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Abstract

In this paper, we consider the problem of risk measure for private

lending portfolio of a commercial bank against the credit risk by uti-

lizing the ruin theory from Insurance. We build a portfolio model, and

extrapolate from this model to three models regarding different situ-

ations concerned. Our main objective is to determine the probability

distributions of the risk processes and Ruin probabilities using Central

Limit Theory and Monte Carlo Simulation technology, furthermore,

investigate the loan conditions that make sure the Ruin probability in

accordance with the risk appetite of the bank.
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1111 IntroductionIntroductionIntroductionIntroduction

Private lending is one of the most important business for banks and other financial
institutions. A large part of the net interest income of the bank has its origin in the
lending activities. The business is however associated with substantial financial risk-in
particular credit risk and interest rate risk. It is very important for the bank to define an
adequate risk appetite and to hold proper capital buffers to ensure that the business
will survive also under stressed economic conditions.

In the simplest set up, the bank lends some amount of money to a client. An
amortization period is determined together with a number of payment dates during
that period. At each payment date, a fraction of the loan is amortized. Also, the client
pays an interest consisting of market interest rate, an administration fee, a risk
premium to cover for credit losses, plus a margin for the bank. If the client fulfils all
payments then bank will be able to repay the investors that have provided the loan
amount in the first place, and will still have a surplus from the deal. On the other hand,
if the client defaults, and if no collateral has been provided, then the bank might incur a
substantial loss on the deal. The client interest rates should thus be carefully set so that
the business provides a steady inflow of cash in the long run.

In this work a simple portfolio model of the transaction between the bank and its
clients is designed with the main purpose of investigating the distributional properties
of the result generated by the business during a given time period

Pricing methodologies for portfolio credit risk have of course been studied extensively.
Risk sensitive pricing is closely related to the concept of capital allocation. Given a
certain risk horizon, a high quantile of the portfolio loan loss distribution is estimated.
Then it is determined how much a given loan A contributes to this loss quantile. This
calculation provided a guideline pricing future loans that are similar to loan A in all
respects. In the long run, all deals of the portfolio will be properly priced. A drawback
of this approach is that loan losses and interest revenues are treated separately, even
though in reality they are highly dependent. In contrast, in the present work
amortization and interest payments are integrated into the risk calculation in the sense
that the future cash flows of the receive leg (from the point of view of the bank) are
removed at the exact time of default of the client. We believe that this approach gives a
more consistent picture of the risk of the portfolio.
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2.2.2.2. FinancialFinancialFinancialFinancial BackgroundBackgroundBackgroundBackground

2.12.12.12.1 LendingLendingLendingLendingBusinessBusinessBusinessBusiness

Depository institutions include commercial banks, savings and loan associations
(S&Ls), saving banks, and credit unions. All of them are financial intermediaries that
accept deposits. These deposits represent the liabilities of those deposit-accepting
institutions. With the funds raised by deposits and other funding sources, depository
institutions both make direct loan to various entities and invest in securities. They
generate income through two sources: the loans they make and the securities they
purchase, and fee income.

In order to make their various businesses work normally, banks have to raise the basic
funds. They usually have there sources of funds: deposits, non-deposit borrowing,
common stock and retained earnings. Banks are highly leveraged financial institutions,
meaning that most of their capital come from borrowing, namely the deposits and non-
deposit borrowing. Non-deposit borrowing is borrowing from the Federal Reserves
through the discount window facility, borrowing reserves in the federal funds markets,
and borrowing by the issuance of instruments in the money and bond markets. There
are principal three types of deposit accounts: (1) demand deposits (checking accounts),
which pay no interest and can be withdrawn upon demand; (2) savings deposits, paying
interest, typically below market interest rates, do not have specific maturity, and
usually can be withdrawn upon demand; (3) time deposit (certificates of deposit), have
a fixed maturity date and pay either a fixed or floating interest rate., some of them can
be sold in the open market prior to their maturity if the depositors need money.

Commercial banks offer various services among financial system, which can be
primarily classified into three parts: individual banking; institutional banking and
global banking. Different banks certainly are more active in certain of these services
than others. For example, money center banks1 are more active in global banking.
Institutional banking is lending to institutions such as non-financial corporations,
financial corporations and governments, gaining interest and fee income. Global
banking is a kind of similar work as investment banking company, covering a broad of
activities including corporate financing, capital market and foreign exchange products
and services, generating principally fee income as opposed to interest income. We
primarily focus on individual banking in our paper.

Individual banking consists of consumer lending, residential mortgage lending,
consumer installment loans, credit card financing, automobile and boat financing,
brokerage services, student loans, and individual-oriented financial investment
services such as personal trust and investment services. Banks gain interest and fee
income.

2.22.22.22.2 CreditCreditCreditCredit RiskRiskRiskRisk

We categorize broadly the risks faced by financial institutions as following:

1Money center bank is a bank that raises most of its funds from the domestic and
international money markets and that relies very little on deposits or depositors
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· Market risk - the risk of value depreciation of portfolio, investment portfolio
or trading portfolio due to the change in value of the market risk factors (the four
standard market risk factors are stock prices, interest rates, foreign exchange rates,
and commodity prices) including equity risk, interest rate risk, currency risk and
commodity risk.
· Credit risk - the risk of the changes of default or of reductions in market
value cause by changes in the credit quality of issuers or counterparties.
· Liquidity risk - the risk that the expenses of adjusting financial positions will
increase substantially or that a firm will lose access to financing.
· Operation risk - the risk due to fraud, systems failures, trading errors and lots
of many other internal organizational risks.

The latest notable increased attention on credit risk can be traced in part to the
concerns of regulatory agencies and investors regarding the risk exposures of financial
institutions though their large positions in Over-the-Counter derivatives and to the fast
developing markets for credit-sensitive instruments that admit financial institutions
and investors to trade these risks.

In financial system, default occurs when debtor fail to take their legal obligations
according to the debt contacts, e.g. have not made a scheduled payment, or have
violated a loan covenant of the debt contract, no matter they are unwilling or unable to
pay their debts. It can happen with all kinds of debt obligations encompass bonds,
mortgages, loans, and promissory notes.

DefinitionDefinitionDefinitionDefinition Credit risk is the risk that borrowers default on obligations to the banks or
bonds issuers default on obligations to the lender, so it is also called as default risk.
We principally focus on the default on credit risk for loan portfolio of bank, namely,
consumer credit risk.

Consumer credit risk is the risk of that customers default on repayment for consumer
credits products, such as mortgage, unsecured personal loan, credit card, overdraft etc.
And personal loan is our researching object.

Banks are financial intermediaries that originate loans and consequently take the
credit risk when borrowers default on the obligations of loans. Banks undertake
relatively high credit risk as a result of two resources: (1) bank loans usually
concentrate on specific regions and industries, hence limit the effect of reducing credit
risk through diversification; (2) credit risk is the primary risk in a loan. With the
changing of risk-free interest rates, most of commercial loans are designed at floating
interest rate, as a result, the changes of default-free interest rates make rarely risks for
commercial banks. However, the credit risk premiums are fixed when the loan
contracts were signed, banks suffer losses as the loan benefits are not enough to cover
the higher risk caused by the increased credit risk premiums.

Credit risk is driven by both unsystematic and systematic components. Unsystematic
credit risk contains the probability of a borrower’s default owing to circumstances that
are essentially unique to the individual, whereas systematic credit risk can be
recognized as the probability of a borrower’s default caused by more general
economic fundamentals. Banks increasingly realize the necessity of measuring and
managing the credit risk of the loans they have originated on a portfolio basis as well
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as a loan-by-loan basis due to the fact that only the aggregate credit exposure is the
relevant factor for the future solvency of a bank.

Credit risk is closely related to potential return of an investment, the gains on the
lending business correlate strongly to their perceived credit risk. The higher the
perceived credit risk, the higher the rate of interest investors (bank) will demand for
lending their capital. Credit risks are calculated on the base of the borrowers’ overall
ability to repay, such as the borrowers’ collateral assets, revenue-generating ability
and taxing authority and so forth.

2.32.32.32.3 CreditCreditCreditCredit AnalysisAnalysisAnalysisAnalysis

The audited financial statements of a large firm might be analyzed when it issues or
has issued bonds. Before approving a commercial loan, a bank will analyze the
financial statements of a small business, referring to either case, whether the business
is large or small. In another words, a bank need to check the creditworthiness of a
business or organization, this action is referred to as credit analysis.

Credit analysis includes a wide variety of financial analysis techniques such as the
creation of projections, ratio and trend analysis and a detailed analysis of cash flows.
Besides, it also involves an examination of collateral and other sources of repayment
as well as credit history and management ability. Furthermore, before making or
renewing a commercial loan, a bank will emphasize the cash flow of the borrower. A
typical measurement of repayment ability is the debt service coverage ratio. A credit
analyst in a bank measures the cash flow generated by a business excluding
depreciation and any other non-cash or extraordinary expenses before interest expense.
A typical measurement of repayment ability is the debt service coverage ratio, which
divides this cash flow amount by the debt service that will be required to accord with,
both principal and interest payments on all loans.

Credit analysis and risk management are far from exact sciences of quantitative
methods, derivatives, finance and accounting, Uncovering how credit analysis
proceeds through evaluating financial ratios, cash flows, and the firm’s objectives
compared to its industry peers, using both conceptual and numerical examples,
analyzing the interaction among credit risk and other types of risk.

2.42.42.42.4 CreditCreditCreditCredit RRRRiskiskiskisk MMMManagementanagementanagementanagement

Financial risk management is the practice of creating economic value in a company by
means of financial instruments to manage exposure to risk, particularly credit risk and
market risk.

Similar to general risk management, financial risk management requires to
investigating their sources, measuring them, and schemes to control them. Financial
risk management can be qualitative as well as quantitative. As a specialization of risk
management, financial risk management concentrates on when and how to use
financial instruments to manage efficiently exposures to risk.

As a set of activities, risk management by a financial institution may involve:

http://en.wikipedia.org/wiki/Bond_%28finance%29
http://en.wikipedia.org/wiki/Bank
http://en.wikipedia.org/wiki/Ratio
http://en.wikipedia.org/wiki/Collateral_%28finance%29
http://en.wikipedia.org/wiki/Debt_service_coverage_ratio
http://en.wikipedia.org/wiki/Depreciation
http://en.wikipedia.org/wiki/Interest
http://en.wikipedia.org/wiki/Financial_instruments
http://en.wikipedia.org/wiki/Risk
http://en.wikipedia.org/wiki/Credit_risk
http://en.wikipedia.org/wiki/Market_risk
http://en.wikipedia.org/wiki/Risk_management
http://en.wikipedia.org/wiki/Risk
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· Measuring the extent and sources of exposure;
· Charging each position a cost of interest rate appropriate to its risk;
· Allocating scarce risk capital to traders and profit centers;
· Proving information on financial integrity of the firm to outside parties, such
as investors, rating agencies and regulators;
· Evaluating the performance of profit centers according to the risks taken to
achieve profits;
· Mitigating risk by means of various means and policies.

At the mean time, an important objective applying specifically to credit risk management
is assigning and enforcing counterparty default exposure limits in view of the important
market imperfections, adverse selection and moral hazard in credit markets.

Measuring and managing credit risk are among the major challenges for any lender.
Commercial banks have traditionally used standardization of loan examination and
diversifications of loan borrowers to mitigate credit risk, they currently use credit
derivatives2 to tailor their credit exposure3. Broadly speaking, they shed credit risk via
credit derivatives and other means of credit risk transfer, such as securitizations, to
shed risk in several areas of their credit portfolio, including large corporate loans, loans
to small firms, and counterparty credit risk on over-the-counter (OTC) derivatives.

Risk management and analysis were done qualitatively in the past, but now with the
advent of powerful computing software, quantitative risk management and analysis
can be done quickly and effortlessly.

2.4.12.4.12.4.12.4.1 RiskRiskRiskRisk MeasureMeasureMeasureMeasure

A risk measure is used to determine the aggregation of cash requirement in reserve in
order to make the risks acceptable taken by financial institutions, such as banks and
insurance companies, in accord with the regulator.

The senior managers of banks and other financial institutions, along with their
research and development staffs feel obliged to develop policies and systems to
measure credit risk. Key elements of their credit risk pricing and risk-measurement
systems encompass: the sources of risk factors to be examined and their joint
probability distribution, methodologies for measuring changes in credit quality and
default over a host of counterparties.

The different risk measure methods are not equally attractive within a firm or from the
perspective of aggregation of risk measures across positions or trading units. To select
a proper risk measure, we need to judge about whether it is closely related to the vital

2A Credit Derivative is a securitized derivative whose value is derived from the credit
risk on an underlying bond, loan or any other financial asset. For example, a bank
concerned that one of its customers may not be able to repay a loan can protect itself
against loss by transferring the credit risk to another party while keeping the loan on
its books.
3Credit Exposure measures the outstanding obligation of the debtor.

http://en.wikipedia.org/wiki/Financial_institutions
http://en.wikipedia.org/wiki/Regulator_%28economics%29
http://en.wikipedia.org/wiki/Securitization
http://en.wikipedia.org/wiki/Derivative_%28finance%29
http://en.wikipedia.org/wiki/Credit_risk
http://en.wikipedia.org/wiki/Credit_risk
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economic costs of financial risk; easily communicated to, and understood by;
estimable at a reasonable cost and under a reasonable tolerance; meaningfully
aggregated from individual entities or desks into an overall risk measure for the
corporations. In calculating the credit risk, we expect trade-offs from these criteria.

Well-known examples of risk measures are Value-at-Risk (VaR), expected shortfall,
the price of market value insurance and volatility. In recent years the attention has
turned towards coherent4 risk measurement. Besides, in order to better understand
the nature of their exposures to credit risk, risk managers have explored several
complementary measures of credit risk including market value of default loss and
exposure.

2.4.22.4.22.4.22.4.2 RiskRiskRiskRisk MMMModelingodelingodelingodeling

Risk modeling applies formal econometric techniques into the determination of the
aggregate risk in a financial portfolio and is one of many subtasks in the broader area
of financial modeling.

Risk modeling utilizes a great many of techniques including market risk, Monte
Carlo, Historical Simulation, or Extreme Value Theory to analyze a portfolio and
make forecasts of the possible losses that would be incurred due to various risks. Such
risks are typically categorized into credit risk, liquidity risk, interest rate risk, and
operational risk categories.

Many large financial intermediary institutions use risk modeling to help portfolio
managers assess the quantity of capital reserves need to retain, and to assist their
purchases and sales of a variety of financial assets.

Formal risk modeling is required under the Basel II accord by the various national
depository institution regulators, referring to all the major international banking
institutions.

2.4.32.4.32.4.32.4.3 CapitalCapitalCapitalCapitalAdequacyAdequacyAdequacyAdequacy

The capital requirement is a bank regulation, which sets a framework on how much
capital banks and depository institutions must hold against the financial distress
owning to variety of risks. In order to calculate the total measure of assets, each asset
is multiplied by a risk weighting factor that, in principle, represents the credit quality
of the asset.

4Artzer et al.(1999) analyze desirable propertied for a portfolio risk measure. These
authors call risk measure m(.) coherent if it fulfills the following four axioms,

1. Subadditivity: For any portfolio payoffs X and Y, m(X+Y) ≦ m(X) + m(Y).
2. Homogeneity: For any number
3. Monotonicity: m(X) ≦ m(Y) if X ≦ Y.
4. Risk-free condition: m(X + k) = m(X) – k, for any constant k.

http://en.wikipedia.org/wiki/Value_at_risk
http://en.wikipedia.org/wiki/VaR
http://en.wikipedia.org/wiki/Expected_shortfall
http://en.wikipedia.org/wiki/Coherent_risk_measure
http://en.wikipedia.org/wiki/Econometric
http://en.wikipedia.org/wiki/Portfolio_%28finance%29
http://en.wikipedia.org/wiki/Financial_modeling
http://en.wikipedia.org/wiki/Market_risk
http://en.wikipedia.org/wiki/Historical_Simulation
http://en.wikipedia.org/wiki/Extreme_value_theory
http://en.wikipedia.org/wiki/Credit_risk
http://en.wikipedia.org/wiki/Liquidity_risk
http://en.wikipedia.org/wiki/Interest_rate_risk
http://en.wikipedia.org/wiki/Operational_risk
http://en.wikipedia.org/wiki/Capital_requirement
http://en.wikipedia.org/wiki/Assets
http://en.wikipedia.org/wiki/Risk
http://en.wikipedia.org/wiki/Basel_II
http://en.wikipedia.org/wiki/Bank_regulation
http://en.wikipedia.org/wiki/Bank
http://en.wikipedia.org/wiki/Depository_institution
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The Basel Committee on Banking Supervision sets the standard for each country's
banking capital requirements. In 1988, the Committee organized a capital
measurement system-Basel Accord, and this framework is now being replaced by a
new and significantly more complex capital adequacy framework commonly referred
to as Basel II which was initially published in June 2004

Basel II aims to form an international standard that banking regulators can use when
creating regulations about the amount of capital requirement that banks need to
reserve to protect against the types of financial and operational risks banks face.
Advocates of Basel II believe that such an international standard can help prevent the
international financial system from the types of problems. For accomplishing this,
Basel II sets up severe risk and capital management requirements in order to ensure a
bank surviving the risk the bank exposes itself to through its lending and investment
businesses. Above all, these rules mean that the greater risk the bank is exposed, the
more the amount of capital the bank needs to handle in reserve to safeguard its
solvency and overall economic stability. Each national regulator normally calculates
bank capital in a fairly different way, designed to accord with the common
requirements within their individual national legal framework.

2.4.42.4.42.4.42.4.4 AAAAmortizationmortizationmortizationmortization ofofofof PPPPremiumremiumremiumremium

While paying just the interest each period will lead to a low outflow of cash each
month, the debtor might not save enough to pay the principal. Charges made against
the interest received on a debt in order to offset a premium paid for the debt. Thus,
with each periodic payment, a debtor is paying back interest as well as part of his or
her premium. This leads to higher periodic payments than in the case when only
interest is paid out.

Amortizing the premium each period reduces the credit risk of the debt, since the
creditor gets some part of the principal each time period, as opposed to allowing a
debtor to forfeit on all of it at the maturity of the loan; and makes debt management
easier, especially when the principal is large. Amortization of premium is a common
feature in cases when a person or company takes on a large amount of debt at one
time, such as a mortgage.

2.52.52.52.5 ObjectivesObjectivesObjectivesObjectives ofofofof ResearchResearchResearchResearch

To mitigate the impact of default risk, lenders often charge rates of return that
correspond to the debtor's level of default risk. The higher the risk, the higher the
required return and vice versa.

Our aim objective is to study the law of large numbers and the central limit theorem
for this quantity as time tends to infinity. In cases where it is impossible to arrive at
closed analytical formulas, we have to resort to Monte Carlo simulation. Based on
these results, a proper risk premium should be chosen to make sure that the bank’s ruin
probability (i.e. the probability that the bank loses all its initial capital) is in accordance
with the risk appetite5 formulated by the management. In this sense, the problem is

5Risk appetite is frequently used throughout the risk management community. Risk
appetite is the amount of risk exposure or potential adverse impact from an event that

http://en.wikipedia.org/wiki/Basel_Committee_on_Banking_Supervision
http://en.wikipedia.org/wiki/Basel_Accord
http://en.wikipedia.org/wiki/Basel_II
http://en.wikipedia.org/wiki/Solvency
http://www.investorwords.com/3669/period.html
http://www.investorwords.com/2900/low.html
http://www.investorwords.com/747/cash.html
http://www.businessdictionary.com/definition/month.html
http://www.investorwords.com/3626/pay.html
http://www.investorwords.com/5454/charge.html
http://www.investorwords.com/2531/interest.html
http://www.investorwords.com/1313/debt.html
http://www.investorwords.com/3495/order.html
http://www.investorwords.com/3399/offset.html
http://www.investorwords.com/3785/premium.html
http://www.investorwords.com/3569/paid.html
http://www.investorwords.com/3634/payment.html
http://www.investorwords.com/1323/debtor.html
http://www.businessdictionary.com/definition/lead-Pb.html
http://www.investorwords.com/1210/credit_risk.html
http://www.investorwords.com/1207/creditor.html
http://www.investorwords.com/3017/maturity.html
http://www.investorwords.com/2858/loan.html
http://www.investorwords.com/6783/debt_management.html
http://www.investorwords.com/3839/principal.html
http://www.businessdictionary.com/definition/feature.html
http://www.businessdictionary.com/definition/person.html
http://www.investorwords.com/992/company.html
http://www.investorwords.com/7230/take.html
http://www.investorwords.com/205/amount.html
http://www.investorwords.com/3124/mortgage.html
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very much related to ruin problems in the theory of insurance mathematics.

the organization is willing to accept/retain at the organizational level. When the risk
appetite threshold has been breached, risk management treatments and business
controls are performed to bring back the exposure level within the accepted range.
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3333 ModelModelModelModel DescriptionsDescriptionsDescriptionsDescriptions

The portfolio model is designed as follows. We work in continuous time, measured in
years. Today is . In this simple setup we assume that all market interest rates are0t =
zero, this assumption could of course be weakened. Deals arrive at the portfolio
according to a Poisson process X(t) with rate . The loan size of deal is denotedλ i
by and the time to maturity is denoted by . Default of deal happen at time .iM iL i iZ
During the life- time of the contract the client amortizes at rate and pays ai i iM L
risk premium per time unit. Further, a given client defaults on its paymenti iM r i
obligations on constant rate (default probability6).iµ

The assumptions in the model are:
(1) No collaterals have been taken by the bank, hence in case default all future cash

flows between the client and the bank are removed;
(2) The loan size process ( ), Poisson process X and the default arrival process ( )iM iZ

are mutually independent;
(3) is a counting process on : X(t) is the number of the deals0( ( ))tX X t ≥= [0, )∞

which occurred by time t;
(4) Initial capital the bank holds is a constant, W(0).

It is clear that the effective time that client remains in the system, , follows ai iT
truncated Exponential distribution:

where .( )min ,i i iT L Z= ( )~i iZ Exp µ

It follows that the total result generated by the clients that have arrived between 0 and t
is given by

,
( )

1

{ ( ) }
X t

i
i i i i

i i

MM M r T
L=

− + +∑ 0t ≥

The surplus or risk process of the bank generated by all the deals that have arrived
between 0 and t is

, (3.1)
( )

1

( ) (0) {( ) }
X t

i
i i i i

i i

MW t W M r T M
L=

= + + −∑ 0t ≥

6Default Probability is the degree of likelihood that the borrower of a loan or debt
defaults on his or her obligations. When the borrower is unable to pay, they are then
said to be in default of the debt, the lenders of the debt have legal avenues to attempt
obtaining at least partial repayment. Generally speaking, the higher the default
probability a lender estimates a borrower to have, the higher the interest rate the
lender will charge the borrower as compensation for bearing higher default risk. It is
measured by year, and has the value DP if is small.( )1 1 1e µ µ µ−= − ≈ − − = µ
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From the model we know that the process is a homogeneous Poisson( )( ) 0t
X t

≥

process with intensity , and deals arrive at the random instants ofλ ( ) ( )X t Po tλ∼
time Then by the theorem A.1, we have representation1 20 .....N N< < <

, (3.2)( ) { }# 1: , 0iX t i N t t= ≥ ≤ ≥

where

, (3.3)1 2 ...... , 1n nN Y Y Y n= + + + ≥

and the are iid exponentially distributed with1 1 2 2 1 1, ,..... i i iY N Y N N Y N N −= = − = −

. and are referred to as the sequences of the arrival time1 1 0EY λ= > ( )nN ( )nY
and inter-arrival times of the homogeneous Poisson process respectively.X

The above model can be restricted and modified, in several ways. Hence follows some
suggestions.

ModelModelModelModelA:A:A:A:HomogeneousHomogeneousHomogeneousHomogeneous loansloansloansloans

The loan size, the time to maturity, the premium and the default rate are assumed to be
constants, and identical for all clients.
The model becomes

,
( )

1

( ) (0) {( ) }
X t

i
i

MW t W Mr T M
L=

= + + −∑

Where , .( )min ,i iT L Z= ( )~iZ Exp µ

ModelModelModelModel B:B:B:B:DefaultDefaultDefaultDefault raterateraterate dependsdependsdependsdepends onononon premiumpremiumpremiumpremium

The loan size, the time to maturity and the premium are assumed to be constants, and
identical for all clients. The default rate is assumed to be an affine function of the
premium; . This assumption is motivated by the obvious fact that a( )r rµ µ α β= = +
heavy payment burden leads of financially stressed clients....

We consequently have the following model:

,
( )

1

( ) (0) {( ) }
X t

i
i

MW t W Mr T M
L=

= + + −∑

where , .( )min ,i iT L Z= ( )~iZ Exp rα β+

ModelModelModelModel C:C:C:C:DefaultDefaultDefaultDefault raterateraterate dependsdependsdependsdepends onononon macroeconomicsmacroeconomicsmacroeconomicsmacroeconomics

The loan size, the time to maturity and the premium are assumed to be constants, and
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identical for all clients. The default rate is allowed to be influenced by macroeconomic
conditions. To model such behavior, define to be a continuous-time Markov( )tµ µ=
Chain with states and , , that changes state according to prescribedLµ Hµ L Hµ µ<
transition intensities. Obviously, in this setup we need to model explicitly how the
portfolio changes with time.

The model becomes

,
( )

1

( ) (0) {( ) }
X t

i
i

MW t W Mr T M
L=

= + + −∑

where, , , denotes the arrival time of the th( )min ,i iT L Z= ( )( )~i iZ Exp tµ it i
client.
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4444 MethodsMethodsMethodsMethods ofofofofAnalysisAnalysisAnalysisAnalysis

In actuarial risk management it is an important issue to estimate the performance of
the portfolio. Ruin theory7 is used by actuaries in order to follow the insurer’s surplus
and ruin probability which can be explained as the probability of insurer’s surplus
drops bellow a specified lower bond such as minus initial capital.

With the model description above in Section 3, it is clear that our theme is closely
related to the ruin theory in Non-life Insurance Mathematics, see [7].

The quantity W(t) is nothing but the bank’s balance at a given time t, and the process
describes the cashflow in the portfolio over time. The0( ( ))tW W t ≥= i i i iM L M r+

represent the income obtained from the th client, andi ( )
( )

1

X t

i i i i i
i

M L M r T
=

+∑
describes the whole inflow of the capital into the business by time t; represent theiM

capital quantity borrowed by the th client, describes the outflow of capitali
( )

1

X t

i
i
M

=
∑

due to loan lending occurred in . It is obvious that the process decrease at those[ ]0, t
arrival time points , reducing by size at arrival time of

1 20 .....N N< < < iM iN
the th client. It turns out that values of W(t) are possible negative if there is ai
sufficiently large lending size which makes W below zero. We call the event that

iM
W ever falls below the threshold A ( ) RUIN. That means:0A ≥

,{ }( ) 0Ruin W t Aforsomet= < >

then we have

.{ } { }0
0

( ) inf ( )
t

t

Ruin W t A W t A
≥

≥

= < = <∪

The probability of ruin is then given by

, (4.1)( ) ( )0
( (0)) | (0) inf ( )

t
W P Ruin W P W t Aψ

≥
= = <

which denotes the probability of ultimate ruin the bank will face during time .[0, ]t

In examining the nature of the risk associated with a credit portfolio of a commercial
bank, it is often interest to assess how the portfolio may be expected to perform over
an extended period of time. One approach concerns the use of ruin theory. We use
Ruin Probability as risk measure in our paper, specifically, ruin is said to occur if the

7Ruin theory is a branch of actuarial science that researches an insurer's vulnerability
to insolvency on base of mathematical modeling of the insurer's surplus. The theory
permits the derivation and calculation of many ruin-related measures and quantities
including the probability of ultimate ruin, the distribution of an insurer's surplus
immediately prior to ruin, the deficit at the time of ruin and so forth.

http://en.wikipedia.org/wiki/Actuarial_science
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bank’s surplus reaches a specified lower bound, theoretically zero, but in practice and
in our paper, we set minus of the initial capital as the threshold, that meansminW

.( ) ( )min0
( (0)) | (0) inf ( )

t
W P Ruin W P W t Wψ

≥
= = <

Besides this, we are also interested in the probability of the process less( )( ) 0t
W t

≥

than at fixed time point t.minW

Consequently, our main tasks are obtaining the following two probabilities by means
of asymptotic calculation or Monte Carlo simulation:

· (4.2)( )1 min( )P W t Wψ = <
which means the probability of W(s) drops below the minus of the initial capital at
time t. It comes in hand when the bank needs to check the ruin probability at a fixed
time point.

· (4.3)2 min
0

inf ( )
s t

P W s Wψ
< <

⎛ ⎞= <⎜ ⎟
⎝ ⎠

which means the probability of W(s) value ever drops below the minus of the initial
capital during the time interval , it is a useful measure for the bank to monitor the[0, ]t
risk level during one period; a dynamic and functional indication for the bank to set
proper premium rate and loan conditions to make sure the low ruin probability in
accord with the bank’s risk appetite.

We achieve above objective, calculating the two ruin probabilities and by1ψ 2ψ
two methods: (1) Approximation to the Distribution of Risk Process W(t) using the
Central Limit Theorem; (2) Approximation to the Distribution of Risk Process W(t)
By Monte Carlo Techniques.

4.14.14.14.1 MethodMethodMethodMethod ofofofof CentralCentralCentralCentral LimitLimitLimitLimit TheoremTheoremTheoremTheorem

The model is as described above, see Section 3. By the Law of Large Number and
Central Limit Theorem, see theorem D.2, if and , we have1var( )T < ∞ 1var( )W < ∞

, (4.1.1)

( ) ( )
( )( )

( )

( ) ( )( ) ( )( )( )

sup
var

sup ( ) var 0

x

y

W t EW t
P x x

W t

P W t y y EW t W t

∈

∈

⎛ ⎞−⎜ ⎟≤ −Φ
⎜ ⎟
⎝ ⎠

= ≤ −Φ − →

ℝ

ℝ

where the is the distribution function of the standard normal distribution N(0,1).Φ
As in classical statistics, where one is interested in the construction of asymptotic
confidence bands for estimators and in hypothesis testing, one could take this central
limit theorem as justification for replacing the distribution of W(t) by the normal
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distribution with mean EW(t) and variance var(W(t)): for large t, we have

(4.1.2)( )( ) ( )( ) ( )( )( )varP W t y y EW t W t≤ ≈ Φ −

We can use (4.1.2) to determine the probability in (4.2) for Model A and B.1ψ

4.24.24.24.2 MethodMethodMethodMethod ofofofof MonteMonteMonteMonteCarloCarloCarloCarlo SimulationSimulationSimulationSimulation

It is clear by the construction of ruin probability in (4.3) that this probability
distribution is not easily evaluated since one have to study a very complicated
functional of a sophisticated random process. One way out of this situation is to use
the power and memory of modern computers to approximate the distributions of W(t).

Monte Carlo methods are on the base of the analogy between probability and volume.
The mathematics of measure formalizes the intuitive notion of probability, associating
an event with a set of outcomes and defining the probability of the event to be its
volume or measure with respect to that of a universe of possible outcomes. Monte
Carlo uses this identity in reverse, calculating the volume of a set by means of
regarding the volume as a probability. The law of large numbers ensures that this
estimate converges to the real value as the number of observations increases. The
central limit theorem provides information about the likely magnitude of the error in
the estimate after a finite number of draws.

When you build a model with a spreadsheet like Excel, you have a few equations with
a certain number of input parameters, producing a set of outputs. This type of model is
usually deterministic, meaning that you get the same results no matter how many times
you re-calculate. And Monte Carlo simulation is a method for iteratively evaluating a
deterministic model using sets of random numbers as inputs. By this way, you are
essentially turning the deterministic model into a stochastic model. This method is
often used when the model is complex, nonlinear, or involves more than just a couple
uncertain parameters.

Monte Carlo simulation is a computerized mathematical technique that allows people
to explain risk in quantitative analysis and decision making. It performs risk analysis
by considering random sampling of probability distribution functions as model inputs
to produce a large number of possible outcomes instead of a few discrete scenarios,
each time using a different set of random values. Depending upon the number of
uncertainties and the ranges specified for them, a Monte Carlo simulation could
involve thousands of recalculations before it is complete. Monte Carlo simulation
furnishes the decision –maker with a range of possible outcomes and the probabilities
they will occur for any choice of action. In this way, Monte Carlo simulation provides
a much more comprehensive view of what may happen, telling you that could happen
as well as how likely it is to happen.

For example, if we knew the distribution of and iid , the arrival Poisson( )X t iW
process and the income from the th client respectively, we could simulate an iidi
sample from the distribution of . Then we could draw iid samples1,..., mX X ( )X t
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1

(1) (1) ( ) ( )
1 1,..., ,..., ,...,

m

m m
X XW W W W

from the distribution of and calculate iid copies of :1W ( )W t

.
1

1 (1) ( )

1 1

(0) ,..., (0)
mXX

m m
i i

i i
W W W W W W

= =

= + = +∑ ∑

The probability for some Borel set A could be approximated by virtue( ( ) )P W t A∈
of the strong LLN:

as . (4.2.1)� ( ) ( ). .

1

1 ( ) 1
m

a si
m A

i
P I W P W t A p q

m =

= ⎯⎯→ ∈ = = −∑ m→∞

Note that . The approximation of by the relative frequencies� ( ),mmP Bin m p∼ p �
mP

of the event A is called crude Monte Carlo simulation.
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5555 ResultsResultsResultsResults

5.15.15.15.1 ModelModelModelModelA:A:A:A:HomogeneousHomogeneousHomogeneousHomogeneous LoansLoansLoansLoans

,
( )

1

( ) (0) {( ) }
X t

i
i

MW t W Mr T M
L=

= + + −∑

where , , .( )min ,i iT L Z= ( )~iZ Exp µ . .i i d

The (4.2) could be approximated by the following formulas:

(5.1.1)( )1 min min( ( ) ) ( ( )) / var( ( ))P W t W W EW t W tψ = ≤ ≈ Φ −

where
, (5.1.2)( )( )( ) (0) 1 LEW t W t M M L Mr e µλ µ−⎡ ⎤= + − + + −⎣ ⎦

(5.1.3)
( )

( )( )

2 2 2

2

( ( )) ( ) 1 2

1 .

L L

L

Var W t t M L Mr Le e

t M M L Mr e

µ µ

µ

λ µ µ

λ µ

− −

−

= ⋅ + − −

⎡ ⎤+ ⋅ − + + −⎣ ⎦

denotes the Standard Normal Distribution function, which meansΦ
.The proof is given in Section 5.5.( )min( ( )) / var( ( )) 0,1W EW t W t N− ∼

By construction of the risk process W, ruin can occur only at the clients arrival times
for some , consequently, we can express ruin asnt N= 1n ≥

(5.1.4)( ){ } ( ){ }min min1
inf inf nt o n

Ruin W t W W N W
≥ ≥

= < = <

We have fact which will be very useful later that

(5.1.5)( ) { }# 1:n i nX N i N N n= ≥ ≤ = . .a s

As a result, the (4.3) is calculated by means of Monte Carlo simulation as following
algorithm:

(1) Draw an iid sample from the Poisson distribution ;( ) ( ) ( )1 2, ,..., mX X X ( )Po tλ

(2) Draw iid samples from the Exponential distribution ;( )11 2, ,...,
X

Z Z Z ( )Exp µ

(3) Get corresponding iid random variables by means of( )11 2, ,...,
X

T T T

;( )min ,i iT L Z=

(4) Calculate iid copies of :( )W t
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,( )1 1(0) MW N W Mr T M
L

⎧ ⎫⎛ ⎞= + + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

,( )2 1 2(0) M MW N W Mr T M Mr T M
L L

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞= + + − + + −⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

…,

;( )( )
( )1

1

1

(0)
X

iX
i

MW N W Mr T M
L=

⎧ ⎫⎛ ⎞= + + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑

(5) Get on the base of step (4);
( )

( )
10

inf i
i X

W N
< ≤

(6) Repeat steps (2)-(5) m times, obtaining iid
.

( )
( )

( )
( )

( )
( )

1 20 0 0
inf , inf ,..., inf

mi i i
i X i X i X

W N W N W N
< ≤ < ≤ < ≤

From (4.2.1), we get the approximation values for ruin probability in (4.3) by2ψ
(5.1.5) and by virtue of the strong Law of Large Numbers as:

. (5.1.6)�
( ) ( )

( )( )min2 ,
01

1 inf
j

m

m iW
i Xj

P I W N
m

ψ −∞
< ≤=

≈ = ∑

Note that in step (4), we used the fact (5.1.5) we mentioned before.

5.25.25.25.2 ModelModelModelModel B:B:B:B:DefaultDefaultDefaultDefault RateRateRateRateDependsDependsDependsDepends onononon PremiumPremiumPremiumPremium

(5.2.1)
( )

1

( ) (0) {( ) }
X t

i
i

MW t W Mr T M
L=

= + + −∑

where , , .( )min ,i iT L Z= ( )~iZ Exp rα β+ . .i i d

The same as Model A, the (4.2) could be approximated by LLN and Central Limit
Theorem as the following formulas:

(5.2.2)( )1 min min( ( ) ) ( ( )) / var( ( ))P W t W W EW t W tψ = ≤ ≈ Φ −

where, similarly to the Model A, we set , then we can getrµ α β= +

, (5.2.3)
( ) ( ) ( )
( ) ( ) ( )( ) ( )

10

0 1 r L

EW t W EX t EW

W t M M L Mr e rα βλ α β− +

= + ⋅

⎡ ⎤= + − + + − +⎣ ⎦
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.

( )( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 1

2 22

2( )

1 2

1

r L r L

r L

Var W t EX t Var W Var X t EW

t M L Mr r Le e r

t M M L Mr e r

α β α β

α β

λ α β α β

λ α β

− + − +

− +

= ⋅ + ⋅

⎡ ⎤= ⋅ + − + − +⎣ ⎦

⎡ ⎤+ ⋅ − + + − +⎣ ⎦
(5.2.4)

Note represents the net income from the th client, .iW i ( )i iW M L Mr T M= + − Φ
denotes the Standard Normal Distribution function, which means

. The proof is given in Section 5.5.( )min( ( )) / var( ( )) 0,1W EW t W t N− ∼

From the model B (5.2.1), it is clear that the only difference of Model B refers to the
default intensity, is changed into to indicate the relationship betweenµ rα β+
premium rate and default rate that the higher the premium is set, the larger probability
people will default on their obligations, which is practical in real businesses of banks
and worthy of interest.

Consequently, the only distinction of Monte Carlo simulation algorithm for Model B
from Model A lies in the step (2). To Model B, for step (2) in Section 5.1 when we
generate samples for from Exponential distribution, we substituteiZ

(2)’ Draw iid samples from the Exponential distribution .( )11 2, ,...,
X

Z Z Z ( )Exp rα β+

The approximation values of ruin probability in (4.3) for Model B are the same as2ψ
the one of Model A represented in (5.1.6). By (5.1.5) and the strong LLN we have

. (5.2.5)�
( ) ( )

( )( )min2 ,
01

1 inf
j

m

m iW
i Xj

P I W N
m

ψ −∞
< ≤=

≈ = ∑

5.35.35.35.3 ModelModelModelModel C:C:C:C:DefaultDefaultDefaultDefault RateRateRateRateDependsDependsDependsDependsOnOnOnOn EconomicsEconomicsEconomicsEconomics

The model becomes

, (5.3.1)
( )

1

( ) (0) {( ) }
X t

i
i

MW t W Mr T M
L=

= + + −∑

where, , .( )min ,i iT L Z= ( )( )~i iZ Exp tµ

In this model, is a continuous Markov Chain with states and ,( )itµ Lµ Hµ
, that changes state according to prescribed intensities. denotes theL Hµ µ< Lµ

default rate of the borrower at “good” economical environment whereas denotesHµ
the default rate of the borrower at economics depression time.

The place where get changed in Model C from previous two models is also the default
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intensity, constant is replaced by a continuous-time Markov Chain , stressingµ ( )tµ
the situation that the default rate could possibly be influenced by macroeconomic
conditions. People tend to abide by their loan contracts with the bank at “good”
economic environment as opposed to be apt to default on their obligations during
economic depression years (“bad” time). It is interesting for the bank to investigate
how the portfolio changes with respect to time through this model.

Unlike the previous models, we need to utilize Monte Carlo Simulations for
calculating the ruin probabilities and .1ψ 2ψ

From the model description in Section 3, we know that the deals (borrowers) arrive
according to a homogeneous Poisson distribution with intensity ,( )( ) 0t

X X t
≥

= λ

and arrival times Then by Theorem A.2 in Appendix( ) ( )X t Po tλ∼ 1 20 ...N N≤ ≤ ≤
A, it is demonstrated that given the number of arrivals of a homogeneous Poisson
process in the interval , , their arrival times constitute[ ]0, t ( ) 1X t X=

11 2, ,... XN N N

the points of a uniform ordered sample in .[ ]0, t

The Markov Chain has two states and , for the sake of{ }( ), 0t tµ ≥ Lµ Hµ
convenience, we assume the economics is “good” at initial time , in another0t =
words, the Markov Chain starts from state , . According to the MarkovLµ ( )0 Lµ µ=
Chain theory, see Theorem B 2.1 in Appendix B, we know the waiting time beforeS
the chain transit to next state is Exponential distributed with a intensity. Here, the
intensity with which the chain move to from is , and the waiting time ofHµ Lµ HLq
the chain jumps to from is Exponential distributed with intensity , as aLµ Hµ LHq
result, the time pointes at which the Markov Chain (economics environment) jumps
are . Then it is cleat that the default rate of those borrowers that1 1 20 ...S S S< < + <

arrive at time is , the default rate of those borrowers that arrive at time[ ]10,t S∈ Lµ

is etc.( ]1 1 2,t S S S∈ + Hµ

The algorithm for simulating and is prescribed as:1ψ 2ψ

(1) Initialize the Markov Chain to and time ;{ }( ), 0t tµ ≥ Lµ 0t =

(2) Draw iid samples from the Poisson distribution ;( ) ( ) ( )1 2, ,..., mX X X ( )Po tλ

(3) Draw iid samples from , from another1 3 5, , ...S S S ( )1 LHExp q 2 4 6, , ,...S S S

distribution respectively;( )1 HLExp q
(4) Simulate iid order samples from Uniform distribution( )11 2 ...

X
N N N< < <

;[ ]0,U t

(5) Draw from if ,iZ ( )LExp µ [ ]
2 3 4 5

1
1 1 1 1

0, , , ...i i i i i
i i i i

N S S S S S
= = = =

⎛ ⎤ ⎛ ⎤∈ ⎜ ⎜⎥ ⎥⎝ ⎦ ⎝ ⎦
∑ ∑ ∑ ∑∪ ∪ ∪

else, draw from , ;iZ ( )HExp µ ( )11,2,...i X=
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(6) We get through ;( )11 2, ,...,
X

T T T ( )min ,i iT L Z=

(7) Calculate the observation value of this simulation

;( ) ( )
( )1

1

1

0
X

i
i

MW W Mr T M
L=

⎧ ⎫⎛ ⎞= + + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑

(8) Repeat steps (3)-(7) m times, we can get the m iid observations values
of the risk process at time t.( ) ( ) ( )1 2, ,..., mW W W ( )W t

Differ from previous two models which use deterministic methods to calculate the ruin
probability at time t , For model C, we utilize Monte Carlo simulation method, by1ψ
(4.2.1) and strong LLN, we have

(5.3.2)�
( ) ( )( )

min

( )
1 ,

1

1 m
j

m W
j

P I W t
m

ψ −∞
=

≈ = ∑

The algorithm of Monte Carlo simulation for is presented as following:2ψ

(1) Initialize the Markov Chain to and time ;{ }( ), 0t tµ ≥ Lµ 0t =

(2) Draw iid samples from the Poisson distribution ;( ) ( ) ( )1 2, ,..., mX X X ( )Po tλ

(3) Draw iid samples from , from another1 3 5, , ...S S S ( )1 LHExp q 2 4 6, , ,...S S S

distribution respectively;( )1 HLExp q
(4) Simulate iid order samples

( )11 2 ...
X

N N N< < <

from Uniform distribution ;[ ]0,U t

(5) Draw from ifiZ ( )LExp µ

,[ ]
2 3 4 5

1
1 1 1 1

0, , , ...i i i i i
i i i i

N S S S S S
= = = =

⎛ ⎤ ⎛ ⎤∈ ⎜ ⎜⎥ ⎥⎝ ⎦ ⎝ ⎦
∑ ∑ ∑ ∑∪ ∪ ∪

else,
draw it from , ;( )HExp µ ( )11, 2,...i X=

(6) We get in terms of ;( )11 2 ...
X

T T T< < < ( )min ,i iT L Z=

(7) Calculate the iid copies of :( )W t

,( )1 1(0) MW N W Mr T M
L

⎧ ⎫⎛ ⎞= + + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

,( )2 1 2(0) M MW N W Mr T M Mr T M
L L

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞= + + − + + −⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
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…,

;( )( )
( )1

1

1

(0)
X

iX
i

MW N W Mr T M
L=

⎧ ⎫⎛ ⎞= + + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑

(8) Get on the base of step(7);
( )

( )
10

inf i
i X

W N
< ≤

(9) Repeat steps (3)-(8) m times, obtaining iid observations

.
( )

( )
( )

( )
( )

( )
1 20 0 0

inf , inf ,..., inf
mi i i

i X i X i X
W N W N W N

< ≤ < ≤ < ≤

The same as the calculation of approximation values for ruin probability in (4.3),2ψ
for Model A and B, for model C, we have

. (5.3.3)�
( ) ( )

( )( )min2 ,
01

1 inf
j

m

m iW
i Xj

P I W N
m

ψ −∞
< ≤=

≈ = ∑

Note that in step (7), we used the fact (5.1.5) we mentioned before.

5.45.45.45.4 NumericalNumericalNumericalNumerical CasesCasesCasesCases

In this Section, we substitute real numbers for the parameters in Model A and C to
perform the two methods, Central Limit Theorem Approximation and Monte Carlo
Simulation, to achieve our objectives-calculating ruin probabilities and .1ψ 2ψ

To see how the initial capital quantity and interest rate exert influence on the ruin
probability, we calculate and individually under different levels of W(0) and1ψ 2ψ
r for model A and C respectively. We give the outputs, compare and during1ψ 2ψ
same model and between different models, explore the reasons, dig out the regular
rules underlying those numbers and at last, we give meaningful advices for seeking of
specified low ruin probability.

We measure the surplus W(t) at years; the clients arrival according to the10t =
Poisson process with intensity , which means there are 1000 deals come per1000λ =
year, ; every client borrow money by quantity (*1000( ) ( )10 10*1000X Po∼ 5M =
EUR) and the time period for every client to pay all loan back is 2 years ; the2L =
capital threshold (*1000 EUR).min 1000W =

For Model A, the default rate is identical for every client, we assign it withµ
, then the time point of the th client default is Exponentially distributed0.1µ = iZ i

with intensity 0.1, . From the Section 5.1 we know is obtained by( )0.1iZ Exp∼ 1ψ
utilizing deterministic approximation of Central Limit Theorem, see (5.1.1)-(5.1.3).
The results are given in following Table 5.4.1.
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Table 5.4.1 of Model A with different levels of W(0) and r1ψ

The of Model A are obtained by using Monte Carlo simulation, for seeking of2ψ
accuracy, as close as possible to the real value, we simulate 1000 trajectories of
process W(t), . In out paper, we use MATLAB 7.0 to do the Monte Carlo10t =
simulation, outputs are given in following Table 5.4.2.

Table 5.4.2 of Model A with different levels of W(0) and r2ψ

The substituting numbers of the parameters of Model C are the same as Model A
except the default rate. The default rate in Model C is not a constant but a Markov
Chain. We assign those clients that arrive at “good” times with default rate ,0.08Lµ =
those clients that arrive at “bad” times with default rate ; the jump rate of0.12Hµ =
the Markov Chain from “good” times to “bad” times is , waiting timeµ 0.2LHq =
before transiting to “good” times from “bad” times has the same intensity .0.2HLq =
Monte Carlo simulation is used for calculating both and utilizing MATLAB1ψ 2ψ
7.0, and the same as Model A, we also simulate 1000 trajectories of process W(t) at

years. Outputs of are given in following Table 5.4.3 and 5.4.4 respectively.10t =

Table 5.4.3 of Model C with different levels of W(0) and r1ψ

W(0)W(0)W(0)W(0)
rrrr 1100110011001100 1200120012001200 1300130013001300 1400

5% 65.4% 35.15% 12.33% 2.64%
5.25% 8.7% 1.65% 0.18% 0.01%
5.5% 0.1% 0.01% 0 0
5.75% 0 0 0 0

W(0)W(0)W(0)W(0)
rrrr 1100110011001100 1200120012001200 1300130013001300 1400

5% 81.3% 46.2% 15.1% 4.7%
5.25% 23.3% 4.4% 0.4% 0.2%
5.5% 3.1% 0.3% 0 0
5.75% 0.5% 0 0 0

W(0)W(0)W(0)W(0)
rrrr

1100110011001100 1200120012001200 1300130013001300 1400140014001400 1500

5% 40.1% 30% 28.3% 24.1% 16.9%
5.25% 26% 19.1% 16.9% 11% 8.1%
5.5% 16% 8.9% 8.8% 6.5% 2.7%
5.75% 9% 4.4% 3.2% 1.6% 0.4%

6% 2.5% 0.4% 0.4% 0.2% 0

W(0)W(0)W(0)W(0)
rrrr

1100110011001100 1200120012001200 1300130013001300 1400140014001400 1500

5% 48.5% 37.8% 35.5% 28.7% 21.5%
5.25% 35.3% 26.5% 22.5% 15.1% 10.6%
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Table 5.4.4 of Model C with different levels of W(0) and r2ψ

After observing Tables 5.4.1-5.4.4, we have following results:

(1) Besides observing the definitions as (4.2) and (4.3), it is also proved numerically
here that for both Model A and C, is not less than .2ψ 1ψ

(2) When of Model C is higher than the of Model A. That is5.25%r ≥ 1ψ 1ψ
because of Model C has higher Variance than Model A, which makes it moreW
possible for Model C that a trajectory ends up below the threshold .minW
Similarly, of Model C is higher than corresponding ruin probability of Model2ψ
C when .5.25%r ≥

(3) When , it is a opposite situation from (2), and of Model A are5%r = 1ψ 2ψ
higher than corresponding and of Model C. Actually, when , we1ψ 2ψ 5%r =
have “negative drift”, the bank is continuously losing money. Furthermore, recall
that of Model A has a smaller variance than Model C, in other words, if weW
start too close to , the ruin probability of Model A may very well be “higher”minW
than Model C.

(4) If the bank aims to control the ruin probability below 1% during one period, for
example in our paper , allowing for the influence from Micro-economics,[ ]0,10t∈
the risk manager will choose as the indication. So from the Table 5.4.4, it is2ψ

clear that , and , meet itsr  5.75%= ( )0   1500W = r  6%= ( )0  1300W =
requirement.

When we prescribed for Model B in Section 5.2, we used the Expectation Value of1ψ
W(t), see (5.2.3), from which we have

,( ) ( )( ) ( )1 1 r LEW M M L Mr e rα β α β− += − + + − +

which denotes the mean value of income from one client. In our paper, we primarily
focus on how r and influence this value. acts much more sensitive withβ 1EW
respect to the different value of than r, so it is impossible for us to present one tableβ
like (5.4.1)-(5.4.4) to show how C performs with different interest rate. We use
MATLAB to implement it, calculating different values of with a huge number of1EW
r under several distinct values of and plotting them. In our paper, we just giveβ
consequences after our observation.

(1) When , the model B becomes the Model A;0β =
(2) When , the path of strictly increasing with respect to ;0 1β< ≤ 1EW r
(3) , takes values according to a parabola open towards down,1 2β< ≤ 1EW

increases to the top, then goes down;

5.5% 26.8% 12.8% 11.3% 9.1% 3.8%
5.75% 16.2% 7.6% 5.3% 2.7% 0.7%

6% 6.7% 1.7% 0.8% 0.3% 0
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(4) , the values of strictly decreases;2β > 1EW
(5) When , no matter how high the interest rate we set, the values of are1.4β ≥ 1EW

negative, the bank will definitely lose money.

5.55.55.55.5 CalculationCalculationCalculationCalculation ofofofof andandandand( )EW t ( )VarW t

( ) ( ) ( )

( )
( )

( )

0 0

0 00

1| |

1

1 1

L Lx x

Lx L x L x L

L L

L

E Z Z L P Z L x e dx xd e

x e e dx L e e

e Le

L e

µ µ

µ µ µ µ

µ µ

µ

µ

µ

µ

µ µ

− −

− − − −

− −

−

< < = ⋅ = −

⎛ ⎞
= − ⋅ − = − ⋅ + ⋅⎜ ⎟

⎝ ⎠

= − − −

= − +

∫ ∫

∫

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( )
( )

| | |

|

1 1 1

1 1

1

L

L L

L

ET E E T Z E T Z L P Z L E T Z L P Z L

EL P Z L E Z Z L P Z L

L P Z L L e

L e L e

e

µ

µ µ

µ

µ µ

µ µ

µ

−

− −

−

= = > ⋅ > + < ⋅ <

= ⋅ > + < ⋅ <

= − < + − +⎡ ⎤⎣ ⎦
= ⋅ + − +

= −

( ) ( )
( )( )

1

1 L

EW E M M L Mr M M L Mr ET

M M L Mr e µ µ−

= − + + = − + +⎡ ⎤⎣ ⎦

= − + + −

( ) ( ) ( )
( ) ( )( )

10

0 1 L

EW t W EX t EW

W t M M L Mr e µλ µ−

= + ⋅

⎡ ⎤= + − + + −⎣ ⎦

( ) ( )

( )
( )

( )

2 2 2

0 0

2 2 2
0 0 0

2 2

0

2 2 2

|

| 2

12 2 1 1

2 2 2

L Lx x

L Lx L x x L

L x L L L

L

E Z Z L P Z L x e dx x de

x e e dx x e dx L e

xde L e L e L e

L L e

µ µ

µ µ µ µ

µ µ µ µ

µ

µ

µ µ µ
µ

µ µ µ

− −

− − − −

− − − −

−

< < = ⋅ = −

= − ⋅ − = ⋅ −

⎡ ⎤= − − = − + −⎣ ⎦

= − − − +

∫ ∫

∫ ∫

∫



27

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )

2 2 2 2

2 2

2 2 2 2

2

| | |

|

2 2 2

2 1 2

L L

L

ET E E T Z E T Z L P Z L E T Z L P Z L

EL P Z L E Z Z L P Z L

L e L L e

L e

µ µ

µ

µ µ µ

µ µ µ

− −

−

= = > ⋅ > + < ⋅ <

= ⋅ > + < ⋅ <

= ⋅ + − − − +

= − + +

( ) ( ) ( )
( )

222 2

/ 2 / 2

2 1 2 1

1 2

L L

L L

VarT ET ET L e e

Le e

µ µ

µ µ

µ µ µ µ

µ µ

− −

− −

⎡ ⎤= − = − + + − −⎣ ⎦

= − −

( ) ( ) ( )
( ) ( )

2
1

2 2 21 2 L L

Var W M L Mr Var T

M L Mr Le eµ µµ µ− −

= + ⋅

= + − −

( )( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) ( )

2
1 1

2 2 2

2

1 2

1

L L

L

Var W t EX t Var W Var X t EW

t M L Mr Le e

t M M L Mr e

µ µ

µ

λ µ µ

λ µ

− −

−

= ⋅ + ⋅

= ⋅ + − −

⎡ ⎤+ ⋅ − + + −⎣ ⎦

When we set , we getrµ α β= +

( ) ( ) ( )
( ) ( ) ( )( ) ( )

10

0 1 r L

EW t W EX t EW

W t M M L Mr e rα βλ α β− +

= + ⋅

⎡ ⎤= + − + + − +⎣ ⎦

and

.

( )( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 1

2 22

2( )

1 2

1

r L r L

r L

Var W t EX t Var W Var X t EW

t M L Mr r Le e r

t M M L Mr e r

α β α β

α β

λ α β α β

λ α β

− + − +

− +

= ⋅ + ⋅

⎡ ⎤= ⋅ + − + − +⎣ ⎦

⎡ ⎤+ ⋅ − + + − +⎣ ⎦



28

6666 SummarySummarySummarySummary andandandand ConclusionsConclusionsConclusionsConclusions

Credit risk become more and more important in modern society, exerting great
influence on all trades and professions such as Finance, Insurance, Real Estate, Energy,
Education, Manufacture, Healthcare, transportation and so on. This leads to an
accelerating demands of credit risk manage for privates as well as companies.

Our research object is a commercial bank. The bank borrow money from the residents
and market, then lend them to the clients including individuals, families, firms or do
investment to earn the price differences. The credit risk is an essential risk which the
bank has to confront and address, that explains why risk management department of a
bank becomes crucial, not only supplying risk management service to external
customers but also controlling internal risks. Except for the historical management
experience and traditional methods, the quantitative analysis is playing a effective and
common role in modern credit risk management.

In our paper, we built three dynamic portfolio models to investigate how the capital
flow is affected by the credit risk with respect to the private lending business of the
bank. By utilizing the ruin theory in Insurance, we theoretically described how to
calculate two ruin probabilities by two methods, Central Limit Theorem approximation
and Monte Carlo simulation. Furthermore, we numerically investigated how different
values of initial capital and interest rate influence the two ruin probabilities
respectively. As a result, besides using and as the risk measure for the credit1ψ 2ψ
risk exposure of the bank, they also can be utilized to determine proper interest rate,
how much capital the bank should hold (initial capital) and even proper value of , toβ
ensure its business survive or make sure those ruin probabilities in accordance with the
risk appetite formulated by the management, avoiding sharp declining amount of
clients due to too high interest rate or inacceptable loss on account of too low one.

It would be also interesting to investigate the loan conditions of real-life unsecured
consumption loans offered by different financial institutions, with the purpose to find
out whether the effective interest rates taken by the institutions can be motivated from
a credit risk point of view.
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AppendixAppendixAppendixAppendixA:A:A:A: PoissonPoissonPoissonPoisson ProcessesProcessesProcessesProcesses

A Poisson process, named after the French mathematician Siméon-Denis Poisson
(1781–1840), is a stochastic process in which events happen continuously and
independently of one another. The classical Poisson processes models are the
radioactive decay of atoms, telephone calls arriving at a switchboard, page view
requests to a website, and rainfall.

The Poisson process is a set of random variables, where refer to{ }( ) : 0N t t ≥ ( )N t
the number of events that have occurred between time 0 and t. The number of events
that have occurred between time a and time b is given as and is Poisson( ) ( )N b N a−
distributed. Each realization of the process is a non-negative integer-valued{ }( )N t
step function that is non-decreasing, but intuitively, it is usually easier to regard it as a
point pattern on , the points in time where the step function jumps, e.g. the[0, )∞
points in time where an event occurs.

The Poisson process is a continuous-time process, it is also an example of continuous-
time Markov process, i.e. a Poisson process is a pure-birth process, the simplest
example of a birth-death process and it is also a point process on the real half-line.

Definition A stochastic process is said to be a Poisson process if the{ }( ) : 0N t t ≥
following conditions hold:

• The process starts at zero: N(0)=0 a.s.;
• Independent increments: for any , and such thatit 0,....,i n= 1n ≥

, the increments , , are mutually0 10 ... nt t t= < < < 1( , ]i iN t t− 1,.....i n=
independent ( describes the the number of events that have occurred1( , ]i iN t t−

between time and time );1it − it
• The exists a non-decreasing right-continuous function :µ [0, ) [0, )∞ → ∞

with so that the increments have a Poisson distribution(0) 0µ = ( , ]N s t
, is referred to as the mean value function of ;( ( , ])Pois s tµ µ N

• Stationary increments: the probability distribution of the number of
occurrences counted in any time interval only depends on the length of the
interval, .( , ] ( , ] ~ ( ( ))N s t dN s h t h Pois t sλ+ + −

Consequences of this definition include:

• The probability distribution of N(t) is a Poisson distribution,
.( ) ( ) (0) (0, ] ~ ( (0, ]) ( ( ))N t N t N N t Pois t Pois tµ µ= − = =

• The probability distribution of the waiting time until the next occurrence is an
exponential distribution, as illustrated in the following part.

Homogeneous Poisson process:::: The most popular Poisson process corresponds to the
case of a linear mean value function ::::µ

(A.1)( ) , 0,t t tµ λ= ≥

http://en.wikipedia.org/wiki/Sim%C3%A9on-Denis_Poisson
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Memorylessness
http://en.wikipedia.org/wiki/Radioactive_decay
http://en.wikipedia.org/wiki/Website
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Realization_%28probability%29
http://en.wikipedia.org/wiki/Birth-death_process
http://en.wikipedia.org/wiki/Point_process
http://en.wikipedia.org/wiki/Independent_increments
http://en.wikipedia.org/wiki/Stationary_increments
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Exponential_distribution
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for some . A process with such a mean value function is said to be homogeneous,0λ >
in homogenous otherwise. The quantity is the intensity of the homogeneous Poissonλ
process. If , is called standard homogeneous Poisson process.1λ = N

For the homogeneous Poisson process, the number of events occurring in time interval
follows a Poisson distribution with associated parameter . This( , ]t t τ+ λτ

representation is given as

(A.2)( )[( ( ) ( )) ] , 0,1, ,
!

keP N t N t k k
k

λτ λτ
τ

−

+ − = = = …

where N(t+τ)−N(t) is the number of events occurring in the time interval .( , ]t t τ+

Just as a Poisson random variable is characterized by its scalar parameter λ, a
homogeneous Poisson process is characterized by its rate parameter λ, which
represents the expected number of events (or arrivals) that occur per unit time.

RenewalRenewalRenewalRenewal processprocessprocessprocess

For any homogeneous Poisson process with intensity and arrival times0λ >
we have the representation1 20 ...T T≤ ≤ ≤

, (A.3){ }( ) # 1: , 0iN t i T t t= ≥ ≤ ≥

where

(A.4)1 ... , 1,n nT W W n= + + ≥ ~ ( )iW Exp λ . .i i d

Since the random walk with non-negative step sizes is also referred to as( )nT nW
renewal sequence, a process with representation (A.3)-(A.4) for a general iidN
sequence is called renewal (counting) process.( )iW

TheoremTheoremTheoremTheorem A.1A.1A.1A.1 (The(The(The(The homogeneoushomogeneoushomogeneoushomogeneous PoissonPoissonPoissonPoisson processprocessprocessprocess asasasas aaaa renewalrenewalrenewalrenewal process)process)process)process)

(1) The process given by (A.3) and (A.4) with an iid exponentialN ( )Exp λ
sequence constitutes a homogeneous Poisson process with intensity .( )iW 0λ >

(2) Let be a homogeneous Poisson process with intensity and arrival timesN λ
. Then has representation (A.3), and has representation (A.4)1 20 ...T T≤ ≤ ≤ N ( )iT

for an iid exponential sequence .( )Exp λ ( )iW

TheoremTheoremTheoremTheorem A.2A.2A.2A.2 (Order(Order(Order(Order statisticstatisticstatisticstatistic propertypropertypropertyproperty ofofofof thethethethe PoissonPoissonPoissonPoisson process)process)process)process)

http://en.wikipedia.org/wiki/Interval_%28mathematics%29
http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Expected_value
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Consider the Poisson process with continuous a.e. positive intensity( )( ) 0t
N N t

≥
=

function and arrival times Then the conditional distribution ofλ 1 20 ... . .T T a s< < <

given is the distribution of the ordered sample1( ,..., )nT T ( ){ }N t n= ( ) ( )( )1 ,..., nX X

of an iid sample with common density , :1,..., nX X ( ) ( )x tλ µ 0 x t< ≤

.( )( ) ( ) ( )( )1 1,..., | ,...,n nT T N t n d X X=

In other words, the left-hand vector has conditional density

, .( )( )
( )( )

( )
1 ,..., 1

1

!,..., |
n

n

T T n in
i

nf x x N t n x
t

λ
µ =

= = ∏ 10 ... nx x t< < < <

Consider a homogeneous Poisson process with intensity . Then Theorem A.20λ >
yields the joint conditional density of the arrival times :iT

(A.5)( )( )
1 ,..., 1,..., | !

n

n
T T nf x x N t n n t−= =
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AppendixAppendixAppendixAppendix B:B:B:B: Continuous-timeContinuous-timeContinuous-timeContinuous-time MarkovMarkovMarkovMarkov ChainsChainsChainsChains

B1B1B1B1MarkovMarkovMarkovMarkov ChainChainChainChain

DDDDefinitionefinitionefinitionefinition

A Markov chain is a sequence of random variables X1, X2, X3, ... with the Markov
property: given the present state, the future and past states are independent,

( ) ( )1 1 1 2 2 1Pr | , ,, Pr |n n n n n nX x X x X x X x X x X x+ += = = … = = = =

The possible values of Xi form a countable set S which is referred to as the state space
of the chain.

The probability of moving from state i to state j in n time steps is

( )( )
0Pr |n

ij nX j ip X= = =

B2B2B2B2 Continuous-timeContinuous-timeContinuous-timeContinuous-timeMarkovMarkovMarkovMarkov ChainChainChainChain

As before we assume that we have a finite or countable state space S, but now the
continuous-time Markov chain which satisfies the Markov( ){ }: 0X X t t= ≥

property has a continuous time parameter . Transitions from one state to[ )0,t∈ ∞
another can occur at any instant of time.

In continuous-time Markov chain, there are no smallest time steps and hence we
cannot talk about one-step transition matrices any more. If we are in state ati S∈
time t, then the probability of transition to a different state at time t + h isj S∈

{ }Pr ( ) | ( )X t h j X t i+ = =

We are interested in small time steps, i.e. small values of h > 0. We have

{ }
0

Pr ( ) | ( )
lim ijh

X t h j X t i
q

h→

+ = =
=

We can write this as

{ }Pr ( ) | ( ) ( )ijX t h j X t i q h o h+ = = = +

http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Countable_set
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And o(h) here is a convenient abbreviation for any function with the property that
, the function is of smaller order than h. Hence, over a sufficiently smalllim ( ) 0

h o
o h h

→
=

interval of time, the probability of a particular transition between different states is
roughly proportional to the duration of that interval.

The Markov property states that at any times , given the whole history of0t h t+ > >
the process up to and including time t, the conditional probability distribution of the
process at time , depends only on the state of the process at time t. For all ,t h+ i j≠

, we have0 10 ... nt t t t< < < < <

( ) ( ) ( ){ } ( ) ( ){ } ( )Pr | , Pr |i i ijX t h j X t i X t x X t h j X t i q h o h+ = = = = + = = = +

From this we get, for every ,j S∈

{ }Pr ( ) | ( ) 1 ( ) 1 ( )ji jj
i S

X t h j X t j q h o h q h o h
∈

+ = = = − + = + +∑

If we define .jj ji
i S

q q
∈

= −∑

We say that gives the rate at which we try to enter state j when we are in state i,ijq
or the jump intensity from i to j.

We can put all the transition probabilities information into a matrix ( ): ,ijQ q i j S= ∈

, which contains all the information about the transitions of the Markov chain X.
This matrix is called the transition matrix of the Markov chain.

Given the transition matrix Q one can construct the paths of a continuous time
Markov chain as follows. Suppose the chain starts in a fixed state for .0X i= i S∈
Let

{ }0min : tT t X X= ≠

be the first jump time of , we always assume the minimum always exists.X

TheoremTheoremTheoremTheorem B2.1B2.1B2.1B2.1 The Markov chain started in , the random variables T and X(T)0X i=
are independent, T is exponentially distributed with rate , which meansii ij

j i
q q

≠

=∑

for .( )Pr iiq tT t e−> = 0t ≥

Moreover,

http://en.wikipedia.org/wiki/Probability_distribution
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.( )Pr ( ) ij

ii

q
X T j

q
= =

And the chain starts afresh at time T. That represents the probability distribution of
the waiting time until the first transition is an exponential distribution with rate
parameter , and hence continuous-time Markov processes are memorylessiiq
processes.

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/Memorylessness
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AppendixAppendixAppendixAppendixC:C:C:C:LawLawLawLawofofofof LargeLargeLargeLargeNumbersNumbersNumbersNumbers

We intuitively view the probability of a certain outcome as the frequency with which
that outcome occurs in the long run when the experiment is repeated a large number of
times. And probability is mathematically defined as a value of a distribution function
for the random variable representing the experiment. In probability theory, the law of
large numbers (LLN) is a theorem which describes the result of implementing the
same experiment a large number of times. By the law, the average of the results
obtained from a large number of trials should be close to the expected value, and will
tend to be closer when more trials are performed.

TheoremTheoremTheoremTheorem C.1C.1C.1C.1 (Chebyshev(Chebyshev(Chebyshev(Chebyshev Inequality)Inequality)Inequality)Inequality)

Let X be a continuous random variable with density function f. Suppose X has a finite
expected value and finite variance . Then for any( )E Xµ = < ∞ 2 ( )V Xσ = < ∞
positive number we have0ε >

2

2(| | )P X σ
µ ε

ε
− ≥ ≤

We omit the proof here. Note that this theorem says nothing if is infinite.2 ( )V Xσ =

With the Chebyshev Inequality we can state the Law of Large Numbers for
continuous case.

TheoremTheoremTheoremTheorem C.2C.2C.2C.2 (Weak(Weak(Weak(Weak LawLawLawLaw ofofofof LargeLargeLargeLarge Numbers)Numbers)Numbers)Numbers) Let be independent1 2, ,..., nX X X
random variables with a continuous density function f, finite expected value , andµ
finite variance . Let be the sum of the . Then for any2σ 1 2 ...n nS X X X= + + + iX
small number we have0ε >

,lim 0n

n

SP
n

µ ε
→∞

⎛ ⎞
− ≥ =⎜ ⎟

⎝ ⎠

Or equivalently,

.lim 1n

n

SP
n

µ ε
→∞

⎛ ⎞
− < =⎜ ⎟

⎝ ⎠

Note that this theorem is not necessarily true if is infinite.2σ
The Weak Law of Large Numbers says that the average value of n independent trials
tends to the expected value as , in the precise sense that, given , then→∞ ε
probability of the differ between average value and the expected value more than 2σ
tends to 0 as ( convergence in probability).n→∞

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Theorem
http://en.wikipedia.org/wiki/Average
http://en.wikipedia.org/wiki/Expected_value
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TheoremTheoremTheoremTheorem C.3C.3C.3C.3 (Strong(Strong(Strong(Strong LawLawLawLaw ofofofof LargeLargeLargeLarge Numbers)Numbers)Numbers)Numbers) Let be an1 2, ,..., nX X X
independent random variables with a continuous density function f, finite expected
value , and finite variance . Let be the sum of the .µ 2σ 1 2 ...n nS X X X= + + + iX
Then for any small number we have0ε >

,P lim 0n

n

S
n

µ ε
→∞

⎛ ⎞
=⎜ − ⎟

⎝ ⎠
≥

which expresses the fact that the sample converges almost surely to the distribution
mean.
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AppendixAppendixAppendixAppendixD:D:D:D:CentralCentralCentralCentral LimitLimitLimitLimitTheoremTheoremTheoremTheorem

In probability theory, the central limit theorem (CLT) states that if is the sum of nnS
mutually independent and identically distributed random variables, then the
distribution function of is well-approximated by a certain type of continuousnS
function known as a normal density function, which is given by the formula

2 2( ) /21( )
2

xf x e µ σ

πσ
− −=

When and , we call this particular normal density function the standard0µ = 1σ =
normal density, denoted by :( )xφ

2 /21( )
2

xx eφ
π

−=

The Central Limit Theorem tells us, quite generally, what happens when we have the
sum of a large number of independent random variables each of which contributes a
small amount to the total. Since real-world quantities are often the balanced sum of
many unobserved random events, this theorem provides a partial explanation for the
prevalence of the normal probability distribution. The CLT also justifies the
approximation of large-sample statistics to the normal distribution in controlled
experiments.

The Central Limit Theorem for independent trials process is as follows.

TheoremTheoremTheoremTheorem D.1D.1D.1D.1 (Central(Central(Central(Central LimitLimitLimitLimit Theorem)Theorem)Theorem)Theorem) Let be the sum of n1 2 ....n nS X X X= + + +
independent random variables with common distribution having expected value µ
and variance . Then, for ,,,,2σ a b<

2 /2

2

1lim ( )
2

b xn
an

S nP a b e dx
n

µ
πσ

−

→∞

−
< < = ∫

Depend on the appendix A and C, we give following theorem.

TheoremTheoremTheoremTheorem D.2D.2D.2D.2 (The(The(The(The strongstrongstrongstrong lawlawlawlaw ofofofof largelargelargelarge numbersnumbersnumbersnumbers andandandand thethethethe centralcentralcentralcentral limitlimitlimitlimit theoremtheoremtheoremtheorem inininin
thethethethe renewalrenewalrenewalrenewalmode)mode)mode)mode)
Assume the renew model for W.
(1) If the inter-arrival times and the claim sizes have finite expectation, WiX

satisfies the strong law of large numbers:

( )
1lim

n

W t
EX

t
λ

→∞
= . .a s

(2) If the inter-arrival times and the claim sizes have finite variance, W satisfiesiX
the central limit theorem:

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistic
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,( ) ( )
( )( )

( )sup 0
varx

W t EW t
P x x

W t∈

⎛ ⎞−⎜ ⎟≤ −Φ →
⎜ ⎟
⎝ ⎠

ℝ

where is the distribution function of the standard nomal distribution.Φ ( )0,1N




