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STATISTICAL PROPERTIES OF EQUITY TRANSACTION DATA

GUNNAR HÖGLUND

Abstract. This Master’s thesis examines arrival times between trades of shares in
the Microsoft stock during the year 2000 from a descriptive statistical perspective.
Instead of ignoring transactions that occur during the same second we develop tools
for handling floored stochastic processes. We conclude that the arrival times in short
sequences of intraday trades are iid and likely from a scalable distribution. The gamma
distribution is shown to fit the arrival times well but we can not statistically prove that
this is the case.
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1. Introduction

1.1. Equity prices. Equity prices must be one of the most well researched topics in
finance. We could describe the equity price process in the following simple manner: Bid
and ask prices arrive at the exchange (together with a volume) at certain time points.
When the prices meet a trade occurs. A natural way to model this would be to model
the bid and ask process by themselves as continuous time point processes with discrete
price jumps. Another way is to only look at the actual trading times and model them in
an analogous fashion. All of this has indeed been done, for example by Engle and Russell
(1998) and Engle (2000) who pioneered the field ten years ago with their Autoregressive
Conditional Duration model. Our study will begin from the same starting point Engle
and Russel started at, but the approach is quite different.

In this paper we will only focus on the times between the trades and we will do this
from a pure descriptive, statistical perspective. We are voluntarily ignoring loads of
information when we do this, the arrival of bid and ask prices, the volume, the price
change and how all of this effects the time to the next transaction.

1.2. The data. We will examine the times between trades in the Microsoft share on
the Nasdaq stock exchange during the year 2000. The data is ordered and time stamped
to the second by the exchange. We will ignore trades that take place outside regular
trading hours but no other trades are removed. If two trades occur the same second the
arrival time between them will be 0 seconds in our eyes - this differs from the approach
taken by Engle and Russel that only consider arrival times larger than 0.

Figure 1 illustrates the trades of the Microsoft share during 500 seconds in the opening
hour of April 24, 2000. The price is on the y-axis and the x-axis illustrates the number
of seconds from opening. When the stock market opened after the easter holiday the

Figure 1
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share price pummeled and fell close to 15% on opening. Like most other tech companies
of the time, the share proved volatile intraday and the difference between the highest
traded price and the lowest equaled 5 USD. During the 500 seconds depicted in the chart
4495 trades occurred, 2.71% of the total number of trades that took place during the
day. The time around opening and close is usually the most intensive period both when
it comes to volume (high) and the time between trades (short). Figure 2 illustrates the
average arrival times between trades in the stock during 8 minute intervals the same
day. Time between trades is on the y-axis and the time of day is on the x-axis. The

Figure 2
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average arrival time the first 8 minutes this particular day was a bit below 0.05 seconds,
it later rose to above 0.25 seconds around mid-day and then declined to just above 0.1
seconds before close. This non-stationarity is always an issue when analyzing intraday
equity data and we will handle it somewhat differently than the researchers mentioned
above.

Before we start to study the actual data we will begin with some general results that
will be employed in the analysis.

1.3. Notation.

1. U(0, 1) - The uniform distribution on the unit interval.
2. N - The natural numbers 1, 2, 3, ....
3. {} - Used both to denote sets and the fractional part of a number.
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2. The floored renewal process

Let (Sn) constitute a renewal process with arrival times Ti from some continuous
distribution1. If we round the renewal epochs down to the closest integer we receive the
related floored renewal process (Σn) with arrival times ∆i = [Si]− [Si−1]. Since S0 = 0
the first arrival time ∆1 = [T1]. For i ∈ N ,

(2.1) ∆i+1 = [Si+1]− [Si] = [Si + Ti+1]− [Si] = [Ti+1 + Ui],

where Ui = Si−[Si] is the fractional part of Si. Ti+1 is independent of Ui, but Ui+1 is not
- so by flooring the renewal epochs both the independence and the equal distribution of
the arrival times are lost. Fortunately the dependence between the arrival times declines
with higher expected value and the arrival times are equally distributed in the limit.

Lemma 2.1. Let U ∼ U(0, 1), then the fractional part of Si converges in distribution

to U , Ui
d→U as i→∞.

Proof. The result is intuitively clear - a proof can be found in Robbins (1953). �

Let ∆ = limi→∞∆i denote the asymptotic arrival time in the floored renewal process

(Σn), then ∆
d
= [T + U ] with obvious notation.

Example Figure 3 depicts the tails of the distribution of arrival times in a floored
Poisson process2 (λ = 1). The first arrival is a floored exponential variable and the tail
assumes the same values as its continuous analogue on the non-negative integers.

Figure 3
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1Let φ(t) denote the characteristic function of the Ti’s. Formally we require that φ(t) = 1 iff t = 0.
2The tails of arrival 1,2 and 3 are based on 106 generated exponential variables, the asymptotic tail

is numerically calculated.
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The second arrival time displays some quite different properties compared to the first
one, the 0-arrival time is not as frequent for example. The third arrival time is very hard
to set apart from the asymptotic so the convergence in this case is remarkably quick.
As the intensity increases the convergence naturally becomes slower and for a floored
Poisson process with λ = 1/31 it takes closer to 200 arrivals (6.5 seconds).

The following lemma shows the connection between the distribution of ∆ and the
distribution of T .

Lemma 2.2. For n ∈ N holds,

P (∆ ≥ n) =

∫ n

n−1
P (T ≥ t)dt

Proof.

P (∆ ≥ n) = P ([T + U ] ≥ n) = P (T + U ≥ n), since n ∈ N .

The result follows from straightforward calculations using the fact that U is uniformly
distributed. �

Since P (T ≥ t) is non-increasing in t,

P (T ≥ n) ≤ P (∆ ≥ n) ≤ P (T ≥ n− 1)

but fortunately this does not change the expected value.

Corollary 2.3. The expected value of the asymptotic arrival times in the floored renewal
process equals the expected value of the arrival times in the original process

Proof.

E∆ =
∞∑
n=1

P (∆ ≥ n) =
∞∑
n=1

∫ n

n−1
P (T ≥ t)dt =

∫ ∞
0

P (T ≥ t)dt = ET

�

One important consequence is that the sample mean of the asymptotic arrival times
in a floored process is a consistent estimate of the expected value of the arrival times in
the original process. It also simplifies the proof of the following Lemma.

Lemma 2.4. Let ∆ denote the asymptotic arrival time in the floored renewal process
with underlying arrival times T . Then,

Var(∆) = Var(T ) + E ({T}(1− {T})) .

Proof. Let F denote the distribution of T . Due to Corollary 2.3

(2.2) Var(∆)−Var(T ) =

∫ 1

0

∫ ∞
0

([t+ u]2 − t2)dF (t)du.

Splitting up t into its integral part n = [t] and fractional part θ = {t} we can rewrite
the integrand{

n2 − (n+ θ)2, for u < 1− θ,
(n+ 1)2 − (n+ θ)2, for u ≥ 1− θ, =

{
−2nθ − θ2,
2n+ 1− 2nθ − θ2.
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Hence (2.2) equals∫ ∞
0

(∫ 1−θ

0
(−2nθ − θ2)du+

∫ 1

1−θ
(2n+ 1− 2nθ − θ2)du

)
dF (t).

Simplifying the expression completes the proof. �

So the rounding of a renewal process increases the variance of the arrival times but
only up to 0.25 since {T}(1 − {T}) ≤ 0.25. Lemma 2.4 also gives an approximation of
the variance when µ = ET is small and the distribution of T is well behaved.

Corollary 2.5. If T < 1 a.a. then

Var(∆) = µ− µ2.

Summary When observing a floored process the observed distribution will differ from
the underlying one but the expected value (of the asymptotic arrival times) is unchanged.
The variance of the asymptotic arrival times is larger than the underlying variance -
the relative difference decreases with higher variance. There is a dependence between
the arrival times in the floored process - the magnitude depends on the precision loss
introduced by the rounding. The arrival times are identically distributed in the limit -
the speed of the convergence depends on the expected value. When analyzing rounded
data as described above one needs to be aware of the consequences of the precision loss
- fitting and scaling of distributions is much more intricate.

3. Statistical properties of the data

That the intensity of the arrival times vary during the day complicates the analysis.
One common way to handle this problem of non-stationarity is to try to normalize the
arrival times3 but this, as we shall see on page 16 actually risks to distort the data in a
non-trivial way. Our approach will instead be to split up every day into several shorter
sequences ∆̂i and conduct the analysis on these instead. Each day will be split up into
subsequences of 31, 51 and 200 observations.

Assume that we split every day into consecutive sequences of n observations and let
D be the collection of arrival time sequences, then

D = (∆̂1, ∆̂2, ..., ∆̂m), where ∆̂i = (∆i
1,∆

i
2, ...,∆

i
n)

are the subsequences of observed arrival times. If the number of observations a given day
is not a multiple of n the last observations will be discarded. This way, all sequences ∆̂i

will have the same number of observations n and will only contain arrival times between
trades that occur the same day. Let µ̂i and σ̂2

i denote the sample mean and variance of

the i:th sequence ∆̂i

µ̂i =
∑
j

∆i
j/n, σ̂

2
i =

∑
j

(∆i
j − µ̂i)2/n

To avoid making the notation to burdensome the n is left out and during the text the
context decides whether for example ∆̂i is a sequence of 31, 51 or 200 observations.

3Engle (2000) for example diurnally adjusts the data by regressing the arrival times on the time of
day using a piecewise linear spline and then normalizing the arrival time that occur at t with the value
of the spline at t.
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Another word on notation, we will use the word length to refer to the time length of a
sequence i.e. the length of ∆̂i equals Σj∆

i
j .

So what do these sequences look like and what properties do they possess?

Remark Among the sequences with 31 observations, 1186 have a total (time) length 0.

Let ∆̂i be one of these, then

Σj∆
i
j = 0, µ̂i = 0 and ∆̂i = (0, 0, ..., 0).

If ∆̂i would have been one of the second shortest sequences instead, then ∆̂i would
have consisted of 30 zeros and 1 one, µ̂i = 1/31 and σ̂2

i = µ̂i − µ̂2
i ≈ µ̂i. There

are 6419 sequences of length 1. The most common length of the sequences is 8 sec-
onds (13052 sequences) and the longest observed sequence is 3866 seconds long. In

theory, the possible number of variations of ∆̂i obviously increases dramatically with
µ̂i ∈ {k/31: k = 0, ..., 3866}.

A second look at the data is provided in Figure 4, the sample means are plotted versus
the sample standard deviations for n = 31. The chart to the left is the whole material,
the chart to the right is zoomed in close to origo. Just by examining the charts we can

Figure 4

spot an obvious, almost linear relationship between µ̂ and σ̂.

3.1. Test of independence. We know that the flooring of a renewal process in theory
induces a dependence and that this effect increases with higher precision loss. This
is however always a problem in the analysis of non-discrete stochastic processes where
only the epochs are known and we can assume that the effect should be small unless the
expected arrival time is very short.

Null hypothesis. The following tests will test the null hypothesis that two subsequent
arrival times in a short intraday sequence are independent.
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To test the null hypothesis of pairwise independence of two consecutive arrival times
we will create a contingency table from each ∆̂i and then conduct Fisher’s exact test4

extended to contingency tables larger than 2×2 5. Similarly to Martin-Löf (1974) we will
use critical level to denote the p-value. The exact test is done in R using fisher.test().

Sequences of 31 observations. There are in total 313272 sequences ∆̂i with 31 ob-
servations. The shortest 1186 sequences only contain 0-arrival times and therefore are
not tested - with the observed precision the dependence in these sequences is total. The
last 2.4% is not tested due to time restrictions, 0.1% of the sequences are skipped due
to problems with the underlying algorithm6. The remaining 97.5% of the sequences are
tested successfully.

Result: 4.1% of the critical levels ε are smaller than 5%, 0.8% are smaller than 1%
and 0.08% are smaller than 0.1%. To get an overview of the critical levels and see if
they vary with the length of the sequences we plot the 500 moving average of the critical
levels versus the average time length of the underlying sequences. Judging from the plot

Figure 5
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the average critical level stabilizes around 50% for µ̂i > 0.3 seconds. This is what to be
expected if the null hypothesis is true since this would make ε the outcome of a U(0, 1)
variable. The average critical level does not decrease with increasing expected value and
there are therefore no reasons to expect that the longest 2.4% not tested would show a
dependence. The dependence of the arrival times introduced by the flooring can not be
detected by the test, on the contrary two consecutive arrival times from a low µ̂ sequence
are considered totally independent and it is fair to assume that the precision error in
these sequences is too large to effectively test the sequences.

4See Fisher (1934).
5See for example Martin-Löf (1970) and Martin-Löf (1974).
6The R function is based on the FORTRAN subroutine FEXACT.



STATISTICAL PROPERTIES OF EQUITY TRANSACTION DATA 9

Sequences of 51 observations. There are 190368 sequences ∆̂i with 51 observations.
The shortest 181 sequences only contain zero-arrival times and therefore are not tested.
The longest 3% is not tested due to time restrictions.

Result: 6.3% of the critical levels are smaller than 5%, 1.6% are smaller than 1%
and 0.2% are smaller than 0.1%. Judging from the plot the critical levels soon stabilize

Figure 6
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around 0.45.

Summary We can not reject the null hypothesis in the case of 31 observation sequences.
Traces of dependence can be detected in the 51 observation sequences - we therefore do
not proceed to test the sequences of 200 observations.

3.2. Test of homogeneity. Continuing our process of describing the data the next step
is to check whether similar sequences ∆̂i can be considered to be drawn from the same
underlying distribution. We will proceed in the following fashion. Start by denoting the
unique sample means by

{µ̌1, ..., µ̌l} = {µ̂i : i = 1, ...,m}

and define

Dk = (∆̂i)i : µ̂i=µ̌k , for k = 1, .., l.

Dk is then the collection of all the sequences ∆̂i such that µ̂i = µ̌k. Figure 7 illustrates
the relationship between µ̌k and the number of sequences in Dk (for n = 31) excluding
the 16 datasets Dk that only contain one sequence each.

Null hypothesis. Let T1 and T2 be two arrival times between trades with the same
expected value, then

H0 : P (T1 > t) = P (T2 > t).
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Figure 7
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To test the null hypothesis of homogeneity we will conduct an exact test of a reductive
hypothesis in the Per Martin-Löf sense7. This is a general formulation of Fisher’s before
mentioned test. The drawback of the exact tests used to be the computing power required
- but unless we are dealing with very large sets of data this is not a problem anymore.
The primary advantage (apart from the exactness) is the reduced need for grouping.

Example Figure 8 illustrates two pairs of distribution tails, all four with mean 77/31 ≈
2.48.

Figure 8
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7See Martin-Löf (1970) or Martin-Löf (1974).
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Table 1 illustrates the data in the right chart above; one of the sequences (a) has 5 zero
observations and 10 one observations, the other one (b) also has 5 zeros but 14 ones. Let
X be the underlying discrete sample space, x ∈ X and let t denote the sufficient statistic
consisting of the two first rows t(x) = (5, 10, ..., 0, 5, 14, ..., 2). Let u denote the simpler
statistic assuming values equal to the column sums, u(t) = (10, 24, ..., 2). Keeping both

Table 1

∆̂a

∆̂b

Total

∣∣∣∣∣∣∣∣
0 1 2 3 4 5 6 7 8 9
5 10 5 1 4 1 3 1 1 0
5 14 2 2 1 1 2 2 0 2
10 24 7 3 5 2 5 3 1 2

row sums fixed equal to 31, the (reductive) hypothesis that t can be reduced to u is
the hypothesis of homogeneity and is in this case rejected by the test if the number of
outcomes that realize the observed value of t(x) is small compared to the number of
outcomes that realize the observed value of u(t(x)).

The exact homogeneity test on both pairs generates the critical levels (from left to
right) ε1 = 0.05738 and ε2 = 0.6311. In the second case we can clearly not reject the
hypothesis of equal distribution whereas in the first case we can reject it on the 10%
level, but not on the 5% level.

If we were to test every sequence in Dk versus every other sequence with expected
value µ̌k we would approximately have to conduct 1.3 ∗ 109 different tests. If every test
took 1/100 of a second it would take us about 150 days to get the result. Instead we
will proceed in the following fashion, and test every subsequent pair of sequences in Dk.
Let k∗ ∈ {1, ..., l} and assume that Dk∗ = (∆̂∗1, ..., ∆̂

∗
h). To test if the sequences in Dk∗

are equally distributed we will test every pair of sequences (∆̂∗i , ∆̂∗i+1), i = 1, ..., h− 1.

Sequences of 31 observations. Since we test sequences with equal sample means the
16 data sets that only contain one sequence each are removed from the test. The shortest
1186 sequences ∆̂i with sample mean 0 only contain 0-arrival times and are skipped in
the formal test - with the observed precision they are identical. Testing the other data
sets with a total of 312086 members took 11 hours8.

Results: 1.4% of the critical levels are smaller than 5%, 0.2% are smaller than 1% and
0.02% are smaller than 0.1%. If we only test the longest 5% of the sequences we get the
following results: 4.2% of the critical levels are smaller than 5%, 0.8% are smaller than
1% and 0.1% are smaller than 0.1%. Figure 9 plots the share of critical levels smaller
than 0.5 (y-axis) in order of increasing sample means (x-axis). In the chart to the right
we have have grouped the critical levels from consecutive data sets with less than 100
sequences to get a better overview of the data. For example, (#D100, ...,#D105) =
(41, 47, 45, 39, 36, 45) and after grouping we end up with two sequences of critical levels
with 133 and 120 elements each. If we plot the share of critical levels smaller than 0.1
or 0.05 for example we get a similar result. Once again it seems like the precision error
in small µ̌ sequences is too large for effective testing.

8We have used a computer with a 2.8 GHz Intel Core i5 processor and 4 GB 1333 MHz DDR3.
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Figure 9

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
share of critical levels less than 0.5

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
grouped results

One drawback with the design of the test is that it assumes that the grouping in
accordance with expected value is correct. Assume that the first half of the sequences
in Dk are identical to each other and that the other half are also identical to each other
but completely different from the first half. The test would then correctly confirm that
all but one pair is equal but this does not make the first and last sequence equally
distributed. This specific case is of course highly unlikely but we need to do something
to improve on the reliability of the results. To do this we conduct the test again but this
time we permute the order of the sequences in Dk randomly for each k before we conduct
the test. The average results for the whole body of data are identical to the precision
presented above, the same holds true for the longest 5% of the sequences. Figure 10 is
analogous to Figure 9 and is very similar.

Figure 10
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The results are in strong favor of H0.
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Sequences of 51 observations. 26 of the data sets only contain one sequence each
and are removed from the test. The shortest 181 sequences ∆̂i with sample mean 0 only
contain 0-arrival times and are skipped in the formal test. Testing the other data sets
with a total of 190161 members took 7.5 hours.

Result: 1.7% of the critical levels are smaller than 5%, 0.3% are smaller than 1% and
0.03% are smaller than 0.1%. If we only test the longest 5% of the sequences we get the
following results: 4.3% of the critical levels are smaller than 5%, 1.1% are smaller than
1% and 0.16% are smaller than 0.1%.

Figure 11
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Figure 11 plots the share of critical levels smaller than 0.5 in order of increasing sample
means and if we plot the share of critical levels smaller than 0.1 or 0.05 we get a similar
result.

Sequences of 200 observations. There are 48449 sequence ∆̂i with 200 arrival times
- all with at least one arrival time different from zero. The average time length of the
sequences is 121 seconds. The test took less the 4 hours to perform. Result: 3.2% of
the critical levels are smaller than 5%, 0.9% are smaller than 1% and 0.2% are smaller
than 0.1%. If we only test the longest 5% of the sequences we get the following results:
6.1% of the critical levels are smaller than 5%, 1.7% are smaller than 1% and 0.4% are
smaller than 0.1%.

Summary The tests strongly indicate that sequences of 31 observations with equal
expected value are drawn from the same underlying distribution - the null hypothesis
can not be rejected. The same thing is true for sequences of 51 observations. Sequences
of 200 observations with equal expected value seem to be on the verge of homogeneity.

3.3. The pooled data. According to the results in the previous two subsections, ar-
rival times in sequences ∆̂i of 31 observations can be considered independent and for
each k ∈ {1, ..., l}, the sequences in Dk can be considered observations from one under-
lying distribution. This is welcomed since we are no longer limited to data sets of 31
observations.
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For further analysis we will pool the data from the sequences ∆̂i with equal sample
mean into new sequences ∆̌k. The new pooled sequences will be similar to the collections
Dk but the elements will be observations instead of sequences. Remember that µ̂i =∑

j ∆i
j/n and denote these new datasets ∆̌k,

∆̌k = (∆i
j)
i : µ̂i=µ̌k
j=1,...,n .

Let σ̌2
k to denote the sample variance of ∆̌k, the sample mean will by definition be equal

to µ̌k.
Since we want to reduce the uncertainty of the smaller data sets we will only consider

the sequences ∆̌k with at least 100× 31 elements and we will also remove the data sets
corresponding to µ̌k = 0 for natural reasons. From now on we will sloppily refer to these
reduced data sets as {∆̌1, ..., ∆̌h} (as the reduction never took place). The reduced data
sets contains 99.1% of the original observations.

Figure 12 has µ̌k on the x-axis and the number of observations in ∆̌k on the y-axis.
The transparent bars represent the removed data sets.

Remark The sequences ∆̌k are very similar to the original sequences ∆̂i. For example,
30 out of 31 elements in ∆̌1 is equal to zero, 1 out of 31 is equal to one. The sample
means are still multiples of 1/31, µ̌k ∈ {j/31: j = 1, 2, ..., 86, 88} and in the case of
k = 1, σ̌2

k = µ̌k − µ̌2
k. ∆̌2 consists of zeros, ones and twos.

Figure 12
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Comparison data. Sometimes we will need to get a feel for the precision error in the
observed data - to this end we create the comparison data sets Ck. For k = 1, ..., h let
Ck consist of #∆̌k arrival times in a floored Poisson process with mean arrival time µ̌k.

A first look at the pooled data ∆̌k is provided in Figure 13, the sample means are
plotted versus the sample standard deviations. This data looks much more well behaved
than the one in Figure 4 and for µ̌k > 0.75 there seems to be a linear relationship between
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σ̌i and µ̌k. By Corollary 2.5, σ̌k ≈
√
µ̌k for small µ̌k and this explains the non-linear

behavior close to origo.

Figure 13
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Continuing the examination of the pooled data, the chart to the left in Figure 14
illustrates the tails of the sample distributions for ∆̌k with k = 7, 23, 39, 55, 71, 87 and
µ̌k = 0.23, 0.74, 1.26, 1.77, 2.29, 2.84. The chart to the right is the tail of the observed
data with sample mean 1 together with the tail of the asymptotic arrival time in a floored
Poisson process with the same intensity.
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The similarities and differences between the sample tail with mean 1 and its expo-
nential counterpart is characteristic for all means. The tail decays rapidly for small n,
crosses the exponential tail at some point and then continues above it. In general the
tails of ∆̌k look well behaved and it is natural to pose the question whether they come
from the same scalable distribution or not.

Scaling the arrival times. Figure 15 depicts the tails of the distribution of the scaled
arrival times - we have normalized every pooled sequence ∆̌k with its mean value µ̌k. In
the chart to the right we have excluded the dashed lines.

Figure 15
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The tail from (0, 1) to (31, 1/31) might strike someone as odd but is the tail belonging
to ∆̌1. The normalization maps every 0 to 0 and in this case every 1 to 31. The tails look
more similar than before (c.f. Figure 14) but the results are obviously not satisfactory.

Example Let us conduct the same procedure on the comparison data Ck to see how
the arrival times in the floored Poisson process react to the scaling.

Figure 16

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
scaling floored Poisson arrivals

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
scaling floored Poisson arrivals



STATISTICAL PROPERTIES OF EQUITY TRANSACTION DATA 17

The result is very similar to how the sample data reacted and once again it is the high
intensity data that reacts the worst to the scaling.

As in Section 2, let (Sn) constitute a renewal process with arrival times Ti and let (Σn)

be the floored renewal process with arrival times ∆i. Let Ti
d
=Tλ where Tλ is scalable

with parameter λ and let ∆λ be the asymptotic arrival time in the floored process.
According to Lemma 2.2

P (∆λ ≥ n) =

∫ n

n−1
P (Tλ ≥ t)dt = P (Tλ ≥ θ); n− 1 < θ < n.

To simplify the expression, knowing nothing of the distribution of Tλ we make the linear
approximation θ = n− 1

2 rendering

P (∆λ ≥ n) ≈ P (Tλ ≥ n− 0.5).

Hence, to make the tail more similar to the underlying tail we should shift it 0.5 units
to the left (except for n = 0) before scaling.

Shifting and scaling the arrival times. The shifted and scaled tails of the distribu-
tion of the pooled observations in ∆̌k are plotted in Figure 17.

Figure 17
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As displayed in the chart the shifting and scaling works well except for small means.
This becomes even clearer when we remove the data sets with small sample means from
the plot. Figure 18 illustrates the shifted and scaled tails of ∆̌k for µ̌k > 0.32, µ̌k ≥ 1
and µ̌k ≥ 2
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Figure 18
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As visualized in the right chart of Figure 14 there are similarities between the distri-
bution of the sample data and the arrival times in a floored Poisson process. By looking
at the tails in the latter distribution we might improve on our linear estimate θ = n−0.5.

Once again, let ∆λ denote the asymptotic arrival time in a floored Poisson process
and let T denote the underlying arrival times with µ = 1/λ. Then for n ∈ N

P (∆λ ≥ n) = e−λn
eλ − 1

λ
= e−λθn(λ), where θn(λ) ∈ (n− 1, n) .

Solving for θn gives

(3.1) θn(λ) = n− 1

λ
log

eλ − 1

λ
,

so the horizontal distance between the floored tail and the underlying tail is in this case
independent of n. Figure 19 illustrates n− θn(λ) as a function of µ = 1/λ.

Figure 19
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Since we will not shift the tails at 0, let θ0(λ) = 0, ∀λ. If we instead of shifting the
sample tails 0.5 units to the left we (Poisson) shift the tails n− θn(λ) to the left before
normalizing we get the following result.

Figure 20
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A much more satisfactory result. To get a clearer picture of the behavior further out
in the tails we plot log-tails for both the original and the (Poisson) shifted and scaled
observations in ∆̌k.

Figure 21
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Looking at Figure 21 it is obvious that the scaling is not perfect and that we have
some funny behavior further out in the tails for the sample data with lower intensity
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(and a lower number of observations). A comparison to the more thin tailed comparison
data Ck, where the shifting is correct, shows on a similar behavior.

Figure 22

0 5 10 15 20 25 30
14

12

10

8

6

4

2

0
comparison data, log tails

0 2 4 6 8 10 12 14 16 18
14

12

10

8

6

4

2

0
comparison data, (Poisson) shifted and scaled log tails

The above results indicate that the data in ∆̌k, k = 1, ..., 87 might be generated by
the same underlying, scalable distribution and it is tempting to proceed with statistical
testing of this, but this is not as straightforward as one may think. First of all the (Pois-
son) normalization of the tails is only an approximation, secondly and more importantly
the data is (very) discrete and because of the normalization takes values in different,
disjoint sets. Figure 23 illustrates the tails of the normalized distribution of ∆̌40 (�)
and ∆̌70 (◦) where µ̌40 = 1.29, µ̌70 = 2.26, #∆̌40 = 54901 and #∆̌70 = 8277.

Figure 23
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Below we have illustrated the two (non normalized) data sets in the form of a table,
max ∆̌40 = 19 and max ∆̌70 = 23.

Table 2

∆̌40

∆̌70

∣∣∣∣∣∣
0 1 2 3 4 ... 23

20163 17700 8131 4165 2220 ... 0
2229 2182 1249 797 531 ... 1

After the (Poisson) normalization both sets will still contain the zero observation but
apart from that the two sets will be disjoint. Let Vk = {∆̌k} denote the unique arrival
times in ∆̌k, then the normalized observed variable in ∆̌40 will assume values in the set{

θk(1/µ̌40)

µ̌40
: k ∈ V40

}
while the normalized observed variable in ∆̌70 will assume values in{

θk(1/µ̌70)

µ̌70
: k ∈ V70

}
.

Of course, some of these normalized observations could happen to coincide between the
data sets but in our case, none of them does. One way around this is to somehow
group the data but there would be a risk of a somewhat arbitrary grouping or a large
precision loss. Another way around it could be to assume that the tails are linear between
the observations and conduct a Kolmogorov − Smirnov test but it would be a blunt
approximation for the high intensity data and also difficult to interpret the results from
a statistical point of view.

Instead we will rely on the visual analysis and claim that it is reasonable to believe
that the data in ∆̌1, ..., ∆̌h come from the same one parameter distribution.

Summary Let T denote the intraday arrival time between two transactions in one stock,
it is then plausible to assume that the distribution function of T is of the form

Fλ(t) = F1(λt),

i.e. the distribution is scalable.

4. Distribution fitting

Let T = (T1, T2, ..., Tn) be a short sequence of arrival times between trades of shares
in a certain stock. Then the results in the previous section suggest that the Ti can
be considered iid from a scalable distribution Fλ(t). But since the observed distribu-
tion differs from the underlying one the distribution fitting is not as straightforward as
otherwise. Fortunately, by Corollary 2.3, assuming that the observed arrival times are
asymptotically distributed, the sample mean of the observed arrival times is a consistent
estimate of the expected value of the underlying distribution. This makes it natural to
begin the search for Fλ(t) in the (µ, σ)-plane.
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4.1. The expected value and the standard deviation. Since we are dealing with
87 data sets we need a fast method to reject a distribution as a candidate for F . One
way to do this is to check if the theoretical distribution with expected value µ̌k has a
standard deviation close to σ̌k.

The Exponential distribution. We start by plotting the relationship between µ and
σ for asymptotic arrival times in the floored Poisson process together with the observed
µ̌ and σ̌. Let ∆λ denote the asymptotic arrival time in the floored Poisson process then
from Lemma 2.2 and some tiresome calculations we get

Var∆λ =
1

λ

(
1 +

2e−λ

1− e−λ
− 1

λ

)
.

Figure 24 has the mean on the x-axis and the standard deviation on the y-axis.

Figure 24
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In general the fit is bad. The relatively higher standard deviation for the floored
Poisson process with low mean is due to the precision loss and we see that µ gets closer
and closer to σ as the intensity (and precision error) decreases.

To be able to get a better fit we need an underlying distribution with higher coefficient
of variation. The two parameter Gamma distribution is an alternative.

The Gamma distribution. Let X ∼ Γ(α, ν) and denote the mean and standard de-
viation µ and σ. Since

µ = ν/α and σ2 = ν/α2 ⇒ σ/µ = 1/
√
ν.
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Since the low intensity data is the least effected by the precision errors we could make a
first rough estimation of σ/µ from the (µ̌k, σ̌k) plot above - approximately 3/2.5. This
gives an estimated shape parameter ν̂ ≈ 0.69.

A more rigorous estimate can be obtained in the following manner. Let ∆ denote the
asymptotic arrival time in a floored renewal process with gamma arrivals X ∼ Γ(α, ν)
with µ = EX and let σ∆ denote the standard deviation of ∆. Then by Lemma 2.4

σ∆ = sν(µ)

for some continuous function s. By numerically minimizing

(4.1)
∑
k

|σ̌k − sν(µ̌k)|

over ν (implicitly estimating α by dividing ν with each individual sample mean) we get
an estimate ν̂ ≈ 0.72. Note that Lemma 2.4 narrows down the possible values of ν that
minimizes (4.1) and speeds up the search. In Figure 25 sν̂(µ) is plotted together with
(µ̌k, σ̌k).

Figure 25
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The fit is good but could it be the case that any positive two-parameter distribution
could fit the (σ̌k, µ̌k) data as well? Apart from the connection to the exponential dis-
tribution we have no intuitive reasons to why the data should be gamma-distributed.
With this in mind, let us continue the examination.
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4.2. The distribution probabilities. Proceeding with the visual comparison of the
gamma distribution and the observed data we plot the tails of the asymptotic arrival
times in a floored process with gamma distributed arrivals versus the observed distribu-
tion tails of ∆̌k (Figure 26). The observed data in the plots have sample mean 0.23, 1.58
and 2.71. Once again we estimate the shape parameter ν from the (σ̌k, µ̌k) data, ν̂ ≈ 0.72
and the scale parameter α from each data set by dividing ν̂ with the sample mean. The
tails are numerically calculated using Lemma 2.2.

Figure 26
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The theoretical tails (×) seems to fit the data (�) well. An similar visual inspection of
the probability function is plotted in the Figure 27. The theoretical probability function

Figure 27
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seems to fit the two first data sets well but there are some obvious discrepancies for the
data with mean 2.7. Looking at the (σ̌k, µ̌k) plot above it should not come as a surprise
that the choice of ν̂ ≈ 0.72 fits the low mean data sets better. We proceed by estimating
the scale parameter for each individual data set.

Parameter estimation. Assuming that the observed arrival times are asymptotically
distributed we can use the results from Section 2 to estimate the parameters ν and α
separately for each data set ∆̌k. Denote these estimates ν̂k and α̂k. Since the sample
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mean µ̌k is a consistent estimate of the expected value in the underlying distribution we
will use this to estimate the mean. Using α̂k = ν̂k/µ̌k we only need to estimate ν̂k and
we do this by minimizing

|σ̌k − sν(µ̌k)|
over ν for each (µ̌k, σ̌k), using the same notation and methodology as above. The
resulting estimates ν̂k is plotted versus µ̌k in Figure 28.
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The swings in the estimate for larger sample means might be due to the smaller sample
sizes (cf. Figure 12) but the dip in the graph for smaller sample means looks strange.

Let ∆ and sν(µ) be as above. Since the tails of the gamma distribution are well
behaved in the sense that a low expected value limits the probability of outcomes larger
than 1, by Corollary 2.5

sν(µ) ≈
√
µ− µ2

for small µ. Hence, the variance is more or less independent of ν as long as α = ν/µ and
µ is small and hence we have problems estimating the parameter. This will obviously
distort the estimate for larger µ too.

Let F#
k denote the empirical distribution function of ∆̌k. Instead of estimating ν

by fitting the variance of the distribution to the variance of the data we estimate ν by
fitting the theoretical (gamma) distribution function Fα,ν to the empirical distribution
function by minimizing

dk(α, ν) =
∑

n∈{∆̌k}

|F#
k (n)− Fα,ν(n)|
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over ν, for each k, once again implicitly estimating α through α̂k = ν̂k/µ̌k. The resulting
estimates plotted in Figure 29 are fairly similar (but less volatile) to the estimates
obtained above.

Figure 29
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The estimate ν̂1 is especially unreliable, d1(ν/µ̌1, ν) is of the order 10−4 for ν = 0.1
and decreases exponentially with increasing ν. All the other estimates are obtained in
(what numerically looks to be) a global minimum of dk(ν/µ̌, ν) even though dk increases
very slowly in ν for k = 2, ..., 9. One reason why the strange dip in the graph persists
and why fitting a theoretical distribution to the high intensity data still is problematic
is the way the data sets ∆̂i are constructed. When we from the beginning created sets
with equal number of observations, we also limited the number of combinations of arrival
times that make up a set with a fixed expected value. For a sequence of 31 observations,
if the sample mean equals 1/31 that sequence will consist of 1 one and 30 zeros. When we
later pool the sets we end up with for example ∆̌1 that consists of 198989 observations
in total, of which 198989/31 = 6419 are ones and the rest are zeros.

Assume that we have a 31 observation sample from a distribution with decaying
tail probabilities and expected value 1/31 - we would not be surprised if that sample
contained 1 one and 30 zeros, but unless we are dealing with data from a two point
distribution we would be surprised if a sample of close to 200000 observations from the
same distribution did not contain at least some twos and threes. When we are creating
the data set ∆̌1 with mean 1/31 we are for example removing the potential sequence
with 92 zeros and 1 three, and this might alter the empirical distribution function.
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To check if the observed data is generated by an underlying gamma distribution we will
conduct a χ2 test of goodness of fit9. This is a case where we will use an approximative
test because of the sheer number of observations that limits the use of an exact test. But
because of the vast number of observations in ∆̌k we are pessimistic about the outcome,
quoting Martin-Löf (1974): “with large sets of data [...]no matter what model we try, we
are sure to find significant deviations which force us to reject it”. But for the sake of
rigor let us start with the test.

χ2 test of goodness of fit.

H0 : The data in ∆̌1, ..., ∆̌h comes from an underlying gamma distribution.

The first four datasets ∆̌1, ..., ∆̌4 contain too few unique observations to be tested. For
the rest of the data sets we use the parameter estimations from minimizing the distance
between the empirical - and the theoretical distribution function. The theoretical prob-
ability function is calculated10 using Lemma 2.2. Since we’re dealing with discrete data
sets the grouping is trivial - if one group is expected to contain less than 5 observations
we have merged it with every other group further out in the tail.

Both charts in Figure 30 have the sample mean on the x-axis, the left one has the
χ2-statistic divided by the 95% quantile on the y-axis, the right one has the p-value on
the y-axis.
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Results: 77% of the χ2-statistics are smaller than the 95% quantile, 90% are smaller
than the 99% quantile. If we did individual tests of each data set we would reject H0

on a 5% level only 23 times out of 100. However, since H0 concerns all of ∆̌1, ..., ∆̌h the
results must be evaluated on that basis and the test rejects the null hypothesis. If we
were to ignore the data sets with smallest sample mean we would increase the number of
“small” χ2-statistics but not enough to accept the null hypothesis. There are no simple
relationship between the sample mean and the goodness of fit.

9See Cramér (1946).
10Numerical integration with step size 10−4 using trapz() in MATLAB .
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Since the χ2-test rejected the null hypothesis we calculate the canonical redundancy11

to measure the size of the discrepancy between the model of gamma renewals and the
data.

Example Let us go back to the example on page 11 and the two sequences (a) and (b),
both with mean 77/31 ≈ 2.48 . Table 1 is reprinted in Table 3 below.

Table 3

∆̂a

∆̂b

Total

∣∣∣∣∣∣∣∣
0 1 2 3 4 5 6 7 8 9
5 10 5 1 4 1 3 1 1 0
5 14 2 2 1 1 2 2 0 2
10 24 7 3 5 2 5 3 1 2

The canonical redundancy R of the reductive hypothesis of equal distribution equals
0.04 which on Martin-Löf’s redundancy scale is a fit in between very bad and bad.

Canonical redundancy. The canonical redundancy is calculated for all data sets ∆̌1, ..., ∆̌h.
The result is plotted versus µ̌k in Figure 31.

Figure 31

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10 3

µ

ca
no

ni
ca

l r
ed

un
da

nc
y

The model describes the vast majority of the data sets with sample mean less than
2 seconds very well (R < 10−4). All but three datasets show a redundancy of less than
5 ∗ 10−4 which is mid in between good (R = 10−3) and very good on the redundancy
scale. All datasets have a good fit.

11A short note on the canonical redundancy introduced by Martin-Löf (1974) can be found in the
Appendix.
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Other distributions. The Gamma distribution seems to fit the data fairly well and
arrival times between trades can probably be successfully modeled using it. But just
because a distribution fits the data does not mean that there does not exist another
distribution that fits the data better. We are reminded of William Feller’s warnings12

of the logistic distribution - the logistic distribution was fitted to practically all growth
processes including human population, development of railroads and the height and
weight of plants based on a belief in a law of logistic growth. The two parameter Weibull
distribution could for example be calibrated to fit the (σ̌k, µ̌k) data in Figure 13 but the
fit to the actual data is worse than the Gamma distribution.

Summary We can not statistically prove that the underlying data is gamma distributed
but using the redundancy measure we can show that the distribution fits the observed
data well. Even though we are having trouble estimating the shape parameter it is not
unlikely that the data is generated by a gamma distribution with one shape parameter
approximately equal to 0.72. To test this we would need larger sets of data of higher
precision.

5. Conclusion

The main problem when analyzing intraday transaction data is not the large amount
of data, the main problem is the precision loss. Estimating parameters and fitting
distributions is not as straightforward as otherwise. Despite this we conclude that the
arrival times in a short sequence of intraday trades are iid and very likely to be from a
scalable distribution. The Gamma distribution fits the data well but we can not be sure
that there are no other distribution that would make a better fit.

12See Feller (1970), pages 52-53.
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8. Martin-Löf, P. (1974), The Notion of Redundancy and Its Use as a Quantita-
tive Measure of the Discrepancy between a Statistical Hypothesis and a Set of
Observational Data. Scandinavian Journal of Statistics 1: 3-18.

9. Robbins, H (1953), On the Equidistribution of Sums of Independent Random
Variables. Proceedings of the American Mathematical Society. Vol. 4, No. 5,
786-799



STATISTICAL PROPERTIES OF EQUITY TRANSACTION DATA 31

7. Appendix

Martin-Löf (1974) introduces the redundancy measure (from information theory) as a
way to quantitatively measure the difference between a data set and a proposed model.
The rationale behind the measure is that even if we are forced to reject a model on
statistical grounds the model could still be good enough to be applied in the real world
case. We will use an example to illustrate how the canonical redundancy is calculated.

Example Let X1 and X2 be two independent, discrete random variables with possible
outcomes in {0, 1}. Assume that we have observed ni outcomes of Xi and let νi denote
the number of outcomes equal to 0 as illustrated in Table 4. Given that P (X1 = 0) = p
and q = 1− p, the probability of the observed outcome of X1 is equal to

PX1(p; ν1, n1) = pν1qn1−ν1 = eν1 log p+(n1−ν1) log q.

By maximizing the likelihood of the observed outcome we get the estimation p̂1 = ν1/n1

and
PX1(p̂1; ν1, n1) = en1(p̂1 log p̂1+q̂1 log q̂1) = e−n1H(p̂1,q̂1),

where H(·) is the entropy as defined by Shannon13. Using a similar notation

PX2(p̂2; ν2, n2) = e−n2H(p̂2,q̂2),

and hence the maximum likelihood of the joint outcome of X1 and X2 equals

PX1,X2(p̂1, p̂2) = e−n1H(p̂1,q̂1)−n2H(p̂2,q̂2),

using a simplified notation. If we instead maximize the likelihood of the observed out-
comes under the reductive hypothesis of equal distribution of X1 and X2 we get

p̂0 =
ν1 + ν2

n1 + n2
and PX1,X2(p̂0) = e−(n1+n2)H(p̂0,q̂0).

The canonical redundancy R is defined as

R = 1− Ĥ

H0

where Ĥ = n1H(p̂1, q̂1) + n2H(p̂2, q̂2) and H0 = (n1 + n2)H(p̂0, q̂0). The smaller R is
the better the fit of the reductive hypothesis.

Table 4

X1

X2

∣∣∣∣∣∣
0 1
ν1 n1 − ν1

ν2 n2 − ν2

13See for example Khinchin (1957) for an easily accessible treatment of the entropy concept from an
information theoretic point of view.




