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Abstract

Influenza is widely considered as a cause of substantial morbidity
and mortality nearly every year. Apart from influenza, several studies
account also Respiratory Syncytial Virus (RSV) and Norovirus (NoV)
as responsible for the amount of excess deaths and hospitalizations ev-
ery year. Poisson regression models were constructed to predict the
excess mortality, caused by these three infections and to quantify the
burden of each infection to excess mortality. The data are weekly num-
ber of reported deaths and laboratory confirmed cases of the viruses in
Sweden for the period 1993-2010. Generalized linear models and gen-
eralized additive models were used, with number of deaths as response
variable and reported cases, along with week and season number as
explanatory variables to capture the seasonal variability of mortal-
ity. Baseline mortality was proposed, by setting the infections effects
to zero and excess mortality was calculated. The amount of excess
mortality varies according to the different approaches for each infec-
tion. All three viruses contributed to excess mortality. Week was a
good predictor to capture the seasonal variation of the data and GLM
provided more accurate predictions than GAM. In summary, every
year in Sweden there are approximately 1400 excess deaths attributed
to influenza, 200 attributed to RSV and 300 attributed to NoV on
average. These numbers change slightly if they refer only to elderly
people.
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1 Introduction

Influenza is a virus that is widely considered as a cause of substantial mor-
bidity1 and mortality2, nearly every year [1-7]. Especially, elderly people and
people with certain medical conditions are at increased risk of developing serious
complications from the influenza virus [1-4, 6, 8-13]. During a regular influenza
season, about 90% of deaths occur in people older than 65 years of age [14]. It is
difficult, though, to estimate the influenza-associated health-care burden accu-
rately because relatively few hospitalizations or deaths are specifically coded as
influenza related [15]. A virological diagnosis of influenza is often not sought and
even when it is, influenza viruses may no longer be detectable after secondary
bacterial infection has supervened [8]. Thus, the morbidity and mortality caused
by influenza is often attributed to secondary bacterial infection and the primary
viral illness goes unrecognized. Nonetheless, winter time influenza epidemics is
proved to be associated with increased hospitalizations and mortality for many
diagnoses, including congestive heart failure, chronic obstructive pulmonary dis-
ease, pneumonia, and bacterial superinfections [2-4, 9, 11, 15]. Despite a lack of
coded cases, a rise in mortality is observed within the influenza season, partic-
ularly in seasons with high influenza incidence [9].

An indirect approach involving statistical modeling has long been used to es-
timate the influenza-associated burden [1, 2]. The concept of excess mortality
was established as early as in the 1850’s. Excess mortality during an influenza
season is calculated as the difference between the number of deaths observed
and the expected baseline mortality[2]. By the concept baseline mortality we
conceive the hypothetical number of deaths occurred in the absence of circulat-
ing diseases. Statistical models have been used to predict seasonally adjusted
baseline trends in mortality [1]. From the model introduced by the classical
paper of Serfling (1963) [1], all deaths in excess of a seasonal baseline based on
years of low influenza activity are attributable to influenza. Serfling’s approach
has been further developed by Simonsen et al (1997) [2].

An influenza severity index has also been suggested to adjust for the varied
pathogenicity of different types and subtypes of influenza [2]. The primary in-
dex for assessing the severity of influenza epidemics has long been based on na-
tional levels of pneumonia- and influenza-related deaths. However, pneumonia
and influenza excess mortality estimates account for only a subset of influenza-
associated deaths and are not a good measure of the total burden of influenza on
mortality. Another measure, the excess in mortality due to any cause of death
(all-cause excess mortality), potentially captures all influenza-related deaths,
but these seasonal estimates may not be as accurate as pneumonia and influenza
excess mortality estimates [2].

The contribution of influenza to seasonal excess deaths remains a subject of con-
troversy among researchers, with some claiming that there is an underestimation

1Morbidity = incidence of ill health
2Mortality = incidence of death in a population
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of the excess mortality caused by influenza and others arguing that the number
of excess deaths attributed to influenza is overestimated [5]. The reason behind
these arguments is that apart from influenza, other viral epidemics occur in
the winter period, such as Respiratory Syncytial Virus (RSV) and Noroviruses
(NoV). RSV is a respiratory virus that infects the lungs and breathing passages
and Noroviruses are a group of viruses that cause gastroenteritis in people [16].
Respiratory Syncytial Virus epidemics often overlap with influenza epidemics,
and are recognized as a cause of excess winter morbidity and mortality partic-
ularly in young children [17, 18] and more recently in older adults[3, 13, 15, 19, 20].
Like influenza, RSV infections can precipitate both cardiac and pulmonary com-
plications and are rarely diagnosed in adults [3]. In part, this happens because
available rapid antigen-detection tests are insensitive in adults and few tests for
RSV are requested for this age group by medical practitioners [3]. It is likely
that some deaths previously attributed to influenza are actually associated with
RSV infection [3, 19, 20]. Noroviruses are also suggested to contribute to winter
excess morbidity and mortality [13]. If not included in the analysis, these simul-
taneous events may give falsely high numbers for influenza related mortality.
Also, excessively cold periods and other season related factors contributing to
the excess winter mortality may confuse the picture[5, 13].

In the present study, mortality data from Sweden are analyzed with respect to
influenza, RSV and Norovirus. The data contain information about mortality
from all causes and influenza, RSV and Norovirus incidence, which are reported
to the Swedish Institute for Infectious Disease Control (SMI) [21] weekly, for
the whole population and for persons aged 65 and older, separately. Differ-
ent regression models are employed to explore excess mortality attributable to
influenza. The approaches include generalized linear models (GLM) and gener-
alized additive models (GAM) [22, 23].

First, an introduction about the nature of influenza, RSV and NoV is given.
The concepts of baseline and excess mortality are introduced. The objectives
of the study are presented in Chapter 2. The structure of the data used is
specified in Chapter 3. Information about the variables, data transformation
and the special features of the dataset are also given here. In Chapter 4, the
theoretical background of the analysis is described. The main analysis and
its results are presented in Chapter 5. There, the different models fitted are
presented and their properties are compared. This chapter also contains details
about characteristics of each model and its ability to describe the relationship
between mortality and the viruses. The conclusions along with the discussion of
the thesis are given in Chapter 6. Finally, additional results, figures and tables,
along with some theoretical topics are presented in the Appendix.
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2 Key Questions

1. What is the relation between influenza and excess mortality in Sweden?

2. How many deaths are attributable to influenza each year?

3. Which are the factors that affect mortality in Sweden?

4. What level of seasonality is efficient in explaining this relation, months or
weeks?

5. Are there differences between Influenza A and B?

6. What happens in the elderly people?

3 Data

The dataset analyzed consists of data about mortality and virus incidence. The
mortality data come from Sweden Statistics [24]. All deaths are reported to Swe-
den statistics, and the Swedish Institute for Infectious Disease Control (SMI)
[21] gets an update of the number every second week, including age and sex of
the diseased. The completeness of the reporting of deaths to Sweden statistics
increases with time, and the reporting is relatively complete after one month.
Since the considered data period ended in week 20 (end of May) 2010, we re-
gard data to be complete. Data regarding influenza, Respiratory Syncytial
Virus (RSV) and Norovirus are reported weekly by all laboratories performing
diagnostic tests for infections in Sweden to SMI. One thing to be noted is that
reporting is voluntary, which means that there exist an unknown number of
cases that go unnoticed. However, the reporting system is rather consistent, so
the measurements of disease activity in the population can be considered reli-
able. Reports contain also the age and sex of the patients. Influenza A and B
are separated by the diagnosing laboratories. A subset of the specimens is sent
to SMI for influenza A sub-typing and genetic characterization. Weekly data for
aggregated cases of influenza are available since 1993 and data for RSV, NoV
and influenza A and B separated are available since 2003.

Our dataset consisted initially of 869 weeks and 13 variables:
Year (Week): It defines the year and the week of the report that was sent to
SMI. It starts from 1993(40) until 2010(20). From this column, we created two
different columns to represent the year and the week of the report (see variables
Year and Week). Except the information derived from this variable, Year(Week)
was not used in the rest of the analysis.
Week: It defines the number of the week. It goes from 1 until 52, or 53 in some
years. It is used to describe the seasonal variation of influenza and the other
viruses. It was treated as a categorical variable with values 1 to 52/53.
Number of deaths: The number of deaths from all causes in Sweden.
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Number of deaths (65+): The number of deaths from all causes in Sweden
only for those of age 65 and older.
Number of influenza cases: The number of influenza cases reported to SMI.
Number of influenza cases (65+): The number of influenza cases in the
65+ age group.
Number of RSV cases: The number of Respiratory Syncytial Virus cases
reported to SMI.
Number of RSV cases (65+): The number of Respiratory Syncytial Virus
cases in the 65+ age group.
Number of Norovirus cases: The number of Norovirus cases reported to
SMI.
Number of Norovirus cases (65+): The number of Norovirus cases in the
65+ age group.
Influenza A: The number of influenza A cases.
Influenza B: The number of influenza B cases.

Data on RSV cases for the whole population are available since 2001(43), while
data for Norovirus, Influenza A and B, as well as the 65+ age group are available
only since 2003(43). This makes it a little difficult to see and work with our
dataset as a whole.

In addition to the original variables stated above, two more variables were cre-
ated to help us understand better the seasonal variation of influenza: Season
and Month. The variable Season is an indicator variable for each year, that
helps us capture the long term trends in mortality rates and population growth.
Influenza usually starts in the late autumn and is at its peak during the begin-
ning of the calendar year. In order to capture the complete influenza season in
one year, we considered the “influenza-year” to start in week 27 (start of July)
and to finish in week 26 the following year. Season was treated as a categorical
variable with values 1 to 17, with 1 corresponding to the 1993-1994 influenza-
year and 17 to 2009-2010. Corresponding to Season, the “influenza-year” starts
in July and finishes in June. Another approach, suggested in order to explain
the seasonal variation of influenza, is Month. By using ISO 8601 standard [25]

and the concept of fiscal year we were able to transform the week numbers into
months. Month was treated as a categorical variable as well.

We also consider the concept of “influenza season”, which is the time period
where the majority of influenza cases are reported. According to general prac-
tice, we use the surveillance period from week 40 until week 20 (beginning of
October until mid-May). Almost all cases of influenza in our dataset are re-
ported during this period (99.1%), while the percentages of the other illnesses
were similarly large (99.2% for RSV and 93.8 for Norovirus). In the original
dataset, there were a lot of empty cells in all variables that measured virus
cases. That was because outside the surveillance period, no reporting was made
for these viruses to SMI and thus no data were available. We assumed that out-
side the influenza season, there is no incidence of these viruses, and even if there
are some cases they can be considered as isolated cases. For this reason, the
value zero was given to all empty cells outside influenza season for all viruses.
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From the database, we had to remove the 2004(52) line. That was the week
of the 2004 Indian Ocean tsunami with a very high death toll for Sweden, a
fact that had no connection with the subject of this study. The extremely high
mortality of that week would affect the results and it was considered wiser to
remove the particular week from the dataset. Also, there was one case of missing
value (in week 53 1998) and so the whole week was excluded from the analysis.

The statistical analysis was conducted by using R language (R version 2.11.1,
2010-05-31 [26]) and a first crude exploratory analysis was conducted by the help
of Microsoft Excel 2007.

4 Methods

The main purpose of the thesis is to examine the relationship between mortality
and the counts of the different viruses and to find a model that explains ade-
quately this relationship. Two different approaches were suggested in order to fit
the data into regression models, generalized linear models (GLM) and general-
ized additive models (GAM) [22, 23]. In this chapter, the theoretical background
and the methods behind the analysis of the data will be presented. The theory
was retrieved from [22], [27], [28] and [29].

4.1 Generalized Linear Models

Definition of Generalized Linear Models

Generalized linear models are a generalization of linear models that allow the
response distribution to be other than normal and the relationship between the
mean value and the linear predictor to be other than linear. They are of the
structure

g(E(Yi)) = μ = XT
i {β},

where g is a smooth monotonic, differentiable link function, Y a set of indepen-
dent random variables from the exponential family, the transposed vector Xi

T

is the ith row of a design matrix X, and β is a vector of unknown parameters.

Estimation and inference with GLMs is based on the maximum likelihood esti-
mation theory, although the maximization of the likelihood requires an iterative
least squares approach. For more technical details on these topics see section
A.5 of Appendix.
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Exponential family of distributions

The response variable in a GLM can follow any distribution from the exponential
family. The exponential family of distributions includes many distributions,
such as the Poisson, the Binomial, the Gamma and the Normal distribution.
If Y is a random variable whose probability function depends on a parameter
vector θ, then the distribution of Y belongs to the exponential family if it can
be written in the form

f(y; θ) = α(θ)h (y) exp{θTt (y)},

where θ is the canonical parameter vector θ = (θ1, ..., θk) and t(y) is the sufficient
statistic t(y) = (t1(y), ..., tk(y)) and α and h are known functions. Instead of
function α(θ), the quantity 1/ C(θ) is usually used as a normalizing constant.
The model above can be re-written in the form

f(yi; θi, ϕ) = exp

{

θiti(yi) − log(C(θi))

ϕ

}

h(yi; ϕ),

if we want to incorporate the dispersion parameter, ϕ. Note that if ϕ = 1 then
the two equations are equivalent.

Poisson regression

In this study, the variable of interest is the number of deaths occurring in Sweden
every week or month. We can assume that the number of deaths each week or
month occur independently of each other. Since the data represent independent
counts, Poisson regression is the most appropriate approach to model the data.
Poisson regression models are generalized linear models with the logarithm, as
the canonical link function, and response variable assumed to follow the Poisson
distribution. The assumptions made in Poisson regression include:

• The changes in the rate from combined effects of different exposures are
multiplicative

• At each level of the covariates the number of cases has variance equal to
the mean.

• Observations are independent

The formula for the Poisson distribution is

P (Yi|xi) =
e−λi λyi

i

yi!

where, Yi is the random variable representing the number of occurrences, λi

is the parameter that represents the expected value of the count i, where yi

represents the observed number of cases. The effect of explanatory variables
on the response variable Y is modeled through the parameter λ. Since the
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logarithmic function is the natural link function for the Poisson distribution, a
log linear model is employed,

log µ = log λi = xT
i β, (1)

where xT
i β is the usual linear combination of predictors for case i. The expected

number of events is given byE[yi|xi] = λi = exT

i
β .

The parameter vector β of the model is estimated by using Maximum Likelihood
method (see Appendix, section A.4). Because of the structure of Equation (1),
parameter estimates are often interpreted as odd ratios in the exponential scale
eβ. The major assumption of the Poisson model is that E[Y ] = µ = λ = V ar[Y ].

Overdispersion

As stated above, the Poisson distribution assumes that the variance is equal to
the mean. In real situations though, this can fail when there is positive depen-
dence between the observations, or incomplete information about all relevant
covariates. Thus, it can often be observed that the variance is larger than the
mean. In these cases, the data are said to be overdispersed. Parameter esti-
mates in Poisson regression models on overdispersed data have standard errors
and p-values that are too small.

One way to check if overdispersion is present is to divide the deviance statistic
by its degrees of freedom. If there is no overdispersion, the ratio will be close
to 1. Values greater than 1 indicate overdispersion, that is, the true variance
is bigger than the mean. The Pearson’s Chi-Square has also been suggested to
capture the excess variability by some statisticians [30].

Evidence of overdispersion indicates inadequate fit of the Poisson model. Quasi-
Poisson and Negative binomial regression are typically used when there are
signs of overdispersion in Poisson regression. Negative binomial regression uses
a different probability model which allows for more variability in the data.

Quasi-Poisson and Negative Binomial regression

Two alternative approaches when there are signs of overdispersion are quasi-
Poisson and negative binomial regression models. Both these models can be
framed as generalized linear models. Quasi-Poisson and Negative Binomial mod-
els allow for greater variance in the data than in the Poisson model. Both have
an extra parameter that accounts for dispersion.

Let Y be a random variable that is assumed to follow the quasi-Poisson model,
Yi ∼ P oi(µi, θ). Then, E[Y ] = µ and V ar[Y ] = VP oi(µ) = θµ, where E(Y) is
the expected value of Y, Var(Y) is the variance of Y and θ > 1, is called the
overdispersion parameter.

The quasi model formulation has the advantage of leaving parameters in a nat-
ural, interpretable state and allows standard model diagnostics without a loss of
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efficient fitting algorithms. In the quasi-Poisson models, p-values for parameter
estimates are based on t statistics instead of z statistics. On the other hand,
AIC cannot be computed because the likelihood is not defined, and also the
residual deviance is the same for the Poisson and quasi-Poisson models, so there
is not much information to allow for a comparison between the Poisson and
quasi-Poisson models.

We will denote a random variable Y having a negative binomial distribution as
Y ∼ NB(µi, θ). The Negative binomial model can be derived by letting the
mean of the Poisson distribution to vary according to a random parameter γ
that follows the Gamma distribution.

Υi|γi ∼ Poisson(γiµi),

γi ∼ 1

θ
Gamma(θ)

The marginal distribution of Yi is then the negative binomial with mean E[Y ] =
µ and variance V ar[Y ] = VNB(µ) = µ + θµ2, where µ > 0 and θ > 0.
Here, the overdispersion is the multiplicative factor 1 + θµ, which depends on µ
(in contrast to the quasi-Poisson).

The mean, for both Quasi-Poisson and Negative binomial models, is a single pa-
rameter that can vary as a function of covariates. For quasi-Poisson regression,
we assume Yi ∼ P oi(µi, θ) and for NB we assume Yi ∼ NB(µi, θ), where we let
the mean µi for the ith observation vary as a function of the covariates for that
observation in both models. Because the mean µi > 0, it is natural to model µi

as g(µ) =Xβ, which is the standard form of generalized linear models, with log
as the link function.

But, how much are the models affected after being fitted by these two methods?
This is a natural question. While they often give similar results, there can be
striking differences in estimating the effects of covariates. The variance of a
quasi-Poisson model is a linear function of the mean while the variance of a
negative binomial model is a quadratic function of the mean. These variance
relationships affect the weights in the iteratively weighted least-squares algo-
rithm of fitting models to data, since these weights are inversely proportional
to the variance. Because the variance is a function of the mean, large and
small counts get weighted differently in quasi-Poisson and negative binomial
regression. Thus, negative binomial and quasi-Poisson will weight observations
differently.
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4.2 Generalized Additive Models (GAM)

Definition of GAMs

A generalized additive model is a generalized linear model with a nonlinear
predictor in the form of a sum of smooth functions of covariates. In general the
model has a structure

g(µi) = Xiθ +

k
∑

j=1

fj(xji)

where µi = E(Yi) and the response variable, Yi follows some exponential family
distribution. The smooth monotonic function g is called the ‘link function’, Xi

is a row of the model matrix for any strictly parametric components and θ is the
corresponding parameter vector. Last, fj is a parametric smooth function of the
covariates xk. In other words, instead of a single coefficient for each variable
(additive term) in the model, in generalized additive models an unspecified
function is estimated for each predictor. In this paper, thin plate regression
splines will be used to estimate the smooth functions in the models. To fit a
GAM, the penalized iterative re-weighted least squares (P-IRLS) method will
be used. P-IRLS method is further explained in section A.6 in the Appendix.

Thin plate splines

Smoothing splines provide an excellent means for estimation and inference with
models like

yi = f(xi) + εi

or
yi = f1(x1i) + f2(x2i) + f3(x3i) + ... + εi,

where y is the response variable, x1, x2, x3, ... are the covariates, f’ s are
smooth functions and ε is a random variable, independent for each different i.

First, let us consider the first model, because it is simpler. The model can be
estimated by finding the function from an appropriate reproducing kernel in
Hilbert space which minimizes

||y − f ||2 + λ

ˆ

f ′′(x)2dx, (2)

where y is a vector of y′

is, f is the corresponding vector of f(xi)-values and || � ||
is the Euclidean norm. λ is called smoothing parameter, which must be chosen
appropriately in order to achieve the right balance between maximizing the
model’s goodness of fit as measured by the first term and the model’s ‘wiggliness’
as measured by the second. The result of this minimization turns out to be finite
dimensional and is a cubic spline, which is a special case of a thin plate spline.

In general the smoothing functions are obtained as the solution of the general-
ization of expression (2) to problems in which f is a function of any finite number
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d ≥ 1 of covariates and the order m of differentiation in the wiggliness penalty
can be any integer satisfying 2m > d , where d is the number of covariates. A
further straightforward generalization of Equation (2) is the replacement of the
least squares term in the objective with a negative log-likelihood based on an
exponential family.

There are two disadvantages, though, in the use of thin plate spline smoothers
and their widespread adoption in practical statistical work. The first is compu-
tational. To fit a thin plate spline to n data points requires the estimation of
n parameters and an additional smoothing parameter. This has often a large
computational cost. Except in the case d = 1 this involves O(n3) operations,
which is frequently prohibitive. The second obstacle is the fact that their use
requires a change in modeling methodology relative to conventional linear or
generalized linear modeling: the flexibility of a fitted model must be selected by
adjusting the smoothing parameter λ, rather than by adding or dropping model
terms.

One way to reduce the computational cost is to employ regression splines. The
basis implied by solving the spline smoothing problem for a small representative
data set is found and this small basis is used to construct a model for the full
data set of interest. The model is typically fitted as a linear or generalized linear
model without imposing a wiggliness penalty. The covariate points that are used
to obtain the reduced basis are known as the ‘knots’ of the regression spline. The
number of knots controls the flexibility of the model, but unfortunately their
location also tends to have a marked effect on the fitted model. Theoretically,
conventional hypothesis-testing-based model selection can be used to determine
the appropriate flexibility for regression spline models, but in practice there
are difficulties. If the knots of order k and order k-1 regression spline models
for a data set are arranged to ensure the best performance of both models,
then the two models will not generally be nested. Alternatively, if knots are not
moved, but some knots are simply dropped during model selection, then nesting
is maintained, but very uneven knot spacing can result and this has undesirable
approximation theoretic consequences. Another more subtle problem with the
latter strategy is ‘knot confounding’. Finally, when d > 1, even deciding where
to place knots so that they appear evenly spread through the covariates can be-
come problematic. Some of the problems with knot placement can be partially
alleviated by abandoning pure regression splines in favor of penalized regression
splines. But in this case model flexibility is again controlled by a smoothing
parameter λ, rather than the basis dimension, so that some conventional (gen-
eralized) linear modeling methods are once again inapplicable.
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5 Results

In this chapter the results of the statistical analysis performed will be presented.
First, an exploratory analysis was performed in order to better understand the
nature of the data. Different kinds of statistics were calculated for each vari-
able and an effort was made to reveal the relations among the variables. In
the second part, different models were employed to fit the relationship between
mortality and the other variables. Generalized linear models and generalized
additive models were used in this part. Last, baseline mortality was calculated
according to the different models and the amount of excess mortality was spec-
ified. It should be noted that all hypothesis testing was performed at the α=
0.05 significance level.

5.1 Exploratory Analysis

As a first step of understanding our data better, we calculate various descriptive
statistics, such as the mean value, the median, the variance, minimum and
maximum values, as well as, the skewness and the kurtosis of each variable.
All these statistics can be found in Table 1. Also, histograms of each variable
(Figures 20, 21 in A.4 section in Appendix) were created in order to help us
better understand Table 1 visually.

Table 1: Descriptive Statistics

Variable Mean Median Variance Min Max Skewness Kurtosis

Deaths 1773 1734 25489.8 1495 2634 1.59 4.17

Influenza 22.02 0 2467.12 0 355 3.24 11.44

RSV 38.97 12 3411.62 0 277 1.98 3.47

Norovirus 86.45 34 11909 0 505 1.67 2.13

Influenza A 22.51 2 2734.32 0 285 3.18 9.8

Influenza B 5.18 0 155.89 0 69 3.37 11.31

Deaths65 1526.48 1492 22989 1270 2363 1.59 4.15

Influenza65 11.07 0 582.94 0 140 2.75 7.47

RSV65 0.94 0 4 0 13 2.82 8.21

Norovirus65 63.64 20 7471.99 0 397 1.7 2.19

Deaths have a mean value of 1773, while all the viruses have much smaller mean
values, which vary from 0.94 to 86.45. A first interesting element that can be
spotted from the above table is the differences of the mean values regarding
the age groups (whole population and elderly people). For example, the mean
values of deaths do not differ much in the two categories, which means that
the majority of deaths occur in the 65+ age group. In fact, from our data it
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turns out that around 86% of all deaths come from people of age 65 and older.
The corresponding percentages are 40% for influenza, 2% for RSV and 74% for
Norovirus. This 2% percentage explains very well the mean value difference for
RSV (38.9 in the whole population and 0.94 in the elderly people). It seems
that RSV does not affect the elderly age group much. RSV typically affects
infants and young children mostly, and they in return infect the elderly people
(e.g. their grandparents) upon contact.

In general, we can see that all the variables have high variances. This may
imply overdispersion in our data. Also, except deaths, all other variables have
a big count of zeros, especially influenza that has more than half (51%) of
its observations with the value zero. The rest of the variables have smaller
proportions of their observations at value zero (22% Influenza65, 27% RSV65,
22% Influenza B). By checking the histograms we can verify the above statement.
All variables except deaths show large frequencies at value zero.

By looking at the histograms, we can visually observe the skewness of each
variable as given in Table 1. By skewness, we define the asymmetry of a dis-
tribution. Positive values of skewness show that the distribution’s right tail is
longer than the left one and that more values lie to the left of the mean, in-
cluding the median. Values of skewness near zero indicate that the values are
relatively evenly distributed on both sides of the mean. Influenza (both for the
total counts, as well as for the two subtypes, A and B) has the largest skewness
(11.44, 9.8 and 11.31 respectively) among all variables. This corresponds to the
fact that these variables have a big mass of observations on value zero, as stated
above. The same stands for RSV and Norovirus (both for the whole population
and the above 65 group), but to a smaller extent.

The excess kurtoses of all variables are positive, which suggests that we have
leptokurtic distributions. Basically, this means that the distributions of all vari-
ables have a “sharp” peak and “heavy” tails, something that can be seen from
the histograms. Influenza and RSV65+ show the largest kurtosis. The large
values of kurtosis confirm our hypothesis of presence of overdispersion in our
data.

In order to examine the relationship among all variables, we calculate Spear-
man’s correlation coefficient for all pairs of variables. As can be easily seen both
from Table 2 and the scatter-plot (Figure 22 in A.4 in Appendix) all variables
are highly correlated with each other. The values of the correlation coefficient
vary around 0.6-0.7 and reveal a strong correlation. To visualize the results of
Table 2 we create the scatter-plots for all the possible pairs of variables. From
the scatter-plots, a linear relationship is suggested.
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Table 2: Spearman Correlation Coefficient

Influenza RVS Norovirus
Influenza

A
Influenza

B
Deaths 0.689 * 0.716 * 0.679* 0.642 * 0.503 *

Influenza 0.656 * 0.657* 0.943 * 0.703 *
RVS 0.701 * 0.529 * 0.669 *

Norovirus 0.545 * 0.612 *
Influenza A 0.517 *

5.2 Modeling

The main objective of the present paper is to examine the relationship between
mortality and the counts of the different viruses and to find a model that explains
this relationship adequately. Two different approaches were used in order to fit
the data into regression models, generalized linear models (glm function in R)
and generalized additive models (gam function from mgcv package in R).
The response variable in all models is the number of weekly reported deaths.
Categorical variables season and either week or month were used as explanatory
variables to describe the seasonal variation in mortality. The number of reported
influenza, RSV and NoV cases were the other explanatory variables used in the
models. All interaction terms among reported cases and seasonal effects were
also considered as possible explanatory variables and were included in the fitting
process.

Because of the structure of our data, many different models were created to
explain the relationship between mortality, and viruses and seasonal parameters.
The models were created by the stepwise method. Variables are added one by
one to the model, and the χ2 statistic for a variable to be added must be
significant according to a certain level (here, α = 0.05). After a variable is
added, the stepwise method looks at all the variables already included in the
model and deletes any variable that does not produce a significant χ2 statistic.
After this check and the necessary deletions are accomplished, another variable
is attempted to be added to the model. The stepwise process ends when none of
the variables outside the model has a significant χ2 statistic and every variable
in the model is significant, or when the variable to be added to the model is the
one just deleted from it. The results of the modeling procedure are given in this
chapter.

Data from the period 2003 until 2010 were analyzed first, because in these
seasons there was systematic reporting of all viruses. The data consists of
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342 weeks and can be treated as complete. Either week or month is used as
explanatory variable to capture the seasonal effect of mortality. Models using
Poisson regression and Generalized Additive Poisson regression were employed
with either week or month as a seasonal effect.

By using the stepwise method as described above, and week as seasonal effect,
the GLM and GAM models produced respectively are

Model 1:

log(µij) = β0 + βw
j + βs

i + βI
i xij + βR

i yij + βN
i zij

Model 2:

log(µij) = β0 + f(βw
j ) + βs

i + βI
i xij + βR

i yij + βN
i zij

where β0 is the intercept, βw
j is a vector with the 53 levels of factor week, βs

i is
the vector with the 7 levels of factor season and xij , yij , zij are the observations
of influenza, RSV and NoV respectively in each week j and season i. Note that
the model accounts for the differences in each season. The parameter vectors
of these interaction terms are denoted by βI

i , βR
i , βN

i and f in Model 2 is the
smoothing function for week.
The corresponding models with month as the seasonal effect are

Model 3:

log(µij) = β0 + βm
k + βs

i + βI
i xij + βR

i yij + βN
i zij

Model 4:

log(µij) = β0 + f(βm
k ) + βs

i + βI
i xij + βR

i yij + βN
i zij

with βm
k the monthly seasonal effect.

The validity of the models was examined visually through fitted values, residu-
als and residual deviance. The residuals should be evenly distributed above and
below zero when plotted against fitted values if the hypotheses of residual inde-
pendence and constant variance are to be held (upper left and lower left plots in
Figure 23). Moreover the standardized residuals should be normally distributed
and unrelated to all explanatory variables. From the Figures 23-27 it is shown
that models with week have better fit than models with month. GLMs have
better fit than GAMs. Some statistics of the models are presented in Table 3.
By looking at the Table, we can see that the models that involve week as the
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seasonal effect are better than the models with month. The Analysis of deviance
and Analysis of Variance tables of Model 1 and 2 respectively are given in the
Appendix (section A.4, Tables 7, 8).

Table 3: Model Statistics (a)

Model AIC Deviance Degrees of freedom Deviance explained
Model 1 (GLM -week) 3668.6 326.42 262 91.3%
Model 2 (GAM-week) 3691.6 435.94 305.3 88.3%

Model 3 (GLM-month) 3852.4 592.24 303 84.1%
Model 4 (GAM-month) 3848.6 593.76 305.6 84.1%

The plots of the fitted values along with the observed deaths are used to under-
stand the predictive power of each model. In all models the observed deaths are
depicted as dots and the predicted mortality as a line. As can be seen from Fig-
ures 1-4, GLMs with weekly seasonal effect describe the mortality better than
any of the other models. All models seem to be unable to predict some peaks
in the mortality however, which is usually the matter of interest in most cases.
Models with month seem appear less capable of predicting mortality than mod-
els with week. GAMs offer a more smooth way to predict mortality, without
the wiggliness of GLMs. If they are used with week, they have better prediction
abilities than both GLMs and GAMs with month, but worse than GLMs with
week.
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Figure 1: Predicted mortality according to Model 1 (GLM with week)
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Figure 2: Predicted mortality according to Model 2 (GAM with week)
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Figure 3: Predicted mortality according to Model 3 (GLM with month)
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Figure 4: Predicted mortality according to Model 4 (GAM with month)

21



If the objective is to reduce the large number of parameters in the model (341−
262 = 79 for week) by using month (with 38 parameters), then the alternative
of generalized additive models should be considered, as their results are better
than the models with month, but in addition, they use fewer parameters (36
parameters). Moreover, the GAMs with week reduce the parameters of week
from 53 to 8.9, while the GAMs with month reduce the parameters of month
from 12 to 8.6, which cannot be considered as a great improvement.

The two different influenza strains (influenza A and influenza B) are used in a
more detailed approach in comparison to the total influenza reports. Another
4 models were produced, with very similar results as before, as one can see in
Table 4.

Table 4: Model Statistics (b)

Model AIC Deviance Degrees of freedom Deviance explained
Model 5 (GLM-week) 3664.2 321.94 262 91.4%
Model 6 (GAM -week) 3686.24 430.51 305.2 88.5%
Model 7 (GLM -month) 3842.6 568.4 296 84.8%
Model 8 (GAM -month) 3838.76 570.29 299 84.7%

The predictive power is again given in Figures 5-8 and one can easily notice that
once more the models with month do not capture the mortality as well as the
GLMs with week. In addition, the prediction of models with month is worse
than the prediction of GAMs with week, so the latter is to be preferred instead,
as a more flexible alternative model.
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Figure 5: Predicted mortality according to Model 5 (GLM with week)

16
00

18
00

20
00

22
00

Prediction of GAM(week)

time(weeks)

D
ea

th
s

2004(1) 2005(1) 2006(1) 2007(1) 2008(1) 2009(1) 2010(1)

Figure 6: Predicted mortality according to Model 6 (GAM with week)

23



16
00

18
00

20
00

22
00

Prediction of GLM(month)

time(weeks)

D
ea

th
s

2004(1) 2005(1) 2006(1) 2007(1) 2008(1) 2009(1) 2010(1)

Figure 7: Predicted mortality according to Model 7 (GLM with month)
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Figure 8: Predicted mortality according to Model 8 (GAM with month)
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All models were examined for overdispersion. One way to spot overdispersion
is to compare the residual deviance with the degrees of freedom. A ratio larger
than 1 indicates overdispersed data, or a model that cannot explain the data
well enough. In the GLMs with week, the ratio is around 1.25, which indicates
that these models explain sufficiently well the variation in the data. In the
other cases, quasi-Poisson and Negative Binomial regression models were fitted,
in order to capture this excess variation. The results of the two approaches were
very similar and the approach of quasi-Poisson was preferred because of con-
venience. The overdispersion parameter for the GAM was 1.43 and for models
with month 1.95 for both models. The results were very similar for the case
of models with separate influenza strains. The existence of overdispersion im-
plies that some important covariate was left out of the model. Indeed, some
covariates (e.g. interaction of week and influenza) decreased the value of the
overdispersion parameter and improved the fit. The problem with these models
is the difficulty in their interpretation. For, this reason, we will stay with our
current models.

In many studies it has been proven that influenza is a major cause of excess
mortality every winter. Although, there are studies that claim that the effect
of influenza in mortality has been overestimated and that other causes of mor-
tality should be considered. A regression model was produced that includes
only influenza reports along with seasonal effects in a try to see if RSV and
NoV should be considered important factors in mortality. Data from the whole
dataset were used in this model. The model constructed was

Model 9:

log(µij) = β0 + βw
j + βs

i + βI
i xij

This simpler model does not fit the data well enough as implied by Figure 9.
Especially, the scale-location plot implies that the data are overdispersed. A
quasi-Poisson regression model is tried instead, but the fit of the data remains
unsatisfactory.
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Figure 9: Goodness of Fit for Model only with influenza

As seen from Figure 10 there is still some variation to be explained.
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Figure 10: Predicted mortality according to Model 9 (only influenza)
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The deviance explained by the simpler model is 82.3%, which is less than for the
first models. The overdispersion parameter for this model is 2.7, which is another
clue that influenza alone is unable to explain mortality sufficiently. In addition,
the effect of influenza on mortality is overestimated, with the magnitude of
coefficients in the model being 10 times higher for all seasons than the previous
models. Thus, models that do not include diseases other than influenza, cannot
predict mortality, sufficiently enough and the effect of influenza is overestimated.
Thus, RSV and NoV have to be included in our models.

The original models were fitted also to data that distinguish cases that refer
to elderly people. The results of the models for people of age 65 and above
were compared to the results of the original models, to check the effect of the
viruses in a more vulnerable age group. Again, GLMs with week had better
predictive power and better fit than GAMs or GLMs with month. GAMs had
again similar results with models with month and will be preferred to models
with month because they use less parameters. The fit of GLM with week and
its predictive power against the corresponding GAM are presented in Figures
(24, 25 (section A.4 in Appendix) and 11 and 12 respectively.
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Figure 11: Predicted mortality for individuals of 65+ years with GLM (week)
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Figure 12: Predicted mortality for individuals 65+ years with GAM (week)

As a first conclusion, Model 1 can be considered as the most appropriate model
among all the other models fitted if we compare the figures and the statistics.
Model 5 gives slightly better results and can be equivalently used, especially
when the effect of each influenza strain is of interest. The corresponding GAMs
(models 2 and 6) do not seem to predict mortality as efficiently as the previous
models, but can be used when more flexible and smooth models are needed.
The disadvantage of models 1 and 5 is the wiggliness in their predictions, while
models 2 and 6 do not capture the peaks of mortality very accurately.

It has been shown that peak mortality lags roughly 1-2 weeks behind the peak of
influenza activity[5]. This is likely the result of several different time delays from
different influenza mortality pathways. For this reason, alternative model forms
were tested for possible delays. No obvious lags were detected between mortal-
ity and viral reporting. Models, in which deaths lagged laboratory-confirmed
cases by approximately 1 week, were found to be a slightly better than the orig-
inal models when month was used as a seasonal variable, but decreased the fit
when week was used. Thus, the original models were considered as the most
appropriate ones. All other alternatives decreased the model fit, or produced
equivalent models.
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5.3 Estimating Excess Mortality

The effect of all three infections: Influenza, RSV and Norovirus changes dra-
matically every season. For this reason, we employed a model that accounts
for changes of the three diseases over the seasons. The problem with that ap-
proach is that some coefficients were negative, which means that the presence
of a particular disease in that particular season had a protective effect on the
population. The above statement is obviously wrong, because the presence of
infections in the population adds an extra burden in mortality. In order to avoid
unrealistic results, we set the negative coefficients to zero, claiming that we had
no effect from the particular disease on that season. The problem with the mod-
els described above is that they may predict quite well the seasonal variation of
influenza but they are too complex to interpret easily. A simpler model can be
used instead in order to overcome this problem. If we neglect the fact that the
intensity of each disease changes every season we could have a simple model:

log(µij) = β0 + βw
j + βs

i + βIxij + βRyij + βN zij

This simple model explains 88% of the deviance. This is somewhat lower than
our original model but not that different. The coefficients of RSV and NoV
were found to be insignificant, which means that these two viruses have very
small or no effect in mortality. Also, the overdispersion parameter was 1.6,
which was higher than before. This means that some important covariate has
been left out of the model. An intermediate approach would be to account for
seasonal changes only for influenza, because influenza is the main cause of excess
mortality. An intermediate model would be

log(µij) = β0 + βw
j + βs

i + βI
i xij + βRyij + βN zij

This model explains 89% of the variation which is a slight improvement. Again,
the coefficients of RSV and NoV were not significant, which means that these
diseases change seasonally. An encouraging fact was that all coefficients of
influenza were positive, except for 2009-2010 season, but that was a problematic
season from the beginning. The overdispersion parameter was 1.46 which was
again higher than the original model.

The average of the coefficients of influenza in Model 1 is 20.11/105 of population.
This means that almost 20 deaths are related to each reported case of influenza
per 100000 of population. The rates of the GAM and the models with month

(Models 2-4) are similar to each other, but seem to overestimate the effect of
influenza in mortality (35/105). The model that accounts the different influenza
strains give an average coefficient of 19.4 / 105for Influenza A, which means that
influenza A is responsible for the majority of deaths due to influenza. If only
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influenza reports are used to predict mortality, then the effect of influenza is
overestimated, with a rate of 86.2/105. Also, in the simple and intermediate
model introduced late in the Results chapter, the effect of influenza is higher
than the original model (46/105 and 25/105 respectively).

For persons over 65 years the coefficient of influenza is 93/105 for the GLM with
week and 99/105 for the GAM with week. For GLM with month the effect of
influenza is 107/105, which is again much higher than the rest of the models.
As expected, influenza has a bigger impact in older people. In the simple model
the effect of influenza is again higher, 124/105 and for the intermediate model,
the corresponding effect is 94/105.

The concept of baseline mortality was discussed in the introduction of this
paper. It is the expected mortality if influenza or the other viruses were not
circulating. Baseline mortality is calculated by setting the coefficients of all
terms that include viruses in the model to zero. In the graph below, one can
observe the baseline mortality as calculated by the original model introduced.
Baseline mortality appears as a periodic function that captures the low levels
of mortality, but not its peaks. The number of deaths that are not explained
by baseline mortality is called excess mortality and these deaths are attributed
to influenza and the other viruses every year.
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Figure 13: Predicted and baseline mortality
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In an effort to quantify the burden of each of the diseases the aggregated num-
ber of excess deaths for each infection is calculated. Except the original model,
the simple and the intermediate approach are also used. Furthermore, the cor-
responding GAMs are employed as well. The coefficients that correspond to all
other viruses except the virus of interest are set to zero. The predicted values
of these modified models give the number of deaths by a specific cause. If, then,
baseline mortality is subtracted from this vector, the number of excess deaths
by a specific cause is obtained.In the Tables 5 and 6 one can see the estimated
excess deaths attributed to each virus. In average we have approximately 850
excess deaths every year according to the original model and 1050 according to
its corresponding GAM attributed to influenza. Around 300 are attributed to
RSV every year and around 1500 to NoV. These results seem unrealistic and
so, the more simple approaches should be considered instead. With the simpler
approaches around 1400 excess deaths are attributed to influenza every season,
200 to RSV and 300 to NoV.

Table 5: Excess mortality attributed to each infection (GLM)

Complex Model Intermediate Model Simple Model
Season Influenza RSV NoV Influenza RSV NoV Influenza RSV NoV
2004 865 0 769 1020 167 37 1415 34 45
2005 1591 1441 0 2662 89 138 1775 18 170
2006 0 561 1297 485 284 105 823 58 130
2007 941 93 0 1307 105 330 1225 21 406
2008 0 0 4017 559 298 269 1111 60 331
2009 1687 0 2741 2252 199 477 1890 40 586
2010 0 0 1938 0 295 347 225 60 427

Average 847 299 1537 1381 205 243 1373 42 299

31



Table 6: Excess mortality attributed to each infection (GAM)

Complex Model Intermediate Model Simple Model
Season Influenza RSV NoV Influenza RSV NoV Influenza RSV NoV
2004 810 0 0 1028 163 31 1437 38 39
2005 2317 1565 0 2682 87 116 1803 20 148
2006 0 369 968 501 277 88 836 64 113
2007 1383 332 0 1354 102 277 1244 24 353
2008 0 0 3085 572 291 225 1128 67 288
2009 1806 0 1729 2243 194 399 1920 45 509
2010 0 0 1434 0 288 291 229 67 371

Average 1053 324 1031 1397 200 204 1395 46 260

One interesting thing to be noted first is that in none of the seasons we have
excess mortality because of all three causes together. This may be a sign of
overfitting. The model cannot account for all three causes simultaneously in
each season and that’s why it has negative coefficients for some viruses in some
seasons. As seen from the Tables above, the number of excess deaths change
according to each approach, but not dramatically. The only case that we see a
big difference is in the estimations of RSV for the simple model. The estimated
number of deaths is around 40, which is considerably lower than for the other
models. This can be explained if we consider the fact that the coefficients for
RSV were not significant and very close to zero. That means that the model
attributed only a small part of excess mortality to RSV. On the other hand,
the original model gives some very large numbers for RSV and especially NoV.
Because of the negative coefficients in some seasons, the model overestimates
the excess deaths for the other causes and shows extremely large numbers of
excess deaths in certain seasons and cannot be trusted blindly. Excess mortality
for each cause according to complex and simple model is shown in Figures 14
and 15.

32



0
50

10
0

15
0

20
0

Excess mortality attributed to Influenza, RSV and NoV

Index

in
f.d

2004(1) 2005(1) 2006(1) 2007(1) 2008(1) 2009(1) 2010(1)

Influenza
RSV
NoV

Figure 14: Excess mortality attributed to Influenza, RSV and NoV
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Figure 15: Excess mortality attributed to Influenza, RSV and NoV (Simple
model)
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The same procedure is followed for the persons in the 65+ age group. For this
group, the results of all three approaches are very similar. In average, there
are 1100 deaths attributed to influenza, 200 deaths attributed to RSV and 400
deaths attributed to NoV. The excess mortality from each cause can be also
depicted in Figure 16 and 17.
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Figure 16: Excess mortality attributed to Influenza, RSV and NoV for 65+

0
50

10
0

15
0

20
0

25
0

30
0

Excess mortality attributed to Influenza, RSV and NoV

Index

in
f.d

2004(1) 2005(1) 2006(1) 2007(1) 2008(1) 2009(1) 2010(1)

Influenza
RSV
NoV

Figure 17: Excess mortality attributed to Influenza, RSV and NoV for 65+
(Simple model)
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6 Conclusions/Discussion

Various approaches for predicting mortality in Sweden have been developed in
this paper. Generalized linear models and generalized additive models were the
two methods used to explain the counts of deaths. Models with influenza, RSV
and NoV reported cases, as explanatory variables, were constructed, accounting
week as the seasonal effect and factor season to capture long term trends and
population growth. The relationship between mortality and the variables seems
linear for all cases. The slope for all graphs in the scatter-plot is positive, which
means that all infections contribute to the increase of mortality. The slope of
the graphs varies for the different variables, larger for influenza and influenza A
and almost zero for influenza B.

A generalized linear model that accounted the differences of the three infections
each season was considered as the most appropriate to predict the mortality in
Sweden. Although this model provided better fit to the data than the corre-
sponding generalized additive model, GAM could still be employed as a rather
smoother approach to explain mortality, since it uses much fewer parameters
than the GLM (36 parameters instead of 79). Models with month instead of
week were used in order to decrease the number of parameters, but both their fit
and predictive power were insufficient. Models that accounted for the different
influenza strains (influenza A and B) and week as seasonal effect were fitted, to
get a more detailed view of the influenza effect on mortality and they provided
slightly better results than the original model. In many seasons, we observe
two peaks in the same season. Generalized linear models with week, that ac-
counted either the total cases of influenza or the different strains, capture these
two peaks quite accurately, with the latter models to be slightly better. Models
without RSV and NoV cannot predict mortality satisfactory enough, and also
overestimate the burden in mortality caused by influenza.

The problem with our model is that although it predicts well the mortality, it
is not easy to interpret. There is probably an overfitting problem in our model,
because some coefficients of the diseases in some seasons are negative and thus,
in these seasons, it is implied that the presence of the viruses have a protective
effect. It is not possible with the current model to predict excess mortality from
all causes for all seasons. Simpler models can provide a solution to this problem,
but their predictive power is not as good as the original model’s and also their
estimates are not as accurate because of the presence of overdispersion. An
intermediate model that accounted for seasonal changes only for influenza was
fitted, but again the fitting of the data was not satisfactory. The problem of
finding a suitable model is yet to be solved.

The average of the coefficients of influenza in Model 1 is 20.11/105 of population.
This means that almost 20 deaths are related to each reported case of influenza
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per 100000 of population. This is in a reasonable agreement with estimates
found in other studies. Thompson et al. [3] found the same rate (20/105) while
Schanzer et al [6] found a lower rate (13/105).The rates of the other models were
reasonably higher. Models that did not account for seasonal changes of some
or all of the diseases, seem to overestimate the effect of influenza. For persons
over 65 years the coefficient of influenza is 93/105 for the GLM with week. As
expected, influenza has a bigger impact in older people. Our findings are close
to the findings of other studies. Andersson et al [13] found a rate of 90/105,
Thompson et al [3] a rate of 133/105 and Schanzer et al [6] a rate of 108/105

for the 65+ age group.

The baseline mortality calculated, represents the theoretical mortality without
the circulation of the three viruses in the population. Baseline mortality cap-
tures the low points of mortality quite well, with the exception of the beginning
of last season (2010). At that point, we observe an unexpected low number of
deaths. This is probably because the year before that (2009) was a year with
high influenza activity which resulted in high mortality and eliminated many
individuals, especially from the high risk groups. So, the following year, the
population had less of these individuals, which means that there were more
‘healthy’ people in the population, and thus fewer deaths. This phenomenon
is called the “harvesting effect”. In average we have approximately 1400 excess
deaths every year attributed to influenza, 200 attributed to RSV and 300 at-
tributed to NoV. For the 65+ age group, we have approximately 1100 deaths
attributed to influenza, 200 deaths attributed to RSV and 400 deaths attributed
to NoV. From the figures 14-17 one can recognize the seasons when there was
a severe epidemic of a certain virus. For example, 2006 season was a severe
influenza season, just like 2009. Also, 2008 and 2009 was a severe season for
NoV.

As a general comment we could say that Norovirus can be considered as a
substantial cause of excess mortality. So far, not many studies investigated the
effect of Norovirus in excess mortality. From our findings, it is suggested that
NoV is a more serious cause of mortality than RSV. Also, NoV is a serious
threat for the persons above 65 years of age, along with influenza.

From our study, it turns out that influenza is the main cause of excess mortality
both in the whole population and in the 65+ age group. Along with influenza,
RSV and NoV also contribute to a substantial number of excess deaths every
year. Influenza A is the main cause of mortality if the two different influenza
strains are considered. Influenza B does not seem to have a significant effect on
mortality in Sweden.

The seasonal variation is sometimes modeled by harmonic functions, like sine
or cosine, which reduces the number of parameters in the model, but imposes
strong restrictions on the form of the seasonal component. Week proved an
efficient way to capture seasonality, with the cost of 52 extra parameters. A
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smooth function of week reduces the number of parameters used, but at the
same time decreases the predictive ability of the model.

The residual winter mortality that remains to be explained could be attributed
to various reasons, such as extreme cold, lack of access to doctors and/or antibi-
otics during the holidays and other respiratory tract viral infections that might
circulate in the same period.

In the data set there seems to be no outliers. This is verified from the residual
plots in the models. In each model, different observations appear to have large
residuals, so the existence of possible outliers can be ruled out.

One of the restrictions of the study is that we only have seven seasons of data.
It would be interesting to see, how the models behave if more seasons were
added, especially, seasons with more varied patterns of outbreaks of infections.
Moreover, in the present paper, no simulation techniques were performed. Pos-
sibly a simulation study with the bootstrap method or permutation tests would
strengthen the validity of our results. Also, the models might work better if
other kinds of data were available. Since there are big geographical differences
throughout Sweden, mainly in the temperature, perhaps different data for each
region would provide more clear results. Another aspect of the subject of the
thesis that has not been mentioned at all is vaccination and vaccine matching.
Both these factors are very important and should not be forgotten in a future
expansion of the thesis, especially for the elderly people. Data containing how
many people were vaccinated and/or whether the vaccine was a good match
every season, might be very informative.
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7 Appendix

A.1. Graphical presentation of the data

The relation of mortality and influenza is depicted quite clearly in Figure 18.
One thing that is important to be mentioned is that across all seasons, the peaks
in mortality coincide with the peaks in influenza reported cases.
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In Figure 19 one can observe the overlapping of the three viruses of the study.
Notice that although the intensity of the different viruses changes across the
seasons, they all peak around the same time for the given period. Data for all
three viruses are only available for the last seven seasons, because there was no
systematic reporting for RSV and Norovirus in the past. Another thing that
is interesting in this graph is that in the last season (2010) there were too few
reported cases of influenza, because of the H1N1 flu pandemic.

A.2. Histograms of all variables

From the histograms we can see the distribution of each variable. The large
value of skewness is quite clear for all observations, but also expected for this
kind of data. The mass of observations on value zero can be easily spotted in
the histograms for the diseases.
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A.3. Scatter-plot

From the scatter-plot we can see that deaths are correlated with all the diseases.
The relationship seems linear for all cases. The fact that a large proportion of
the counts of the diseases equals zero, makes this conclusion less clear. The
slope for all graphs is positive. The slope of the graphs varies for the different
variables, larger for influenza and influenza A and closer to zero than to one for
the other viruses. This means that all diseases contribute, even in a smaller or
larger extend to mortality.
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A.4. Goodness of fit diagnostics
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Figure 23: Model fit for Model 1 (a)
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Figure 24: Model fit for Model 1(b)
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Table 7: Analysis of Deviance Table

Response: deaths
Terms added sequentially (first to last)

df Deviance Resid. Df Resid.Dev P(>|Chi| )
NULL 341 3736.4
week 52 2890.49 289 845.9 < 2.2e-16 ***

season 6 160.74 283 685.2 < 2.2e-16 ***
influenza 1 240.21 282 444.9 < 2.2e-16 ***

season*influenza 6 43.47 276 401.5 9.401e-08 ***
season*rsv 7 42.08 269 359.4 5.022e-07***
season*nov 7 32.97 262 326.4 2.687e-05 ***

—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Model 2

0 10 20 30 40 50

-0
.1

0
-0

.0
5

0.
00

0.
05

0.
10

0.
15

week2

s(
w

ee
k2

,8
.5

9)

-3 -2 -1 0 1 2 3

-0
.0

5
0.

00
0.

05
0.

10
Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 25: Smooth function for week and QQ plot for Model 2
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Table 8: Analysis of Variance Table

Family: quasipoisson
Link function: log

deaths ~ f(week2)+ season + season:influenza + season:rsv + season:nov
Parametric Terms:

df F p-value
season 6 3.999 0.000718***

season:influenza 7 9.445 1.30e-10***
season:rsv 7 3.164 0.003033**
season:nov 7 3.195 0.002796**

Approximate significance of smooth terms:
Edf F p-value

f(week2) 8.589 40.61 <2e-16***
—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Figure 26: Model fit for Model 3 (a)
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Figure 27: Model fit for Model 3 (b)

GLM with week for the 65+ age group
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Figure 28: Model fit for 65+ age-group
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GAM with week for the 65+ age group
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Figure 29: Smooth function for week and QQ plot

A.5. Fitting Generalized Linear Models

The fitting of GLM is achieved by using a method called Iteratively Re-weighted

Least Squares. The main hypothesis for generalized linear models is that the
response variable follows an exponential family distribution and the elements
Yi of the vector Y are mutually independent. The likelihood of the parameter
vector β is

L(β) =
n

∏

i=1

fθi
(yi),

and hence, the log-likelihood of β is

log L(β) =

n
∑

i=1

log[fθi
(yi)] =

n
∑

i=1

{yiθi − bi(θi)}/ai(ϕ) + ci(ϕ, yi),

where the equation depends on β is through the dependence of the θionβ.
The estimation of β requires the maximization of the log-likelihood, which is
achieved by partially differentiating logL with respect to each element of β, set-
ting the resulting expressions to zero and solving for β. After some calculations
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the equation to solve for β is

∂ log L

∂βj

=
1

ϕ

n
∑

i=1

[yi − b
′

i(θι)]

b
′′

i (θι)α(ϕ)/ϕ

∂µι

∂βj

= 0

which can be re-written as

n
∑

i=1

[yi − µι]

V (µι)

∂µι

∂βj

= 0, ∀j

However, these equations are exactly the same as if non-linear weighted least
squares method was used, if the weights V (µi) were known in advance and were
independent of β. In this case, the least squares objective would be

S =
n

∑

i=1

(yi − µι)
2

V (µι)

where µi depends non-linearly on β, but the weights V (µi) are treated as fixed.
To find the least squares estimates involves solving∂S/∂βj = 0, ∀j. This requires
the use of an iterative method until convergence.

The above equation can be written in matrix form

S =
∥

∥

∥

√

V −1
[k] [y − µ(β)]

∥

∥

∥

2

,

where V[k] is the diagonal matrix such that V [k]ii = V (µ
[k]
i ). If µ is replaced by

its first order Taylor expansion around β̂[k]

S ≈
∥

∥

∥

√

V −1
[k] [y − µ[k] − J(β − β̂[k])]

∥

∥

∥

2

where J is the ‘Jabocian’ matrix, withJij = ∂µi/∂βj |
β̂[k] . Now,

g(µi) = Xiβ ⇒ g′(µi)
∂µi

∂βj

= Xij

and hence

Jij =
∂µi

∂βj

∣

∣

∣

∣

β̂[k]

= Xij/g′(µ
[k]
i ).

So, by defining G as the diagonal matrix with elementsGii = g′(µ
[k]
i ), J =

G−1X.

Hence,

S ≈
∥

∥

∥

√

V −1
[k] G−1[G(y − µ[k]) + η[k] − Xβ]

∥

∥

∥

2

=
∥

∥

∥

√

W [k](z[k] − Xβ)
∥

∥

∥

2
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where z[k] are called ‘pseudo-data’ with definition z[k] = g′(µ[k])(yi − µ
[k]
i ) + η

[k]
i

and W[k] is the diagonal weight matrix with elements

W
[k]
ii =

1

V (µ
[k]
i )g′(µ

[k]
i )2

.

The following step are iterated to convergence.

Using the current µ[k] and η[k] calculate pseudo-data z[k] and iterative weights
W[k].

Minimize the sum of squares
∥

∥

∥

√
W [k](z[k] − Xβ)

∥

∥

∥

2

with respect to β, in order

to obtain β̂[k+1], and hence η
[k+1]
i = Xβ̂[k+1]and µ[k+1]. Increase k by one.

The converged β̂ is the maximum likelihood estimator of β.

Notice that to start the iteration we only need µ[0] and η[0] values, but not β̂[0].

Hence, the iteration is usually started by setting µ
[0]
i = yi and η

[0]
i = g(µ

[0]
i ).

A.6. Penalized Iterative Re-weighted Least squares (P-
IRLS)

In order to fit a generalized additive model, penalized iterative re-weighted
least squares method is iterated to convergence. The steps of the method are
the following:

1. Given the current linear predictor estimate η[k], and corresponding esti-
mated mean response vector, µ[k], calculate:

ωi ∝ 1

V (µ
[k]
i )g′(µ

[k]
i )2

and
zi = g′(µ

[k]
i )(yi − µ

[k]
i ) + Xiβ

[k]

where Var(Yi) = ϕ V(µ[k ]) and Xi is the ith row of X.

2. Minimize the quantity

||
√

W (z − Xβ)||2 + λ1βTS1β + λ2βTS2β

with respect to β to obtain β[k+1], and hence η[k+1] = Xβ[k+1]. W is a
diagonal matrix such that W ii = wi.
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Step 2 can be replaced by the equivalent:

Minimize
∥

∥

∥

∥

[ √
W 0
0 I

] [

z
0

]

−
[

X
B

]

β

∥

∥

∥

∥

2

with respect to β to obtain β[k+1], and hence η[k+1] = Xβ[k+1]. B is a matrix
square root such that BT B =λ1S1 + λ2S2.

49



8 References

[1] Serfling RE. Methods for current statistical analysis of excess pneumonia-
influenza deaths. Public Health Reports 1963;78:494-506.

[2] Simonsen L et al. The impact of influenza epidemics on mortality: introduc-
ing a severity index. American Journal of Public Health 1997;87:1944-1950

[3] Thompson WW et al. Mortality associated with influenza and respiratory
syncytial virus in the United States. JAMA 2003;289:179-186.

[4] Glezen WP, Payne AA, Snyder DN, et al. Mortality and influenza. J Infect

Dis 1983;146:313-321

[5] Donaldson GC, Keatinge WR. Excess winter mortality: Influenza or cold
stress? BMJ 2002;324:89-90

[6] Schanzer DL et al. Influenza – attributable deaths, Canada 1990-1999. Epi-

demiology and Infection 2007;135:1109-1116.

[7] Dushoff J et al. Mortality due to Influenza in the United States-An annu-
alized regression approach using multiple-cause mortality data. American

Journal of Epidemiology 2006;163:181-187.

[8] Wong CM et al. Influenza-associated mortality in Hong Kong. Clinical

Infectious Diseases 2004;39:1611-1617.

[9] Newall AT et al. Influenza-related hospitalization and death in Australians
aged 50 years and older. Vaccine 2008;26:2135-2141.

[10] Nichol KL, Goodman M. The health and economic benefits of influenza
vaccination for healthy and at-risk persons aged 65 to 74 years. Pharma-

coeconomics 1999;16:63-71.

[11] Nichol KL, Nordin J, Mullooly J, et al. Influenza vaccination and reduction
in hospitalizations for cardiac disease and stroke among the elderly. N Eng

J Med 2003;348:1322-1332.

[12] Glezen WP. Serious Morbidity and Mortality Associated with Influenza
Epidemics. Epidemiologic Reviews 1982;4:25-44.

[13] Andersson M et al. Excess Mortality Related to Outbreaks of Influenza,
Respiratory Syncytial Virus and Norovirus in Sweden 2004-2007. Submit-

ted to Epidemiology and Infection.

[14] Centers for disease control and prevention (www.cdc.gov)

[15] Jansen AG et al. Influenza- and respiratory syncytial virus-associated mor-
tality and hospitalizations. The European Respiratory Journal 2007;30:1158-
1166.

50



[16] World Health Organization (www.who.org)

[17] Fleming DM, Pannell RS, Cross KW. Mortality in children from influenza
and respiratory syncytial virus. J Epidemiol Community Health 2005;59:586-
590.

[18] Izurieta HS, Thompson WW, Kramarz P, et al. Influenza and the rates of
hospitalization for respiratory disease among infants and young children.
N Engl J Med 2000;342:232-239

[19] Fleming DM, Cross KW. Respiratory syncytial virus or influenza? Lancet

1993;342:1507-1510.

[20] Gay NJ et al. Estimating deaths due to influenza and respiratory syncytial
virus. JAMA 2003;289:2499.

[21] Swedish Institute for Infectious Disease Control
(http://www.smittskyddsinstitutet.se/)

[22] Wood SN. Generalized additive models: An introduction with R. CRC-
Press,2006.

[23] Zeileis et al. Regression Models for Count Data in R. Journal of Statistical

Software 2008;27(8):1-25.

[24] Statistics Sweden (www.scb.se)

[25] International Organization for Standardization
(http://www.iso.org/iso/date_and_time_format)

[26] Everitt BS, Hothorn T. A handbook of statistical analyses using R. CRC-
Press,2009.

[27] Sundberg R. Lecture Notes on Statistical Modeling by Exponential Fami-
lies. Stockholm University, March 2010.

[28] Dobson A.J. An introduction to Generalized Linear Models. Second Edi-
tion. Chapman & Hall/CRC Press, 2001

[29] Hastie T, Tibshirani R. Generalized Additive Models. Statistical Science

1986; 1.3:297-318.

[30] Hilbe J, Negative Binomial Regression. Cambridge University Press, 2007,
p 73.

51




