns out as significant at a 0.1% level, in fact almost
all parameter estimates except for calendar year 2007, number of buildings
equal to 1 and building age [35, 40) are significant different from the base
level value at a 5% confidence level. The estimates corresponding to the
re-fitted model is depicted in Figure 4 – 6 below. The plotted estimates
are the multiplicative relativities with corresponding 95% Wald confidence
intervals.

Figure 4: Relativity estimates for the basement factor in the final model.
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The inclusion of a calendar year factor seem to have adjusted the miss-
ing basement category estimate to a more reasonable value, but it is still
a bit larger than the no-basement category. Size of living area is the fac-
tor adopting the widest range of relativity estimates ranging from 0.62 to
1.95 which is distributed over six parameters. This might be considered a
bit small since the difference between categories are large, on average 0.22
units. We could also consider fitting linear effects for both age variables and
living area size in an attempt to reduce the number of parameters. Since
the difference between levels is large and there are not a strictly linear rela-
tionship between parameter estimates we would be at risk for under-fitting,
especially when the last category weighs heavily. The only real surprise oc-
curs in the number of buildings factor, even if small, given the level of all
other variables the effect of the number of buildings turn out as decreasing
in claim frequency. Turning to the calendar year effect, we can conclude

Figure 5: Relativity estimates for size of living area in the final model.

that there has been a large inflation in the number of claims during the past
seven years. If we had used the period 2004 – 2009 as model sample and
2010 as model checking period any naive method of estimating the effect of
2010 e.g. fitting a linear trend or assuming that the effect of 2010 would be
the same as 2009, would have failed.

15
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Figure 6: Relativity estimates for building age in the final model.

2.2 Model fit

We investigate the model fit at municipality level by comparing the actual
and predicted number of claims. The majority of municipalities do fit quite
well as 90% of the observations only deviate between -24.7 to 14.4 cases
considering that it is for an amount of exposure corresponding to six years,
i.e. averaging about -4.1 to 2.4 cases of yearly deviation. However, there are
municipalities that have a substantially larger deviation. The municipality
of Stockholm have by far the most number of observed claims compared
to predicted, followed by yet another four municipalities in the Stockholm
county. In total Stockholm is represented by nine municipalities among
the top twelve most deviating. It should be noted that Stockholm munic-
ipality also have the highest amount of exposure, which amount to about
54’000 policy years over the average 3’685 years and the entire county hav-
ing 291’300 years of exposure. Taking into account the amount exposure in
each geographical unit the picture changes. The distribution of deviations
are more skewed to the right i.e. most municipalities have a higher predicted
than observed counts, Figure 7. Sk̊ane county (county code 12) has three
out of the seven most deviating municipalities and also the widest range of
deviations. Our hypothesis is that the number of claims in a municipality
is Poisson distributed, with mean value given by the weighted mean values
of the individual policies, i.e. the aggregated expected value of the munici-
pality. Denoting individual k with classification level j in municipality i by

16
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Figure 7: Deviation from predicted in each municipality per 1000 policy
years divided into counties by code.

µijk and µi for the aggregated municipality claim frequency.

H0 : µi =
ni∑

j=1

( nij∑
k=1

wijkµijk

wij·

)
wij·
wi··

H0 : µi 6=
ni∑

j=1

( nij∑
k=1

wijkµijk

wij·

)
wij·
wi··

In order to make a geographical evaluation of where the model does not fit
especially well, we investigate which municipalities has an observed count
larger than predicted by comparing to a Poisson distribution, Xi ∼ Po(wi··µi).
The municipality claim frequency is estimated by a weighted average of the
predicted values in our model. We plot the municipalities that deviate more

Table 4: Tail probabilities for the observed counts for the model sample.

Tail probabilities

5% < 2.5% < 1% < 0.5% <

Number of municipalities 73 54 37 32
Percent of total 25% 19% 13% 11%

than expected onto a map. The resulting figure does not exhibit any strong
distinguishable patterns. Applying our model onto the control sample we

17
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predict that there would occur 2211 cases of water-damage compared to the
actual count of 2218. When comparing the number of deviating municipal-

Figure 8: Deviation of observed number of counts from predicted by munic-
ipality in the control sample.

ities in the model and control sample we should remember that the model
sample has six times as much exposure. If the confidence limits grows at
a slower rate than the deviation from predicted then we will obtain more
deviant municipalities as a function of more exposure. Matching the deviant

Table 5: Tail probabilities for the observed counts for the control sample.

Tail probabilities

< 5% < 2.5% < 1% < 0.5% 5% /290

Number of municipalities 36 17 11 4 0
Percent of total 12% 6% 4% 1% 0%

municipalities from the model and control sample at all levels, we obtain 14
matches of which four are from Stockholm county and three from Malmö.
We should keep in mind that this is not a good way of conducting multiple
hypotheses tests simultaneously. If we carry out n independent tests, each
at level p we get a high false discovery rate. Introducing a binary variable
for each hypothesis,

Xi =
{

1, if test i significant with probability p
0, if test i non-significant with probability 1− p

18
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and Y =
∑n

i Xi. We obtain the probability of observing at leas one signifi-
cant resultas

P (Y ≥ 1) = 1− P (Y = 0) = 1− (1− p)n =
{

p = 0.05
n = 10

}
= 40.1%.

Since we are conducting 290 simultaneous tests the probability is approach-
ing 1 and the probability of finding at least 36 significant 0, i.e. even if all
hypotheses were true the probability of observing at least one significant
would be 1. To control for the type-I error we can use Bonferroni correction
and by adjusting the significance level of each test to 0.05/290 we obtain
P (At least one significant) = 0.0487. None of the observed municipality
counts are significant different from their predicted mean values on an over-
all level of 5%. The model has also a reasonably good fit when comparing to
the estimated frequencies aggregated over rating factors and rescaling, see
Figure 27 – 32.
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3 CREDIBILITY THEORY

3 Credibility theory

Credibility theory is a Bayesian approach to describing heterogeneous col-
lectives, method for combining individual and collective experience used for
experience rating and estimation of multi level factors. Credibility theory
is an important tool in an actuary’s toolbox, not only within pricing appli-
cation but also in reserving. It can for example be used for smoothing over
accident years, for using individual rather than aggregated data and share
information among a number of related run-off triangles.

A factor with a high number of levels of which some only have such a
small amount of recorded data that it would not be reasonable to include
in a GLM-model is called a multi level factor (MLF) [10]. In our case the
estimation of a geographical factor, where the levels might be given by in-
dividual geographical units, is a prime example of MLF-estimation. Using
either postal code, parishes or municipalities of which there are more than
9000, about 1800 and 290 respectively, we would as a result have very sparse
data in some tariff cells and hence very unreliable estimates. A question that
then arises is whether it is possible and in that case how we could manage
to estimate the effect of a single geographical unit with limited amount of
data. An answer would be using credibility theory following the trail paved
by Hans Bühlmann. The following section is primarily based on the book
[2], but also [10] which among other things describe the recursive estimation
procedure used.

3.1 Bayesian credibility

For a set of contracts and a particular kind of insurance, every individ-
ual/risk in this collective would be characterized by its own risk profile
ν ∈ Θ, where Θ is the set of all risk profiles. The collective risk profiles
could be described in a probabilistic way by a probability distribution u(ν),
called structural function of the collective. Because some individuals have a
higher propensity of acquiring claims, every individual should then as well
have a premium reflecting his specific risk profile, but the quantity ν are to
us hidden.

Definition 3.1. The correct individual premium of a risk with risk profile
ν,

P Ind(ν) = E[Xn+1|ν] = µ(ν) (10)

where Xn+1 is the claim amount year n + 1. �

And the expected premium for the collective is then calculated using above
and the structural function.

Definition 3.2. The collective premium is given by,

PColl =
∫

ν∈Θ
µ(ν)dU(ν) =: µ0 (11)
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�

If we do not have access to any historical claims data we cannot distinguish
between individual risk propensities, i.e. prior collection of data, our belief
of different risk profiles and hence premiums would be equal. In terms of
Bayesian statistics ν can be thought of as a realization of a random variable
Θ. We are out to find the correct premium for each risk. In the search for
such an estimator we define a optimality criterion that has to be fulfilled,
minimizing the mean squared error of prediction [10] or in the terminology
of [2] with respect to the quadratic loss function.

E
[
(µ̂(Θ)− µ(Θ))2

]
(12)

Applying this criteria and estimating premium such that the quadratic loss
is minimized and hence the best premium given by the posterior expectation
of µ(Θ) named the Bayes premium, where the parameter Θ is written as an
upper case letter to stress that it is a random variable.

PBayes = E[µ(Θ)|X] = µ̃(Θ) (13)

The Bayes premium is the best experience premium and in estimating this
quantity we need,

(1) the prior distribution

(2) the conditional distribution (sampling distribution)

• The random variables Xi, i = 1, 2, ... are assumed to be conditionally
i.i.d. given Θ = ν.

Given that our sampling distribution belongs to the exponential dispersion
family Fb,c

exp with specified b(·) and c(·) functions we get some very handy
properties if choosing it’s conjugate prior distribution with hyper parameters
x0, τ0 and the same b(·) function.

Theorem 3.1. For the family of Fb,c
exp and it’s conjugate prior family Ub

exp

we have,

(i) P ind(ν) = E[Xj |Θ = ν] = µ(ν) = b′(ν) and V ar(Xj |Θ = ν) = φb′′(ν)
wj

If the region Θ is such that exp{x0ν−b(ν)} disappears on the boundary
of Θ for each possible value x0, then we have

(ii) PColl = x0

(iii) PBayes = αX +(1−α)PColl where X =
∑

j
wj

w·
Xj α = w·

w·+σ2/τ2

�
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3.2 Credibility estimators

The Bayes premium minimizes the quadratic loss function but has the dis-
advantage of not necessarily being given by a closed form expression. This
quantity might have to be calculated by computer intensive methods as
MCMC, which can be a bit tedious. Moreover, calculation of a posterior
distribution involves specification of a prior, which can lead to erroneous
results and is also the main critic against any Bayesian approach. Instead,
we could focus our attention on those estimators of µ(Θ) that are linear
in the observations, the so called credibility estimators (denoted by double
hats).

PCred =
̂̂
µ(Θ) = â0 +

n∑
j=0

âjXj (14)

Assumptions 3.1.

(i) The variables Xj |Θ = ν are independent with distribution function Fν

and moments µ(ν) = E[Xj |Θ = ν] and σ2(ν) = V ar(Xj |Θ = ν)

(ii) Θ is a random variable with distribution U(ν)

�

Given the assumptions above we could derive the following results,

Cov(X,µ(Θ)) = V ar(µ(Θ)) =: τ2

V ar(X) =
E[σ2(Θ)]

n
+ V ar(µ(Θ)) =:

σ2

n
+ τ2.

Theorem 3.2. Under assumptions 3.1 the credibility estimate is given by,

̂̂
µ(Θ) = αX + (1− α)µ0 where µ0 = E[µ(Θ)] (15)

and
α =

n

n + σ2/τ2
(16)

�

In the case when the distribution of {Xj} conditional on Θ is an exponential
family the credibility estimate would be the Bayes premium. The estimate is
a weighted average of the collective premium and the more relevant measure
of the individual experience X. When a Bayesian premium is a credibility
estimator, it is referred to as a exact credibility estimate. Furthermore, the
factor α and hence the credibility estimate has the properties we would like
it to possess.

22
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(i) If we get more data, the number of policy years for each risk increase
and more weight is put on the individual experience α ↑.

(ii) If the within risk profile (group) variance increase σ2(ν) ↑, less weight
will be put on the individual experience α ↓ and they get less credible.

(iii) If the between risk profile variance increase τ2 ↑, more weight will be
put on the individual experience α ↑ and they get more credible.

3.3 The Bühlmann model

When we have a data set X = (X1, ...,XI) where Xi = (Xi1, Xi2, ..., Xini)
is the experience of group i = 1, ..., I, and want to estimate each groups
credibility premium µ(Θi), another set of assumptions are needed.

Assumptions 3.2.

(i) The random variables Xij |Θi = ν, j = 1, ..., ni are independent with
distribution function Fν and conditional moments,

µ(ν) = E[Xij |Θi = ν] and σ2(ν) = V ar(Xij |Θi = ν)

(ii) The pair of observations {(Θi,Xi), i = 1, ..., I} are independent and
identically distributed.

�

We want an estimate of µ(Θi) belonging to the class of estimates that are
linear in all observations. Minimizing the quadratic loss function and after
some derivations [2] we can conclude that the estimate coincides to the one
i equation (15),

̂̂
µ(Θi) = αXi· + (1− α)µ0. (17)

An extension to this class of estimators is obtained if we impose the re-
striction of unbiasedness over collective and homogeneity. The estimator
should be homogeneous in the sense that if all variables would be multi-
plied by a constant then it would be possible to factor out f(cX) = cnf(X),
which implies that in contrary to the inhomogeneous estimator it does not
contain any separate constant terms. The best linear estimator fulfilling
E[µ̂(Θi)] = E[

∑
i,j bijXij ] = E [µ(Θi)] is called a homogeneous credibility

estimators. As previously defined the collective premium E[µ(Θi)] = µ0,
using conditional expectation we have,

E[Xkj ] = E[E[Xkj |Θk = ν]] = E[µ(Θi)] = µ0. (18)
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This means that changing the constant term in (17) into a linear expression
in data yield an unbiased estimator. The most intuitive linear function that
reflect the collective experience would be the overall average,

X ·· =
1
N

I∑
i=1

ni∑
j=1

Xij where N =
I∑

i=1

ni (19)

in conclusion,
̂̂
µ(Θi)

hom

= αXi· + (1− α)X ·· (20)

3.4 The Bühlmann-Straub Model

Classifying data into tariff cells fulfilling the criteria (1) in section 1.4 of
homogeneous within cell risk and considering a credibility estimator of some
key ratio. Where in contrast to previous sections our response is a ratio
of a sum of random variables and a measure of exposure (volume measure)
Xij = Sij/wij , where wij is referred to as a weight. Since we want to
model a weighted variable the variance assumption in Assumptions 3.2 is
no longer valid. We should also take into account the amount of exposure,
resulting in V ar(Xij |Θi) = σ2(Θi)/wij . If Xij conditional on Θi belongs to
the class of exponential dispersion models the conditional variance would
take the form V ar(Xij |Θi) = φv(µ(Θi))/wij . Using the standard approach
of modeling the number of claims as Poisson and the claim amounts as
Gamma distributed, the variance function can explicitly be parameterized
as a general Tweedie model µp(Θi).

Assumptions 3.3.

(i) Conditionally given Θi, the {Xij | j = 1, ..., n} are independent with,

E[Xij |Θi] = µ(Θi) and V ar(Xij |Θi) =
σ2(Θi)

wij
.

(ii) The pairs {(Xi,Θi), i = 1, 2, ...} are independent, and Θ1,Θ2, ... are
independent and identically distributed.

In the description by [10] they explicitly assume that the credibility estima-
tors are multiplicative in the risk categories/profiles, µ(Θi) = µ0Θi where
the expected value of Θi, i = 1, 2, ... equals to 1. In contrast to the more gen-
eral approach of not assuming any functional form of µ(Θi), both yielding
E[µ(Θi)] = µ0.

Definition 3.3. For the collective the following quantities are of interest,

E[µ(Θi)] = E[E[Xij |Θi]] = E[Xij ] = µ0 (21)
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V ar(µ(Θi)) = τ2 (22)

E[σ2(Θi)] = E[wijV ar(Xij |Θi)] = φE[v(µ(Θi))]︸ ︷︷ ︸
EDM

= φE[µp(Θi)]︸ ︷︷ ︸
Tweedie

= σ2 (23)

�

By the last equality in equation (21) we see that without any knowledge of
the individual risk profiles all individuals would have the same expected key
ratio.

Theorem 3.3. The credibility estimator under Assumptions 3.3 is given by,

̂̂
µ(Θi) = αiXi· + (1− αi)µ0 (24)

where

Xi· =
n∑

j=1

wij

wi·
Xij , and αi =

wi·

wi· + σ2

τ2

. (25)

�

The individual estimators Xi· are the best linear unbiased estimators (BLUE)
with the smallest variance conditional on Θi. In the homogeneous case it
would be reasonable to believe that is our best choice of estimator for µ0 is
the overall average, µ̂0 = X ·· =

∑
i

wi·
w··

Xi· which is used in [10]. In fact the
best homogeneous estimator of µ0 is

∑
i

αi
α·

Xi·, which is formulated in the
following theorem.

Theorem 3.4. The homogenous credibility estimator of µ(Θi) in the Bühlmann-
Straub model given Assumptions 3.3 is,

̂̂
µ(Θi)

hom

= αiXi· + (1− αi)̂̂µ0 (26)

where ̂̂µ0 =
∑

i

αi

α·
Xi· where αi =

wi·

wi· + σ2

τ

(27)

�
In order to obtain a credibility estimator we have to estimate the parameters
µ0, σ2 and τ2. By choosing to use the homogeneous estimator, the problem
is reduced to estimate the two latter as the estimate of µ0 is built in. By
Definition 3.3 and equation (23) σ2 is the expected within group variance,
an unbiased estimator of the variance within group i is,

σ̂2
i =

1
ni − 1

ni∑
j=1

wij(Xij −Xi·)2 (28)
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and
E[σ2

i ] = E[E[σ̂2
i |Θi]] = E[σ2(Θi)] = σ2.

The next step would be to weight the group variance estimates into an
overall unbiased estimate. As suggested by [2], we could assume that the
observations are normally distributed and therefore use an arithmetic mean
over group variances. A more appealing approach that is more in line with
the ”credibility theory intuition” and do not involve a unjustified assumption
is to weight the group variance estimates by degrees of freedom [10] which
also yield a unbiased estimate.

σ̂2 =
∑

i(ni − 1)σ̂2
i∑

i(ni − 1)
=

∑
i

∑
j wij(Xij −Xi·)2∑

i(ni − 1)
(29)

Turning to τ2, an unbiased and consistent estimate is given by the following
expression,

τ̂2 =
∑I

i=1 wi·(Xi· −X ··)2 − (I − 1)σ̂2

w·· −
∑I

i=1 w2
i·/w··

. (30)

We are now able to estimate the risk of obtaining a water-damage in each

Figure 9: Histogram of the empirical and credibility claim frequency esti-
mates per 1000 policy years.

municipality taking into account how credible the individual estimates are.
Using equation (15) for claim frequency we obtain the results tabulated in
Table 6, sorted descending in credibility factor.
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Table 6: Pure credibility at municipality level with estimates in terms of
claim frequency per 1000 policy years and an overall average of 12.42.

Municipality Exposure Claims
Credibility Credibility Empirical

factor estimate frequency

Stockholm 54 094 926 0,963 16,9 17,1
Göteborg 37 610 511 0,947 13,5 13,6
Väster̊as 20 016 226 0,905 11,4 11,3

Huddinge 19 978 300 0,905 14,8 15,0
Nacka 19 090 292 0,901 15,0 15,3
...

...
...

...
Aneby 354 7 0,145 13,5 19,8

Boxholm 313 8 0,130 14,1 25,6
Ödeshög 270 4 0,114 12,7 14,8

Bjurholm 232 2 0,100 12,0 8,6
Ydre 220 3 0,095 12,5 13,6

3.5 Multiplicative model

As previously mentioned an assumption of a multiplicative structure of µ(Θi)
in the individual risk profiles Θi could be imposed, µ(Θi) = µ0Θi. Since our
prime interest is focused on the random vairables Θi, of which an estimate
is obtained by dividing µ̂(Θi) by µ0.

µ̂(Θi) = µ0Θ̂i = µ0

(
αi

Xi·
µ0

+ (1− αi)
)

(31)

A reasonable approach in insurance practice would be to use a multiplicative
model for a set of ordinary rating factors {γk

i }, i = 1, ..., n, k = 1, ...,m,
where γk

i is relativity k for risk classification level i i.e. the risk classes are
given by γi = γ1

i · · · γm
i . Implying that conditional on the individual risk

profiles our model takes the form

E[Xijt|Θj ] = γiµ(Θj) E[Xijt] = γiE[µ(Θj)] = µ0γi. (32)

Xijt is the key ratio of random variable Sijt with volume measure wijt where
i is risk classification level belonging to group j of which it is the t’th observa-
tion. Because we have introduced rating factors into the model specification
the parameter µ0 is the expected value of the key-ratio given that the rat-
ing factors adopt the base level value (=1). Once again assuming that the
individual risk profiles are multiplicative in the ordinary rating factors

E[Xijt|Θj ] = µ0γiΘj implying E[Θj ] = 1. (33)

27



3.5 Multiplicative model 3 CREDIBILITY THEORY

As motivation for the variance structure [10] assume that the conditional
key-ratios follows a Tweedie distribution and hence also exponential disper-
sion family, yielding

V ar(Xijt|Θj) =
φv(γiµ(Θj))

wijt
=

φγp
i µ(Θj)p

wijt
(34)

and

E[V ar(Xijt|Θj)] =
γp

i σ2

wijt
⇒ E[φµ(Θj)p] = σ2. (35)

We continue by redefining our random variables Xijt and weights wijt as
follows.

Definition 3.4. If the random variables Xijt conditional on Θj follows a
Tweedie type of distribution where the mean value is multiplicative in the
factors γi = γ1

i . . . γm
i the transformed weights and variables are,

X̃ijt :=
Xijt

γi
with weights w̃ijt = wijtγ

2−p
i .

�

By Definition 3.4 we get,

E[X̃ijt|Θj ] =
E[Xijt|Θj ]

γi
= µ(Θi) (36)

and

V ar(X̃ijt|Θj) =
φγp

i µ(Θj)p

γ2
i

=
φµ(Θj)p

w̃ijt
. (37)

Applying the newly defined variables together with conditional expectation
and variance in equations (36) and (37) onto Assumption 3.3 the credibility
estimator in Theorem 3.3 follows. Estimates of the variance parameters are
obtained by applying the transformed variables instead of the original into
equations (28), (29) and (30).

We calculate the credibility estimates in the multiplicative model de-
scribed in section 2.1 recursively with the backfitting algorithm in Appendix
B.1 [10]. After twenty iterations the algorithm has converged with a largest
absolute difference of 0.000079. Sorted by credibility factor the estimates
is tabulated in Table 7. Calculating the credibility estimates in this way
implies that we believe in the hypothesis that all residual variation in the
multiplicative model is a pure effect of territory. Creating territories by
simply classifying estimates into classes by level of estimate and including
in a GLM, we would obtain a very good fit to the data but this need not
necessarily be a good territorial division. The territories should reflect a
higher geographical level of risk and should be tested on a separate data set.
A good idea would also be to investigate the territorial robustness by year.
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Table 7: Credibility estimates of municipality risk in multiplicative model
specified in section 2.1.

Municipality Exposure Claims
Credibility Credibility

factor estimate

Stockholm 54094 929 0.967 1.24
Göteborg 37610 511 0.948 1.10
Huddinge 19978 300 0.901 1.29

Nacka 19090 292 0.900 1.26
Väster̊as 20016 226 0.894 1.06

...
...

...
Grästorp 392 2 0.145 0.92
Boxholm 313 8 0.128 1.15

Ydre 220 3 0.113 0.99
Ödeshög 270 4 0.110 1.03

Bjurholm 232 2 0.096 0.98

Figure 10: Histogram of the credibility estimates in the multiplicative model.
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Figure 11: Credibility estimates in the multiplicative model
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4 Smoothing techniques

The primary purpose of using any smoothing technique regardless if it is
based on neighboring or the distance between the geographical units is to
determine elevation in risk – ”risk-terraces”, which define the boundaries for
geographical territories. By using data outside a individual unit we assume
that the local conditions could be estimated by nearby units. It is reasonable
to assume that adjacent areas, opposed to those distant, display similar
geographical and meteorological characteristics and hence are more alike.
In some cases even the surrounding social and physical conditions influence
the local risk. When it comes to pure credibility estimation, this implies
that we might consider an alternative weighting scheme for the estimator of
µ0 than proposed in Theorem 3.4 and equation (27).

4.1 Adjacency smoothing

4.1.1 First order

There is very sparse literature on the subject of adjacency-smoothing, there-
fore we propose a simple but yet effective method employing a bulls eye ap-
proach. Smoothing by rings of adjacent municipalities, acquiring a moving
average of municipality risk – the smoothed estimates, Figure. 12.

Figure 12: First and second order adjacent units for the municipality Sävsjö.

The smoothing weights are subjectively determined based on how similar
we believe adjacent units are and how smooth the risk-terraces should be.
If all weight is put onto the primary unit we obtain the least smoothed risk
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Unit weight

Primary 1st order adjacent Number of adjacent units

α β(1) n
(1)
adj

adjusted surface. The more weight applied onto adjacent units the greater
smoothing over risk is achieved. Since the weights should sum to 1 and all
first order adjacent units have the same weight we get the relationship,

α +

n
(1)
adj∑

i=1

β(1) = 1 ⇔ α + n
(1)
adjβ

(1) = 1. (38)

Next, we introduce a parameter ξ(1) determining how much overall weight
in relation to the primary unit to apply to all first order adjacent units.

α + ξ(1)α = 1 ⇔ α =
1

(1 + ξ(1))
and β(1) =

1

n
(1)
adj

ξ(1)

(
1

1 + ξ(1)

)
.

(39)
For example if ξ(1) = 0 then α = 1, i.e. full weight on the primary unit. Or
assuming that the estimates of all adjacent units are as important as the
primary one ξ(1) = 1, hence α = 1/2 and n

(1)
adjβ

(1) = 1/2.

4.1.2 First order conditions

In order for our adjacency weighting scheme to work desirably we need to
impose conditions on the α and β(j) values based on the number of neighbors.
In case of first order adjacency, if a geographical unit do not have any
neighbors α need necessarily equal 1 e.g. Gotland municipality. If the unit
on the other hand has one neighbor, it would not be reasonable having a
ξ(1) > 1, since the single neighbor should not be weighted more than the
primary unit considered i.e. β(1) 6> α. For first order adjacency we obtain
the following conditions.

α =


1, if n

(1)
adj = 0

1/(1 + ξ(1)), if ξ(1) ≤ n
(1)
adj

1/(1 + n
(1)
adj), if ξ(1) > n

(1)
adj

(40)

β(1) =


0, if n

(1)
adj = 0

(1/n
(1)
adj)ξ

(1)α, if ξ(1) ≤ n
(1)
adj

α, if ξ(1) > n
(1)
adj

(41)
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4.1.3 Nth order

We can easily generalize the method to include higher order adjacent units
by imposing the weighting scheme below.

Unit weight

Adjacent units Number of adjacent units

Primary 1st order ... Nth order 1st order ... Nth order

α β(1) ... β(N) n
(1)
adj ... n

(N)
adj

α +

n
(1)
adj∑

i=1

β(1) + ... +

n
(N)
adj∑

j=1

β(N) = α + n
(1)
adjβ

(1) + ... + n
(N)
adj β(N) = 1

Each adjacent unit order has it’s own relation parameter to the primary
unit, γ1, ..., γ(N). The unit weights are therefore given by,

α =
(

1
1+ξ(1)+...+ξ(N)

)
β(j) = 1

n
(1)
adj

ξ(j)
(

1
1+ξ(1)+...+ξ(N)

)
, for j = 1, ..., N.

Furthermore, in consistency with first order adjacency, conditions upon the
influence parameters are needed and should fulfill the relationship,

α ≥ β(1) ≥ ... ≥ β(N).

Higher than first order adjacency smoothing is usually not best prac-
tice when considering smoothing over geographical risk for units of irreg-
ular shape. Standard regional divisions as municipalities, parishes or post
codes have units shaped such that some higher order adjacent units can
be closer to the primary unit than other of lower order. As a solution, a
sensible approach is using the actual distances instead. There are several
distances to contemplate, distances between borders, geometric centers, cen-
ters of gravity i terms of policy distribution etc. More advanced methods
might even take into account that units share common geographical char-
acteristics, such as shoreline to the same lake. In these methods, we can
even consider the amount of exposure. One can also construct a smoothing
routine with respect to both adjacency as well as distance e.g. first order
adjacency smoothing and a distance weighting scheme for the units farther
away.

Applying the method on our municipality credibility estimates with ξ(1)
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equal to 0.5, 1, 2 and 3. The resulting distribution of the estimates is com-
pressed towards its base level value in a larger extent as the values of ξ(1)

increase and estimates are smoothed. In Figure 25 we depict the individ-
ual credibility in the multiplicative model with overall weight parameter
ξ(1) = 3, clear risk-terraces can be distinguished and hence potential territo-
ries. A distinct feature that can be observed is higher claim frequency level
for high populated areas with the highest values in the center of the largest
cities Malmö and Stockholm with rings of lower level values for nearby mu-
nicipalities. Defining a territory as a group of geographically intertwined
municipalities at the same classification level. Using this definition we ob-
tain in total 48 territories where the largest territory consist of 47 and the
smallest of one municipality. For ξ(1) > 3 no great changes in the smoothed
values occur in general. The parameterization means that primary units
with ≤ 3 neighbors weights each first order adjacent units estimates as
much as the primary unit.

Figure 13: Histogram of the number of adjacent units where the values on
the vertical axis is the percentage of all first or second order neighbors.
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4.2 Distance smoothing

A similar approach would be to smooth with respect to distance. Appro-
priately using the Euclidean distance between municipality centroids. If
the coordinates for the center of unit i is given by (xi, yi) the distance is
calculated as dik =

√
(xk − xi)2 + (yk − yi)2. Next, we need to establish a

weighting scheme. The least complicated and most intuitive would be to
use a strictly linear relationship [3],

βij =


1, if dij = 0
(dmax − dij) /dmax, if 0 < dij < dmax

0, if dij ≥ dmax

and hence,

Θ̂smooth
i =

1
βi·

Θ̂i +
∑
j 6=i

βij

βi·
Θ̂j .

We set the maximal distance dmax to 60km and smooth over the credibility
estimates obtained in the multiplicative model, Figure. 15. The result
is quite similar in the southern half of the country as in the first order
adjacency approach implemented previously. As the municipalities become
larger up-county, the number of territories increase which is in line with the
homogeneity assumption i.e. that each territory should display homogeneous
risks and as the municipalities become larger the less likely are two units to
be similar.

Figure 14: Histogram of the number of first, second and third order adjacent
units by distance to centroid.
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Figure 15: Linear distance smoothed credibility estimates with dmax =
60km.
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5 Risk classification

In order to differentiate the pricing between individuals with different char-
acteristics into risk classes the author of [5] specifies some guidelines for
good practice risk classification.

1. Equity: Premiums should accurately reflect expected losses, benefits
and expenses.

2. Homogeneity: Within any class, there should be no subgroups identi-
fiable at reasonable cost that have different expected costs.

3. Intuition: The rating variables should be intuitively related to the loss
hazards.

4. Practicality: Classification variables should be objectively measurable
and not subject to manipulation by the insured.

5. Incentives: The classification system ideally should provide incentives
to reduce risk.

6. Legal: Rating dimensions must be legal and socially acceptable.

A more precise way to put it, is that we should strive for a low level of
variability within the risk classes i.e accurate and reliable, and also reflect the
cause of loss. Obtaining accurate estimates relies upon number of exposure
units and hence the law of large numbers.

5.1 Similarity of risks

Geographical factors that influence the claims experience might be quite
different in adjacent areas, e.g. if there is a lake that yearly is overflowing,
only affecting residents in a close proximity. We might imagine that the risk
within this area is somewhat higher than others a few hundred meters away.
Even though it might be difficult to define the risk in terms of distance
to the lake at hand, using a small enough geographical unit would permit
us to assume that all residents within an area are exposed to the same
level of risk. If we actually are aware of the existence of additional factors
influencing the claims experience, we should take them into account in the
same way as used for risk classification [10]. In a multiplicative model we
should estimate the ordinary rating factors γi together with the auxiliaries
γaux

i , calculate the unit credibility estimates, consider the auxilary and unit
credibility estimates together and classifying them into risk categories by
level of risk.

Ωi = γaux
i Θi. (42)

Note that the unit estimate is the residual effect in terms of an additional
multiplicative factor when auxiliary is included. Smoothing over the Ω̂i’s is
still advisable.
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5.1.1 Auxiliaries

General data on municipality and parish level have been collected from
Statistics Sweden and climate data from the Swedish Meteorological and
Hydrological Institute gathered form 51 weather stations located around
the country. These data could not be incorporated in a tariff since they do
not tell us anything about the individual policies. On the other hand, they
can be used to describe local conditions and hence the influence on the level
of geographical risk.

Precipitation and temperature data containing monthly and yearly records
between 1961 – 2009. Precipitation is described in terms of amount in mil-
limeters and temperature in terms of average degrees Celsius. The measure-
ments from each single weather station is only valid for its exact position.
To estimate the precipitation and temperature in a municipality for a given
month, we calculate the distances between municipality centers and station
positions that have a measurement value, choose the value for which the
distance to the stations is the smallest, fulfilling a maximal distance re-
quirement and average over all values. In order for us to obtain an estimate
for all municipalities we need to set the maximal distance requirement to
110km since there are only 50 stations and all stations does not have a mea-
surement each year. Since we are considering water-damages the amount
of precipitation in a region is expected to be highly correlated with the fre-
quency of claims. We proceed by looking at claims and precipitation at a
aggregated level by month and year, Figure 16. As expected there are a sim-

Figure 16: Time-series of claim frequency and amount of precipitation, each
together with together with a fitted regression line.

ilar pattern in both series, which are increasing and peaks in July/August,
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Figure 17. The trend can be considered as one explanation of the increasing

Figure 17: Seasonal variation in precipitation.

calendar year effect seen earlier. We believe that it is the heavy rains in
a limited periods of time that drives these kind of claims. With these evi-
dence we construct a normal July/August precipitation variable with values
averaged over a period of 15 years for each municipality, 1995 – 2009. At
first, we use a maximum distance between municipality center and weather
station center corresponding to 110km. This distance is used in order to
get at least one measurement value for each municipality and thereafter a
condition of 50km which result in a large missing category corresponding
to 123 municipalities and 302’000 years of exposure. The estimates vary
between 53 and 109mm and are grouped into 12 categories with an interval
of 5mm, included in the model the results are not as expected. Rather than
an increasing relativity we obtain a slight increase in the first two categories
up to [60, 65) and slight decreasing estimates for the values above with some
variation. The same pattern is obtained if using average yearly precipita-
tion as well. This deviation from what we expect might be a consequence
of not taking into account other important factors in our model or that the
approximation is just too rough.

In high populated areas a large amount of concrete is used for construc-
tion of buildings and thought to limit the ability of rain-water to flow in
its natural directions, which in turn is leading to floods. The systems for
handling excess water by municipalities might in some cases be under di-
mensioned if these initially were built for a smaller number of inhabitants
than the actual number of residents as a result of high population growth.
We create a population density variable at municipality level with data ob-

39



5.1 Similarity of risks 5 RISK CLASSIFICATION

Figure 18: Population density factor at municipality level.

tained from SCB of landarea and population in 2010. The most sparsely
populated municipality is Arjeplog in the north with 0.2 persons per km2

and most densely populated is Stockholm municipality with 4504.3 per km2.
By including the factor in our model we get an increasing relativity estimates
with density and a threshold where the population exceeds 200 persons per
km2. A likelihood ratio test type-III for the factor is significant at a 0.0001
level, as a result the small effect in the number of buildings disappear.

We could also consider income, net wealth or average property values,
which are all available at municipality level from Statistics Sweden, but
these tend to be collinear and we should choose at most one. Buildings with
high assessed property values are situated at the most attractive locations,
which often are close to water, but do also reflect demand for properties and
hence high population density. In general higher value of home or income is
hypothesized to be associated with a higher propensity to hire contractors
and hence report even the smallest damages. The average taxed income
2010 by municipality varies between 198 and 463 thousand kronor and 90%
of the municipalities has an income between 207 and 297. The estimates has
a threshold at 300 which correspond to a reasonable income to afford main-
taining a house. The trend in income is increasing suggesting that location
and population density outweighs disposable income. In fact net wealth and
average property values exhibit the same pattern as income when included in
the model. If we include both population density and average taxed income
the effect of population density is reduced a lot. Also, large corresponding
confidence intervals which is obtained, indicating the suspected collinearity.
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Figure 19: Taxed income factor at municipality level.

Since income to a large extent reflect population density the loss of infor-
mation is small. We choose only to include average taxed income as a single
auxiliary variable for risk classification of municipality credibility estimates.

The credibility estimates is once again estimated with 20 iterations in the
Backfitting algorithm. The variation in the credibility estimates is heavily
reduced since we have included additional information into the model and
hence one explanation of the hypothesized geographical variation, Figure.
20. Smoothing by distance and grouping adjacent units with the same class
level value result in 57 closed territories which display differences from the
ones obtained by distance smoothing without auxiliaries.
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Figure 20: Comparison of the credibility estimates with and without inclu-
sion of taxed income as auxiliary variable, where the vertical axis represent
percentage of total exposure.
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6 Cluster analysis

Clustering is the process of grouping objects that display a distinguishing
pattern into classes, determined by a measure of similarity. A cluster is
obtained by grouping observations by their relative distances together with
some minimization criterion and perhaps a lower limit of the number of
exposure units in each cluster. The two primary reasons for considering
clustering in our application are pattern evaluation and reduction of the
number of geographical levels. As a result we want to obtain g ≤ N ho-
mogeneous mutually exclusive classes where individuals within clusters are
as similar as possible and individuals between clusters are as different as
possible [7].

A similarity measure is a function of the variable values used for cluster-
ing possessed by two individuals,

sij = f(xi,xj) xi = {xi1, ..., xim} (43)

where xik is the value of variable k possessed by individual i. The measure
is symmetric sij = sji, sik = 1 for all i = k and usually bounded by zero
and one. In contrast we could define the complement of similarity dij =
1 − sij , a dissimilarity measure. If several variables of different kinds or
measured in different units are used in construction of the similarity measure
we should account for the difference in variability that they might display,
because high volatile variables will outweigh the less. If we are dealing with
interval variables [4] suggests standardization with the standard deviation
of all observations zik = xik/sk but notes that dilution of group differences
might occur. We want to find clusters where both the distance between
territorial risk as well as location is minimized. To accomplish this we use
the Euclidean distance,

dij =

√√√√ m∑
k=1

(xik − xjk)2. (44)

However the geographical risk and location are of different types and we
need to make an adjustment to the dissimilarity measure. Assuming that
the variance of geographical risk estimates are the same in all geographical
units σ2

θ , the standardized squared Euclidean distance for credibility is,

f(θi; θj ;σθ) = (zi1 − zj1)2 =
1
σ2

θ

(θi − θj)2. (45)

On the other hand, standardizing the x- and y-coordinates would not make
any sense, as previously mentioned. It would seriously dilute the clustering,
since the y-variable has a larger range. The Euclidean distance for location,

g((xi2, yi3); (xj2, yi3)) = (xi2 − xj2)2 + (yi3 − yj3)2.
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The author of [14] suggest that these should be combined by applying a
preliminary weight w on f , which can be thought of as including the factor
1/σ2.

g(·) + wf(·) ⇒ dij =
√

(xi2 − xj2)2 + (yi3 − yj3)2 + w(θi − θj)2. (46)

We should note that such a variable weighting scheme has its flaws. The
weight are chosen on pure judgment and might simply reflect the prior belief
of how the territories should be constructed [4], as opposed to searching for
previously unknown patterns in data.

There are numerous methods we can use for clustering. The hierarchical
techniques are divided into two main classes, agglomerative and divisive.
Agglomerative routines starts with N clusters and successively merge them
into larger groups according to a optimization criterion. The sequence of
events can thereafter be displayed graphically in a dendogram three. The
divisive class of techniques runs in the opposite direction, starting with one
single cluster and gradually divides it into smaller sub-clusters.

6.1 Agglomerative routines

The agglomerative clustering algorithm goes through the following general
steps.

1. Define a measure of dissimilarity and calculate a triangular proximity
matrix.

D1 =


d11

d21 d22
...

...
. . .

dn1 dn2 · · · dnn


2. Search the proximity matrix for the most similar pairs, min(Dk) and

group them into one cluster.

3. Update the proximity matrix with the new clustering.

4. Repeat steps 2 – 3 until all objects belong to the same cluster.

Single linkage or nearest neighbor clustering is the simplest in the class of
agglomerative techniques. The distance between clusters is the Euclidean
and proximity is defined as the smallest distance between the closest units
in two clusters, i.e. the nearest neighbors. If we denote two separate clusters
by CA and CB the single linkage distance between them is formally written
as,

DAB = min
i∈CA
j∈CB

dij
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where dij is defined in equation (46). The primary advantage of the method
is that it does not put any restrictions on the shape or size of a cluster. Ap-
plying the routine onto our data we encounter a great drawback – chaining.
Meaning that even though groups of observations clearly belong to separate
clusters, intermediate observations in between the clusters tend to connect
them together. The problem occurs primarily in the southern part of the
country, as almost all municipalities are chained together with exception for
some single municipalities who make up their own clusters. Since the munic-
ipality centers are closer in the southern part than up-country, we partition
the country into north and south, and look for clusters in each partition.
Unfortunately this does not resolve the issue of chaining.

A opposite approach to proximity is using complete-linkage. The dis-
tance between two clusters is measured by the distance between the units
furthest away in two separate clusters, i.e. furthest neighbors. The routine
create compact clusters of different shapes, but they tend build clusters with
an equal diameter. Other similar methods are average-linkage, centroid- and
median clustering, but these will not be considered in this paper.

6.2 Ward’s minimum variance method

The algorithm goes through the same general steps as any other agglomer-
ative clustering routine but differs in the way similarity between clusters is
defined. This particular method employs an analysis of variance approach.
If we denote observation j with attribute i and in cluster c by Xcij , the well
known decomposition of the total sum of squares (TSS) into between group
sum of squares (BSS) and error sum of squares (ESS) become,

∑
c

m∑
k=1

nc∑
j=1

(
Xckj − X̄···

)2
︸ ︷︷ ︸

TSS

=
∑

c

m∑
k=1

nc∑
j=1

(
X̄ck· − X̄···

)2
︸ ︷︷ ︸

BSS

+
∑

c

m∑
k=1

nc∑
j=1

(
Xckj − X̄ck·

)2
︸ ︷︷ ︸

ESS

.

We focus our attention on the ESS, which is composed of the sum of each
clusters ESS. ESSc =

∑m
k=1

∑nc
j=1

(
Xckj − X̄ck·

)2, i.e. sum of the squared
differences within each cluster. Initially, we have n objects/clusters, for each
recursion of the algorithm two clusters are merged into one and the ESS will
therefore be reduced by one term. At recursion stage t the whole ESS is
denoted by ESSt =

∑n−t
c=1 ESSc. The loss increase as a result of merging two

clusters at recursion t is defined as,

zt = ESSt − ESSt−1, t = 1, ..., n.
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The zt is minimized at each iteration of the routine, which represent the
minimum variance criterion. But minimizaton of zt does not ensure that
the solution is the overall minimum solution [9] i.e. for all possible permuta-
tions of the observations into n− t clusters. Ward’s method is particularly
compelling since it attempts to maximize our homogeneity criterion. The
variation within each cluster should be as small as possible (ESS) and the
variation between clusters as large as possible.

Before applying the method onto our data we need to address the is-
sue of determining the credibility weighting constant w in equation (46). A
reasonable approach is for a given number of clusters, determine at which
value of w the clusters start to break up in the (x,y)-plane. Equivalently at
what level municipality credibility is as important as location. In order for
the clusters to start breaking apart, a relatively large weighting constant is
needed when specifying a small number of clusters. With coordinate data
in terms 10km, we obtain the relation in Table 8. Secondly we want to

Table 8: Credibility weighting constant.

Number of clusters
√

w

10 52
20 36
40 21
60 21

determine the optimal number of clusters. To assess homogeneity we use
the R2 = BSS

TSS i.e. how much of the variation in the data that is explained
by a given number of clusters, Figure 21. When the number of clusters are
greater than seven, the marginal utility in terms of explained variation is
leveling off and we can see that it is reasonable to have at least ten clus-
ters. For higher values in the constant, the marginal gain for including an
additional cluster is slightly greater than when the number of clusters are
small. A method not mentioned in the literature is to refit and evaluate
Akaike’s information criterion (AIC) in our model from section 2.1 using
the clusters as zone-variables. For a constant equal to 36 AIC reaches its
minimum at about 70 clusters and 80 for a constant of 21. Such a large
number of territories is a bit too much considering that we start off with
290 geographical units to begin with. Studying the cluster distribution in
the (x, Θ̂)- and (y, Θ̂)-plane, they are well separated by location level (x or
y), but can adopt a wide range of wΘ̂ values. In order to separate the clus-
ters into reasonably sized groups on the credibility axis, not create too many
and not to deviate from the subjectively determined credibility weighting
constant we need to have about 40 clusters. Applying w = 21 and specifying
the number of clusters to 40, the resulting territorial division is depicted in
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Figure 21: R-squared against the number of clusters for a credibility weight-
ing constant equal to 26.

Figure 26.

6.3 Minimum variance adjacency clustering

There are several disadvantages inherent in Ward’s method such as deter-
mination of weighting constant and finding irregular shaped territories. Be-
cause our prime aspiration is to construct territories by level of risk, we
create a Ward type of clustering routine based on the level of risk and ad-
jacency. The ESS is only based on municipality credibility,

ESS =
∑

c

nc∑
j=1

(
Xci − X̄c·

)2 (47)

we minimize zt at each iteration under the condition that the clusters are
adjacent. Since we only use one clustering variable we do not need to stan-
dardize or using any weighting constant and the homogeneity criteria based
on cluster risk is optimized (at each iteration). Plotting the proportion of
variance within clusters against the number of clusters ESS/TSS, we are
able to observe two level effects, Figure 22. The first obtains at 13 clusters
and the second at 29, after which the additional reduction of variance within
clusters for each additional cluster is obtained at a lower rate. These levels
can be considered as optimal number of clusters. Whilst considering AIC, a
minimum is achieved at 65 clusters.
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Figure 22: Proportion of variance within clusters to total variance against
the number of clusters.
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Figure 23: Minimum variance adjacency clustering territories.
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7 Comparison and conclusions

In comparing the methods, we investigate the proportion of variance within
clusters 1 − R2 and the fit of the model when including zone variable with
Akaike’s information criterion, Table 9. The likelihood ratio tests of type-
III turns out highly significant for all territory divisions considered. We can
conclude that the minimum variance adjacency clustering (MVAC) method
performed best overall. It has by far the smallest variation within territo-
ries and AIC in the model sample. The fit is slightly worse than adjacency
smoothed territories including auxiliary variable in the control sample. Con-
sidering that the MVAC-method obtains its minimum AIC at 65 clusters and
has nine territories less, it is preferable. There are unfortunately too little
data in the control sample at municipality level in order to obtain credi-
ble estimates of the municipality risk and hence the proportion of variance
within territories by method. We try estimating the residual municipality

Table 9: Performance of territorial division

Model
Number Proportion AIC AIC

of of within model control
territories variance sample sample

Without zones 0 133054 23669
Adjacency 40 43,0% 132689 23663
Adjacency with aux. 38 28,6% 132681 23637
Distance 48 40,5% 132690 23670
Distance with aux. 57 33,9% 132706 23642
MVAC 29 19,7% 132522 23640
Ward 40 39,0% 132675 23652

effect with credibility when MVAC zone variable is included, but to ob-
tain an estimate of the variance between groups τ̂2 = −9.01 ∗ 10−7 < 0.
This can happen if we cannot detect any differences between the groups [2].
Because the unbiased estimator of τ2 in equation (30) contains a negative
term that outweighs the between group sum of squares, we might consider
selecting a strictly positive estimator. Choosing estimator of τ2 based on∑I

i=1 w̃i·(X̃i· − X̃ ··)2 that is biased, we obtain credibility estimates highly
concentrated around 1, further supporting the evidence of no group differ-
ences.

In order to answer the question whether the ”non-random pattern” in
model residuals is reduced when including zone variable we compare the
observed and predicted claim frequencies at municipality level. When pre-
dicting a random variable In the model sample, we get a sum of squared
error weighted by exposure of 8.752 × 106 without zone and 2.135 × 106
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with MVAC zone variable. Corresponding for the control sample the sum
of squared errors are 2.474×105 without and 2.173×105 with zone variable
i.e. either the variance of the random variable is reduced, the bias (”non
random pattern”) or both. And since the zone variable is a highly signifi-
cant we have evidence supporting that the systematic error of prediction is
reduced.

An evaluation of the spatial distribution of claims is preferably con-
ducted by plotting coordinates of each claim on a map and investigating the
resulting patterns. This should also be complemented by claim frequencies
in small geographical units. In our case, this is not easily done, because
the current coordinate definitions are not complete and based on different
projections of the earth surface. At municipality level we can conclude that
there is a higher level of claims in high populated areas, especially around
Stockholm and Malmö. But also south of lake Vättern and spreading to the
coast, along Dalälven and by the west coast in municipalities such as Timr̊a,
Härnösand, Skellefte̊a and Boden.
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8 Discussion

There are three simple but important realizations one has to come to before
embarking territorial construction and rating. First, we are looking for ge-
ographical risk terraces and the boundaries should be defined as the point
where the level of risk drops. Second, the choice of method should be based
on the feature we would like the territories to reflect. Third, there is no
perfect method for obtaining territories; all have their own flaws and advan-
tages. The methods are heuristic and will lead to a more or less good solution
that should be complemented by manual revision to reduce the complexity,
number of parameters and to obtain sought territory boundaries. The clus-
tering routines excluding MVAC suffer from problems of determining the
weighting constant, the number of clusters, creation of clusters of irregular
shape and chaining. Although Ward’s method is conditioned by such dif-
ficulties it has the superior strength of optimizing the homogeneity within
clusters at each iteration. Ward’s method tends also to fuse groups that
have a small number of observations and create clusters of equal size with
a spherical shape [9]. Whilst smoothing techniques are more intuitive and
does not restrict the shape and size of the resulting territories, we need to de-
fine an appropriate smoothing constant or weighting function, which can be
rather arbitrary. Both adjacency and distance based smoothing should per-
form equally well if the units were about the same size and shape, but as we
have been considering municipalities, using a distance function is preferable.
A good idea would be to evaluate resulting territories acquired from both
smoothing and clustering as the methods can be seen as complementary.
Boundaries based on smoothed estimates will reflect a general elevation in
risk and a territory will largely be dependent on the levels of classification.
Clustering routines group units by a criterion such as location and risk or
continuity and risk. Smoothing is a good way to get an idea of risk terrace
boundaries but MVAC is probably best for aggregation into territories since
we are primarily interested in optimizing homogeneity of risks.

If accurate coordinate data is available a higher precision in determining the
underlying territory boundaries is possible to achieve, given that we have
enough exposure and claims. By partitioning the country is into a square
grid we are allowing the actuary to define the size of each unit such that all
requirements in section 1.4 are fulfilled and the actual territory boundaries
more apparent. Even though the applied unit definition is not perfect, it is
good enough for acquiring a satisfactory zone variable.

For the territories to be valid estimates of the geographical risk the under-
lying model have to be as good as possible. Since the credibility estimates
are obtained under the hypothesis that all residual variation in terms of
an additional multiplicative factor is a pure effect of territory. Inclusion of
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auxiliaries will reduce the residual variation and hence increase the predic-
tive power of the model. The geographic risk in municipalities with a very
small amount of exposure will be adjusted from an estimate close to the
base level towards the auxiliary variable estimate, which should be closer
to the truth. Combining credibility and auxiliaries, smoothing and classify-
ing estimates in order to observe boundaries, then creating territories with
MVAC and at last manually revise territories compared to smoothed value
boundaries, is to the best of my knowledge to be considered as best practice.

By creating territories based on the belief that the risk in a group of units is
based on location we assume that there is a hierarchy determining the risk
of damage.

Territory ⇒ Unit ⇒ Policy

For us to obtain a measure of risk based on location- and unit experience,
we could estimate the hierarchy by another,

County ⇒ Municipality ⇒ Policy.

This would lead us to consider hierarchical credibility models. Taking into
account a set of ordinary rating factors γi we assume that the expected value
of the key ratio is given by,

E [Xijkt | Θj ,Θjk] = µ0γiΘjΘjk.

An evaluation of these models for territorial construction is left as work for
the future.
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A Figures

Figure 24: Empirical claim frequencies classified by the categories in Figure.
1. The figure is referenced on page 9.
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Figure 25: First order adjacency smoothed credibility with γ(1) = 3. The
figure is referenced on page 34.
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Figure 26: Ward territories.
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Figure 27: Basement variable parameter estimates compared with rescaled
observed counts. The figure is referenced on page 19.

Figure 28: Building year parameter estimates compared with rescaled ob-
served counts. The figure is referenced on page 19.
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Figure 29: Living area size parameter estimates compared with rescaled
observed counts. The figure is referenced on page 19.

Figure 30: Policy holder age parameter estimates compared with rescaled
observed counts. The figure is referenced on page 19.
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Figure 31: Number of buildings parameter estimates compared with rescaled
observed counts. The figure is referenced on page 19.

Figure 32: Calendar year parameter estimates compared with rescaled ob-
served counts. The figure is referenced on page 19.
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B Appendix

B.1 Backfitting algorithm

The algorithm for simultaneous estimation of rating and credibility factors
in a GLM proposed by [10].

Step 0: Initially, let Θ̂j = 1 for all j.

Step 1: Estimate the parameters for the ordinary rating factors by a Tweedie
GLM (typically Poisson or Gamma) with log-link, using log(Θ̂j) as an
offset-variable. This yields µ̂ and γ̂i

1, ..., γ̂
i
R.

Step 2: Compute σ̂2 and τ̂2, using the outcome of Step 1.

Step 3: Use equation (31) to compute Θ̂j , using the estimates from Step 1
and 2.

Step 4: Return to Step 1 with the new Θ̂j from Step 3.

Repeat Step 1-4 until convergence.
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