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Abstract

Statistical modeling of social networks as complex systems has
always been and remains a challenge for social scientists. We re-
view a wide class of exponential family models for social networks,
known as Exponential Random Graph Models (ERGMs), or p* mod-
els. They have been developed since the 1980s and are character-
ized by well-defined sufficient statistics that represent local network
characteristics. However, due to the difficulty of dealing with the
intractable normalizing constant, pseudo-likelihood estimation meth-
ods have been applied in most studies. Recently, simulation based
MCMC maximum likelihood estimation techniques have been intro-
duced to improve parameter estimation. An R-package statnet has
been developed for ERGMs by Goodreau et al. (2008). We illustrate
some of the functionality of statnet by analysing a friendship network
of 1,461 adolescents. It turns out that several well-studied ERGMs do
not fit this data set well, although the fit improves dramatically when
the models include another recently developed geometrically weighted
edgewise shared partner (GWESP) statistic. KEYWORDS: Social
networks, exponential-family random graph models, goodness-of-fit,
pseudolikelihood estimation, Markov chain Monte Carlo, generalized
linear models, deviance.
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1 Introdu
tionThe uses of so
ial network models are be
oming important in a number of �elds su
has epidemiology (with the emergen
e of infe
tious diseases like AIDS and SARS), busi-ness (with the study �viral marketing�) and politi
al s
ien
e (with the study of 
oalitionformation dynami
s).Examples of di�erent dependen
e assumptions and their asso
iated models are Bernoulli,dyad-independent and Markov random graph models. In this paper, we study the moregeneral 
lass of exponential random graph models (ERGMs), introdu
ed by Frank andStrauss (1986) and Wasserman and Pattison (1996) and extended e.g. in Robins et al.(1999). See also Robins et al. (2007) and Hunter et al. (2008) for overviews. We fo
us inparti
ular on a systemati
 examination of a real network dataset using maximum likeli-hood estimation and a new goodness-of-�t pro
edure of Hunter et al. (2008) to evaluatehow well �tted models mat
h observed data. These te
hniques 
ompare stru
tural statis-ti
s of the observed network with the 
orresponding statisti
s on networks simulated fromour �tted models.Parameter estimation is in general straightforward for simpler random graphs models. Inthe 
ase of ERGMs, however, the maximum likelihood estimates for model parameters arein general more 
ompli
ated, utilizing Markov 
hain Monte Carlo (MCMC) pro
edures.Degenera
y in fa
t often prevents model estimation from 
onverging on �nite parameterestimates. The use of alternative approximation te
hniques su
h as maximum pseudolike-lihood estimation for ERGMs (Strauss and Ikeda, 1990) does not solve this problem, butsimply hides it. We argue that several well-studied models in the networks literature donot �t these data well, and we demonstrate that the �t improves dramati
ally when themodels in
lude the re
ently-developed geometri
ally weighted edgewise shared partner(GWESP) and related statisti
s, see Sneijder et al. (2006).The primary 
ontribution of this arti
le is to give an overview of a systemati
 approa
h tothe assessment of network ERGMs. It 
ontains tools for a

omplishing three importantand interrelated tasks involving estimation, simulation and goodness of �t. The goal isto estimate model parameters of a given so
ial network data set 
olle
ted at a nationallyrepresentative sample of high s
hools in the United States, see Udry (2003) and Harriset al. (2003). Then we will evaluate how adequately the model represents the data. Tothis end, we use the R pa
kage statnet for so
ial network data des
ribed in Goodreau etal. (2008). It has the 
apability of approximating a maximum likelihood estimator foran ERGM data set; simulating new network data sets from a �tted ERGM and assessinghow well a �tted ERGM 
aptures aspe
ts of observed data, e.g. 
lusters and degreedistributions.We 
on
lude that ERGMs with GWESP statisti
s 
apture aspe
ts of the so
ial stru
tureof adoles
ent friendship relations not represented by previous models.4



In Se
tion 2 we give an overview of random graphs, in
luding in parti
ular exponentialfamily random graph models (ERGMs). Inferen
e for su
h models is des
ribed in Se
tion3, and an example data set is analyzed in Se
tion 4. A �nal dis
ussion 
an be found inSe
tion 5, whereas details on generalized linear models are given in the appendix.2 Random Graphs2.1 Basi
 De�nitionsA random graph G is a graph whi
h is generated by some random pro
edure. It is usuallydenoted as G = (V,E) where V is a set of n verti
es, 
onne
ted by m edges E . Itis obtained by starting with the set of n verti
es whi
h is �xed and then adding edgesat random a

ording to some rule. Di�erent random graph models produ
e di�erentprobability distribution on graphs.My aim in using exponential random graph models (ERGMs) is to model the randombehavior of the adja
en
y matrix
Y = (Y ij)

n
i,j=1.This is a square matrix su
h that Yij = 0 if there is no edge between the pair of verti
es(dyad) i and j and Yij = 1 if there is and edge between i and j . To ea
h i we asso
iate

q attributes or 
ovariates, represented within the ve
tor X i = (Xi1, . . . , Xiq) . All theseare gathered into a matrix
X = (X i)

n
i=1of attributes.2.2 Exponential-Family Random Graph ModelsFor so
ial networks, we argue that, due to very re
ent progress in the framework ofexponential random graph models, we are now mu
h 
loser to the goal of obtaining goodstatisti
al models for so
ial networks than we have ever been before. For modelling andstudying so
ial netwoks, the 
on
ept of an exponential random graph model (ERGM)has be
ome an important tool with interesting theoreti
al a
hievments sin
e the 1980s.The ERGMs, also known as p⋆ -models, are a 
lass of sto
hasti
 models whi
h use net-work lo
al stru
tures to model the formation of network ties for a network with a �xednumber of nodes. Depending on the underlying neighbourhood assumptions, ERGM as-signs probabilities to Y based on a set of 
ounts of regular lo
al 
on�gurations whi
hare su�
ient statisti
s for their parameters. The exponential family random graph model
an be de�ned as

P (Y = y|X) =
1

c
exp{g(y,X)ηT}, (1)5



where
c =

∑

y

exp{g(y,X)ηT} (2)is a normalizing 
onstant,
η = (η1, . . . , ηp)is the p -dimensional ve
tor of parameters and g(y,X) a row ve
tor of network statisti
sof dimension p . It is helpful to introdu
e the 
hange of the ve
tor of statisti
s in g(·) ,

∆(g(y,X))ij = g(y,X)|yij=1 − g(y,X)|yij=0 (3)for all dyads (i, j) . We 
an express the 
onditional distribution of Yij given
Y c

ij = {Ykl; (k, l) 6= (i, j)}as logit (P (Yij = 1 | Y c
ij = ycij)

)

= ηT∆(g(y,X))ij. (4)2.3 Dyadi
 independen
e modelsFor some spe
ial 
ases of ERGMs (1) has a simpler stru
ture, whi
h fa
ilitates exa
testimation of model parameters η . One su
h 
lass of models is the dyadi
 independen
emodels, for whi
h
g(y,X) =

∑∑

i<j

yij h(X i,Xj) (5)for some p -dimensional fun
tion h(X i,Xj) of pairs of attribute ve
tors. It is easy tosee that
∆(g(y,X))ij = h(X i,Xj)for dyadi
 independen
e model, and moreover, the probability (1) of observed data 
anbe written as produ
t

P (Y = y|X) =
1

c

∏∏

i<j

exp{yij∆(g(y,X))ijη
T}, (6)over all dyads (i, j) , explaining the name of this 
lass of models.The identity (6) does not hold for general ERGMs. However, the right-hand side ofthis equation is often used as an approximation of the likelihood when parameters areestimated, the so 
alled pseudo likelihood (see Se
tion 3).
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2.4 Example of ERGMs2.4.1 Erdös-Renyi modelsAmajor initial attempt of statisti
al modelling of so
ial networks is the Bernoulli RandomGraph Models proposed by Erdös and Renyi (1959). It 
an be viewed as a spe
ial 
aseof a dyadi
 independen
e model (6) with h(X i,Xj) = 1, so that
g(y,X) = R(y) =

∑∑

i<j

yijis the number of partnerships in the network, i.e. the total number of edges. The singleparameter η 
an be interpreted as the 
ommon log-odds of the probability of partnershipformation within any dyad. We �nd that
P (Y = y) =

1

c
exp

(

η
∑∑

i<j

yij

)

,where c 
an be given expli
itly in ERG model.Thus Yij are independent and identi
ally distributed with su

ess probabiliby eη/(1+eη).2.4.2 Markov Random Graphs ModelsThe Markov neighbourhood assumption was introdu
ed by Frank and Strauss (1986) inwhi
h all ties sharing a node are 
onditionally dependent on ea
h other. This yields aMarkov assumption, on whi
h the Markov models are based. For an introdu
tion to su
hmodels, see for instan
e Sundberg (2010).The 
lass of models 
onsidered by Frank and Strauss 
ontains no 
ovariates and has theform
P (Y = y) =

1

c
exp

(

ρR(y) +

p−1
∑

l=2

σlSl(y) + τT (y)

) (7)where
η = (ρ, σ2, . . . , σp−1, τ)is the set parameters and

g(y,X) = (R(y), S2(y), . . . , Sp−1(y), T (y))the network statisti
s. The new statisti
s 
ompared to the Erdös-Rényi model are
Sl(y) = total number of l-stars =∑

i

∑

j1<···<jl

yij1 · . . . · yijl,

T (y) = total number of triangles = ∑

i<j<l

yijyilyjl.7



The normalizing 
onstant of (7) is given by
c = c(η) =

∑

y

exp

(

ρR(y) +

p−1
∑

l=2

σlSl(y) + τT (y)

)

. (8)In parti
ular, a Markov random graph model for a network with edges, two-star, three-star and triangle statisti
s is given by
P (Y = y) =

1

c
exp(ηR(y) + σ2S2(y) + σ3S3(y) + τT (y)).2.4.3 Assortative Mixing ModelA spe
ial type of dyadi
 independen
e model is one that proposes a tenden
y for assor-tative mixing, that is, a greater or smaller probability of individuals to form edges withothers having the same 
ovariates. We model this using

h(X i,Xj) = (1, 1{Xi1=Xj1}, . . . , 1{Xiq=Xjq}). (9)This model has p = q + 1 parameters with distribution
P (Y = y) =

1

c
exp

(

η1R(y) +

q
∑

l=1

ηl+1Nl(y)

) (10)where R(y) is the number of edges and Nl(y) the number of dyads that have an edgeand the same value of 
ovariate l . Hen
e ηl+1 > 0 indi
ates assortative mating withrespe
t to 
ovariate l .2.4.4 Models with geometri
ally egdewise shared partner statisti
sAn k -triangle is a set of k ∈ {1, 2, . . . , n− 2} distin
t triangles that share a given edge.Let Tk(y) denote the total number of k -triangles for network data y . Sin
e a 1-triangleis an ordinary triangle, we have that T1(y) = T (y) . For a �xed α ≥ 0 , introdu
e thealternating k -triangle statisti

V (y;α) = 3T1(y) +

n−2
∑

k=2

e−αk(−1)k−1Tk(y)of Sneijders et al. (1996). It is also 
alled the Geometri
ally weighted edgewise sharedpartner (GWESP) statisti
. If we add this statisti
 to the assortative mixing model (10),we get p = q + 2 parameters and
P (Y = y) =

1

c
exp

(

η1R(y) +

q
∑

l=1

ηl+1Nl(y) + ηpV (y;α)

)

. (11)
8



3 Inferen
e3.1 Parameter Estimation3.1.1 Pseudolikelihood MaximizationDevelopment of estimation methods for ERGMs has not kept pa
e with development ofERGMs themselves. To understand why, 
onsider the sum of equation (2). A samplespa
e 
onsisting of all possible undire
ted graphs on n nodes 
ontains 2n(n−1)/2 elements,an astronomi
ally large number even for moderate n . Therefore, dire
t evaluation of thenormalizing 
onstant c in equation (2) is 
omputationally infeasible for all but the small-est networks ex
ept in 
ertain spe
ial 
ases su
h as the dyadi
 independen
e model ofequation (5). For instan
e, most of the Markov models treated in Subse
tion 2.4.2 en-
ounter 
omputational di�
ulties. As a 
onsequen
e, inferen
e using maximum likelihoodestimation is di�
ult.In general for dyadi
 dependen
e models equation (6) does not hold, but the right-handside is refered to as the pseudolikelihood. Now we 
an estimate η by pseudo likelihoodestimation, as proposed by Strauss and Ikeda (1990). In the 
ontext of ERGMs, pseudolikelihood estimation is easy to 
arry through, even for 
ompli
atted models. A logitmodel is �tted for ea
h edge indi
ator, given the rest of the graph,
log

P (Yij = 1|Y c
ij = ycji)

P (Yij = 0|Y c
ij = ycji)

= ∆(g(y,X))ijη
t.For dyadi
 independen
e models (6) holds exa
tly, and then pseudolikelihood estimation
oin
ides with maximum likelihood estimation. Indeed, we 
an then write (6) as

P (Y = y|X) =
∏

ij

Pij(Yij = yij|X),where Pij is the marginal distribution of Yij given X . In other words, we have that
{Yij} are 
onditionally independent given all 
ovariates X . This simpli�es the likelihood,whi
h is essentially a kind of logisti
 regression likelihood, a spe
ial 
ase of the generalizedlinear model likelihood, as des
ribed in the appendix.For dyadi
 dependen
e models g(y,X) typi
ally has terms yij1yij2 and yijyjkyik , andthere is no linear expansion of g of the kind (5) and hen
e no independen
e between
{Yij} given X .3.1.2 Maximum Likelihood Estimation and Monte Carlo Markov ChainFrom Equation(2) the log likelihood fun
tion is

l(η) = logPη(Y = y) = g(y,X)ηt − log(c(η)).9



Maximimizing the likelihood with respe
t to η is equivalent to maximizing
l(η)− l(η0) = g(y,X)(η − η0)

t − log(c(η)/c(η0)),where η0 is an arbitrary �xed parameter ve
tor. The di�
ult part is to estimate
c(η)/c(η0) , and this 
an be a

omplished by running a dis
rete-time Markov 
hain whosestationary distribtion is the distribution we wish to sample from. This is the MarkovChain Monte Carlo (MCMC) idea, see Geyer and Thompson (1992) and Snijders (2002).For �xed η0 , we 
onsider the identity

Eη0

(

exp(g(Y ,X)(η − η0)
t)
)

=
∑

y

exp(g(y,X)(η − η0))Pη0
(Y = y)

=
∑

y

exp(g(y,X)(η − η0)
t)
exp(g(y,X)ηt0)

c(η0)

=
c(η)

c(η0)
.Thus, c(η)/c(η0) is an expe
tation, where the symbol Eη0

denotes the expe
tation op-erator assuming Y is random from the ERGM with parameter η0.The Law of large numbers suggests that we approximate an unknown population meanby a sample mean. Thus,
l(η)− l(η0) = g(y,X)(η − η0)

t − logEη0(exp(g(Y ,X)(η − η0)
t))

≈ g(y,X)(η − η0)
t − log

(

1

I

I
∑

i=1

exp(g(yi,X)(η − η0)
t)

)

,where y1, . . . ,yI is a random sample of networks from the distribution de�ned by theERGM with parameter η0.3.2 Model Sele
tionModel sele
tion is the way of sele
ting a statisti
al model from a set of potential models,given data. Determining the prin
iple that explains a series of observations is often linkeddire
tly to a mathemati
al model predi
ting those observations. We 
onsider to modelsele
tion based on Akaike's information 
riterion (AIC) and the Bayesian information
riterion (BIC).AIC was developed by Hirotsugu Akaike under the name of �an information 
riterion� in1971 and proposed in Akaike (1974) as a measure of the goodness of �t of an estimatedstatisti
al model. It is usually used for model sele
tion. For a given model M it is de�nedas AIC(M) = 2p− 2l(η̂),where η̂ is the maximum likelihood estimate and p the number of parameters of model
M . The goal is to minimize AIC(M ) as a fun
tion of M .10



The BIC was de�ned by S
hwarz (1978) and is also 
alled S
hwarz' Criterion. It is 
loselyrelated to the Akaike information 
riterion, but has another penalty term for the numberof parameters p of the model;BIC(M) = log(N)p− 2l(η̂),where N is the number of data points {Yij} , i.e. N = n(n − 1)/2 . Hen
e, for networkmodels, the sample size N is not the same as the number of nodes n .3.3 Goodness of �tThe devian
e is a quality of �t statisti
 for a model that is usually used for statisti
alhypothesis testing. For a given model M the devian
e is de�ned as
D(M) = −2

(

l(η̂)− l(η̂full)
)

,where η̂ is the ML-estimate for the given model M and η̂full the ML-estimate for a fullmodel with one parameter per observation. The devian
e is frequently used for GLMs,see M
Cullagh and Nelder (1989). The di�eren
e in devian
e D(M1)−D(M2) betweentwo models M1 and M2 
an be used for hypotheses testing.As des
ribed in Hunter et al. (2008a), goodness of �t of an ERGM M 
an also be assesedby means of simulation. Various statisti
s from an observed network are 
ompared withthe 
orresponding distributions of the statist
s for simulated data. The símulated datasets are generated from the �tted parameters η̂ . Good agreement between the observedstatisti
s and the simulated distributions indi
ate a good �t.4 An Example Data Set4.1 Des
riptive analysisThe data that we 
onsider in this paper is taken from the National Longitudinal Study ofAdoles
ent Health or Add Health, as des
ribed in Udry (2003) and Harris et al. (2003).This data set was analyzed by Goodreau et al. (2008) and our analysis 
losely parallelstheirs. The data set is an undire
ted, one-mode friendship network of n = 1461 verti
es
R(y) = 974 edges and T (y) = 169 triangles.Ea
h node i represents a student and Yij = 1 indi
ates friendship between i and j . The
q = 3 di�erent attributes for ea
h individual i are

X i = (Gradei,Ra
ei, Sexi). (12)From Figure 1 we see that one large 
omponent appears and then smattering of manyvery small 
omponents, all of whi
h are not visuable. The 
ount of the 
omponent size11



Figure 1: Faux Magnolia High, without isolates.
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Table 1: Component size distribution.Component size 1 2 3 4 5 6 7 8 9 11 12 19 23 439Frequen
y 524 64 29 11 12 4 7 4 1 1 1 1 1 1distribution in Table 1 shows that there are 524 isolates, one large 
omponent of 439verti
es and many 
omponents lie in between.The distribution of vertex attributes is summarized in Table 2.Table 2: Distribution of students (verti
es) with respe
t to various attributes.Vertex attribute Class Frequen
yRa
e Asian 48Bla
k 261Hisp 68NatAm 24Other 7White 1053Grade 7 1858 2109 31710 29911 25712 193Sex F 768M 693It turns out that among the attributes, grade is the strongest determinat of so
ial re-lations. We 
an visualize this by 
olouring verti
es a

ording to grade (Figure 2) or by
onsidering the mixing matrix with respe
t to grade (Table 3), whi
h is 
on
entratedalong the diagonal, with diagonal sum Ngrade(y) = 820 . The 
orresponding mixing ma-trix for ra
e (Table 4) is also 
on
entrated along the diagonal, but somewhat less so thanfor grade, sin
e Nrace(y) = 787 .The degree distribution of the data set is summarized in Table 4, for the whole populationas well as for the female subpopulation:Table 5 summarized the degree distribution for the whole and female subpopulation withedge prob
13



Figure 2: Faux Magnolia High, without isolates, 
oloured by grade.
14



Table 3: Mixing matrix with respe
t to grade.Grade 7 8 9 10 11 127 110 11 3 3 0 08 11 165 9 7 0 29 3 9 152 24 10 410 3 7 24 151 38 1111 0 0 10 38 152 3212 0 2 4 11 32 90Table 4: Mixing matrix with respe
t to ra
e.Asian Bla
k Hisp NatAm Other WhiteAsian 7 4 0 1 0 35Bla
k 4 85 9 3 0 57Hisp 0 9 1 0 0 48NatAm 1 3 0 3 0 25Other 0 0 0 0 0 5White 35 57 48 25 5 6914.2 Fitting ERGMsWe will �t data to four ERGMs, whi
h are:4.2.1 Model M1 (Erdös-Rényi)This model 
ontains one single parameter η , the log odds of the edge probability. Wemay test M1 versus the submodel M0 : η = 0 , for whi
h all 2n(n−1)/2 edge 
on�gurationsare equally likely. It 
an be seen from both Tables 6 and 7 that data strongly reje
ts M0in favour of M1 . The estimated edge probability is
e−6.998

1 + e−6.998
≈ 0.000913.4.2.2 Model M2 (Assortative mixing)This is the assortative mixing model based on attributes grade, ra
e and sex, i.e. (9),with X i as in (12).Table 8 summarizes ML parameter estimates for M2 . For ea
h parameter ηi we also give

p -values for testing ηi = 0 versus ηi 6= 0 . We �nd that all four terms, that is, edges,15



Table 5: Degree distribution for the whole and female subpopulation.Degree 0 1 2 3 4 5 6 7 8Frequen
y (whole pop) 524 403 271 128 85 30 13 5 2Frequen
y (female subpop) 226 226 160 80 44 18 7 0 0Table 6: ML estimation for M1 and hypothesis testing for M1 versus M0 .
η̂ Std. error p-value-6.99760 0.03205 <0.0001grade, ra
e and sex are signi�
ant and also that the likelihood in
reased dramati
allyrelative to Model 1.We noti
e from Table 8 that the log-odds of a tie whi
h is 
ompletely heterogeneious is

−10.01 , the log-odds of a tie that is homogeneious by ra
e is −10.01+1.20 = −8.82 andthe log-odds of a tie when all the three attributes are homogeneous is −10.01 + 3.23 +

1.20 + 0.88 = −4.70 .We assessed goodness of �t for M2 in Figure 3 by 
he
king if the degree distributionfor one simulated data set, generated from M2 with estimated parameters as in Table 8,mat
hes the observed network's degree distribution. The two distributions mat
h in theupper tail but not towards the lower end of the distribution. Most notably in the relativeproportion of verti
es with degree 0 and 1 . The 
orresponding ra
e mixing matrix for thesimulated data set is given in Table 9, with diagonal sum Nrace(ysim) = 753 . Comparingthis with Table 4 we see again that the model �t for M2 
ould be improved.4.2.3 Model M3 (Triangle Model)This is a Markov model with egde and triangle 
ounts, i.e. p = 2 in (7). Clearly this is adyadi
 dependen
e model, hen
e the �tting algorithm draws on MCMC and is sto
hasti
.After 29 Newton-Raphson iterations of the pseudo likelihood we get the initial estimates
η̂1 = −7.254 for the edge parameter and η̂2 = 4.558 for the triangle parameter. These areused as starting values for the MCMC estimation pro
edure. After iterating the Markov
hain 10 000 times, the �nal Monte Carlo ML estimates were η̂1 = −7.310 and η̂2 = 4.584for edges and triangles respe
tively.Re
all that the data set has R(y) = 974 edges and T (y) = 169 triangels. In order to assespossible model degenera
y of M3 , the middle 
olumn of Table 10 shows the distribution of
Eη̂(R(Y ))−R(y) for the 10000 simulated values of η̂ during one iteration of the Markov
hain. Analogolsly, the right hand 
olumn gives the distribution of Eη̂(T (Y )) − T (y) .16
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Table 7: Devian
es for M0 and M1 .Type of devian
e Value Degrees of freedom N − pNull D(M0) 1478525 1066530Residual D(M1) 15580 1066529Di�eren
e D(M0)−D(M1) 1462944 1Table 8: Inferen
e for M2 .Parameter Estimate Std. error p-value
η1 (edges) -10.01277 0.11526 <0.0001
η2 (grade assortative mixing) 3.23105 0.08788 <0.0001
η3 (ra
e assortative mixing) 1.19646 0.08147 <0.0001
η4 (sex assortative mixing) 0.88438 0.07057 <0.0001From this simulation we see that the mean of the edge statisti
 is o� by an average of 468and the triangle statisti
 by an average of 784 . The smallast simulated edge and trianglestatisti
s are larger than the observed in
reased by 78 and 144 respe
tively. This 
learlyindi
ates degenera
y of M3 in terms of �tting this data set.4.2.4 Model M4 (Model with assortative mixing and GWESP statisti
)This is an extention of M2 where a geometri
ally weighted edgewise share partner(GWESP) statisti
 is added, to explore the 
lustering of the network. In other words, weuse (11) with q = 3 and p = 5 . This model has a GWESP parameter η5 as well as theusual parameters η1, . . . , η4 from Model M2 . There is also a �xed non-negative s
alingparameter α in
luded in the GWESP statisti
. When α = 0 this statisti
 is equivalentto the number of edges that belongs to at least one triangle. To redu
e degenera
y we
hose small values of α , 
lose to zero, and then in
reased α . For α = 0 and α = 0.2 weobtain the parameter estimates shown in Table 11.When α = 0 we see that the log-odds is −9.83 for two arbitrary individuals to have a
ommon friends. But if they share at least one 
ommon friend the log-odds in
reases to

−9.83 + 1.80 = −8.03.To evaluate goodness-of-�t, we simulate a number of data set for the �tted M4 with
α = 0.2 . In parti
ular, we will investigate whether the �tted M4 
aptures the observedtriangle 
ount distribution well. Figure 4 gives the result based on 100 MCMC iterationsof 1e+05 steps ea
h. It turns out that the observed triangle 
ount lies outside the 
entral95% interval of the simulated distribution. However, it 
an be shown that M4 is still animprovement over M2 in terms of model �t for triangle 
ounts.18
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Table 9: Mixing matrix by ra
e for data set simulated from �tted model M2 .Asian Bla
k Hisp NatAm Other WhiteAsian 0 6 1 3 0 16Bla
k 6 39 9 3 2 116Hisp 1 9 4 1 0 35NatAm 3 3 1 0 1 8Other 0 2 0 0 0 4White 16 116 35 8 4 708Table 10: Summary of simulated average edge and triangle 
ounts for M3 based on aMarkov 
hain with 10 000 steps, relative to the 
orresponding observed network statisti
s.Edges TrianglesMin. 78 1441st Quantile 235 314Median 337 568Mean 468 784
p-value dev. 0.00000 0.00000Std. dev. 307.6 602.4We next 
onsider in Figure 5 the degree distributions for 100 MCMC iterations of 1e+05steps ea
h. For ea
h degree a box plot is drawn, showing how the proportion of nodeswith that degree varies over simulated data sets. The observed degree proportions aredisplayed as well. For ea
h degree, the intervals between the soft lines 
ontain 95 % ofthe simulated proportions. Thus, in prin
iple, the p -values 
an be 
omputed for ea
hnode degree based on su
h a plot. It is 
lear that the �tted M4 
aptures the observeddegree distribution for this network quite well.Similarly, one may 
onsider box plot 
urves based on e.g. edgewise shared partner distri-butions and geodesi
 distributions.

4.3 Model sele
tionThe overall 
al
ulations of Model 1, Model 2 and Model 4 are summarized in Table 12.We see that M4 indeed improves the likelihood 
onsiderably, and is also sele
ted by eitherAIC or BIC. Estimates of all assortative mixing parameters de
line in fa
e of the newtriangle GWESP statisti
, while the edge parameter estimate in
reases.21



Table 11: Inferen
e for M4 .Parameter Estimate (α = 0) Estimate (α = 0.2)
η1 (edges) -9.8297890 -9.7915376
η2 (grade assortative mixing) 2.7904821 2.7557927
η3 (ra
e assortative mixing) 0.9511466 0.9184486
η4 (sex assortative mixing) 0.7877837 0.7664999
η5 (GWESP) 1.8031250 1.8150806Table 12: Comparison between models M1 , M2 and M4 .Quantity to 
ompare M1 M2 M4 (α = 0.2)
p 1 4 5
η̂1 (edges) -7.00 -10.01 -9.79
η̂2 (grade assortative mixing) 3.23 2.76
η̂3 (ra
e assortative mixing) 1.20 0.92
η̂4 (sex assortative mixing) 0.88 0.77
η̂5 (GWESP, α = 0.2) 1.82
l(η̂) (log likelihood) -7790.1 -6528.71 -5502.28AIC 15582.2 13065.4 11014.6BIC 15593.9 13115.0 11074.15 Con
lusionsThe Exponential Family Random Graph Models are appropriate for modelling 
omplexso
ial networks. We reviewed the theory of EGRMs, in
luding parameter estimation,model sele
tion and goodness-of-�t. As an illustration, we analyzed a given so
ial friend-ship data set using the R pa
kage statnet.The 
lass of ERGMs in
ludes the simplest Bernoulli (Erdös-Rényi) model with just onesu�
ient statisti
; the total number of edges. The Markov models goes a step further andin
ludes su�
ient statisti
s like triangle and k -star 
ounts. However, inferen
e typi
allyhas degenera
y problems whi
h makes maximum likelihood estimation very di�
ult evenfor small sized networks. In
luding geometri
ally weighted edgewise shared partner statis-ti
s into the model makes ML estimation possible even for large networks, as eviden
edby 
onverging MCMC-approximations of ML estimates and improved goodness-of-�t.
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Appendix. Generalized linear modelsA.1 Link Fun
tionsGeneralized linear models (GLMs) were introdu
ed by Nelder and Wedderburn (1972)as a theoreti
al framework that in
orporates linear regression, logisti
 regression andPoisson regression models. It 
onne
ts a linear exponential dispersion family through alinear predi
tor and link fun
tion. A standard referen
e is M
Cullagh and Nelder (1989).The multiple linear regression model assumes that the 
onditional expe
tation of the
N × 1 ve
tor Y = (Yk)

N
k=1 of dependent or response variables is a linear 
ombination ofpredi
tor variables or 
ovariates. This 
an be expressed as

E(Y |Z) = Zηt,where Z = (Zk)
N
k=1 is the N × p design matrix of design ve
tors Zk as rows and η the

p -dimensional ve
tor of regression parameters. Typi
ally Yk are independent randomvariables given Z . We 
an rewrite (5) as
E(Yk) = Zkη

t (A.1)for study units k = 1, . . . , NThe link fun
tion glink of a GLM provides a relationship between the linear predi
tor andthe expe
ted valaue of the response variable. It thus generalizes (A.1) in that
glink(E(Yk)) = Zkη

tThere are many 
ommonly used link fun
tions, and their 
hoi
e 
an be somewhat ar-bitrary. For Bernoulli Yk , for example, any smooth 
df 
an be used. Typi
al links arethe logisti
 and standard normal (Gaussian) 
dfs whi
h lead to logit and probit models,respe
tively. A further alternative for Bernoulli Yk is the 
omplementary log log link.We will apply GLMs to dyadi
 independen
e random graph models with n verti
es,
N = n(n− 1)/2 , k = (i, j) a dyad, Yk = Yij a binary edge indi
ator for dyad (i, j) and
Zk = h(X i,Xj) the 
ontribution of (i, j) to the ve
tor g(Y ,X) of network statisti
s.We will use a logisti
 link fun
tion

glink(y) = log
y

1− y
,whi
h gives logisti
 regression.A.2 Exponential dispersion modelsThe distribution of Yk for an exponential dispersion family of models is either dis
reteor 
ontinuous. It has the form

f(yk, θk, ψ) = exp

{

ykθk − b(θk)

a(ψ)
+ c(yk, ψ)

} (A.2)23



where θk is the 
anoni
al parameter, allowed to depend on k , and ψ is a dispersionparameter. In a GLM with 
anoni
al parametrization, the θk depends linearly on thepredi
tor variables;
θk = Zkη

t.The likelihood fun
tion of data for a GLM is
Pη,ψ(Y = y) =

N
∏

k=1

f(yk,Zkη
t, ψ).A.3 Parameter estimationNow we are going to estimate the parameters of a GLM using maximum liklihood esti-mation. The maximum likelihood estimate (MLE) maximizes the log likelihood

l(η) =
∑

k

(

ykZkη
t − b(Zkη

t)

a(ψ)
+ c(yk, ψ)

)with respe
t to η , treating ψ as a nuisan
e parameter.For most GLMs, 
omputation of the MLE requires some iterative numeri
al approxima-tion algorithm. For instan
e, ea
h step of the iteration 
an be given by a weighted leastsquares �t. Sin
e the weights are varying during the iteration the likelihood is optimizedby an iteratively reweighted least squares algorithm.Referen
esAkaike, H. (1974). A new look at the statisti
al model identi�
ation. IEEE Transa
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