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Abstract

The Morphological development of neurons is a very complex pro-
cess involving both cellular and molecular mechanisms. Computa-
tional modelling and numerical simulation of neuronal morphology are
invaluable tools for understanding evolvement procedures and struc-
turefunction relationships. The aim of this project is to apply and
develop methods of stochastic modelling, Markov chains, for simu-
lating the dendritic morphology of brain neurons in 3-dimensional
domains. We examine how dendritic elongation, branching and ter-
mination tips in pyramidal neurons are controlled by the birth and
death process, with the number of growing dendrites as its state
and the appropriate growth, birth, bifurcatioand termination rates.
Pyramidal neurons consist of three different kinds of dendrites in
terms of their arborisation; namely: 1) basal dendrites, 2) apical
and oblique dendrites and 3) tuft dendrites. We present the ap-
proach based on the continuous time birth and death process for
the basal and tuft dendrites, whereas this method is replaced by a
discrete time model for the simulation of apical and oblique den-
drites. Simulations are performed to validate each models perfor-
mance by comparing with the real neuronal cells. It is shown that
the models are able to simulate the dendritic arborisation of differ-
ent parts of pyramidal neuron with respect to the methods described
above. These three models are joined after considering the location
measurements and a single picture of a pyramidal neuron is created.
Key words: Pyramidal Neurons, Dendritic Arborisation, Markov Chains,
Discrete and Continuous Time Birth and Death Process.
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1 Introduction
In the present work we use statistical methods to simulate the 3–dimensional
morphology of neuronal dendrites. The morphology of dendrites can be de-
scribed as a Markov chain, a stochastic process having the Markovian prop-
erty.

’Different types of neurons can be distinguished by the structure of their
dendrites, which can be characterized in terms of segment lengths and di-
ameters, the number of terminals (unbranched tips), the number of branch
points, and the topological factors such as symmetry’[1].

Dendritic arborisation underlies many aspects of nervous system structure
and is a fundamental substrate of brain activity and functional specializa-
tion. Dendrites, along with axons, play a large role in information processing
at the single cell level. Many neuroscience studies emphasize the importance
of dendritic branching pattern in neuronal behaviour. ’Despite its impor-
tance, dendritic branching remains poorly understood. Dendritic branching
is driven by a complex interaction of intercellular and extracellular signalling
cascades which are proving difficult to completely unravel by molecular bi-
ology alone’ [2]. Stochastic modelling and computational investigation offer
a complementary and enhanced approach to traditional molecular means of
uncovering essential properties of dendritic branching. The parameters con-
trolling branching behaviour are measured from real cells, reduced to statis-
tical distributions and methods, which are beneficial to adequately simulate
the 3-dimensional structure of neuronal dendrites.

To simulate the morphology of dendrites we have used the method of birth
and death process both in continuous and discrete time. Much of our focus
has been done to develop separate models for different parts of dendrites in
3–dimensional space.

The samples in this case are taken from the layer 5 of barrel cortex ETV/GLT
and visual cortex ETV/GLT in pyramidal neurons of a mouse brain.

Our goal here is the following:

• Develop a model that can be used to simulate dendritic arborisation
using the statistical methods mentioned above,

• Estimate the required model parameters directly from measurements
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of real dendrites,

• Refine the parameter derivations or basic models assumptions, based
on the degree of congruence between real and simulated dendrites.

The entire computational process has been implemented in MATLAB.

The following section illustrates the general structure and definitions of the
neurons; in particular pyramidal cells. Section 3 gives the theoretical back-
ground of the methods used to simulate the dendritic morphology. Section 4
explains the data which are taken from two kinds of pyramidal neurons. The
simulation methods for each separate part of the neuron are clarified in Sec-
tion 5. Results, simulated models and a single simulated pyramidal neuron
are presented in Section 6, and finally in the discussion section we summarize
the model and discuss problems and possibilities of further improvements.

2 Background
2.1 Structure of a Typical Neuron
The neuron, also know as a nerve cell, is the core component and the fun-
damental unit of the nervous system. The basic purpose of a neuron is to
receive incoming information and, based upon that information; send chem-
ical and electrical signals to other neurons, muscles, or glands. Neurons are
designed to send signals at a very fast rate across physiologically long dis-
tances. They do these using nerve impulses or action potentials. Action
potentials are electrical charges that change in a wave-like pattern through
the length of the nerve cell. When a nerve impulse reaches the end of a
neuron, it triggers the release of a chemical; a neurotransmitter. The neuro-
transmitter travels rapidly across the synapse and acts to signal the adjacent
cell.

Although neurons are very diverse and have many different shapes and sizes,
most of the nerve cells have some common basic features. Figure 1 illustrates
the basic structure of a neuron. A typical neuron in a vertebrate (such as a
human) is divided into four major regions: a cell body, dendrites, an axon,
and synaptic terminals. Like all cells, the entire neuron is surrounded by a
cell membrane. The cell body (soma) is the enlarged portion of a neuron
that most closely resembles other cells. It contains the nucleus and other spe-
cialized organelles such as the mitochondria, Golgi apparatus, endoplasmic
reticulum, secretory granules, ribosomes and polysomes. It provides energy
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and coordinates the metabolic activity of the neuron. The dendrites, which
branch off in treelike fashion from the cell body, are specialized to receive
signals and transmit them toward the cell body. A single neuron may have
hundreds of dendrites. An axon is a long, slender projection of a nerve cell
that carries signals away from the cell body. Synaptic terminal are at the
end of the axon in which neurotransmitter molecules are stored and released.
[3]

Figure 1: Structure of a typical neuron.1

2.2 Pyramidal Neurons
Pyramidal neurons (pyramidal cells) are a type of neuron found in forebrain
structures such as the cerebral cortex, hippocampus, and amygdala, but
not in the olfactory bulbs, striatum, midbrain, hindbrain, or spinal cord.
They are the most numerous excitatory cell types in mammalian cortical
structures, suggesting that they play important roles in advanced cognitive
functions.

The main structural features of the pyramidal neuron are the triangular
shaped soma, or cell body, a single axon, a large apical dendrite, multiple
basal dendrites, and the presence of dendritic spines. The basal dendrites
emerge from the base and the apical dendrites from the apex of the pyramidal
cell body. Dendritic spines receive most of the excitatory impulses that enter
a pyramidal cell.

1The figure is taken from www.thomasjwestmusic.com/neurologyapplied.htm/.
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2.3 Basal and Apical Dendrites
’The structure of pyramidal neurons, although stereotypical, is quite variable,
both between regions (e.g. hippocampus vs. neocortex) and within regions
(e.g. layer II vs. layer V of neocortex). Nevertheless, pyramidal neurons
have a stereotypical morphology, which is best characterized by the presence
of separate basal and apical dendritic trees. Several basal dendrites emerge
from the base of the pyramidal soma. Each basal dendrite branches up
to several times before terminating. The basal dendritic tree appears very
similar in form to a stellate neuron (Elston and Rosa, 1998). A single apical
dendrite emerges from the apex of the pyramidal soma. In most cases the
primary apical dendrite extends for several hundred microns before branching
to form an apical tuft, consisting of dendrites that branch a few times before
terminating. In some cases the primary apical dendrite bifurcates to form
two main apical dendrites. Emanating from the primary apical dendrites
are several oblique branches, which typically branch once or twice before
terminating. In some cases the primary apical dendrite bifurcates closer to
the soma, giving rise to twin apical dendrites, each giving rise to several
oblique branches.’

Figure 2: A variety of pyramidal neurons from different parts of the brain.2

2The article and figure are taken from Scholarpedia. Keyword: ’Pyramidal Neurons’.
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3 Methods
3.1 Discrete-time Markov Chain
Consider a stochastic process {Xn, n = 0, 1, 2, 3, . . .} that can take a finite
or countable number of nonnegative integers. If Xn = i , then the process is
said to be in state i at time n. Whenever the process is in state i at time
n, there is a fixed probability Pi,j that the process will be in state j at time
n+ 1. We suppose that

P{Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X1 = i1, X0 = i0} = Pi,j

for all states i0, i1, . . . , in−1, i, j and n ≥ 0. Such a stochastic process is
called a Markov chain. The above equation elucidates that, the conditional
distribution of any future state Xn+1 given the past states X0, X1, . . . , Xn−1
and the present state Xn is independent of the past states and depends only
on the present state.

The value Pi,j represents the probability that when the process is in state i,
next will make a transition into state j. Probabilities are nonnegative and
since the process must make a transition to some state, we have that

Pi,j ≥ 0, i, j ≥ 0
∞∑
j=0

Pi,j = 1, i = 0, 1, 2 . . .

Let P denote the matrix of one-step transition probabilities Pi,j , so that

P =

∥∥∥∥∥∥∥∥∥∥∥∥∥

P00 P01 P02 · · ·
P10 P11 P12 · · ·
...
Pi0 Pi1 Pi2 · · ·
...

...
...

∥∥∥∥∥∥∥∥∥∥∥∥∥
3.2 Continuous–time Markov Chain
Consider a continuous time stochastic process {X(t), t ≥ 0} taking on values
in the set of nonnegative integers. We say that the process {X(t), t ≥ 0} is
a continuous–time Markov chain if for all s, t ≥ 0 and nonnegative integers
i, j, x(u), 0 ≤ u < s

p{X(t+ s) = j|X(s) = i,X(u) = x(u), 0 ≤ u < s}
= P{X(t+ s) = j|X(s) = i}.
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In other words, a continuous–time Markov chain is a stochastic process hav-
ing the Markovian property that the conditional distribution of the future
X(t + s) given the present X(s) and the past X(u), 0 ≤ u < s, depends
only on the present and not on the past.

Moreover, if we let Ti denote the amount of time that the process stays in
state i before making a transition into a different state, then

P{Ti > s+ t|Ti > s} = P{Ti > t}

for all s, t ≥ 0. The random variable Ti is memoryless and is exponentially
distributed.

According to the above equation we can define a continuous-time Markov
chain in another way namely; a stochastic process which has the properties
that each time it enters state i

(i) The amount of time it spends in that state before making a transition
into a different state is exponentially distributed with mean 1/νi.

(ii) When the process leaves state i, it next enters state j with a probability
Pi,j satisfying

Pi,i = 0 all i∑
j

Pi,j = 1 all i.

In addition, the amount of time the process spends in each state, must be
conditionally independent given the sequence of entered states.

3.3 Birth and Death Process
Consider a system whose state at any time is represented by the number
of people in the system at that time. Whenever there are n people in the
system, then (i) new arrivals enter the system at an exponential rate λn and
(ii) people leave the system at an exponential rate µn. That is, whenever
there are n persons in the system, then the time until the next arrival is ex-
ponentially distributed with mean 1/λn and is independent of the time until
the next departure which is itself exponentially distributed with mean 1/µn.

This system is called a birth and death process, which has wide applicability
in the study of biological system. The parameters {λn}∞n=0 and {µn}∞n=1
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are called respectively the arrival (or birth) and departure (or death) rates.

The birth and death process is a continuous–time Markov chain with states
0, 1, 2, . . . for which transitions from state n may go either to state n− 1 or
state n + 1. The relationship between the birth and death rates, the state
transitions rates and probabilities are:

v0 = λ0,

vi = λi + µi, i > 0

P01 = 1,

Pi,i+1 =
λi

λi + µi
, i > 0

Pi,i−1 =
µi

λi + µi
, i > 0

When there are i individuals in the system, then the next state will be i+ 1

if a birth occurs before a death; and the probability that an exponential
random variable with rate λi is smaller than an (independent) exponential
with rate µi is λi/(λi + µi) and the time until the first event occurs is ex-
ponentially distributed with rate λi + µi. The preceding results follow from
the properties of the exponential distribution which is discussed more in the
Appendix.

The birth and death process can also be described as a discrete–time Markov
chain, where at each discrete time point a birth and / or death may occur.
Suppose Xn = i, then, Xn+1 = i + 1 or, Xn+1 = i − 1. That is, state
transitions are always between neighbouring states.

4 Data
The samples in this project are taken from the barrel cortex ETV/GLT and
visual cortex ETV/ GLT of layer 5 pyramidal cells. Morphometric specifica-
tion of these two cortical cell types in L5 pyramidal neuron will be discussed
more in the Appendix.

In principle, the neuron can be represented by points in three-dimensional
space connected to each other through edges. For instance, if there is an
edge between two points 2 and 3, it means these points are connected to
each other by a dendrite. Figure 3 shows how points/edges can be regarded
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as a graph representation of the neuron.

Concerning this fact, the data in this case are more in the form of coordi-
nates, and edges connecting corresponding nodes in three-dimensional space.
Moreover, there are environmental variables giving the distance between the
cell body and other important positions of the pyramidal neuron. The sub-
sequent variables explain more about data.

Figure 3: A simple graph with 7 nodes and 6 edges.3

Coordinates: The list of three–dimensional coordinates that represent the
individual points of the neuron.

Edges: The list of edges which connect points (in no particular order).

Apical root: Index of starting point of apical dendrite tree.

Basal roots: The list of starting points of basal dendrites.

Branch points: The list of all points that branch off from the parent den-
drites.

Terminal points: The list of all points where dendrites terminate (stop
growing).

Soma coordinates: Three–dimensional coordinates where the cell body or
soma is located; this is normalized so that the soma is always set to be at
(0, 0, 0). This is the location where all dendritic trees start growing.

3The figure is taken from Wikipedia. Keyword: ’Graph’.
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Soma L4L5: The distance from cell body to layer4-layer5 border, the lo-
cation where layer 4 ends and layer 5 begins. Dendritic growth is different
in layer4 and layer5. Specifically, layer4 has almost no dendrites, apart from
the long apical dendrite that grows straight upwards and the number of the
oblique dendrites in this layer is thus limited.

Soma pia: The distance from soma to pia (top of the brain). This is a
physical upper bound for neuronal growth; the neuron cannot grow above
this level.

Soma wm: The distance from soma to white matter (bottom of the brain
area). This is a lower bound for neuronal growth, but neurons do not usually
grow much in this direction.

Intermediate segment lengths: Basal intermediate segment lengths for
all barrel cortex ETV/GLT and visual cortex ETV/GLT.

Terminal segment lengths: Basal terminal segment lengths for all barrel
cortex ETV/GLT and visual Cortex ETV/GLT.

Histograms in figure 4 and 5 show descriptive features of ETV–pyramids in
terms of basal intermediate and terminal segment lengths.

In addition, particular parts of the pyramidal neuron, which are mentioned
in section 2.3, grow in different layers. Basal dendrites together with the cell
body emerge in layer 5, while oblique dendrites appear in layer 4 and tuft
dendrites emanate from the upper 10% of the pia–white matter distance
in barrel cortex and upper 15% of the pia–white matter distance in visual
cortex pyramidal neurons [4]. This corresponds almost to the layer1-layer2
border. The data about approximate layer depth from pia and thickness is
available in the Appendix.
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Figure 4: Basal segments lengths in barrel cortex ETV.

Figure 5: Basal segments lengths in visual cortex ETV.
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5 Model for the Pyramidal Cell
5.1 Model Background
Due to the morphological characteristics of layer 5 pyramidal neurons, in
terms of different dendritic arborisation and distinctive layers among them,
whole dendrites in pyramidal cells can be divided into three separate regions:
• Cell body and basal dendrites in layer 5,

• Obliques dendrites along with apical in layer 4,

• Tuft dendrites which branch off from the top of the apical. They start
approximately from layer1–layer2 border and elongate near to pia.

Assume that dendritic growth in each section mentioned above proceeds in-
dependently of each other during the whole process. This fact leads us to
implement separate procedures with respect to each region.

One common method of simulation, which is used here, is to apply birth
and death processes for each part independently. The procedure used for
basal and tuft dendrites is based on the continuous-time birth and death
process, while we change the method to discrete time for the apical and
oblique dendrites in layer 4 as an approximation of the continuous case .
During the growth process of dendrites the following events can occur at
each section independently:

• Birth event: When a new basal dendrite emerges from the cell body,
a new oblique dendrite grows from the apical, or a new tuft dendrite
emanates from the apical.

• Bifurcation event: When a parent dendrite branches into two other
(daughter) dendrites.

• Termination event: When a dendrite (new birth or branch) stops grow-
ing.

Moreover, the probability of occurrence of each event is denoted by Pbirth,

Pbranch, and Ptermimate.

According to the above events growth rates, birth rates, bifurcation rates and
termination rates are considered as the parameters of the birth and death
processes. For simplicity, same symbols are used for all birth rates, bifurca-
tion rates and termination rates in different regions. Table 1 illustrates the
possible rates with their symbols used during model building.
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Table 1: Rates and symbols.

Basal Apical/Oblique Tuft

Growth rate λb λo λt
Birth rate τ τ τ

Bifurcation rate γ γ γ

Termination rate ν ν ν

The basal and tuft growth rates are regarded as constant values and set
equal to one during the whole period of the simulation. This is mainly due
to the lack of data for different times of the neuronal growth process that
creates difficulties for estimating the growth rates. Since the main objective
of the simulation process is to create a realistic image of the final neuron,
the simulation time is adjusted to achieve this. By letting λb = λt = 1 we
do not include them in our models anymore.

The number of growing dendrites (G) at any time is considered as the state
of the Markov process for each section. Possible values of this state is denoted
by the set of nonnegative integers {0, 1, 2, 3 . . .}. Transitions from state n

may go either to state n− 1 or state n+ 1, except for n = 0 from which it
is only possible to go to n = 1. This transition is based on the probabilities
of occurrence for each possible event.

5.2 Model Descriptions
5.2.1 Basal and Tuft Dendrites
The method applied for the basal and tuft dendrites is based on a continuous–
time birth and death process and are almost identical to each other, so the
same procedure is mentioned for both parts. The flow chart in figure 6 shows
the model for getting the number of growing dendrites G(i) which is related
to the event probabilities at each step.

The stochastic growth process starts with 0 dendrites and the next event
will be a new birth. After observing the first event as a new birth, the
second event can be a bifurcation or termination of the first dendrite or
independently another dendrite is born and grows. The fate of the dendrite
to end in either a branch or a termination or to continue as a new birth is
determined stochastically using the corresponding transition probabilities.
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For this purpose, a uniformly distributed random variable (0 < R < 1) is
generated and compared with Pterminate. The first newborn dendrite will be
ended in a termination if R < ν/(τ +γ+ ν), and the number of the growing
dendrites will change to 0. If this condition is not satisfied the next event will
be branching or bifurcation. Another value of R is generated and compared
with Pbranch. If R < γ/(τ + γ) the event will be a bifurcation, otherwise
another newborn will be added to our system. In both cases the number
of the growing dendrites will increase by one. This algorithm will continue
by considering the number of growing dendrites at the time when one of
the possible events occurs. Denote the number of growing dendrites at the
beginning of the model by G(0) = 0. The number of growing dendrites after
the ith event where i ≥ 1, is defined as G(i). The probabilities of the next
occurring events directly depend on the number of growing dendrites at each
step, so the probability of termination for the i+ 1th event will be

G(i) · ν
(τ +G(i) · (γ + ν))

and the probability of bifurcation given that termination has not occurred,
is

G(i) · γ
(τ +G(i) · γ)

.

At each termination event the number of growing dendrites is decremented
by 1, while if the process leads to either a bifurcation or a new birth, G
is incremented by 1. Denote the time of the first event (new birth) by T1.

Further, for i > 1 let Ti denote the elapsed time between the events i−1 and
i. Ti for i = 1, 2, 3, 4, . . . are conditionally independent given the sequence
of visited states and have exponential distribution with mean

1

(τ +G(i− 1) · (γ + ν))
.

Let Si = T1 + T2 + · · · + Ti, which is the waiting time until the ith event
happens. For simplicity consider Si as the start time of the ith event and
denote it by Tstart.
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Figure 6: Flow chart of the basal and tuft dendrites growth process.
Input at the initiation of the process is the number of growing dendrites G(i).

Random # refers to a random number drawn from a uniform distribution
between 0 and 1.

5.2.2 Apical and Oblique Dendrites
By looking at the morphology of the apical dendrite in a real neuronal cell,
which grows from the apex of the soma and elongates straight upwards, we
imagine the apical as the Z-axis that emanates from the origin (0, 0, 0), the
position of the soma. The newborn oblique dendrites can start growing at
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any position on the apical. The number of oblique dendrites becomes greater
as the length of the apical increases, in other words, when the length of the
apical becomes larger, the probability of an oblique dendrite being born will
increase. This fact leads us to conclude that instead of having constant rate
we should consider a linear growth rate λot , where t is the current time of
the process. Note that λot is the length of the apical from the cell body at
time t. Using the linear rate, the time until the next event does not follow
the exponential distribution (see the Appendix). In order to overcome this
problem, we have used a discrete-time Markov chain and applied the model
to the whole layer 4 of pyramidal cell. By dividing the period of time into
very tiny and small intervals of length dt we can consider the discrete–time
birth and death process as an approximation of the underlying continuous
process. The number of growing oblique dendrites G is the state of the pro-
cess at each tiny interval.

By considering t as the current time of our process, which increases stepwise
with the quantity dt, the probabilities of a new birth, a bifurcation and a
termination per unit dt calculated using the following formulas:

Pbirth = τ · λo · t · dt
Pbranch = γ ·G(t) · dt

Pterminate = ν ·G(t) · dt

The process starts at time t = 0 when there are no oblique dendrites in the
model, G(0) = 0. The next event will be the newborn oblique dendrite which
will occur at a specific discrete time point according to the birth probability.

The flow chart in figure 7 shows the algorithm for getting the number of
growing oblique dendrites per dt unit. The time interval dt is assumed to
be so small that all transition probabilities are small as well.

In order to get the occurrence time of each specific event from the beginning
of the process we just need to input a start value of Tstart = t · dt which
indicates the start time of the events.

19



Figure 7: Flow chart of the oblique dendrites growth process.
Input at the initiation phase is the start time of the process. Random #

refers to a random number drawn from a uniform distribution between 0

and 1.
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5.3 Stopping Times
After obtaining the time point when a particular event starts, the next step is
to find the stopping time of the new birth or bifurcation event. For example,
if we have one newborn dendrite with starting time, say, Tstart, the next step
is to get the time this dendrite branches into two other dendrites or stops
growing. This time is defined as the stopping time or simply Tstop. Note
that the starting time of one branching dendrite is equal to the stopping
time of its parent dendrite, which can be a new birth or a bifurcation itself.
Also the termination event can be related to one new birth or branching
dendrite as well. Broadly speaking, in order to get the stopping time for
the new birth and branching dendrites, at each bifurcation or termination
event with Tstart = L, one new birth or bifurcation with Tstart = S, where
S < L, is selected randomly. The starting time L will be the Tstop of the
dendrite with Tstart = S. This procedure will continue until all new birth
and branching dendrites have their own stopping times.

5.4 Coordinates
Figure 8 shows the real picture of a barrel (somatosensory) cortex from a
mouse brain projected in two–dimensional space. The scale is in micrometers
for both the X and Y axes. Each dendrite can be determined by its starting
and stopping coordinates. Also the starting coordinates of each branch are
the same as the stopping coordinates of its parent dendrite.

Figure 8: Real neuronal picture in two–dimensional space.
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In order to get the starting and stopping coordinates for each newborn or
branching dendrite, three other variables such as position coordinates, di-
rection coordinates and angles have been defined in such a way that along
with Tstart and Tstop assist us to get the specific coordinates of each den-
drite. In the following we describe how these variables are calculated for
each individual dendrite.

• Position coordinates are the starting coordinates of each dendrite and
this variable have specific values for the newborn dendrite in each sec-
tion separately.

(i) By denoting the coordinates of the cell body as (0, 0, 0), the start-
ing coordinates for the newborn basal dendrites will be (0, 0, 0).

(ii) Regarding the apical as a Z –axis, as mentioned in Section 5.2.2,
each new oblique from apical (new birth) will be at one point
along the Z –axis, so the position coordinates of each newborn
oblique dendrite is (0, 0, z) where z = λo · t · dt.

(iii) The position coordinates of the newborn tuft dendrites are equal
to the coordinates where the apical stops growing.

• The direction coordinates which are calculated from the spherical co-
ordinates system are :

X = ρ sin Φ cos θ

Y = ρ sin Φ sin θ

Z = ρ cos Φ.

• The angular variables are defined in spherical coordinates, ρ is the
radius and is set to one; Φ is the polar angle from the positive Z –axis
with 0◦ ≤ Φ ≤ 180◦ (π rad) and θ is the azimuthal angle in the
XY–plane from the X –axis with 0◦ ≤ θ < 360◦ (2π rad). However,
the azimuth θ is often restricted to the interval (−180◦, 180◦]. The
spherical coordinates system is discussed thoroughly in the Appendix.

The angles have special statistical distributions for each newborn and bifur-
cation dendrites. Φbirth has a normal distribution with parameters depend-
ing on the dendritic shapes and their angles from the positive Z –axis, and
θbirth is uniformly distributed on the open interval (−180◦, 180◦), because
of cylindrical symmetry. The proper parameters of the distribution of Φbirth
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are discussed separately for each region in Section 6.

Bifurcation dendrites do not have a large variation from their parents in
terms of angles and direction. According to this fact,Φbranch and θbranch

have normal distributions with parameters which are dependent on the par-
ent dendrite. Possible parametrization are discussed in more detail in Section
6.

Therefore, as mentioned above we have the following general distributions
for each section with the specific parameters that depend on the dendritic
growth shapes which differ widely at each region.

Φbirth ∼ Normal distribution(µ, σ)

θbirth ∼ Uniform distribution(−180◦, 180◦)

Φbranch ∼ Noraml distribution(Φparent, σ)

θbranch ∼ Noraml distribution(θparent, σ)

After getting the relevant values of direction variables for each dendrite, the
stopping coordinates can be calculated from the following formulas for basal
and tuft dendrites:

stopping coordinates = position coordinates + direction coordinates ·∆T

where ∆T is Tstop−Tstart. For oblique dendrites the corresponding formula
is:

stopping coordinates = position coordinates+direction coordinates ·λo ·∆T.

5.5 Edges
In order to distinguish which dendrites are connected to each other during
the growth process, Tstart and Tstop of different dendrites are taken into ac-
count. In other words, if the Tstart of one arbitrary dendrite is the same as
Tstop of another dendrite, then we can conclude that there is an edge between
them which connects these two dendrites. Tstart and Tstop of all dendrites
examined and the possible edges assembled at the end of comparison are
stored in a matrix with the number of rows equal to the number of edges
and two columns. Then, the dendrite in each row is connected to another in
such a way that the edge extends from the dendrite which is placed in the
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first column, thereby helping us to get the direction of the edges between
dendrites. If one dendrite has two edges that extend from it, then this point
represents a parent dendrite which branches into two other daughter den-
drites. Note that the stopping coordinates of the parent dendrite is the same
as the starting coordinates of its two branches.

After getting all edges of the process, the next step is to connect the coor-
dinates of dendrites according to the edge matrix. We perform this process
for the separate parts of the neuronal cell. So, at the end, there will be three
sets of edges with their corresponding coordinates.

5.6 Combining Three Models
After getting the separate edges and coordinates for basal, oblique and tuft
dendrites, we can combine edges and coordinates together and make a single
picture of the pyramidal cell. By considering the approximate value of layers,
the apical dendrite elongates from the cell body in layer5a–layer5b border
and stops growing close to the layer1–layer2 border. This length is the dif-
ference between layer5a–layer5b border and layer1–layer2 border. When the
apical dendrite ends, tuft dendrites start growing and the starting coordi-
nates of the new birth tuft dendrites are (0, 0, 574). Notice that the scale is
in µm.
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6 Model Simulations
6.1 Basal Dendrites Simulations
The shapes of the basal dendrites from the real neuronal cells guide us to
determine suitable values of the parameters for the distribution of angles.
The newborn basal dendrites grow downwards from the cell body. Accord-
ing to these facts, we have selected Φbirth , the polar angle of basal growth
directions, to have a normal distribution. The majority of the newborn basal
dendrites grow along the negative part of the Z –axis and we have a few num-
ber of dendrites with large deviations from this direction. Thus the mean
value of the normal distribution is decided to be 180◦ with a standard de-
viation of 45◦, which indicates the deviation of dendrites from the negative
part of the Z –axis.

Φbranch and θbranch have normal distributions with the parents’ angles as
their mean values. By examining some different values as a standard devia-
tion of the branching angles distributions, the suitable parameter is chosen
to be 10 degrees which has the most contingency with the real neuronal
shapes. So, the appropriate models for the basal dendrites in layer 5 are:

Φbirth ∼ Normal distribution(180◦, 45◦)

θbirth ∼ Uniform distribution(−180◦, 180◦)

Φbranch ∼ Noraml distribution(Φparent, 10◦)

θbranch ∼ Noraml distribution(θparent, 10◦)

By increasing the standard deviation σ of the Φbranch and θbranch distribu-
tions, the bifurcation dendrites deviate more from their parents dendrites.
Figure 9 depicts this fact clearly. This algorithm was run until time t = 100.

The values of the new birth, bifurcation and termination rates are selected in
such a way that the simulated model shows the suitable consistency with the
real pyramidal neuron, thus we choose τ = 3, γ = 4 and ν = 4. By changing
the rates of the model we will have different pictures of the simulation. For
instance, by increasing the bifurcation rate, the results display basal parts
with more branches.
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(a) Basal dendrites with σ = 80◦. (b) Basal dendrites with σ = 60◦.

(c) Basal dendrites with σ = 30◦. (d) Basal dendrites with σ = 10◦.

Figure 9: Simulated basal dendrites with different σ.

The number of growing basal dendrites of the simulated figure 9(d) is shown
as a stairstep graph in figure 10. The first newborn dendrite starts to grow
when Tstart = 0.219 and the process continues until the number of growing
basal dendrites reaches 36 when Tstart = 0.758. This simulated model results
in 6 newborn basal dendrites, 62 bifurcations and 32 terminal points.
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Figure 10: Stairstep graph of the growing basal dendrites.

6.2 Apical and Oblique Dendrites Simulations
As mentioned before, we consider the apical dendrite to grow in the direction
of the Z –axis in three–dimensional space. Newborn oblique dendrites grow
from all sides of the apical, the majority of them have approximately 90

degrees angles from the Z –axis. We have decided to consider a normal
distribution with mean 90 degrees and standard deviation 3 degrees for
the newborn oblique dendrites. The angle distributions for branches have
normal distributions whose mean parameters are dependent on the parents’
dendrite. Thus the following represent the suitable distributions in layer 4:

Φbirth ∼ Normal distribution(90◦, 3◦)

θbirth ∼ Uniform distribution(−180◦, 180◦)

Φbranch ∼ Noraml distribution(Φparent, 3
◦)

θbranch ∼ Noraml distribution(θparent, 3
◦)

Choosing a small rate for the τ as a parameter helps us to obtain the suitable
picture. The growth rate of the apical is set to be 2/5 in order to get the best
realistic figure of apical length. Figure 11 shows how dendritic morphology
changes with different rates and assists to choose the best graphs. The apical
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dendrite grows from the cell body (0, 0, 0) and elongates till (0, 0, 574). Time
for this algorithm run until 50 and dt is set to be 0.01.

(a) τ = 1, γ = 3 and ν = 3. (b) τ = 0.8, γ = 6 and ν = 5.

(c) τ = 0.1, γ = 6 and ν = 5. (d) τ = 0.01, γ = 4 and ν = 5.

Figure 11: Simulated apical and oblique dendrites with different rates.

6.3 Tuft Dendrites Simulations
Tuft dendrites start to branch out from the top part of the apical which
approximately corresponds to the layer1–layer2 border. The newborn den-
drites grow up along the Z –axis. Normal distribution with the mean value
80 degrees and standard deviation 5 degrees are selected for the Φbirth distri-
bution, since the majority of the newborn dendrites grow nearly 80 degrees
from the Z –axis. The angles for bifurcations have normal distributions with
a standard deviation of 5 degrees, which shows the highest consistency with
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the real tuft dendrites. Appropriate distributions for tuft dendrites are:

Φbirth ∼ Normal distribution(80◦, 5◦)

θbirth ∼ Uniform distribution(−180◦, 180◦)

Φbranch ∼ Noraml distribution(Φparent, 5
◦)

θbranch ∼ Noraml distribution(θparent, 5
◦)

The pictures below show the simulated tuft dendrites with different rates.
The time horizon for this simulation is t ∈ [0, 100].

(a) τ = 1, γ = 3 and ν = 3. (b) τ = 3, γ = 5 and ν = 3.

(c) τ = 6, γ = 4 and ν = 3. (d) τ = 6, γ = 5 and ν = 5.

Figure 12: Simulated tuft dendrites with different rates.
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The graph below shows the stairstep plot of the simulated figure 12(d). The
model results in 11 newborn dendrites, 43 bifurcations and 46 terminal
points.

Figure 13: Stairstep graph of the growing tuft dendrites.
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6.4 Single Picture of Neuron
Combining the three models will result in a complete picture of a pyramidal
cell. This combination has been done according to the layer depth discussed
in earlier sections. The figures below show the single picture of neurons in
three–dimensional space.

Figure 14: Simulated pyramidal neurons.

7 Discussion
7.1 Aim
The aim of this project has principally been to perform a computational in-
vestigation based on the stochastic modelling of birth and death process
and simulate the dendritic morphology of a pyramidal neuron in three-
dimensional domains, where the model parameters are all extracted from
experimental data. On the basis of our simulation in MATLAB, three sepa-
rate models work well and show satisfactory results in the sense of fulfilling
our expectations and the degree of congruence between real and simulated
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dendrites.

Dendritic development is a complex process. Stochastic modelling and nu-
merical simulation are powerful tools to help us understand this complicated
procedure. Many previous models of dendritic arborisation vary widely in
both their methodology in terms of the specific algorithm such as Hidden
Markov Models [5] or Monte Carlo simulations [6], and the choice of the mor-
phometric variables like the number of bifurcations, branch order, branch
start diameters, radius, the path distance from the soma and intermediate
or terminal segment lengths.

7.2 Data
The experimental data are taken from two kinds of L5 pyramidal neuron
at specific time point, when the neuronal growth is almost completed. The
problem occurs when the neuronal morphometric structures are based on
one data set at a particular time point. The growth rates of dendrites in dif-
ferent parts of the cell are not constant and in order to estimate the growth
rates we need morphometric measurements at different time points during
the whole growth process of the neuron. Due to this lack of data the growth
rate of the basal and tuft dendrites assumed to be constant and equal to 1.

Especially the importance of this issue attracts attention where the linear
growth rate λot has a better fit to the layer 4 of pyramidal cell but in this
case the conditions of the continuous-time Markov chain are not satisfied.
A reasonable approach in this situation is to apply a discrete–time Markov
chains and assume the growth rate to be constant.

7.3 Further Studies
By describing the morphometric measurements of GLT and ETV pyramidal
neurons such as the number of nodes in basal dendrites, tuft width, the
number of oblique dendrites and the apical length, the possibility of the
next studies will be neuronal simulation in terms of specific kinds of cells.
Also the relevant rates can be estimated from the experimental data directly.
For example, by considering the time scale of the process until the dendritic
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growth is completed, the point estimates of the parameters are as follows:

Birth rate =
Number of new births dendrites

Whole time of the process

Bifurcation rate =
Number of bifurcation dendrites

Whole time of the process

Termination rate =
Number of termination tips
Whole time of the process

.
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9 Appendix
9.1 Further Properties of the Exponential Distribution
(i) Suppose that X1 and X2 are independent exponential random vari-

ables with means 1/λ1 and 1/λ2 respectively. Then the probability
that X1 is smaller than X2 is λ1/(λ1 + λ2).

This probability is calculated by conditioning on X1

P{X1 < X2} =

∫ ∞
0

P{X1 < X2|X1 = x}λ1e−λ1x dx

=

∫ ∞
0

P{x < X2}λ1e−λ1x dx

=

∫ ∞
0

e−λ2xλ1e
−λ1x dx

=

∫ ∞
0

λ1e
−(λ1+λ2)x dx

=
λ1

λ1 + λ2
.

(ii) Suppose that X1, X2, X3, . . . , Xn are independent exponential random
variables, with Xi having rate µi, i = 1, 2, . . . , n. The smallest of the
Xi is exponentially distributed with a rate equal to the sum of the µi.
This is shown as follows:

P{min(X1, X2, X3, . . .) > x} = P{Xi > x for each i = 1, 2, . . . , n}

=

n∏
i=1

P{Xi > x} (by independence)

=

n∏
i=1

e−µix

= exp
{
−
( n∑
i=1

µi
)
x
}
.

9.2 The Inverse Transformation Method
A general method for simulating a random variable having a continuous
distribution is the inverse transformation method based on a uniform (0, 1)

random variable. For any continuous distribution function F if we define
the random variable X by

X = F−1(U)
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then the random variable X has a distribution function F. (F−1(u) is de-
fined to equal that value of x for which F (x) = u.) Hence, we can simulate
a random variable X from the continuous distribution F, when F−1 is com-
putable, by simulating a random number U and then setting X = F−1(U).

Example. (Simulating an exponential random variable): Consider an expo-
nential random variable X with mean 1. If F (X) = 1− e−x, then F−1(u)

is that value of x such that
1− ex = u

or
x = − log(1− u).

Thus, if U is a uniform random variable (0, 1), then

F−1(U) = − log(1− U)

is exponentially distributed with mean 1. Since 1 − U is also uniformly
distributed on (0, 1), it follows that − logU is exponential distribution with
mean 1.

9.2.1 Linear Rate
Consider an exponential distribution random variable with a linear hazard
rate λt. The distribution function of this variable is calculated as

F (t) = 1− e−
∫ t
0 λsds

= 1− e−λt2/2.
According to the inverse transformation method we have

e−λt
2/2 = 1− u

−λt2/2 = log(1− u)

t =

√
−2 log(1− u)

λ
.

If U is a uniform random variable (0, 1) then

F−1(U) =

√
−2 log(1− U)

λ
.

As mentioned before (1−U) is also uniformly distributed on interval (0, 1)

so, by comparing the result with the example mentioned above, we notice
that F−1(U) does not have an exponential distribution.
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9.3 Spherical Coordinates System
In geometry, the spherical coordinate system represents points as a tuple
of three components. These components are notated as (ρ,Φ, θ) where ρ

represents the radial distance of a point from a fixed origin, Φ represents
the zenith angle from the positive Z –axis and θ represents the azimuth angle
from the positive X –axis with the region of :

ρ ≥ 0, 0◦ ≤ Φ ≤ 180◦(π rad), 0◦ ≤ θ ≤ 360◦.

Any spherical coordinate triplet (ρ,Φ, θ) specifies a single point of three–
dimensional space. The three spherical coordinates are converted to Carte-
sian coordinates by:

x = ρ sin Φ cos θ

y = ρ sin Φ sin θ

z = ρ cos Φ.

Conversely, Cartesian coordinates can be converted to spherical coordinates by:

ρ =
√
x2 + y2 + z2

Φ = cos−1
( z

x2 + y2 + z2

)
θ = tan−1

(y
x

)
.

Figure 15: Spherical coordinate system.4

4Figure 15 is taken from Wolfram MathWorld. Keywords: ’Spherical coordinate sys-
tems’.
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9.4 Cell–type Specific Properties of Pyramidal Neurons
In rodents, tuft dendrites in layer 5 Pyramidal neurons are classified accord-
ing to their width. The thick-tufted and the slender–tufted dendrites respond
differently to tactile stimuli. The functional difference between these two
populations corresponds to two cortical cell types in L5; namely glt– and
etv–pyramids. The morphological characteristics of glt and etv–pyramids
have been taken into account for each barrel cortex and visual cortex sepa-
rately.

In barrel cortex, glt–and etv–pyramids corresponds to thick–tufted and slender–
tufted pyramidal neuron respectively with the following specifications: Etv–
pyramids, compared to the glt–pyramids have a narrower apical tuft dendrite
width and fewer primary apical oblique dendrites. The apical dendrite diam-
eter at the base for glt–pyramids is wider than for etv-pyramids. Moreover,
for glt–pyramids, the average total apical dendrite length is longer than the
average total basal dendrite length. In contrast, for etv–pyramids, the av-
erage total apical dendrite length is shorter than the average total basal
dendrite length. Compared with glt–pyramids, etv–pyramids have shorter
total apical tuft dendrite length, fewer nodes and a smaller width among
the most distinguishing morphological parameters. For the basal dendrite,
etv–pyramids have more nodes compared to glt–pyramids.

In visual cortex, similar to the barrel cortex for glt–pyramids, the total apical
dendrite length is longer than the total basal dendrite length whereas for the
etv-pyramids, the total apical dendrite length is shorter than the total basal
dendrite length. Etv– and glt–pyramids in visual cortex have on average
the same number of obliques as their counterparts in barrel cortex. Etv–
pyramids appear as slender–tufted with the shorter total length and narrower
width and glt-pyramids as thick tufted pyramidal neurons; Similar to barrel
cortex tuft dendrite is the most obvious discriminator between the two call
types.[4] Some of the morphological properties of etv– and glt–pyramids in
BC and VC are shown in Table 2.
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Table 2: Morphological properties of etv– and glt–pyramids in BC and VC.5

BC VC

etv glt etv glt

Tuft width (µm) 157± 54 356± 84 182± 50 290± 92

No. of oblique
dendrites 3.7± 2.2 8.9± 2.6 4.1± 1.6 9.3± 3.9

Total apical tuft
length (µm) 944± 366 2323± 757 1021± 421 1784± 725

Total basal
length (µm) 3006± 994 2585± 1038 2730± 733 2640± 792

No. of nodes in
basal dendrites 29± 11 19± 8 22± 6 21± 7

5The table has been adopted from [4], Table 1, page 4.
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Figure 16: Pyramidal neurons.6

(a) Etv–pyramids in barrel cortex.

(b) Glt–pyramids in barrel cortex.

(c) Etv–pyramids in visual cortex.

(d) Glt–pyramids in visual cortex.

6Figure 16 is copied from [4], Supplementary Figure — groh et al.
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9.5 Approximate Layer Depth and Thickness in Pyramidal
Neurons.

Table 3: Layer thickness and depth from pia = 0 .

Layers Layer thickness (µm) Layer depth (µm)

L1 93 93
L2 118 211
L3 118 328
L4 233 561
L5a 106 667
L5b 160 827
L6a 200 1026
L6b 84 1111
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