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Abstract

Statistical modeling of social networks as complex systems has
always been and remains a challenge for social scientists. We re-
view a wide class of exponential family models for social networks,
known as Exponential Random Graph Models (ERGMs), or p* mod-
els. They have been developed since the 1980s and are character-
ized by well-defined sufficient statistics that represent local network
characteristics. However, due to the difficulty of dealing with the
intractable normalizing constant, pseudo-likelihood estimation meth-
ods have been applied in most studies. Recently, simulation based
MCMC maximum likelihood estimation techniques have been intro-
duced to improve parameter estimation. An R-package statnet has
been developed for ERGMs by Goodreau et al. (2008). We illustrate
some of the functionality of statnet by analysing a friendship network
of 1,461 adolescents. It turns out that several well-studied ERGMs do
not fit this data set well, although the fit improves dramatically when
the models include another recently developed geometrically weighted
edgewise shared partner (GWESP) statistic. KEYWORDS: Social
networks, exponential-family random graph models, goodness-of-fit,
pseudolikelihood estimation, Markov chain Monte Carlo, generalized
linear models, deviance.
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1 Introduction

The uses of social network models are becoming important in a number of fields such
as epidemiology (with the emergence of infectious diseases like AIDS and SARS), busi-
ness (with the study “viral marketing”) and political science (with the study of coalition
formation dynamics).

Examples of different dependence assumptions and their associated models are Bernoulli,
dyad-independent and Markov random graph models. In this paper, we study the more
general class of exponential random graph models (ERGMs), introduced by Frank and
Strauss (1986) and Wasserman and Pattison (1996) and extended e.g. in Robins et al.
(1999). See also Robins et al. (2007) and Hunter et al. (2008) for overviews. We focus in
particular on a systematic examination of a real network dataset using maximum likeli-
hood estimation and a new goodness-of-fit procedure of Hunter et al. (2008) to evaluate
how well fitted models match observed data. These techniques compare structural statis-
tics of the observed network with the corresponding statistics on networks simulated from
our fitted models.

Parameter estimation is in general straightforward for simpler random graphs models. In
the case of ERGMs, however, the maximum likelihood estimates for model parameters are
in general more complicated, utilizing Markov chain Monte Carlo (MCMC) procedures.
Degeneracy in fact often prevents model estimation from converging on finite parameter
estimates. The use of alternative approximation techniques such as maximum pseudolike-
lihood estimation for ERGMs (Strauss and Ikeda, 1990) does not solve this problem, but
simply hides it. We argue that several well-studied models in the networks literature do
not fit these data well, and we demonstrate that the fit improves dramatically when the
models include the recently-developed geometrically weighted edgewise shared partner
(GWESP) and related statistics, see Sneijder et al. (2006).

The primary contribution of this article is to give an overview of a systematic approach to
the assessment of network ERGMs. It contains tools for accomplishing three important
and interrelated tasks involving estimation, simulation and goodness of fit. The goal is
to estimate model parameters of a given social network data set collected at a nationally
representative sample of high schools in the United States, see Udry (2003) and Harris
et al. (2003). Then we will evaluate how adequately the model represents the data. To
this end, we use the R package statnet for social network data described in Goodreau et
al. (2008). It has the capability of approximating a maximum likelihood estimator for
an ERGM data set; simulating new network data sets from a fitted ERGM and assessing
how well a fitted ERGM captures aspects of observed data, e.g. clusters and degree
distributions.

We conclude that ERGMs with GWESP statistics capture aspects of the social structure
of adolescent friendship relations not represented by previous models.



In Section 2 we give an overview of random graphs, including in particular exponential
family random graph models (ERGMs). Inference for such models is described in Section
3, and an example data set is analyzed in Section 4. A final discussion can be found in
Section 5, whereas details on generalized linear models are given in the appendix.

2 Random Graphs

2.1 Basic Definitions

A random graph G is a graph which is generated by some random procedure. It is usually
denoted as G = (V, E) where V is a set of n vertices, connected by m edges E. It
is obtained by starting with the set of n vertices which is fixed and then adding edges
at random according to some rule. Different random graph models produce different
probability distribution on graphs.

My aim in using exponential random graph models (ERGMs) is to model the random
behavior of the adjacency matrix

Y = (Yij)?,jzl‘
This is a square matrix such that Y;; = 0 if there is no edge between the pair of vertices
(dyad) i and j and Y;; = 1 if there is and edge between i and j. To each i we associate
q attributes or covariates, represented within the vector X; = (Xj,...,X;,). All these

are gathered into a matrix
X =(X i)?:l

of attributes.

2.2 Exponential-Family Random Graph Models

For social networks, we argue that, due to very recent progress in the framework of
exponential random graph models, we are now much closer to the goal of obtaining good
statistical models for social networks than we have ever been before. For modelling and
studying social netwoks, the concept of an exponential random graph model (ERGM)
has become an important tool with interesting theoretical achievments since the 1980s.
The ERGMs, also known as p*-models, are a class of stochastic models which use net-
work local structures to model the formation of network ties for a network with a fixed
number of nodes. Depending on the underlying neighbourhood assumptions, ERGM as-
signs probabilities to Y based on a set of counts of regular local configurations which
are sufficient statistics for their parameters. The exponential family random graph model
can be defined as

P(Y =y|X) =~ explg(y, X)n'}, (1)



where

c=Y exp{g(y, X)n"} (2)

is a normalizing constant,
n= (7717“‘77717)

is the p-dimensional vector of parameters and g(y, X) a row vector of network statistics
of dimension p. It is helpful to introduce the change of the vector of statistics in g(-),

Alg(y, X))ij = g(y, X)

yi;=1 = g(y, X)

yi;=0 (3)

for all dyads (i,7). We can express the conditional distribution of Y;; given

Yo =Y (k1) # (4,5)}
as
logit (P(Yi; = 1| Y{; = y5))) = n" Alg(y, X))y (4)
2.3 Dyadic independence models

For some special cases of ERGMs (1) has a simpler structure, which facilitates exact
estimation of model parameters 1. One such class of models is the dyadic independence

=> D us h(X: X)) (5)

1<j

models, for which

for some p-dimensional function h(X;, X ;) of pairs of attribute vectors. It is easy to
see that
A(g(y, X))y = h(X;, X )

for dyadic independence model, and moreover, the probability (1) of observed data can
be written as product

PY =y|X) = HHexp{yzg X))im' ), (6)

1<J

over all dyads (i,7), explaining the name of this class of models.

The identity (6) does not hold for general ERGMs. However, the right-hand side of
this equation is often used as an approximation of the likelihood when parameters are
estimated, the so called pseudo likelihood (see Section 3).



2.4 Example of ERGMs
2.4.1 Erdoés-Renyi models

A major initial attempt of statistical modelling of social networks is the Bernoulli Random
Graph Models proposed by Erdos and Renyi (1959). It can be viewed as a special case
of a dyadic independence model (6) with h(X;, X;) =1, so that

9(y. X) = R(y) = Zzya

is the number of partnerships in the network, i.e. the total number of edges. The single
parameter 7 can be interpreted as the common log-odds of the probability of partnership
formation within any dyad. We find that

P(Y =y) = —eXp (nZZ%) ,

1<)

where ¢ can be given explicitly in ERG model.
Thus Y;; are independent and identically distributed with success probabiliby e”/(14-¢").

2.4.2 Markov Random Graphs Models

The Markov neighbourhood assumption was introduced by Frank and Strauss (1986) in
which all ties sharing a node are conditionally dependent on each other. This yields a
Markov assumption, on which the Markov models are based. For an introduction to such
models, see for instance Sundberg (2010).

The class of models considered by Frank and Strauss contains no covariates and has the

form
P(Y =y) = %exp ( )+ ZUlSl +7T( )) (7)

where
n = (pa 02, ... 70p71a7—)

is the set parameters and

9(y, X) = (R(y), S2(y), ., Sp-1(y), T(y))

the network statistics. The new statistics compared to the Erdos-Rényi model are

Si(y) = total number of [-stars = Z Z Yij * - Yijys

1 j1<-<Jji

T'(y) = total number of triangles = Z YiiYiYii-
i<j<l



The normalizing constant of (7) is given by

Z exp (pR + Z aSi(y) + 7T( )) (8)

In particular, a Markov random graph model for a network with edges, two-star, three-
star and triangle statistics is given by

PY =y) = %exp(nR(y) + 0952(y) + 0353(y) + 71 (y)).

2.4.3 Assortative Mixing Model

A special type of dyadic independence model is one that proposes a tendency for assor-
tative mixing, that is, a greater or smaller probability of individuals to form edges with
others having the same covariates. We model this using

h’(Xia Xj) - (17 1{X1'1:Xj1}7 Tt 1{Xiq:qu})' (9)

This model has p = ¢ + 1 parameters with distribution

PY =y)= %exp ( ) + ZHZHNZ ) (10)

where R(y) is the number of edges and N;(y) the number of dyads that have an edge
and the same value of covariate [. Hence 7,.; > 0 indicates assortative mating with
respect to covariate [.

2.4.4 Models with geometrically egdewise shared partner statistics

An k-triangle is a set of k € {1,2,...,n — 2} distinct triangles that share a given edge.
Let Ti(y) denote the total number of k-triangles for network data y. Since a 1-triangle
is an ordinary triangle, we have that T)(y) = T(y). For a fixed « > 0, introduce the
alternating k-triangle statistic

7
[N}

V(yia) =3T(y) + Y e ™ (=1)" 'Ti(y)

2

i

of Sneijders et al. (1996). It is also called the Geometrically weighted edgewise shared
partner (GWESP) statistic. If we add this statistic to the assortative mixing model (10),
we get p = q + 2 parameters and

PY =y) = lGXP ( ) + ZﬁlHNl + 1,V (y; )) : (11)



3 Inference

3.1 Parameter Estimation
3.1.1 Pseudolikelihood Maximization

Development of estimation methods for ERGMs has not kept pace with development of
ERGMs themselves. To understand why, consider the sum of equation (2). A sample
space consisting of all possible undirected graphs on n nodes contains 2""~1/2 elements,
an astronomically large number even for moderate n. Therefore, direct evaluation of the
normalizing constant ¢ in equation (2) is computationally infeasible for all but the small-
est networks except in certain special cases such as the dyadic independence model of
equation (5). For instance, most of the Markov models treated in Subsection 2.4.2 en-
counter computational difficulties. As a consequence, inference using maximum likelihood
estimation is difficult.

In general for dyadic dependence models equation (6) does not hold, but the right-hand
side is refered to as the pseudolikelihood. Now we can estimate 1 by pseudo likelihood
estimation, as proposed by Strauss and Ikeda (1990). In the context of ERGMs, pseudo
likelihood estimation is easy to carry through, even for complicatted models. A logit
model is fitted for each edge indicator, given the rest of the graph,

P(Y; = 1‘Y§j = y;z)

log :
PV = O‘Yij = yiz)

= Ag(y, X))in'".

For dyadic independence models (6) holds exactly, and then pseudolikelihood estimation
coincides with maximum likelihood estimation. Indeed, we can then write (6) as

P(Y =y|X) =[] Ps(Vs = vis| X),
ij

where P;; is the marginal distribution of Y;; given X . In other words, we have that
{Y;;} are conditionally independent given all covariates X . This simplifies the likelihood,
which is essentially a kind of logistic regression likelihood, a special case of the generalized
linear model likelihood, as described in the appendix.

For dyadic dependence models g(y, X) typically has terms v;;,v:;, and y;;y;xyir, and
there is no linear expansion of g of the kind (5) and hence no independence between
{Yi;} given X.

3.1.2 Maximum Likelihood Estimation and Monte Carlo Markov Chain

From Equation(2) the log likelihood function is

I(n) =log Py(Y =1y) = g(y. X)n' —log(c(n)).



Maximimizing the likelihood with respect to 1 is equivalent to maximizing

I(n) —U(ny) = g(y, X)(n—mny)" —log(c(n)/c(ny)),

where 7, is an arbitrary fixed parameter vector. The difficult part is to estimate
c(n)/c(ny), and this can be accomplished by running a discrete-time Markov chain whose
stationary distribtion is the distribution we wish to sample from. This is the Markov
Chain Monte Carlo (MCMC) idea, see Geyer and Thompson (1992) and Snijders (2002).
For fixed m,, we consider the identity

Ey, (exp(g(Y, X)(n —ny)") = exp(g(y, X)(n —n9)) Py (Y = y)

= explgly. X)(n - no)t)exp(gc((?zo—;f)né)

Thus, ¢(n)/c(n,) is an expectation, where the symbol £, denotes the expectation op-
erator assuming Y is random from the ERGM with parameter n,.

The Law of large numbers suggests that we approximate an unknown population mean
by a sample mean. Thus,

I(n) —U(ny) = g(y, X)(n —mny)" —log Ey, (exp(g(Y, X)(n —ny)"))
~g(y, X)(n—mny)" —log (% Z exp(g(y;, X)(n — no)t)> ,

where y,,...,y; is a random sample of networks from the distribution defined by the
ERGM with parameter 7.

3.2 Model Selection

Model selection is the way of selecting a statistical model from a set of potential models,
given data. Determining the principle that explains a series of observations is often linked
directly to a mathematical model predicting those observations. We consider to model
selection based on Akaike’s information criterion (AIC) and the Bayesian information
criterion (BIC).

AIC was developed by Hirotsugu Akaike under the name of “an information criterion” in
1971 and proposed in Akaike (1974) as a measure of the goodness of fit of an estimated
statistical model. It is usually used for model selection. For a given model M it is defined

as
ATC(M) = 2p — 21(i),

where 7) is the maximum likelihood estimate and p the number of parameters of model
M . The goal is to minimize AIC(M ) as a function of M.

10



The BIC was defined by Schwarz (1978) and is also called Schwarz’ Criterion. It is closely
related to the Akaike information criterion, but has another penalty term for the number
of parameters p of the model;

BIC(M) = log(N)p — 21(n),

where N is the number of data points {Y;;}, i.e. N =n(n —1)/2. Hence, for network
models, the sample size N is not the same as the number of nodes n.

3.3 Goodness of fit

The deviance is a quality of fit statistic for a model that is usually used for statistical
hypothesis testing. For a given model M the deviance is defined as

D(M) = =2 (I(n) = U ) ;

where 7) is the ML-estimate for the given model M and 74, the ML-estimate for a full
model with one parameter per observation. The deviance is frequently used for GLMs,
see McCullagh and Nelder (1989). The difference in deviance D(M;) — D(Ms;) between
two models M; and M, can be used for hypotheses testing.

As described in Hunter et al. (2008a), goodness of fit of an ERGM M can also be assesed
by means of simulation. Various statistics from an observed network are compared with
the corresponding distributions of the statistcs for simulated data. The simulated data
sets are generated from the fitted parameters 7). Good agreement between the observed
statistics and the simulated distributions indicate a good fit.

4 An Example Data Set

4.1 Descriptive analysis

The data that we consider in this paper is taken from the National Longitudinal Study of
Adolescent Health or Add Health, as described in Udry (2003) and Harris et al. (2003).
This data set was analyzed by Goodreau et al. (2008) and our analysis closely parallels
theirs. The data set is an undirected, one-mode friendship network of n = 1461 vertices
R(y) = 974 edges and T'(y) = 169 triangles.

Each node i represents a student and Y;; = 1 indicates friendship between ¢ and j. The
q = 3 different attributes for each individual ¢ are

X, = (Grade;, Race;, Sex;). (12)

From Figure 1 we see that one large component appears and then smattering of many
very small components, all of which are not visuable. The count of the component size

11



Figure 1: Faux Magnolia High, without isolates.
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Table 1: Component size distribution.
Component size | 1 2 3 4 5 6 7 8 9 11 12 19 23 439

Frequency 524 64 29 11 12 4 7 4 1 1 1 1 1 1

distribution in Table 1 shows that there are 524 isolates, one large component of 439
vertices and many components lie in between.
The distribution of vertex attributes is summarized in Table 2.

Table 2: Distribution of students (vertices) with respect to various attributes.

Vertex attribute | Class Frequency
Asian | 48
Black 261
Hisp 68
Hace NatAm | 24
Other |7
White | 1053
7 185
8 210
9 317
Grade 10 909
11 257
12 193
Sex F 768
M 693

It turns out that among the attributes, grade is the strongest determinat of social re-
lations. We can visualize this by colouring vertices according to grade (Figure 2) or by
considering the mixing matrix with respect to grade (Table 3), which is concentrated
along the diagonal, with diagonal sum N4 (y) = 820. The corresponding mixing ma-
trix for race (Table 4) is also concentrated along the diagonal, but somewhat less so than
for grade, since N,q.(y) = 787.

The degree distribution of the data set is summarized in Table 4, for the whole population
as well as for the female subpopulation:

Table 5 summarized the degree distribution for the whole and female subpopulation with
edge prob

13



Figure 2: Faux Magnolia High, without isolates, coloured by grade.
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Table 3: Mixing matrix with respect to grade.

Grade 7 8 9 10 11 12
7 110 11 3 3 0 0
8 11 165 9 7 0 2

9 3 9 152 24 10 4
10 3 7 24 151 38 11
11 0 0 10 38 152 32
12 0 2 4 11 32 90

Table 4: Mixing matrix with respect to race.

Asian Black Hisp NatAm Other White
Asian 7 4 0 1 0 35
Black 4 85 9 3 0 57
Hisp 0 9 1 0 0 48
NatAm 1 3 0 3 0 25
Other 0 0 0 0 0 5
White 35 57 48 25 5 691

4.2 Fitting ERGMs
We will fit data to four ERGMs, which are:

4.2.1 Model M; (Erdés-Rényi)

This model contains one single parameter 7, the log odds of the edge probability. We
may test M; versus the submodel M, : n = 0, for which all 2"~ 1/2 edge configurations
are equally likely. It can be seen from both Tables 6 and 7 that data strongly rejects M,

in favour of M;. The estimated edge probability is
o—6.998

4.2.2 Model M, (Assortative mixing)

This is the assortative mixing model based on attributes grade, race and sex, i.e. (9),
with X; asin (12).

Table 8 summarizes ML parameter estimates for M,. For each parameter 7; we also give
p-values for testing 7, = 0 versus 7; # 0. We find that all four terms, that is, edges,

15



Table 5: Degree distribution for the whole and female subpopulation.

Degree 0 1 2 3 4 5 6 7 8
Frequency (whole pop) 524 403 271 128 85 30 13 5 2
Frequency (female subpop) | 226 226 160 80 44 18 7 0 0

Table 6: ML estimation for M; and hypothesis testing for M; versus M.

A

i Std. error | p-value
-6.99760 | 0.03205 | <0.0001

grade, race and sex are significant and also that the likelihood increased dramatically
relative to Model 1.

We notice from Table 8 that the log-odds of a tie which is completely heterogeneious is
—10.01, the log-odds of a tie that is homogeneious by race is —10.01 +1.20 = —8.82 and
the log-odds of a tie when all the three attributes are homogeneous is —10.01 + 3.23 +
1.20 + 0.88 = —4.70.

We assessed goodness of fit for M, in Figure 3 by checking if the degree distribution
for one simulated data set, generated from M, with estimated parameters as in Table 8,
matches the observed network’s degree distribution. The two distributions match in the
upper tail but not towards the lower end of the distribution. Most notably in the relative
proportion of vertices with degree 0 and 1. The corresponding race mixing matrix for the
simulated data set is given in Table 9, with diagonal sum N,4ee(Y;,) = 753. Comparing
this with Table 4 we see again that the model fit for M, could be improved.

4.2.3 Model M; (Triangle Model)

This is a Markov model with egde and triangle counts, i.e. p =2 in (7). Clearly this is a
dyadic dependence model, hence the fitting algorithm draws on MCMC and is stochastic.
After 29 Newton-Raphson iterations of the pseudo likelihood we get the initial estimates
7 = —7.254 for the edge parameter and 7, = 4.558 for the triangle parameter. These are
used as starting values for the MCMC estimation procedure. After iterating the Markov
chain 10 000 times, the final Monte Carlo ML estimates were 77 = —7.310 and 7, = 4.584
for edges and triangles respectively.

Recall that the data set has R(y) = 974 edges and T'(y) = 169 triangels. In order to asses
possible model degeneracy of M;, the middle column of Table 10 shows the distribution of
E;(R(Y))— R(y) for the 10000 simulated values of 1 during one iteration of the Markov
chain. Analogolsly, the right hand column gives the distribution of E;(T(Y)) — T'(y).

16
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Figure 3: Degree distributions for observed data and simulated data from fitted model
M, .
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Table 7: Deviances for M, and M;.

Type of deviance Value | Degrees of freedom N —p
Null D(M,) 1478525 1066530
Residual D(M;) 15580 1066529
Difference D(My) — D(M;) | 1462944 1

Table 8: Inference for M, .

Parameter Estimate | Std. error | p-value
n (edges) -10.01277 0.11526 | <0.0001
72 (grade assortative mixing) 3.23105 0.08788 | <0.0001
ns (race assortative mixing) 1.19646 0.08147 | <0.0001
s (sex assortative mixing) 0.88438 0.07057 | <0.0001

From this simulation we see that the mean of the edge statistic is off by an average of 468
and the triangle statistic by an average of 784. The smallast simulated edge and triangle
statistics are larger than the observed increased by 78 and 144 respectively. This clearly
indicates degeneracy of Mj in terms of fitting this data set.

4.2.4 Model M, (Model with assortative mixing and GWESP statistic)

This is an extention of M, where a geometrically weighted edgewise share partner
(GWESP) statistic is added, to explore the clustering of the network. In other words, we
use (11) with ¢ = 3 and p = 5. This model has a GWESP parameter 75 as well as the
usual parameters 7,...,ns from Model M,. There is also a fixed non-negative scaling
parameter « included in the GWESP statistic. When a = 0 this statistic is equivalent
to the number of edges that belongs to at least one triangle. To reduce degeneracy we
chose small values of «, close to zero, and then increased «. For a =0 and a = 0.2 we
obtain the parameter estimates shown in Table 11.

When o = 0 we see that the log-odds is —9.83 for two arbitrary individuals to have a
common friends. But if they share at least one common friend the log-odds increases to
—9.83 + 1.80 = —8.03.

To evaluate goodness-of-fit, we simulate a number of data set for the fitted M, with
a = 0.2. In particular, we will investigate whether the fitted M, captures the observed
triangle count distribution well. Figure 4 gives the result based on 100 MCMC iterations
of 1e+405 steps each. It turns out that the observed triangle count lies outside the central
95% interval of the simulated distribution. However, it can be shown that M, is still an
improvement over M, in terms of model fit for triangle counts.

18
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Figure 4: Triangle counts for observed data and 100 simulateded data sets from fitted
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Goodness-of-fit diagnostics
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Figure 5: Observed degree distribution (solid line) and simulated degree distributions
(box plots) for fitted M, with a = 0.2 based on 100 MCMC simulations.
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Table 9: Mixing matrix by race for data set simulated from fitted model M.

Asian Black Hisp NatAm Other White
Asian 0 6 1 3 0 16
Black 6 39 9 3 2 116
Hisp 1 9 4 1 0 35
NatAm 3 3 1 0 1 8
Other 0 2 0 0 0 4
White 16 116 35 8 4 708

Table 10: Summary of simulated average edge and triangle counts for M3 based on a
Markov chain with 10 000 steps, relative to the corresponding observed network statistics.

Edges | Triangles
Min. 78 144
1st Quantile 235 314
Median 337 568
Mean 468 784
p-value dev. | 0.00000 | 0.00000
Std. dev. 307.6 602.4

We next consider in Figure 5 the degree distributions for 100 MCMC iterations of le+05
steps each. For each degree a box plot is drawn, showing how the proportion of nodes
with that degree varies over simulated data sets. The observed degree proportions are
displayed as well. For each degree, the intervals between the soft lines contain 95 % of
the simulated proportions. Thus, in principle, the p-values can be computed for each
node degree based on such a plot. It is clear that the fitted M, captures the observed
degree distribution for this network quite well.

Similarly, one may consider box plot curves based on e.g. edgewise shared partner distri-
butions and geodesic distributions.

4.3 Model selection

The overall calculations of Model 1, Model 2 and Model 4 are summarized in Table 12.
We see that M, indeed improves the likelihood considerably, and is also selected by either
AIC or BIC. Estimates of all assortative mixing parameters decline in face of the new
triangle GWESP statistic, while the edge parameter estimate increases.
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Table 11: Inference for M,.

Parameter Estimate (o = 0) | Estimate (v = 0.2)
m (edges) -9.8297890 -9.7915376
n2 (grade assortative mixing) 2.7904821 2.7557927
ns (race assortative mixing) 0.9511466 0.9184486
14 (sex assortative mixing) 0.7877837 0.7664999
ns (GWESP) 1.8031250 1.8150806

Table 12: Comparison between models M;, My and M,.

Quantity to compare M, My | My (v =0.2)
P 1 4 5)
n (edges) -7.00 -10.01 -9.79
ne (grade assortative mixing) 3.23 2.76
ns (race assortative mixing) 1.20 0.92
74 (sex assortative mixing) 0.88 0.77
iis (GWESP, o = 0.2) 1.82
[(n) (log likelihood) -7790.1 | -6528.71 -5502.28
AIC 15582.2 | 13065.4 11014.6
BIC 15593.9 | 13115.0 11074.1

5 Conclusions

The Exponential Family Random Graph Models are appropriate for modelling complex
social networks. We reviewed the theory of EGRMs, including parameter estimation,
model selection and goodness-of-fit. As an illustration, we analyzed a given social friend-
ship data set using the R package statnet.

The class of ERGMs includes the simplest Bernoulli (Erdés-Rényi) model with just one
sufficient statistic; the total number of edges. The Markov models goes a step further and
includes sufficient statistics like triangle and k-star counts. However, inference typically
has degeneracy problems which makes maximum likelihood estimation very difficult even
for small sized networks. Including geometrically weighted edgewise shared partner statis-
tics into the model makes ML estimation possible even for large networks, as evidenced
by converging MCMC-approximations of ML estimates and improved goodness-of-fit.
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Appendix. Generalized linear models

A.1 Link Functions

Generalized linear models (GLMs) were introduced by Nelder and Wedderburn (1972)
as a theoretical framework that incorporates linear regression, logistic regression and
Poisson regression models. It connects a linear exponential dispersion family through a
linear predictor and link function. A standard reference is McCullagh and Nelder (1989).

The multiple linear regression model assumes that the conditional expectation of the
N x 1 vector Y = (Y;)_, of dependent or response variables is a linear combination of
predictor variables or covariates. This can be expressed as

E(Y|Z)=Zn',

where Z = (Z;)_, is the N x p design matrix of design vectors Zj as rows and 7 the
p-dimensional vector of regression parameters. Typically Y, are independent random
variables given Z. We can rewrite (5) as

E(Yx) = Zn' (A1)
for study units k=1,..., N

The link function g, of a GLM provides a relationship between the linear predictor and
the expected valaue of the response variable. It thus generalizes (A.1) in that

Gink(E(Y2)) = Zim'

There are many commonly used link functions, and their choice can be somewhat ar-
bitrary. For Bernoulli Y}, for example, any smooth cdf can be used. Typical links are
the logistic and standard normal (Gaussian) cdfs which lead to logit and probit models,
respectively. A further alternative for Bernoulli Y}, is the complementary log log link.

We will apply GLMs to dyadic independence random graph models with n vertices,
N =n(n—-1)/2, k= (i,j) adyad, Y, =Y;; a binary edge indicator for dyad (7, ) and
Z, = h(X,;, X,) the contribution of (7, 7) to the vector g(Y, X) of network statistics.
We will use a logistic link function

in =1 )
Gink(y) = log 1—y

which gives logistic regression.

A.2 Exponential dispersion models

The distribution of Y) for an exponential dispersion family of models is either discrete
or continuous. It has the form

S Yk, Or, ) = exp {M

a(y)

23

+c<yk,¢>} (A.2)



where 6, is the canonical parameter, allowed to depend on k, and ¢ is a dispersion
parameter. In a GLM with canonical parametrization, the 6, depends linearly on the
predictor variables;

O, = Zin'".

The likelihood function of data for a GLM is

N
P”MZ)(Y = y) - Hf(yk‘? antuqu))
k=1

A.3 Parameter estimation

Now we are going to estimate the parameters of a GLM using maximum liklihood esti-
mation. The maximum likelihood estimate (MLE) maximizes the log likelihood

I(n) = zk: (yka"?;(—wl;(Zk"?t) n C(yk,w))

with respect to 1, treating v as a nuisance parameter.

For most GLMs, computation of the MLE requires some iterative numerical approxima-
tion algorithm. For instance, each step of the iteration can be given by a weighted least
squares fit. Since the weights are varying during the iteration the likelihood is optimized
by an iteratively reweighted least squares algorithm.
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