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Abstract

Statistical modeling of social networks as complex systems has
always been and remains a challenge for social scientists. We re-
view a wide class of exponential family models for social networks,
known as Exponential Random Graph Models (ERGMs), or p* mod-
els. They have been developed since the 1980s and are character-
ized by well-defined sufficient statistics that represent local network
characteristics. However, due to the difficulty of dealing with the
intractable normalizing constant, pseudo-likelihood estimation meth-
ods have been applied in most studies. Recently, simulation based
MCMC maximum likelihood estimation techniques have been intro-
duced to improve parameter estimation. An R-package statnet has
been developed for ERGMs by Goodreau et al. (2008). We illustrate
some of the functionality of statnet by analysing a friendship network
of 1,461 adolescents. It turns out that several well-studied ERGMs do
not fit this data set well, although the fit improves dramatically when
the models include another recently developed geometrically weighted
edgewise shared partner (GWESP) statistic. KEYWORDS: Social
networks, exponential-family random graph models, goodness-of-fit,
pseudolikelihood estimation, Markov chain Monte Carlo, generalized
linear models, deviance.
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1 IntrodutionThe uses of soial network models are beoming important in a number of �elds suhas epidemiology (with the emergene of infetious diseases like AIDS and SARS), busi-ness (with the study �viral marketing�) and politial siene (with the study of oalitionformation dynamis).Examples of di�erent dependene assumptions and their assoiated models are Bernoulli,dyad-independent and Markov random graph models. In this paper, we study the moregeneral lass of exponential random graph models (ERGMs), introdued by Frank andStrauss (1986) and Wasserman and Pattison (1996) and extended e.g. in Robins et al.(1999). See also Robins et al. (2007) and Hunter et al. (2008) for overviews. We fous inpartiular on a systemati examination of a real network dataset using maximum likeli-hood estimation and a new goodness-of-�t proedure of Hunter et al. (2008) to evaluatehow well �tted models math observed data. These tehniques ompare strutural statis-tis of the observed network with the orresponding statistis on networks simulated fromour �tted models.Parameter estimation is in general straightforward for simpler random graphs models. Inthe ase of ERGMs, however, the maximum likelihood estimates for model parameters arein general more ompliated, utilizing Markov hain Monte Carlo (MCMC) proedures.Degeneray in fat often prevents model estimation from onverging on �nite parameterestimates. The use of alternative approximation tehniques suh as maximum pseudolike-lihood estimation for ERGMs (Strauss and Ikeda, 1990) does not solve this problem, butsimply hides it. We argue that several well-studied models in the networks literature donot �t these data well, and we demonstrate that the �t improves dramatially when themodels inlude the reently-developed geometrially weighted edgewise shared partner(GWESP) and related statistis, see Sneijder et al. (2006).The primary ontribution of this artile is to give an overview of a systemati approah tothe assessment of network ERGMs. It ontains tools for aomplishing three importantand interrelated tasks involving estimation, simulation and goodness of �t. The goal isto estimate model parameters of a given soial network data set olleted at a nationallyrepresentative sample of high shools in the United States, see Udry (2003) and Harriset al. (2003). Then we will evaluate how adequately the model represents the data. Tothis end, we use the R pakage statnet for soial network data desribed in Goodreau etal. (2008). It has the apability of approximating a maximum likelihood estimator foran ERGM data set; simulating new network data sets from a �tted ERGM and assessinghow well a �tted ERGM aptures aspets of observed data, e.g. lusters and degreedistributions.We onlude that ERGMs with GWESP statistis apture aspets of the soial strutureof adolesent friendship relations not represented by previous models.4



In Setion 2 we give an overview of random graphs, inluding in partiular exponentialfamily random graph models (ERGMs). Inferene for suh models is desribed in Setion3, and an example data set is analyzed in Setion 4. A �nal disussion an be found inSetion 5, whereas details on generalized linear models are given in the appendix.2 Random Graphs2.1 Basi De�nitionsA random graph G is a graph whih is generated by some random proedure. It is usuallydenoted as G = (V,E) where V is a set of n verties, onneted by m edges E . Itis obtained by starting with the set of n verties whih is �xed and then adding edgesat random aording to some rule. Di�erent random graph models produe di�erentprobability distribution on graphs.My aim in using exponential random graph models (ERGMs) is to model the randombehavior of the adjaeny matrix
Y = (Y ij)

n
i,j=1.This is a square matrix suh that Yij = 0 if there is no edge between the pair of verties(dyad) i and j and Yij = 1 if there is and edge between i and j . To eah i we assoiate

q attributes or ovariates, represented within the vetor X i = (Xi1, . . . , Xiq) . All theseare gathered into a matrix
X = (X i)

n
i=1of attributes.2.2 Exponential-Family Random Graph ModelsFor soial networks, we argue that, due to very reent progress in the framework ofexponential random graph models, we are now muh loser to the goal of obtaining goodstatistial models for soial networks than we have ever been before. For modelling andstudying soial netwoks, the onept of an exponential random graph model (ERGM)has beome an important tool with interesting theoretial ahievments sine the 1980s.The ERGMs, also known as p⋆ -models, are a lass of stohasti models whih use net-work loal strutures to model the formation of network ties for a network with a �xednumber of nodes. Depending on the underlying neighbourhood assumptions, ERGM as-signs probabilities to Y based on a set of ounts of regular loal on�gurations whihare su�ient statistis for their parameters. The exponential family random graph modelan be de�ned as

P (Y = y|X) =
1

c
exp{g(y,X)ηT}, (1)5



where
c =

∑

y

exp{g(y,X)ηT} (2)is a normalizing onstant,
η = (η1, . . . , ηp)is the p -dimensional vetor of parameters and g(y,X) a row vetor of network statistisof dimension p . It is helpful to introdue the hange of the vetor of statistis in g(·) ,

∆(g(y,X))ij = g(y,X)|yij=1 − g(y,X)|yij=0 (3)for all dyads (i, j) . We an express the onditional distribution of Yij given
Y c

ij = {Ykl; (k, l) 6= (i, j)}as logit (P (Yij = 1 | Y c
ij = ycij)

)

= ηT∆(g(y,X))ij. (4)2.3 Dyadi independene modelsFor some speial ases of ERGMs (1) has a simpler struture, whih failitates exatestimation of model parameters η . One suh lass of models is the dyadi independenemodels, for whih
g(y,X) =

∑∑

i<j

yij h(X i,Xj) (5)for some p -dimensional funtion h(X i,Xj) of pairs of attribute vetors. It is easy tosee that
∆(g(y,X))ij = h(X i,Xj)for dyadi independene model, and moreover, the probability (1) of observed data anbe written as produt

P (Y = y|X) =
1

c

∏∏

i<j

exp{yij∆(g(y,X))ijη
T}, (6)over all dyads (i, j) , explaining the name of this lass of models.The identity (6) does not hold for general ERGMs. However, the right-hand side ofthis equation is often used as an approximation of the likelihood when parameters areestimated, the so alled pseudo likelihood (see Setion 3).
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2.4 Example of ERGMs2.4.1 Erdös-Renyi modelsAmajor initial attempt of statistial modelling of soial networks is the Bernoulli RandomGraph Models proposed by Erdös and Renyi (1959). It an be viewed as a speial aseof a dyadi independene model (6) with h(X i,Xj) = 1, so that
g(y,X) = R(y) =

∑∑

i<j

yijis the number of partnerships in the network, i.e. the total number of edges. The singleparameter η an be interpreted as the ommon log-odds of the probability of partnershipformation within any dyad. We �nd that
P (Y = y) =

1

c
exp

(

η
∑∑

i<j

yij

)

,where c an be given expliitly in ERG model.Thus Yij are independent and identially distributed with suess probabiliby eη/(1+eη).2.4.2 Markov Random Graphs ModelsThe Markov neighbourhood assumption was introdued by Frank and Strauss (1986) inwhih all ties sharing a node are onditionally dependent on eah other. This yields aMarkov assumption, on whih the Markov models are based. For an introdution to suhmodels, see for instane Sundberg (2010).The lass of models onsidered by Frank and Strauss ontains no ovariates and has theform
P (Y = y) =

1

c
exp

(

ρR(y) +

p−1
∑

l=2

σlSl(y) + τT (y)

) (7)where
η = (ρ, σ2, . . . , σp−1, τ)is the set parameters and

g(y,X) = (R(y), S2(y), . . . , Sp−1(y), T (y))the network statistis. The new statistis ompared to the Erdös-Rényi model are
Sl(y) = total number of l-stars =∑

i

∑

j1<···<jl

yij1 · . . . · yijl,

T (y) = total number of triangles = ∑

i<j<l

yijyilyjl.7



The normalizing onstant of (7) is given by
c = c(η) =

∑

y

exp

(

ρR(y) +

p−1
∑

l=2

σlSl(y) + τT (y)

)

. (8)In partiular, a Markov random graph model for a network with edges, two-star, three-star and triangle statistis is given by
P (Y = y) =

1

c
exp(ηR(y) + σ2S2(y) + σ3S3(y) + τT (y)).2.4.3 Assortative Mixing ModelA speial type of dyadi independene model is one that proposes a tendeny for assor-tative mixing, that is, a greater or smaller probability of individuals to form edges withothers having the same ovariates. We model this using

h(X i,Xj) = (1, 1{Xi1=Xj1}, . . . , 1{Xiq=Xjq}). (9)This model has p = q + 1 parameters with distribution
P (Y = y) =

1

c
exp

(

η1R(y) +

q
∑

l=1

ηl+1Nl(y)

) (10)where R(y) is the number of edges and Nl(y) the number of dyads that have an edgeand the same value of ovariate l . Hene ηl+1 > 0 indiates assortative mating withrespet to ovariate l .2.4.4 Models with geometrially egdewise shared partner statistisAn k -triangle is a set of k ∈ {1, 2, . . . , n− 2} distint triangles that share a given edge.Let Tk(y) denote the total number of k -triangles for network data y . Sine a 1-triangleis an ordinary triangle, we have that T1(y) = T (y) . For a �xed α ≥ 0 , introdue thealternating k -triangle statisti
V (y;α) = 3T1(y) +

n−2
∑

k=2

e−αk(−1)k−1Tk(y)of Sneijders et al. (1996). It is also alled the Geometrially weighted edgewise sharedpartner (GWESP) statisti. If we add this statisti to the assortative mixing model (10),we get p = q + 2 parameters and
P (Y = y) =

1

c
exp

(

η1R(y) +

q
∑

l=1

ηl+1Nl(y) + ηpV (y;α)

)

. (11)
8



3 Inferene3.1 Parameter Estimation3.1.1 Pseudolikelihood MaximizationDevelopment of estimation methods for ERGMs has not kept pae with development ofERGMs themselves. To understand why, onsider the sum of equation (2). A samplespae onsisting of all possible undireted graphs on n nodes ontains 2n(n−1)/2 elements,an astronomially large number even for moderate n . Therefore, diret evaluation of thenormalizing onstant c in equation (2) is omputationally infeasible for all but the small-est networks exept in ertain speial ases suh as the dyadi independene model ofequation (5). For instane, most of the Markov models treated in Subsetion 2.4.2 en-ounter omputational di�ulties. As a onsequene, inferene using maximum likelihoodestimation is di�ult.In general for dyadi dependene models equation (6) does not hold, but the right-handside is refered to as the pseudolikelihood. Now we an estimate η by pseudo likelihoodestimation, as proposed by Strauss and Ikeda (1990). In the ontext of ERGMs, pseudolikelihood estimation is easy to arry through, even for ompliatted models. A logitmodel is �tted for eah edge indiator, given the rest of the graph,
log

P (Yij = 1|Y c
ij = ycji)

P (Yij = 0|Y c
ij = ycji)

= ∆(g(y,X))ijη
t.For dyadi independene models (6) holds exatly, and then pseudolikelihood estimationoinides with maximum likelihood estimation. Indeed, we an then write (6) as

P (Y = y|X) =
∏

ij

Pij(Yij = yij|X),where Pij is the marginal distribution of Yij given X . In other words, we have that
{Yij} are onditionally independent given all ovariates X . This simpli�es the likelihood,whih is essentially a kind of logisti regression likelihood, a speial ase of the generalizedlinear model likelihood, as desribed in the appendix.For dyadi dependene models g(y,X) typially has terms yij1yij2 and yijyjkyik , andthere is no linear expansion of g of the kind (5) and hene no independene between
{Yij} given X .3.1.2 Maximum Likelihood Estimation and Monte Carlo Markov ChainFrom Equation(2) the log likelihood funtion is

l(η) = logPη(Y = y) = g(y,X)ηt − log(c(η)).9



Maximimizing the likelihood with respet to η is equivalent to maximizing
l(η)− l(η0) = g(y,X)(η − η0)

t − log(c(η)/c(η0)),where η0 is an arbitrary �xed parameter vetor. The di�ult part is to estimate
c(η)/c(η0) , and this an be aomplished by running a disrete-time Markov hain whosestationary distribtion is the distribution we wish to sample from. This is the MarkovChain Monte Carlo (MCMC) idea, see Geyer and Thompson (1992) and Snijders (2002).For �xed η0 , we onsider the identity

Eη0

(

exp(g(Y ,X)(η − η0)
t)
)

=
∑

y

exp(g(y,X)(η − η0))Pη0
(Y = y)

=
∑

y

exp(g(y,X)(η − η0)
t)
exp(g(y,X)ηt0)

c(η0)

=
c(η)

c(η0)
.Thus, c(η)/c(η0) is an expetation, where the symbol Eη0

denotes the expetation op-erator assuming Y is random from the ERGM with parameter η0.The Law of large numbers suggests that we approximate an unknown population meanby a sample mean. Thus,
l(η)− l(η0) = g(y,X)(η − η0)

t − logEη0(exp(g(Y ,X)(η − η0)
t))

≈ g(y,X)(η − η0)
t − log

(

1

I

I
∑

i=1

exp(g(yi,X)(η − η0)
t)

)

,where y1, . . . ,yI is a random sample of networks from the distribution de�ned by theERGM with parameter η0.3.2 Model SeletionModel seletion is the way of seleting a statistial model from a set of potential models,given data. Determining the priniple that explains a series of observations is often linkeddiretly to a mathematial model prediting those observations. We onsider to modelseletion based on Akaike's information riterion (AIC) and the Bayesian informationriterion (BIC).AIC was developed by Hirotsugu Akaike under the name of �an information riterion� in1971 and proposed in Akaike (1974) as a measure of the goodness of �t of an estimatedstatistial model. It is usually used for model seletion. For a given model M it is de�nedas AIC(M) = 2p− 2l(η̂),where η̂ is the maximum likelihood estimate and p the number of parameters of model
M . The goal is to minimize AIC(M ) as a funtion of M .10



The BIC was de�ned by Shwarz (1978) and is also alled Shwarz' Criterion. It is loselyrelated to the Akaike information riterion, but has another penalty term for the numberof parameters p of the model;BIC(M) = log(N)p− 2l(η̂),where N is the number of data points {Yij} , i.e. N = n(n − 1)/2 . Hene, for networkmodels, the sample size N is not the same as the number of nodes n .3.3 Goodness of �tThe deviane is a quality of �t statisti for a model that is usually used for statistialhypothesis testing. For a given model M the deviane is de�ned as
D(M) = −2

(

l(η̂)− l(η̂full)
)

,where η̂ is the ML-estimate for the given model M and η̂full the ML-estimate for a fullmodel with one parameter per observation. The deviane is frequently used for GLMs,see MCullagh and Nelder (1989). The di�erene in deviane D(M1)−D(M2) betweentwo models M1 and M2 an be used for hypotheses testing.As desribed in Hunter et al. (2008a), goodness of �t of an ERGM M an also be assesedby means of simulation. Various statistis from an observed network are ompared withthe orresponding distributions of the statists for simulated data. The símulated datasets are generated from the �tted parameters η̂ . Good agreement between the observedstatistis and the simulated distributions indiate a good �t.4 An Example Data Set4.1 Desriptive analysisThe data that we onsider in this paper is taken from the National Longitudinal Study ofAdolesent Health or Add Health, as desribed in Udry (2003) and Harris et al. (2003).This data set was analyzed by Goodreau et al. (2008) and our analysis losely parallelstheirs. The data set is an undireted, one-mode friendship network of n = 1461 verties
R(y) = 974 edges and T (y) = 169 triangles.Eah node i represents a student and Yij = 1 indiates friendship between i and j . The
q = 3 di�erent attributes for eah individual i are

X i = (Gradei,Raei, Sexi). (12)From Figure 1 we see that one large omponent appears and then smattering of manyvery small omponents, all of whih are not visuable. The ount of the omponent size11



Figure 1: Faux Magnolia High, without isolates.
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Table 1: Component size distribution.Component size 1 2 3 4 5 6 7 8 9 11 12 19 23 439Frequeny 524 64 29 11 12 4 7 4 1 1 1 1 1 1distribution in Table 1 shows that there are 524 isolates, one large omponent of 439verties and many omponents lie in between.The distribution of vertex attributes is summarized in Table 2.Table 2: Distribution of students (verties) with respet to various attributes.Vertex attribute Class FrequenyRae Asian 48Blak 261Hisp 68NatAm 24Other 7White 1053Grade 7 1858 2109 31710 29911 25712 193Sex F 768M 693It turns out that among the attributes, grade is the strongest determinat of soial re-lations. We an visualize this by olouring verties aording to grade (Figure 2) or byonsidering the mixing matrix with respet to grade (Table 3), whih is onentratedalong the diagonal, with diagonal sum Ngrade(y) = 820 . The orresponding mixing ma-trix for rae (Table 4) is also onentrated along the diagonal, but somewhat less so thanfor grade, sine Nrace(y) = 787 .The degree distribution of the data set is summarized in Table 4, for the whole populationas well as for the female subpopulation:Table 5 summarized the degree distribution for the whole and female subpopulation withedge prob
13



Figure 2: Faux Magnolia High, without isolates, oloured by grade.
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Table 3: Mixing matrix with respet to grade.Grade 7 8 9 10 11 127 110 11 3 3 0 08 11 165 9 7 0 29 3 9 152 24 10 410 3 7 24 151 38 1111 0 0 10 38 152 3212 0 2 4 11 32 90Table 4: Mixing matrix with respet to rae.Asian Blak Hisp NatAm Other WhiteAsian 7 4 0 1 0 35Blak 4 85 9 3 0 57Hisp 0 9 1 0 0 48NatAm 1 3 0 3 0 25Other 0 0 0 0 0 5White 35 57 48 25 5 6914.2 Fitting ERGMsWe will �t data to four ERGMs, whih are:4.2.1 Model M1 (Erdös-Rényi)This model ontains one single parameter η , the log odds of the edge probability. Wemay test M1 versus the submodel M0 : η = 0 , for whih all 2n(n−1)/2 edge on�gurationsare equally likely. It an be seen from both Tables 6 and 7 that data strongly rejets M0in favour of M1 . The estimated edge probability is
e−6.998

1 + e−6.998
≈ 0.000913.4.2.2 Model M2 (Assortative mixing)This is the assortative mixing model based on attributes grade, rae and sex, i.e. (9),with X i as in (12).Table 8 summarizes ML parameter estimates for M2 . For eah parameter ηi we also give

p -values for testing ηi = 0 versus ηi 6= 0 . We �nd that all four terms, that is, edges,15



Table 5: Degree distribution for the whole and female subpopulation.Degree 0 1 2 3 4 5 6 7 8Frequeny (whole pop) 524 403 271 128 85 30 13 5 2Frequeny (female subpop) 226 226 160 80 44 18 7 0 0Table 6: ML estimation for M1 and hypothesis testing for M1 versus M0 .
η̂ Std. error p-value-6.99760 0.03205 <0.0001grade, rae and sex are signi�ant and also that the likelihood inreased dramatiallyrelative to Model 1.We notie from Table 8 that the log-odds of a tie whih is ompletely heterogeneious is

−10.01 , the log-odds of a tie that is homogeneious by rae is −10.01+1.20 = −8.82 andthe log-odds of a tie when all the three attributes are homogeneous is −10.01 + 3.23 +

1.20 + 0.88 = −4.70 .We assessed goodness of �t for M2 in Figure 3 by heking if the degree distributionfor one simulated data set, generated from M2 with estimated parameters as in Table 8,mathes the observed network's degree distribution. The two distributions math in theupper tail but not towards the lower end of the distribution. Most notably in the relativeproportion of verties with degree 0 and 1 . The orresponding rae mixing matrix for thesimulated data set is given in Table 9, with diagonal sum Nrace(ysim) = 753 . Comparingthis with Table 4 we see again that the model �t for M2 ould be improved.4.2.3 Model M3 (Triangle Model)This is a Markov model with egde and triangle ounts, i.e. p = 2 in (7). Clearly this is adyadi dependene model, hene the �tting algorithm draws on MCMC and is stohasti.After 29 Newton-Raphson iterations of the pseudo likelihood we get the initial estimates
η̂1 = −7.254 for the edge parameter and η̂2 = 4.558 for the triangle parameter. These areused as starting values for the MCMC estimation proedure. After iterating the Markovhain 10 000 times, the �nal Monte Carlo ML estimates were η̂1 = −7.310 and η̂2 = 4.584for edges and triangles respetively.Reall that the data set has R(y) = 974 edges and T (y) = 169 triangels. In order to assespossible model degeneray of M3 , the middle olumn of Table 10 shows the distribution of
Eη̂(R(Y ))−R(y) for the 10000 simulated values of η̂ during one iteration of the Markovhain. Analogolsly, the right hand olumn gives the distribution of Eη̂(T (Y )) − T (y) .16
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Table 7: Devianes for M0 and M1 .Type of deviane Value Degrees of freedom N − pNull D(M0) 1478525 1066530Residual D(M1) 15580 1066529Di�erene D(M0)−D(M1) 1462944 1Table 8: Inferene for M2 .Parameter Estimate Std. error p-value
η1 (edges) -10.01277 0.11526 <0.0001
η2 (grade assortative mixing) 3.23105 0.08788 <0.0001
η3 (rae assortative mixing) 1.19646 0.08147 <0.0001
η4 (sex assortative mixing) 0.88438 0.07057 <0.0001From this simulation we see that the mean of the edge statisti is o� by an average of 468and the triangle statisti by an average of 784 . The smallast simulated edge and trianglestatistis are larger than the observed inreased by 78 and 144 respetively. This learlyindiates degeneray of M3 in terms of �tting this data set.4.2.4 Model M4 (Model with assortative mixing and GWESP statisti)This is an extention of M2 where a geometrially weighted edgewise share partner(GWESP) statisti is added, to explore the lustering of the network. In other words, weuse (11) with q = 3 and p = 5 . This model has a GWESP parameter η5 as well as theusual parameters η1, . . . , η4 from Model M2 . There is also a �xed non-negative salingparameter α inluded in the GWESP statisti. When α = 0 this statisti is equivalentto the number of edges that belongs to at least one triangle. To redue degeneray wehose small values of α , lose to zero, and then inreased α . For α = 0 and α = 0.2 weobtain the parameter estimates shown in Table 11.When α = 0 we see that the log-odds is −9.83 for two arbitrary individuals to have aommon friends. But if they share at least one ommon friend the log-odds inreases to

−9.83 + 1.80 = −8.03.To evaluate goodness-of-�t, we simulate a number of data set for the �tted M4 with
α = 0.2 . In partiular, we will investigate whether the �tted M4 aptures the observedtriangle ount distribution well. Figure 4 gives the result based on 100 MCMC iterationsof 1e+05 steps eah. It turns out that the observed triangle ount lies outside the entral95% interval of the simulated distribution. However, it an be shown that M4 is still animprovement over M2 in terms of model �t for triangle ounts.18
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Figure 5: Observed degree distribution (solid line) and simulated degree distributions(box plots) for �tted M4 with α = 0.2 based on 100 MCMC simulations.
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Table 9: Mixing matrix by rae for data set simulated from �tted model M2 .Asian Blak Hisp NatAm Other WhiteAsian 0 6 1 3 0 16Blak 6 39 9 3 2 116Hisp 1 9 4 1 0 35NatAm 3 3 1 0 1 8Other 0 2 0 0 0 4White 16 116 35 8 4 708Table 10: Summary of simulated average edge and triangle ounts for M3 based on aMarkov hain with 10 000 steps, relative to the orresponding observed network statistis.Edges TrianglesMin. 78 1441st Quantile 235 314Median 337 568Mean 468 784
p-value dev. 0.00000 0.00000Std. dev. 307.6 602.4We next onsider in Figure 5 the degree distributions for 100 MCMC iterations of 1e+05steps eah. For eah degree a box plot is drawn, showing how the proportion of nodeswith that degree varies over simulated data sets. The observed degree proportions aredisplayed as well. For eah degree, the intervals between the soft lines ontain 95 % ofthe simulated proportions. Thus, in priniple, the p -values an be omputed for eahnode degree based on suh a plot. It is lear that the �tted M4 aptures the observeddegree distribution for this network quite well.Similarly, one may onsider box plot urves based on e.g. edgewise shared partner distri-butions and geodesi distributions.

4.3 Model seletionThe overall alulations of Model 1, Model 2 and Model 4 are summarized in Table 12.We see that M4 indeed improves the likelihood onsiderably, and is also seleted by eitherAIC or BIC. Estimates of all assortative mixing parameters deline in fae of the newtriangle GWESP statisti, while the edge parameter estimate inreases.21



Table 11: Inferene for M4 .Parameter Estimate (α = 0) Estimate (α = 0.2)
η1 (edges) -9.8297890 -9.7915376
η2 (grade assortative mixing) 2.7904821 2.7557927
η3 (rae assortative mixing) 0.9511466 0.9184486
η4 (sex assortative mixing) 0.7877837 0.7664999
η5 (GWESP) 1.8031250 1.8150806Table 12: Comparison between models M1 , M2 and M4 .Quantity to ompare M1 M2 M4 (α = 0.2)
p 1 4 5
η̂1 (edges) -7.00 -10.01 -9.79
η̂2 (grade assortative mixing) 3.23 2.76
η̂3 (rae assortative mixing) 1.20 0.92
η̂4 (sex assortative mixing) 0.88 0.77
η̂5 (GWESP, α = 0.2) 1.82
l(η̂) (log likelihood) -7790.1 -6528.71 -5502.28AIC 15582.2 13065.4 11014.6BIC 15593.9 13115.0 11074.15 ConlusionsThe Exponential Family Random Graph Models are appropriate for modelling omplexsoial networks. We reviewed the theory of EGRMs, inluding parameter estimation,model seletion and goodness-of-�t. As an illustration, we analyzed a given soial friend-ship data set using the R pakage statnet.The lass of ERGMs inludes the simplest Bernoulli (Erdös-Rényi) model with just onesu�ient statisti; the total number of edges. The Markov models goes a step further andinludes su�ient statistis like triangle and k -star ounts. However, inferene typiallyhas degeneray problems whih makes maximum likelihood estimation very di�ult evenfor small sized networks. Inluding geometrially weighted edgewise shared partner statis-tis into the model makes ML estimation possible even for large networks, as evidenedby onverging MCMC-approximations of ML estimates and improved goodness-of-�t.
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Appendix. Generalized linear modelsA.1 Link FuntionsGeneralized linear models (GLMs) were introdued by Nelder and Wedderburn (1972)as a theoretial framework that inorporates linear regression, logisti regression andPoisson regression models. It onnets a linear exponential dispersion family through alinear preditor and link funtion. A standard referene is MCullagh and Nelder (1989).The multiple linear regression model assumes that the onditional expetation of the
N × 1 vetor Y = (Yk)

N
k=1 of dependent or response variables is a linear ombination ofpreditor variables or ovariates. This an be expressed as

E(Y |Z) = Zηt,where Z = (Zk)
N
k=1 is the N × p design matrix of design vetors Zk as rows and η the

p -dimensional vetor of regression parameters. Typially Yk are independent randomvariables given Z . We an rewrite (5) as
E(Yk) = Zkη

t (A.1)for study units k = 1, . . . , NThe link funtion glink of a GLM provides a relationship between the linear preditor andthe expeted valaue of the response variable. It thus generalizes (A.1) in that
glink(E(Yk)) = Zkη

tThere are many ommonly used link funtions, and their hoie an be somewhat ar-bitrary. For Bernoulli Yk , for example, any smooth df an be used. Typial links arethe logisti and standard normal (Gaussian) dfs whih lead to logit and probit models,respetively. A further alternative for Bernoulli Yk is the omplementary log log link.We will apply GLMs to dyadi independene random graph models with n verties,
N = n(n− 1)/2 , k = (i, j) a dyad, Yk = Yij a binary edge indiator for dyad (i, j) and
Zk = h(X i,Xj) the ontribution of (i, j) to the vetor g(Y ,X) of network statistis.We will use a logisti link funtion

glink(y) = log
y

1− y
,whih gives logisti regression.A.2 Exponential dispersion modelsThe distribution of Yk for an exponential dispersion family of models is either disreteor ontinuous. It has the form

f(yk, θk, ψ) = exp

{

ykθk − b(θk)

a(ψ)
+ c(yk, ψ)

} (A.2)23



where θk is the anonial parameter, allowed to depend on k , and ψ is a dispersionparameter. In a GLM with anonial parametrization, the θk depends linearly on thepreditor variables;
θk = Zkη

t.The likelihood funtion of data for a GLM is
Pη,ψ(Y = y) =

N
∏

k=1

f(yk,Zkη
t, ψ).A.3 Parameter estimationNow we are going to estimate the parameters of a GLM using maximum liklihood esti-mation. The maximum likelihood estimate (MLE) maximizes the log likelihood

l(η) =
∑

k

(

ykZkη
t − b(Zkη

t)

a(ψ)
+ c(yk, ψ)

)with respet to η , treating ψ as a nuisane parameter.For most GLMs, omputation of the MLE requires some iterative numerial approxima-tion algorithm. For instane, eah step of the iteration an be given by a weighted leastsquares �t. Sine the weights are varying during the iteration the likelihood is optimizedby an iteratively reweighted least squares algorithm.ReferenesAkaike, H. (1974). A new look at the statistial model identi�ation. IEEE Transationson Automati Control 19 (6), 716�723.Erdös, P. and Rényi, A. (1959). On random graphs. Publiations Mathematiae 6, 290.Frank, O. and Strauss, D. (1986). Markov graphs. Journal of the Amerian StatistialAssoiation 81, 831-841.Geyer, C.J. and Thompson, E.A. (1992). Constrained Monte Carlo maximum likelihoodfor dependent data (with disussion). J. Roy. Statist. So. B 54, 657-699.Goodreau, S.M., handok, M.S., Hunter, D.R., Butts, C.T. and Morris, M. (2008). Astatnet tutorial. Journal of Statistial Software 24(9).Harris, K.M., Florey, F., Tabor, J., Bearman, P.S., Jones, J. and Udry, J.R. (2003).The national longitudinal study of adolesent health: researh design. Tehnial report,University of North Carolina.Hunter, D.R. (2007). Curved exponential family models for soial networks. SoialNetworks 29(2), 216-230. 24
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