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Abstract

This thesis looks at a sample problem of pricing a short-term excess
of loss contract, valid only during the last three months of the year. We
fit (annual) claim frequency and severity distributions to a dataset of
historical losses, using the Peaks Over Thresholds (POT) model. The
POT model is extended to allow additional distributions. The limited
duration of the contract means that we have to take seasonal variation
of claim occurrence rates into account. This seasonality is estimated
from external data sources, since our own data are too meagre. Finally,
we use Monte Carlo timeline simulation to estimate the total loss.
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1 Introduction

Reinsurance can succinctly be described as insurance for insurers. The con-
cept originated in the field of marine insurance, and can be traced back to
the Middle Ages. Seafaring was a risky business back in the day, and mer-
chants seeking to protect their income and investments fed a demand for
marine insurance. As the stakes became higher, fewer insurers were willing
and/or able to take on the greater risks themselves. This created a need for
reinsurance, as a way of spreading the risk among many. Today, reinsurance
has branched out to cover all types of risks, but the core principle remains
the same: to protect regular insurance companies, by taking on part of the
risk, in exchange for a slice of the premia.

1.1 Types of reinsurance

Reinsurance cover comes in many different shapes and forms. A distinc-
tion is usually made between proportional and non-proportional types of
reinsurance.

1.1.1 Proportional reinsurance

Proportional reinsurance is defined in terms of exposure, rather than losses.
Typically, the reinsurer takes on a certain percentage of each risk, in return
for the same percentage of the premium. The most basic form of such an
arrangement is known as quota share reinsurance, where the proportion to be
ceded is fixed upon signing the reinsurance contract, and is uniform among
all policies covered by the agreement. The second form of proportional
insurance is known as surplus insurance. Here, the reinsurance contract
specifies a retention level and an upper limit to the cover, rather than a fixed
percentage. The cedant will retain all of the risk that fall below the retention,
and surrender the remainder (up to the upper limit) to the reinsurance
company. This means that the proportion of each risk that is ceded will
vary between policies, depending on the sums insured. For example, if the
retention is set at 1 000 currency units, an individual policy insuring values
up to 2 000 will be reinsured at 50%, whereas one worth 4 000 will be
reinsured at 75%. All claims from these policies will be split 50:50 and
25:75 respectively, even if they fail to exceed the retention level.

1.1.2 Non-proportional reinsurance

Proportional reinsurance is less common in the field of non-life insurance
and will not be dealt with in the following. The more common alternative,
non-proportional reinsurance, is characterised by the fact that such policies
only cover losses that exceed a fixed lower limit, known as the retention, or
deductible. (Note that this definition of retention differs from the one in
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surplus reinsurance, where retention specified the amount of exposure that
stayed with the cedant.)

Non-proportional reinsurance contracts are thus defined in terms of how
the incurred losses are split between cedant and reinsurer, irrespective of
the amount of exposure. Such contracts can be divided into two major
subclasses: excess of loss reinsurance and stop-loss reinsurance.

In excess of loss reinsurance, often abbreviated XL, the contracts cover
the losses of individual events. The cedant is reimbursed for all individual
losses that exceed some agreed-upon retention level r, but only up to the
value of some limit l. This type of reinsurance policy is often denoted ’l xs
r’. If an occurred loss exceeds r+ l, it will ’spill over’ the reinsurance cover
and the excess cost will fall upon the cedant. As a consequence, the cedant
may sign up for another XL contract with another reinsurer, with retention
set at r+ l, the value at which the cover from the first contract was capped.
Large exposures are usually covered by a chain of such successive contracts,
with several different reinsurers, each covering their own layer (ri, ri + li).

The characteristics of an excess of loss contract depend on how we define
an ’event’. In so called Per Risk XL reinsurance, every single risk (i.e. policy
issued by the direct insurer) is treated individually, and we regard claims
from different policies as different events, even if they originated from the
same incident. In this context, the XL contract is essentially a protection
against unusually large claims.

With the other type of XL contract, Catastrophe XL or Cat XL for short,
we treat major catastrophes (e.g. hurricanes, earthquakes, etc.) as single
events, and aggregate all the losses that arise from them (i.e. all the claims
made on the cedant by its policyholders) into catastrophe losses. This way,
the size of a catastrophe loss will reflect both the number of claims received
by the cedant and the severity of each claim. In this setting, we can regard
the XL contract as a protection against clusters of claims that are moderate
in their own right, but substantial when put together.

If we instead aggregate all losses over a full calendar year, we arrive at
the stop loss contract. Stop loss reinsurance is basically excess of loss applied
to the annual aggregate, and can be used to put a cap on the annual loss.

1.2 This thesis

The backdrop of this thesis is that the commissioning company, Sirius Inter-
national, would like to be able to simulate claims on a timeline, accounting
for seasonality and clustering phenomena, when pricing reinsurance con-
tracts. In one of the current pricing approaches, the annual number of
claims for a given cedant and policy is modelled using either a Poisson or
a Negative binomial distribution, but this implies that the occurred claims
are distributed uniformly over time. In real life, there is likely to be some
degree of seasonality, in particular when dealing with natural perils like
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windstorms, and the timeline simulation model should be able to reproduce
it.

The problem is that data are scarce, since, being a non-life reinsurance
company dealing mainly in non-proportional contracts, Sirius are typically
only notified of claims that exceed the retention threshold. There might be
enough data in a client’s loss history to estimate the annual number of claims
with reasonable precision, but it will not suffice if our goal is to estimate the
seasonal variation.

This thesis looks at a sample problem of pricing a short-term XL con-
tract, valid only during the last three months of the year. The fact that
the contract does not span a full year means that we have to take seasonal
variation of claim occurrence rates into account. We fit claim frequency
and severity distributions to a set of historical claims from a European di-
rect insurer, and combine the fitted distributions with a seasonality function
obtained from external data sets. The resulting non-homogeneous point pro-
cess is used to simulate series of claims on a timeline, and we estimate the
premium from the average aggregate loss over repeated realisations of that
process.

The thesis is organised in the following way: Section 1 is this intro-
duction; Section 2 describes the available data sets; Section 3 gives a brief
description of the current pricing approach; Section 4 presents the timeline
simulation approach to pricing; Section 5 outlines the Peaks Over Thresh-
olds method of parameter estimation; Section 6 describes how we estimate
the intensity function; Section 7 presents two different approaches to time-
line simulation; Section 8 is the actual case study; Section 9 summarises the
results.
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2 Data

Reinsurance companies typically have quite limited historical data to draw
on, especially when dealing with catastrophe excess-of-loss cover. This is
due to catastrophic events being few and far between, and the fact that
cedants only disclose claims that exceed a certain threshold. The latter also
means that our data will be left-truncated, which further add to the diffi-
culty of parameter estimation. Data will also differ greatly in scope, detail
and reliability between different cedants. Some provide full information on
everything, from exact dates of loss to what types of perils that caused them,
whereas others only list major losses and the years they occurred.

Moreover, it is seldom possible to merge data arising from different
cedants or policies, as the inherent risks might differ greatly between them.
For example, in the case of property insurance, different portfolio composi-
tions could mean that one cedant is more susceptible to wind storm damage
than another, even if their insured building stocks are equal in value and
found in the same geographic areas.

What little data we have might be enough to make inference on the
number of claims in a given year, as well as their severities, but it will most
certainly not suffice if we wish to study seasonal variation. Hence, since we
wish to incorporate seasonality in our model, we will have to make use of
data from external sources.

Below is a short description of the data sets available to us.

2.1 Claim records

By claim records, we mean the reinsurance company’s own historical data,
or data provided to them as part of the underwriting information. Let’s say
we have a record of all claims made by a given cedant, on a given policy,
over a period of m years. These m years need not be consecutive, as there
might have been intermittent years when the policy was not renewed.

We introduce the notation

Mi = lower limit of reported claims in year i

ni = number of claims in year i with value greater than Mi

xij = value of claim j in year i, given that xij > Mi

where i = 1, . . . ,m, j = 1, . . . , ni. When dealing with excess-of-loss policies,
Mi ≥ 0 will typically be the excess point in use that year, or some value
below it if such figures were requested as part of the underwriting informa-
tion. Note that no Mi:s are likely to be the same, since all monetary values
have to be adjusted for inflation, as well as other possible trends. For this
purpose, we also need some suitable measure of inflation and information
on how exposure has varied over time. Inflation measures are easy to come
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by (e.g. consumer price index, property price indices, etc.) but measures
of exposure will have to be supplied by the cedant. Two examples of such
measures are ’total sums insured’ or ’earned premium income’. It is assumed
that this is all information available to us.

Our claim record can then be presented in a table, akin to Table 1.

Year Lower limit No. of claims Severities

1 M1 n1 x11 · · · x1n1

...
...

...
...

. . .
...

m Mm nm xm1 · · · xmnm

Table 1: Typical claim record for some reinsurance policy.

In this thesis, we will be looking at claims resulting from property and
loss of production insurance policies, issued by an undisclosed European
direct insurer. We are unable to reveal the name of the company, for reasons
of confidentiality, but we present the claim record in question in Appendix
B. Note that all monetary values have been linearly transformed (to keep
from identification) and trended (see section 2.1.1 below). About 99% of the
sums insured stem from properties found in the direct insurer’s country of
domicile; the rest come from one of its neighbouring countries.

2.1.1 Trending the data

The procedure of adjusting past loss data for inflation, and other possible
changes over time, is known as trending. This can be done in various ways,
some more complex than others, but a basic model should at the very least
compensate for inflation and changes in exposure. We will employ one such
very basic model, where the consumer price index (CPI) is used as a measure
of inflation, and the earned premium income (EPI) of our cedant is used to
adjust for varying exposure. Note that the earned premium income will
itself have to be deflated, since it reflects the number of policies as well as
the general premium level, and the latter is obviously subject to increases
in property prices.

It would be preferable to use some property price index (PPI) as a mea-
sure of inflation, instead of the more general CPI, but the 2009 values of
the PPI:s from our country under study were not available at the time of
writing. Likewise, the Total Sums Insured (TSI) of our cedant is a more
accurate measure of exposure, but those figures were not included in the
submitted underwriting information, from which our data were obtained.

The trending procedure in the excess of loss case will differ slightly, de-
pending on whether the reported claims are aggregates of several policies
(catastrophe XL) or if they have arisen from single policies (per risk XL).
In the cat XL case, each event represents a major catastrophe that is likely
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to hit every cedant in the exposed area, irrespective of how large their port-
folios are. As a consequence, a change in exposure (e.g. number of policies
sold) will have little effect on an individual cedant’s claim frequency, but
it will affect the severity of each claim, since the aggregate loss from each
catastrophe ought to be proportional to the number of active policies.

With per risk contracts, we get the opposite situation. Claims are now
counted individually, which means that the claim frequency is likely to in-
crease linearly with exposure, but the losses are no longer aggregated and
will not be affected. Of course, inflation applies to all monetary values,
regardless of the type of contract.

In summary, we have the following two scenarios:

• Catastrophe XL: We inflate the losses Xij , reporting limit Mi and
number of claims ni of year i to present values, by

Xtoday
ij = Xij

CPItoday

CPIyear i

(
EPItoday

EPIyear i

/
CPItoday

CPIyear i

)
= Xij

EPItoday

EPIyear i

M today
i = . . . = Mi

EPItoday

EPIyear i

ntoday
i = ni

• Per risk XL: We inflate Xij , Mi and ni by

Xtoday
ij = Xij

CPItoday

CPIyear i

M today
i = Mi

CPItoday

CPIyear i

ntoday
i = ni

(
EPItoday

EPIyear i

/
CPItoday

CPIyear i

)
= ni υi

The data set in our case study consists of individual claims, and hence we
use the second approach, ’per risk XL’. The scale factor associated with ni
will be denoted υi from now on. A table of all values of υi, relevant to our
case study, is presented in Appendix B.

2.2 External data

As hinted earlier, the external data will only be used to capture general
seasonality patterns, not to estimate the actual number of claims. That is,
we will use it to find the distribution of the occurrence times, conditional
on the number of occurrences in a given time interval. For example, if we
believe that claims occur according to a non-homogeneous Poisson process,
with time-dependent intensity λ(t), then the external data will be used to
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find the shape of λ(t); its amplitude will then be determined from our own
historical claim records.

One consequence of this approach is that our choice of external data will
have no effect on the expected number of annual claims and, by extension,
total claim amount, as long as we restrict ourselves to policies that span
full calendar years. Hence, the choice of external data set(s) is of lesser
importance in such situations, and it can be chosen freely, as long as it
specifies the exact loss dates, is large enough to provide reasonably accurate
estimates of the daily claim intensities, and exhibits the desired pattern of
seasonal variation. A natural choice in many applications would be pooled
industry-wide data, if such are available.

But not in ours! We would like to be able to tailor the shape of λ(t), to
suit the unique risk profile of individual cedants. For example, if one cedant
only has exposure against risks in the southern parts of Sweden, then its
claim seasonality is likely to differ from the one that appears in pooled,
nation- and industry-wide data. (Remember that we are mostly dealing
with natural catastrophes, whose rates of occurrence are highly dependent
on season, as well as geographic location.) Hence, we are looking for λ(t),
conditional on the exposure of our cedant.

One solution to this problem is offered by risk management software
packages, such as the one supplied by Risk Management Solutions, Inc. The
software draws on meteorological and geological data from several decades
back, and uses advanced (undisclosed) statistical models to predict the fre-
quency and severity of various perils, in various geographic areas. RMS
allows us to enter the exact risk profile of our cedant, including information
on exposure divided by location, if such is available, and will then generate
a long list of simulated events that are likely to affect it. The seasonality
of those events can be regarded as representative of the company we are
studying, and we can use the simulated data set to estimate the shape of
λ(t). One could argue about the sensibility in fitting a model to simulated
data, rather than the actual observations on which the simulations were
based. However, the latter approach would require us to develop our own
catastrophe model from scratch, something that the author has neither the
time nor the expertise to do. Instead, we utilise the results from the more
sophisticated models of RMS.

Because of the nature of our historical claim record (i.e. claims from
a European property insurer), we will use simulated data on wind storms
and floods in Europe. The simulations spanned 7 136 and 25 908 simulation
rounds, and produced 500 000 and 400 000 events, respectively. We will
only make use of the simulated claim dates.

(Note that we did not have access to information on the exact exposure
of this cedant, and used generic simulations instead, covering roughly the
same geographic area. This thesis is, after all, just meant for demonstrative
purposes — more care might be advisable in a real life situation.)
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3 Current approach to pricing

The most commonly used method of modelling the annual claim cost is
to use the collective risk model, defined below. This allows us to express
the annual cost as a stochastic sum of independent random variables, and
determine its probability distribution, e.g. through some recursive formula.
This distribution can then be used to predict future annual costs.

3.1 The collective risk model

In the collective risk model, we consider the insurance portfolio as an entity,
and pay no attention to the individual policies from which claims arise. It
has two main components:

N = # claims during the contract period (typically one year)

Xj = loss amount of the j:th claim, j = 1, . . . , N

and we can express the aggregate loss S as a stochastic sum

S =

N∑
j=1

Xj . (1)

It is assumed that N,X1, X2, . . . are mutually independent and that all {Xj}
are identically distributed.

Reinsurance companies introduce a payout function g(·), so that their
stake in each claim Xj can be expressed as Yj = g(Xj). Their aggregate loss
is then obtained by replacing Xj with Yj in (1). A typical choice of g(·) is

g(Xj) = min (l,max (Xj − r, 0)) (2)

which corresponds to an l xs r type of contract. Stop-loss contracts, on the
other hand, are represented by aggregate payout functions

h(S) = min (L,max (S −D, 0)) (3)

where L and D are the aggregate limit and deductible, respectively.

3.2 The distribution of S

Using historical claim data, we are able to fit distributions to N,X1, . . . , XN .
These distributions can then be used to obtain the distribution of S, through
some recursive method. Two common choices are the recursive formulas of
Panjer and Ströter. Other possibilities include normal power or gamma
approximations, which allow us to express the cumulative distribution func-
tion of S using the standard Gaussian and Gamma cumulative distribution
functions, respectively. These methods are presented in Johansson (1997,
Chapter 5) and will not be dealt with here.
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4 The timeline simulation approach to pricing

4.1 The advantages of timeline simulation

Timeline simulation involves shifting our interest from modelling the number
of claims that occur in a specific time-frame, typically one year, to modelling
the inter-arrival times between claims. In practice, it means that we estimate
the claim arrival intensity λ(·) from our data, and use it to simulate series of
claims (or other events) on a timeline. With sufficiently many realisations,
we are able to estimate the distribution of the aggregate loss S from the
observed aggregate claims.

In the most general form, we can denote the probability of an event
occuring in (t, t+ ∆t], given that n events have taken place in (0, t] by

P (event in (t, t+ ∆t]|n events in (0, t]) = λ(t, n, T1, . . . , Tn, x1, . . . , xn)∆t

that is, we allow the instantaneous claim frequency λ(·) to depend on all
information available at the time, including severities of previous claims xj
and previous arrival times Tj . Likewise, we allow the claim severities to
depend on all previous history.

The timeline simulation method is advocated convincingly by Kreps
(2007), who lists some of its advantages. These include

• Causality: Current events (may) influence future events.

• Time dependency: Allows seasonality and long-term trends. Dis-
counting can be done exactly.

• Greater realism: Allows more complex modelling of events, by
adding new features (e.g. payments made in instalments at stochastic
time intervals, stochastic interest rates, exposure that depends on the
previous history.)

One key aspect of the timeline simulation approach is that it can be easily
reduced to the collective risk model, by letting λ be constant (equivalent to
N ∼ Po(λ)) or by letting λ ∼ Γ(α, β) and sampling a new λ for each
realisation (equivalent to N ∼ NegBin(α, β)). We will use this fact when
fitting our model.

4.2 Our approach

Our approach is a middle ground between the two outlined here. We will
adhere to the collective risk model for parameter estimation throughout
this thesis, in the sense that we will fit distributions to N and X1, X2, . . .,
assumed to be independent, and consider insurance portfolios rather than
individual policies. But instead of finding the distribution of (1) through
some recursive or approximate method, as is commonly done, we will employ
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Monte Carlo timeline simulation to estimate the mean value of S directly.
That is, we will generate sample paths of the (non-homogeneous) claim
process, and estimate E[S] from the annual aggregates of the simulated
claims. This procedure allows us to introduce seasonality, delayed payments,
etc.

We present this approach in three steps:

1. Parameter estimation

2. Seasonality estimation

3. Timeline simulation

4.2.1 Parameter estimation

We fit distributions to N and X1, X2, . . . using the standard Peaks Over
Threshold method on our claim record. Maximum Likelihood estimators
are used throughout. The following distributions are applied to N

• Poisson

• Negative binomial

and the following are applied to X1, X2, . . .

• (Shifted) Pareto

• Burr

• Log-normal

• Weibull

The Poisson distribution for the number of claims in a given time interval
arises naturally when the claims can be regarded as independent events,
occurring one at a time, and the probability of a claim taking place in an
arbitrary time-interval equals the length of that interval, multiplied by some
risk parameter (intensity) λ.

The negative binomial distribution can be seen as an extension of the
Poisson distribution, where we regard the intensity λ as a Gamma dis-
tributed random variable. This reflects an uncertainty in the value of λ,
which would be present if the underlying risk fluctuates randomly.

As for the claim severity distributions, the ones listed above are common
examples from the literature, known for their heavy tails.
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4.2.2 Seasonality estimation

We look for a periodic intensity function λ(t), with period 1 year, that
describes how claims are distributed over time. The external data set is used
as source data, since our own historical data are likely to be too meagre. In
principle, one could allow periods longer than one year and let λ(t) account
for long-term deterministic fluctuations as well, but such phenomena should
not be inferred from external data.

λ(t) is scaled so that

λ̂ =

∫ 1

0
λ(t)dt, (4)

where λ̂ is the ML estimate of λ, obtained from fitting a Poisson(λ) dis-
tribution to N . If N ∼ NegBin(α, β), we replace λ̂ with λi in (4), where
λi are observations from a random variable Λ ∼ Γ(α, β), and make sure to
repeat the scaling procedure whenever a new value of Λ is drawn.

4.2.3 Timeline simulation

We use a (mixed) non-homogeneous Poisson process to simulate series of
claims on a timeline. The simulations are carried out using time trans-
formation. We repeat the simulation procedure for all fitted distributions
and estimate the expected total loss E[S] by the average over all simulation
rounds.
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5 Parameter estimation

We now turn to finding suitable probability distributions for the number of
claims in a single year and the severity of each claim.

Reinsurance companies that issue excess-of-loss policies are primarily
interested in achieving a good fit for claims that exceed a certain threshold,
the excess point. One way of doing this is by employing the Peaks Over
Threshold (POT) method.

5.1 The Peaks Over Threshold (POT) method

This section is based on Johansson (1997, Chapter 5), but has been expanded
to include more probability distributions.

The idea behind this method is that we restrict ourselves to studying
claims that exceed a certain threshold u, and then fit distributions to the
excess loss, conditional on the claims being greater than u.

We start off with a data set like the one presented in Table 1. In our
case, it is the claim record of a property insurance policy, spanning 11 years.
It is assumed that all xij and Mi have been adjusted for inflation, changes in
exposure and other factors that could affect the comparability between years
(see Section 2.1.1). The observed claim counts ni should not be adjusted at
this stage; we will compensate for changes in exposure during the parameter
estimation in Sections 5.2-5.3.

We proceed to transform this data set in the following manner:

1. Select a threshold u.

2. Set

M̃i = max(Mi, u)

ñi = number of claims in year i with value greater than M̃i

x̃ik = value of claim k in year i, given that x̃ik > M̃i,

where k = 1, . . . , ñi, i.e. {x̃ik} = {xij : xij > M̃i}.

3. Subtract M̃i from all x̃ik.

This transformed data set is presented in Table 2.
Choosing a suitable threshold u is something of a balancing act: if we set

it too low, we will include too many small claims in the analysis, which could
compromise the level of fit in the right tail. On the other hand, too high a
threshold will not leave many claim observations for parameter estimation.
Mean excess plots could be of use in this regard.

In reality, u will always have to be chosen from values below or equal
to the excess point when pricing excess-of-loss contracts, since we want the

16



Year Lower limit No. of claims Severities - retention

1 M̃1 ñ1 x̃11 − M̃1 · · · x̃1ñ1 − M̃1
...

...
...

...
. . .

...

m M̃m ñm x̃m1 − M̃m · · · x̃mñm − M̃m

Table 2: Transformed claim data set.

excess point to fall within the support of the fitted distributions. Stop-
loss contracts can be regarded as a special case, with excess points (of the
individual contracts) equal to zero; this leaves u = 0 as the only choice.

We now set out to fit some possible distributions of N and Xk−u (defined
below) to our data. We assume that all random variables are independent
and that X1, X2, . . . are identically distributed.

N = # claims in a year that exceed u (5)

Xk = severity of claim k in a year, given that Xk > u, (6)

k = 1, . . . , N.

But our observations {ñi} and {x̃ik − M̃i} are from the r.v. Ni and
Xik − M̃i, defined by

Ni = # claims in year i that exceed M̃i (7)

Xik = severity of claim k in year i, given that Xik > M̃i, (8)

k = 1, . . . , Ni.

and it follows that Ni
d
= N and Xik − M̃i

d
= Xk − u only for years i where

M̃i = u. However, we still want to incorporate all available observations
in our parameter estimations, including those from years where M̃i > u.
Fortunately, as we shall soon see, the distributions of (5)-(6) are related to
those of (7)-(8), and the probability/density functions of the former pair
will contain the same unknown parameters as those of the latter pair. Thus,
if we find the probability/density functions of (7)-(8), we can make use of
all available observations.

If we denote the cumulative distribution function of Xk − u by F , we
can express the c.d.f. of Xik − M̃i in the following way

Gi(y) = P (Xik − M̃i ≤ y) = P (Xk − M̃i ≤ y|Xk > M̃i)

=
P (M̃i < Xk ≤ M̃i + y)

P (Xk > M̃i)
=
P (M̃i − u < Xk − u ≤ M̃i − u+ y)

P (Xk − u > M̃i − u)

=
F (M̃i − u+ y)− F (M̃i − u)

1− F (M̃i − u)
. (9)
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The second equality follows from the fact that all ground-up claims are
assumed to be equally distributed; this means that any difference between
Xk and Xik is due to them having different truncation points. Derivation
then gives us the corresponding density functions

gi(y) =
f(M̃i − u+ y)

1− F (M̃i − u)
. (10)

If we introduce yik = x̃ik − M̃i, the log-likelihood takes the form

l =
m∑
i=1

[
−ñi log(1− F (M̃i − u)) +

ñi∑
k=1

log f(M̃i − u+ yik)

]
. (11)

The ML equations can be obtained through derivation, but they will invari-
ably have to be solved numerically. Is is more convenient to maximise (11)
directly; we do it by feeding a custom log-likelihood into the mle procedure
of Matlab. The solutions are the ML estimates of the parameters from the
distribution F , that is the distribution of Xk − u. This fitted distribution
can then be used to find the distribution of N , see sections 5.2 and 5.3.

It is easy to modify the above expressions so as to allow for right trun-
cation as well. With the conditional c.d.f.

F̃v(y) = P (Xk − u ≤ y|u < Xk ≤ u+ v) =
P (0 < Xk − u ≤ y)

P (0 < Xk − u ≤ v)
=
F (y)

F (v)
,

(12)
our observations M̃i < x̃ik ≤ u+v can be regarded as observations from the
distribution G̃i,v, a modified version of (9), given by

G̃i,v(y) =
F̃v(M̃i − u+ y)− F̃v(M̃i − u)

1− F̃v(M̃i − u)

=
F (M̃i − u+ y)− F (M̃i − u)

F (v)− F (M̃i − u)
. (13)

The corresponding density function and log-likelihood becomes

g̃i,v(y) =
f(M̃i − u+ y)

F (v)− F (M̃i − u)
(14)

l̃v =
m∑
i=1

[
−ñi log(F (v)− F (M̃i − u)) +

ñi∑
k=1

log f(M̃i − u+ yik)

]
(15)

and can be treated in the same way as (10) and (11). The right-truncated
case will not be dealt with explicitly in the following.

In the general POT model, as presented in Rootzén and Tajvidi (1995)
among others, it is assumed that N and Xk−u have Poisson and generalised
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Pareto distributions, respectively. While NegBin could very well be used in
lieu of Poisson, the (generalised) Pareto distribution (GPD) is the natural
choice for claim severities in the POT framework. This is mainly because
Xk − u converge in distribution to generalised Pareto as u→∞, for a large
class of distributions of Xk. (Among them standard Pareto, Gamma and
Log-Normal - see Schirmacher et al. (2005) for more details.) Moreover,
the GPD is stable under increasing thresholds u, a unique and desirable
property of that class of distributions (see Rootzén and Tajvidi (1995)).

Nevertheless, we will consider the Log-normal, Weibull and Burr distri-
butions as well, since they are other common choices for claim severities,
and we cannot assume that u will be large enough for convergence to take
place.

5.1.1 Assessing the goodness-of-fit

The most convenient way of comparing the goodness of fit of the differ-
ent distributions under study is by using the information criteria of Akaike
(AIC) and Bayes (BIC). Both are based on the maximised value of the log-
likelihood, but add a penalty term, proportional to the number of parameters
in the fitted distributions.

With the notation

m = no. of observation years,

ñtot =
m∑
i=1

ñi = total no. of observed claims,

kN = no. of parameters in the distribution of N ,

kX = no. of parameters in the distribution of X,

lN,max = maximised log-likelihood for the distribution of N ,

lX,max = maximised log-likelihood for the distribution of X,

the AIC and BIC statistics can be written

AIC = AICN +AICX

= 2 (kN + kX)− 2 (lN,max + lX,max) , (16)

BIC = BICN +BICX

= kN logm+ kX log ñtot − 2 (lN,max + lX,max) . (17)

The combinations of distributions for N and X are ranked according to their
values of AIC and BIC; smaller values are preferable. From (16) and (17),
we see that the difference between AIC and BIC lie solely in the penalty
term, with BIC punishing extra parameters more strongly (provided m and
ñtot are greater than 7).
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It should be noted that these criteria are only used to compare competing
models, and say nothing about the overall goodness of fit (i.e. the absolute
values of AIC and BIC have no meaning).

5.2 Number of claims: Poisson

It holds that {Xik : k = 1, . . . , Ni} ⊆ {Xk : k = 1, . . . , N} for any i. Since
all claims are independent, it follows that the number of variables among
{Xk : k = 1, . . . , N} that exceed M̃i (i.e. Ni), conditional on N = n, has
a binomial distribution, i.e. Ni|N = n ∼ Bin(n, pi), where pi = P (Xk >
M̃i) = 1 − P (Xk − u ≤ M̃i − u) = 1 − F (M̃i − u). Again, F denotes the
distribution function of Xk − u, which has yet to be determined.

Now, if we assume that N ∼ Po(λ), then it can be shown (see Appendix
D.1) that

Ni ∼ Po(λpi),

a thinned Poisson distribution with thinning parameter pi = 1−F (M̃i−u).
We see that this reduces to a Po(λ) distribution for years where M̃i = u, as
one would expect.

The ML estimate of λ, using all available scaled up observations ñiυi, is
also derived in Appendix D.1. It is found to be

λ̂ =

∑m
i=1 ñiυi∑m
i=1 pi

(18)

5.3 Number of claims: NegBin

We now turn to our other choice of claim number distribution, the Negative
Binomial one. The setup is the same as in the Poisson case, except that we
now have N ∼ NegBin(α, β), with parameterisation

P (N = n) =
Γ(α+ n)

Γ(α)n!

(
β

β + 1

)α( 1

β + 1

)n
. (19)

The relation Ni|N = n ∼ Bin(n, pi) is not affected, however. A more
common parameterisation is obtained by setting p = 1/(β + 1), but we will
stick with (19) to emphasise its identity as a mixed Poisson distribution,
with a Gamma(α, β) distributed structure variable.

It is shown in Appendix D.2 that, under these conditions,

Ni ∼ NegBin(α, β/pi).

and that the ML estimates of α and β, using the scaled up observations
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ñiυi, can be obtained by maximising

l(α, β) =

m∑
i=1

[log Γ (ñiυi + α)− log Γ (α) +

+α log

(
β

β + pi

)
− ñiυi log (β/pi + 1)

]
(20)

5.4 Claim severity: (Shifted) Pareto

Turning to the claim severities, we start by considering the (shifted) Pareto
distribution, also known as the two-parameter Pareto distribution. It is per-
haps the most common choice of claim severity distribution, and is defined
by the cumulative distribution function

F (x) = 1−
(

θ

θ + x

)α
, x ≥ 0, α > 0, θ > 0. (21)

This is essentially a reparameterised version of the two-parameter GPD,
studied by Rootzén and Tajvidi (1997), under the constraint α > 0. (The
GPD permits α ∈ (−∞,∞).) As such, we expect the Pareto distribution
to be stable under increasing thresholds, and, indeed, if we assume that
Xk − u ∼ Pareto(α, θ), then the distribution function Gi of Xik − M̃i, as
defined by (9), becomes

Gi(y) = 1−

(
θ + M̃i − u

θ + M̃i − u+ y

)α
. (22)

This is also the c.d.f. of a shifted Pareto distribution, and we conclude that
Xik − M̃i ∼ Pareto(α, θ + M̃i − u).

The log-likelihood (11) has the form

l(α, θ) =
m∑
i=1

ñi∑
k=1

[
logα+ α log(θ + M̃i − u)− (α+ 1) log(θ + M̃i − u+ yik)

]
(23)

and can be maximized numerically to obtain the ML estimates.
Sometimes, the standard SPareto(α, θ) distribution, also known as the

one-parameter Pareto distribution, is used instead of the shifted one. Its
c.d.f. takes the form

H(x) = 1−
(
θ

x

)α
, x ≥ θ, α > 0, (24)

and although it appears to have two parameters, θ is simply a lower bound-
ary for the support, and must be set in advance.

For our purposes, this means that if we have fitted a Pareto(α̂, θ̂) dis-
tribution to Xk − u, then Xk − u + θ̂ ∼ SPareto(α̂, θ̂), and if we wish to
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simulate a future ground-up claim Z from this distribution, it can be done
in either of two ways:

Z = u+X = u− θ̂ + Y (25)

where X ∼ Pareto(α̂, θ̂), and Y ∼ SPareto(α̂, θ̂).

5.5 Claim severity: Burr

The Burr distribution adds another parameter to the (shifted) Pareto dis-
tribution. Its c.d.f. reads

F (x) = 1−
(

θ

θ + xτ

)α
, x ≥ 0, α > 0, θ > 0, τ > 0. (26)

As before, if we assume that Xk − u ∼ Burr(α, θ, τ), then Gi(y) becomes

Gi(y) = 1−

(
θ + (M̃i − u)τ

θ + (M̃i − u+ y)τ

)α
. (27)

This is not a familiar distribution function, but derivation yields

gi(y) =
ατ(M̃i − u+ y)τ−1[θ + (M̃i − u)τ ]α

[θ + (M̃i − u+ y)τ ]α+1
, (28)

which allows us to express the log-likelihood (11) as

l(α, θ, τ) =

m∑
i=1

ñi∑
k=1

[
log(ατ) + (τ − 1) log(M̃i − u+ yik)+

α log[θ + (M̃i − u)τ ]− (α+ 1) log[θ + (M̃i − u+ yik)
τ ]
]
.

(29)

Numerical maximisation gives us the ML estimates α̂, θ̂, and τ̂ .

5.6 Claim severity: Log-Normal

A variable Y = exp(X) is said to have a log-normal distribution if X ∼
N(µ, σ2). Its c.d.f. is written

F (x) = Φ

(
log x− µ

σ

)
, x > 0, −∞ < µ <∞, σ > 0, (30)

where Φ is the standard normal c.d.f. If we assume thatXk−u ∼ LogN(µ, σ2),
then Gi(y), as defined by (9), becomes

Gi(y) =
Φ
(

log(M̃i−u+y)−µ
σ

)
− Φ

(
log(M̃i−u)−µ

σ

)
1− Φ

(
log(M̃i−u)−µ

σ

) (31)
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and upon derivation, we get

gi(y) =

1√
2πσ(M̃i−u+y)

exp
{
− [log(M̃i−u+y)−µ]2

2σ2

}
1− Φ

(
log(M̃i−u)−µ

σ

) (32)

which yields the log-likelihood

l(µ, σ) =

m∑
i=1

ñi∑
k=1

[
− log

(
1− Φ

(
log(M̃i − u)− µ

σ

))
− log σ

−

[
log(M̃i − u+ yik)− µ

]2

2σ2

+ constant. (33)

Maximisation gives the ML estimates µ̂ and σ̂. Note that these are the
expectation and standard deviation of X = log Y . The equivalent statistics
for Y are given by

E [Y ] = eµ+σ2/2, (34)

V ar (Y ) = e2(µ+σ2) − e2(µ+σ2/2). (35)

5.7 Claim severity: Weibull

The c.d.f. of the Weibull distribution

F (x) = 1− e−(x/c)τ , x ≥ 0, c > 0, τ > 0, (36)

resembles that of the exponential distribution, but adds a shape parameter
τ . Again, assuming that Xk − u ∼ Weibull(c, τ) leads to Gi(y), as defined
by (9), taking the form

Gi(y) = 1− exp

(
−

[(
M̃i − u+ y

c

)τ
−

(
M̃i − u

c

)τ])
. (37)

Derivation yields

gi(y) =
τ

c

(
M̃i − u+ y

c

)τ−1

exp

(
−

[(
M̃i − u+ y

c

)τ
−

(
M̃i − u

c

)τ])
,

(38)
which results in the log-likelihood

l(c, τ) =
m∑
i=1

ñi∑
k=1

[
log τ − τ log c+ (τ − 1) log

(
M̃i − u+ yik

)
−

[(
M̃i − u+ yik

c

)τ
−

(
M̃i − u

c

)τ]]
, (39)

which can be maximised numerically to obtain the ML-esimates ĉ and τ̂ .
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6 Seasonality estimation

Having fitted distributions to N and X1, X2, . . . , we now set out to model
the seasonal variation of claim occurrence rates. It is assumed in this section
that real-life claims arrive according to a non-homogeneous Poisson process
N(t), with some unknown intensity function λ(t).

Our goal in this section is to estimate λ(t). For this purpose, we will
use kernel smoothing, in the form of local linear regression, and the next
subsection will be devoted to presenting this method in general terms. In
the section thereafter, we demonstrate how it can be applied to our data.

6.1 Kernel smoothing: Local linear regression

For smoothing purposes, we employ local linear regression. This involves
fitting a unique weighted linear regression model in the near vicinity of every
x ∈ [mini(xi),maxi(xi)] that we wish to evaluate, where {(xi, yi)} are our
observations, and using the value of that regression line at x as a smoothed
estimate of y(x).

This model can be expressed as

y = Axθx + ε (40)

where

y = (y1, y2, . . . , yn)T (41)

θx = (αx, βx)T (42)

Ax =

(
1 1 · · · 1

x1 − x x2 − x · · · xn − x

)T
. (43)

We make no assumptions about the error term ε. Note that the fitted
regression line is only evaluated at the centre point x — a new regression
model has to be fitted for every new value of x.

As weights, we use a kernel function K(u), i.e. a non-negative, continu-
ous, bounded and symmetric function, such that∫ ∞

−∞
K(u)du = 1. (44)

There are many choices of kernel functions, but the Epanechnikov kernel

K(u) =
3

4

(
1− u2

)
1{|u|≤1} (45)

has been shown to be optimal and will be used henceforth. (Optimal in this
case means that it minimises the asymptotic mean integrated squared error,
AMISE. See Wand and Jones (1995, Chapter 2) for more details.) From
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(45), we see that K(u) = 0 for |u| > 1, but we want to be able to select
our own regression window (−h, h). This can be achieved by rescaling the
kernel in the following manner

Kh(u) = K
(u
h

) 1

h
. (46)

The value h is called the window width, or bandwidth, and specifies the
length of (half) the interval around x, from which we include data points
in the regression. h is chosen by the user, and determines the level of
smoothness of the resulting curve. A large value of h will result in a smooth
curve, but comes at the expense of detail; the opposite is true for small
values of h. Another way of seeing it is that a large h produces an estimate
with large bias, but small variance; again, the opposite holds for small h.
Choosing a suitable h is rather tricky, and we will return to the subject
shortly.

It should be noted that when x approaches mini(xi) or maxi(xi), part
of the regression window (x− h, x+ h) will overspill the boundaries, which
means that the number of observations included when fitting the model is
likely to decrease. While it can be shown (Wand and Jones (1995, Chapter
5.5)) that the local linear regression model is free of boundary bias (i.e. the
bias near the boundaries are of the same magnitude as elsewhere on the
curve), the smaller and more contracted set of included observations will
result in greater variance.

With the weights specified by (45) and (46), the least squares problem
translates into minimising

n∑
i=1

Kh(xi − x) [yi − αx − βx(xi − x)]2 . (47)

General theory on linear regression states that the vector θ̂x = (α̂x, β̂x)T

that minimises (47) is given by

θ̂x =
(
AT
xWxAx

)−1
AT
xWxy (48)

with
Wx = diag {Kh(x1 − x),Kh(x2 − x), . . . ,Kh(xn − x)} (49)

and the other components given by (41), (42) and (43).

6.1.1 Bandwidth selection

In reality, the choice of kernel function is of secondary importance, a fact
discussed in Wand and Jones (1995, Chapter 2.7). What really matters is the
bandwidth h, i.e. the length of the interval around each evaluation point x,
from which to include data points in the regression. As a result, the subject
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of bandwidth selection has been studied quite extensively in the past, and
several methods for automatic bandwidth selection have been proposed.

Unfortunately, none of the suggested methods appear to be optimal in all
circumstances. One particular class, using so called plug-in estimators, have
often been touted in the literature, ahead of the older and less sophisticated
methods of cross-validation. The plug-in methods come down to finding an
analytic expression for the bandwidth that minimises the asymptotic mean
integrated squared error (AMISE), and replacing unknown components with
estimates. This method was applied to local regression models by Ruppert et
al. (1995). Cross-validation involves subdividing the data into two separate
sets; the first one is used to fit the model and the second is used to test its
power of prediction.

The criticism of the cross-validation approaches states that they tend to
undersmooth the curves, by choosing too small an h. But Loader (1999)
showed that the evidence provided in favour of plug-in methods is highly
disputable, and that the cross-validation methods often performed better.
Similar conclusions were reached by Lee and Solo (1999) in a simulation
study.

The cross-validation method was tested whilst writing this thesis, but
was not satisfactory. As a consequence, the choice of bandwidth was only
assessed graphically. (It made no sense to implement a more complicated
method, with only one curve to smooth.)

6.2 Estimating λ(t)

In our applications, all sets of observations are of the form {(i, yi) : i = 1, . . . ,
365} and represent daily values; hence, the data points are equidistant. Fur-
thermore, our one-year periodicity requirement means that we can handle
the problem of increased variance near the boundaries 1 and 365, by defining

zi+n365 = yi, i = 1, . . . , 365, n ∈ Z (50)

and applying the local regression model to the extended set of observations
{(i, zi) : i ∈ Z}.

With these modifications, the local regression model, centred around day
i, can be written

zi+∆ = αi + βi∆ + εi,∆, ∆ = −bhc, . . . , bhc (51)

and the least-squares estimates θ̂i = (α̂i, β̂i)
T are given by

θ̂i =
(
ATWA

)−1
ATWzi (52)
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where

zi =
(
zi−bhc, zi−bhc+1, . . . , zi+bhc

)T
(53)

A =

(
1 1 · · · 1
−bhc −bhc+ 1 · · · bhc

)T
(54)

W = diag {Kh(−bhc),Kh(−bhc+ 1), . . . ,Kh(bhc)} , (55)

that is, the design matrix A and weight matrix W remain the same for all
i, and they are reduced in size, from 365× 2 and 365× 365 to (2h+ 1)× 2
and (2h + 1) × (2h + 1), respectively. This should speed up computations
somewhat, since the model has to be fitted one time for each i = 1, . . . , 365.

Our smoothed estimates ẑi can also be calculated directly, without per-
forming the matrix operations of (52), by noting that

ẑi = α̂i + β̂i · 0 =

∑bhc
∆=−bhcKh(∆)zi+∆∑bhc

∆=−bhcKh(∆)
, (56)

a weighted mean of the observed values
{
zi−bhc, . . . , zi+bhc

}
.

It is also worth noting that this smoothing procedure preserves the sum
of the observations, i.e.

365∑
i=1

ẑi =

365∑
i=1

α̂i = [1 0]
(
ATWA

)−1
ATW

(
365∑
i=1

zi

)

= [1 0]
(
ATWA

)−1
ATW


∑365

i=1 zi
...∑365
i=1 zi


= [1 0]

(
ATWA

)−1
ATW 1

365∑
i=1

zi

= [1 0]
(
ATWA

)−1
ATWA

[
1
0

] 365∑
i=1

zi

=

365∑
i=1

zi

As a result, we do not have to worry about normalising the data after
smoothing it.

We now turn to estimating λ(t), which is regarded as a piecewise con-
stant, periodic function, with period length of one year. t is a continuous
time parameter, with time-units of one year, but we will temporarily switch
over to discrete time, with k = 1, . . . , 365 describing the calendar day of
events.
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We assume that we have obtained at least one external data set of events,
with seasonality (believed to be) similar to that of our own claim data. From
these external observations, we form an empirical discrete density function
πk, defined by

πk =
# events on calendar day k in the ext. dataset

total no. of events in the external dataset
, k = 1, . . . , 365.

(57)
Alternatively, we could form linear combinations πk =

∑
i viπi,k of several

external data sets, with
∑

i vi = 1, if, for example, our cedant is exposed
to more than one risk and/or market. (RMS simulations are carried out
one market and peril at a time.) Regardless of which, we apply local linear
regression to πk, to get a smoothed (but still discrete) density π̃k.

Finally, we return to continuous time, by defining

λ(t) = λ̂ π̃1+(b365 tc mod 365), t ≥ 0, (58)

where λ̂ is the fitted Poisson parameter from Section 5.
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7 Timeline simulation

The timeline simulations can be performed in various different ways, and
we will look at two of the options in this section. The first approach as-
sumes that there is no causality between events and that every parameter
except the claim intensity is held constant; this allows us to simplify things
considerably. The second method involves simulating the trajectories of a
non-homogeneous Poisson process (NHPP) using time transformation.

For simplicity, we will assume that each simulation round spans one full
calendar year, but both methods can easily be generalised to allow longer,
or shorter, time intervals.

7.1 No causality or time-dependence

If we do not intend to have past events influence the future, for example by
adjusting parameter values in response to each new claim that occur, and
if we regard all parameters except the Poisson intensity as constant, there
is no need to simulate the full trajectories of a (mixed) non-homogeneous
Poisson process. Instead of simulating the time to the next event, we

1. simulate the number of claims Nj in each simulation round j, from a
Poisson or Negative binomial distribution,

2. distribute the Nj claims among days k = 1, . . . , 365, by simulating the
daily claim counts Njk from a Multinomial(Nj , π̃) distribution, where
π̃ = (π̃1, . . . , π̃365)T , the smoothed discrete seasonal density on vector
form.

7.2 NHPP simulation

Simulating the sample paths of a non-homogeneous Poisson process (NHPP),
however, does allow causality and time-dependent parameters. The easiest
way of doing it is via time transformation.

We denote our claim arrival process by N(t), an NHPP with intensity
function λ(t) given by (58). λ(t) is a right continuous step function, and we
obtain the mean value function µ(t) by integrating it

µ(t) =

∫ t

0
λ(s)ds = λ̂

∫ t

0
π̃1+(b365 sc mod 365)ds, t ≥ 0. (59)

µ(t) thus defined is unbounded, piecewise linear, continuous and increasing
(and therefore invertible). From Mikosch (2004) (see Appendix A.2), we
know that

N(µ−1(t))
d
= Ñ(t), t ≥ 0, (60)
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where Ñ is a standard homogeneous Poisson process, and the arrival times
of N are therefore given by

Tn = µ−1(T̃n), T̃n = W̃1 + . . .+ W̃n, n ≥ 1, (61)

where W̃i ∼ Exp(1), i.i.d. Each realisation of the NHPP N(t), up to some
time point t = Tend can therefore be generated by the pseudocode

1. Initialise the counter n = 1.

2. Initialise T̃n = − log(Un), where Un ∼ U(0, 1).

3. Loop while T̃n < µ(Tend).

(a) Set Tn = inf
{
t : µ(t) ≥ T̃n

}
.

(b) Set n = n+ 1.

(c) Set T̃n = T̃n−1 − log(Un), where Un ∼ U(0, 1).

The speed of the algorithm above will be determined by step 3(a), that
is, how easy it is to invert µ. We are only concerned with claim dates, not
what time of day they arrive, and can treat Tn as integers. In that case,
we only have to keep track of the values of µ at the end of each day, i.e.
µk, k = 1, 2, . . .. With µk stored in a vector mu, the arrival times Tn in step
3(a) can quickly and easily be obtained with a single line of Matlab code:

Tn = find(mu.*(mu>=Tn_tilde),1,’first’);

7.2.1 Mixed NHPP

The above procedure can be modified to work for mixed NHPP as well,
simply by redefining µ(t). If we set

µ(t) = θρ(t) = θ

∫ t

0
π̃1+(b365 sc mod 365)ds, t ≥ 0, (62)

and sample a new structure variable θ ∼ Γ(α, β) ahead of each realisation,
then the number of claims in each simulation round will be an observa-
tion from a negative binomial distribution, with parameters α and β/ρ(t).
Individual sample paths will not be any different from those of a regular
NHPP, but the randomness of µ(t) will result in different trajectories for
each realisation, which combine to form the overdispersion associated with
the negative binomial distribution.
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8 Case study: European property insurance

Finally, we apply the methods described in the previous sections to some real
data, in the form of a claim record from a European property insurer. The
data set was described in Section 2, and is available for display in Appendix
B (after an anonymising linear transformation).

The contract we have in mind is of the type ’10M xs 5M’ without re-
instatements, and will cover losses that occur between October 1 and De-
cember 31. Such short-term contracts are not uncommon during the latter
stages of the fiscal year, when cedants might be looking to secure any profits
made in the preceding months.

8.1 Parameter estimation

Step one, when fitting a POT-model, is to choose a threshold u. In reality,
u will largely be dictated by the type of contract one is about to price. In
our case, u must fall below the excess point 5 000 000, but we can select it
freely among all such values.

A good starting point is the empirical mean excess plot of our observed
losses. The empirical ME-function of a set {xi} is given by

en(u) =

∑n
i=1 max (0, xi − u)∑n

i=1 1{xi>u}
, (63)

and is the empirical equivalent of the theoretical ME-function

eF (u) = E [X − u|X > u] . (64)

The theoretical ME-functions of the relevant severity distributions are pro-
vided in Table 3, where the exponential distribution also has been added
for comparison. We see that eF (u) is constant for the exponential distri-
bution, but increases linearly for the Pareto and Burr distributions. eF (u)
is strictly increasing for Weibull as well (provided τ < 1), but tends to in-
finity at a lower pace than the ME-functions of Pareto and Burr. It tends
to infinity for the Log-Normal distribution too, but has a singularity at
u = eµ. (Generally, limu→∞ eF (u) → ∞ for heavy-tailed distributions,
whereas limu→∞ eF (u)→ 0 for distributions that are lighter-tailed than the
exponential distribution.) A more extensive list of mean excess functions is
provided in Mikosch (2004, Chapter 3.2.3).

The point of plotting the empirical ME-functions against u is to see if
we can discern any of the functions of Table 3 in our observed data; if, for
example, en(u) appears to increase linearly past some point u = u0, then u0

would be a suitable truncation point for fitting a POT-model with Pareto
(or Burr) distributed claims.

The empirical ME-function, applied to our observed ground-up claims
{xij : i = 1, . . . , 11, j = ni}, is plotted in Figure 1, which, incidentally, also
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Distribution eF (u)

Exponential λ−1

Pareto θ+u
α−1 , α > 1

Burr u
ατ−1 (1 + o(1)) , ατ > 1

Log-Normal σ2u
log u−µ (1 + o(1))

Weibull u1−τ cτ

τ (1 + o(1))

Table 3: Mean excess functions of our severity distributions.
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Figure 1: Mean excess plot of our data.

highlights the problems with mean excess plots. Our data were sparse to
begin with, and as we increase u, there are few points left from which to
form the mean values. The resulting values of en(u) are anything but robust
— one additional extra large claim could offset the apparent dip between
1.8 ·107 ≤ u ≤ 3.3 ·107 entirely — and Figure 1 alone is no reason to dismiss
the distributions of Table 3.

Instead, we zoom in on the more stable points at u ≤ 1.5 · 107. The
plot in Figure 2 reveals that en(u) appears to change trajectory around
u = 4 · 106, and this could be an interesting truncation point for the POT-
model. In addition, we shall consider the cases u = mini(Mi) = 2000000
and u = maxi(Mi) = 2462963 as well; the first uses all available data points,
whereas the the second is the lowest truncation point such that the thinning
parameters pi = 1−F (M̃i− u) (see Subsection 5.2) are all equal to 1. (The
consequence of having all pi = 1 is that the claim frequency distribution will
no longer be dependent on the severity distribution F .)

We see that en(u) is hardly linear from u = maxi(Mi) and up, so we
expect some distribution other than Pareto to provide the best fit when using
that threshold (or a lower one) in the POT-model. In fact, comparing the
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Figure 2: Mean excess plot of our data, zoomed in.

functions of Table 3 with Figure 2 would suggest that a Weibull distribution,
with τ < 1, is more appropriate. As for u = 4 · 106, we cannot rule out a
linear relation beyond that point, since the rightmost observations are quite
uncertain, and the seeming change of slope around u = 11 · 106 might only
be due to the scarcity of data. Hence, u = 4 · 106 could very well be a
suitable truncation point for fitting a Pareto (or Burr) distribution in the
POT framework. Anyway, we shall proceed to fit the POT-model at each
of these three truncation points, using all four severity distributions under
consideration.

Note that we have overlooked the fact that claims from different years
actually have different distributions, since they were sampled from left-
truncated distributions, with different truncation points Mi in force each
year. However, the differences between the Mi:s are slim when compared
to the actual claim values xij (see Appendix B), and we have chosen to
disregard it for now.

But the POT-model, described in Section 5, does take varying trunca-
tion points Mi into account. Applying it to our data, with the thresholds
u specified above, yields the parameter estimates of Appendix C. Only the
Poisson case has been included, since stable estimates of the Negative bino-
mial parameters could not be obtained. (This is because the mean value of
υini exceeds the sample variance, which meant that the ML estimates α̂ and
β̂ tended to infinity, and the corresponding negative binomial distribution
converged to a Poisson distribution, with intensity α̂/β̂.)

The tables in Appendix C would suggest that the Weibull distribution
gives the best fit for all three truncation points, but it is difficult to say what
slightly lower values of AIC and BIC mean in practice. It might therefore be
illuminating to plot the fitted cumulative distribution functions against the
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empirical ones. Figure 3 depicts the case where u = 2000000, and apart from
the fitted Log-Normal distribution failing to capture the tail behaviour of the
data, none of the other three proposed distributions really stand out. (The
fitted Burr curve coincided almost perfectly with the Weibull curve, hence
the difficulty of seeing it in the figure. Also, remember that the empirical
c.d.f. in Figure 3 is based on observations from distributions with slightly
different truncation points Mi, and the empirical probability assigned to the
interval [mini(Mi),maxi(Mi)] could be somewhat understated. But the same
pattern emerged with u = 2462963 and u = 4000000, with the only difference
being that the relative shortcomings of the Log-Normal distribution were
more pronounced in the latter case.)

But one thing that do set the different models apart, in the case when
u = 2000000, is the estimated Poisson intensity λ̂; as already mentioned,
this is because the Poisson thinning parameters pi = 1−F (M̃i − u) depend
on the fitted severity distributions F . Figure 4 is a zoomed in version of
Figure 3, where we have restricted ourselves to x ∈ [mini(Mi),maxi(Mi)].
It is clear that the pi parameters of the Burr and Weibull distributions are
different from those of the other two, but we have no way of telling which
ones are more correct. This fact is a source of concern, and we could argue
that if the severity distributions F provide a poor fit at that range, it is
best not to have them affect the frequency distributions at all. In our case,
where the truncation points Mi do not differ much between years, raising
the threshold u from mini(Mi) = 2000000 to maxi(Mi) = 2462963 will only
result in a loss of 4 observations, and it is probably wise to do so, in order
to achieve independence between the frequency and severity distributions.

Having u = 4000000, on the other hand, means losing as many as 19
observations, but we shall consider that case anyway, since the ME plots in
Figures 1 and 2 hinted that the characteristics of the severity distribution
are altered beyond that point.

All in all, the Burr and Weibull distributions do seem to fit the data
about equally well for all three truncation points, but the Weibull distri-
bution has one less parameter and is therefore preferable. However, raising
the threshold to u = 4000000 means that the Pareto distribution achieves
a similar level of fit, just as we predicted whilst looking at the ME plots.
The Log-normal distribution, on the other hand, is inadequate irrespective
of truncation point.

8.2 Seasonality estimation

As seasonal density πk, we combine the empirical discrete seasonal densities
obtained from the external data sets, covering European wind storms and
floods. For simplicity, we use the mixing weights (0.5, 0.5). Again, this
is just for illustrative purposes; a real life situation would call for a more
informed choice.
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Figure 3: Empirical and fitted c.d.f., u = 2000000.

Some trial and error (and subjective judgement) reveal that h = 15.5 is
a suitable bandwidth for local linear regression in this case. The resulting
density π̃k can be seen in the upper plot of Figure 5, where we have also
included the non-smoothed density; the spikes in the lower plot of Figure
5 represent the occurrence dates of the observed claims in our own claim
record.

It is hard to say much about the distribution of the observed claims, but
they do appear to occur more uniformly than π̃k would suggest. A great
deal of the time spent working on this thesis was devoted to finding a way of
adjusting the chosen π̃k, according to the observed claim occurrence dates.
We did have some success with multidimensional credibility models (see
Bühlmann and Gisler (2005, Chapter 7)), but every attempt at determining
the credibility weights remained heuristic, and ultimately it was decided
to leave it out of the thesis. Still, the credibility models could be worth
considering in practical, real-life situations, where heuristics need not be
shunned.
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Figure 4: Empirical and fitted c.d.f., zoomed in, u = 2000000.
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Lower: Occurence dates of the observed claims.
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8.3 Timeline simulation

Having fitted the frequency and severity distributions, and estimated the
seasonality, we now set out to model the losses resulting from our contract.
The total annual loss is given by

S =
N∗∑
i=1

Yi, (65)

where N∗ is the number of losses that occur during the contractual time-
frame, and

Yi = g(Xi) = min(10000000,max(Xi − 5000000, 0)), (66)

is the payout function of our XL contract.
200 000 simulation rounds, using the NHPP algorithm of Section 7.2 and

all the fitted distributions in Appendix C, produced the results presented
in Tables 4, 5 and 6. N

∗
, Y and S are the arithmetic mean values of N∗, Y

and S over all simulations, and s2
N∗ , s2

Y and s2
S are the corresponding sample

variances. It was found that 200 000 simulation rounds were enough to
provide N

∗
with two (more or less) stable decimals, but only one for the

other mean values; the need for a massive number of iterations is one of the
problems with Monte Carlo timeline simulation.

We have plotted the average number of claims per day and simulation
round in Figure 6, along with the intensity function λ(t); note the matching
seasonality.
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Figure 6: Simulated events from October 1 to December 31.

The premium is generally calculated by scaling up E[S], and we use S
as an approximation of this value. Hence, S is the most important quantity
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in the tables. (The scale factor is added to cover administrative costs, add
profit and security margins, compensate for the effect this particular contract
will have on the reinsurer’s capital requirements, etc.)

Starting with the case where u = 2000000 (Table 4), we see that the no-
table differences between the values of S are solely due to differences in N

∗
,

the average number of claims per simulation round, and the latter are direct
consequences of the models having different Poisson intensity estimates λ̂.
We have already established that this is undesirable in our case, and we
should be moving on to u = 2462963, but not before noting that the best
fitting severity distributions (Weibull and Burr) had S down to 4.9 · 106.

With u = 2462963 and u = 4000000 on the other hand (Tables 5 and
6), the best fitting severity distributions, (Burr, Weibull) and (Burr, Pareto,
Weibull) respectively, all produced nearly the same value: S = 5.1 · 106. We
can regard it as our best approximation of E[S], and the premium should
be set accordingly.

8.3.1 Some remarks

The computationally heavy Monte Carlo timeline simulation approach, using
the NHPP algorithm, is intended for models far more complex than the one
we have considered, and it made no sense to use it here. We could just as
well have calculated the exact value of E[S], using the relation

E[S] = E[N∗]E[Y ], (67)

or better yet, obtained the distribution of S through Ströter recursion or
some approximate method, see Johansson (1997, Chapter 5). But it was
intended merely as an illustrative example, and the same method can be
applied even if we expand the model, for example by introducing features
such as event causality, exact discounting using stochastic interest rates, and
incremental payouts at stochastic time intervals.

It is also important to be aware of the need for exceptionally many iter-
ations that come with simulating heavy-tailed distributions. This is because
the large, but rare events at the far end of the tail can have a massive im-
pact, and we need to make sure that the number of such observations in our
simulated sample is not disproportionate. But excess of loss contracts with
a fixed upper limit are immune to this problem, since the payouts from them
are capped anyway. It is probably wise to enforce a fixed upper limit to ev-
ery payout when performing Monte Carlo simulations, even if the contract
itself specifies no such amount; if nothing else, we could set the maximum
value at the level of the largest sum insured (minus deductibles, etc.)
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Quantity Pareto Burr Log-Normal Weibull

N
∗

1.60 1.73 1.63 1.73

s2
N∗ 1.61 1.72 1.63 1.72

Y 2.9 · 106 2.8 · 106 2.8 · 106 2.8 · 106

s2
Y 1.5 · 1013 1.5 · 1013 1.5 · 1013 1.5 · 1013

S 4.6 · 106 4.9 · 106 4.5 · 106 4.9 · 106

s2
S 3.7 · 1013 4.0 · 1013 3.8 · 1013 4.0 · 1013

Table 4: Results of the simulations when u = 2000000.

Quantity Pareto Burr Log-Normal Weibull

N
∗

1.42 1.43 1.43 1.43

s2
N∗ 1.42 1.43 1.43 1.43

Y 3.3 · 106 3.5 · 106 3.2 · 106 3.6 · 106

s2
Y 1.5 · 1013 1.6 · 1013 1.7 · 1013 1.7 · 1013

S 4.7 · 106 5.0 · 106 4.5 · 106 5.1 · 106

s2
S 3.8 · 1013 4.1 · 1013 3.8 · 1013 4.2 · 1013

Table 5: Results of the simulations when u = 2462963.

Quantity Pareto Burr Log-Normal Weibull

N
∗

1.03 1.03 1.03 1.04

s2
N∗ 1.04 1.03 1.03 1.03

Y 4.9 · 106 4.9 · 106 4.4 · 106 4.9 · 106

s2
Y 1.6 · 1013 1.6 · 1013 1.7 · 1013 1.7 · 1013

S 5.1 · 106 5.1 · 106 4.6 · 106 5.1 · 106

s2
S 4.1 · 1013 4.2 · 1013 3.8 · 1013 4.2 · 1013

Table 6: Results of the simulations when u = 4000000.
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9 Conclusions

We have looked at a general way of pricing reinsurance contracts using
Monte Carlo timeline simulation, and we applied it to a sample problem of
pricing a short term excess of loss contract. In most insurance applications,
we focus on modelling the annual number of claims, but with a short term
contract, we also have to take seasonal variation into account.

External data sets were used to estimate the seasonality, since our own
data set on historical losses was insufficient for the purpose. This meant
that we had to put some effort into finding external data sets that exhibited
a seasonal variation (believed to be) similar to that of our own data. A
logical continuation to this approach would be to find a way of modifying this
estimated seasonality, according to the occurrence dates of our own observed
claims, however few they are. We did experiment with multidimensional
credibility models in an attempt to do this, but we were unable to determine
the required credibility weights in a satisfactory way.

The Peaks Over Threshold model was used for parameter estimation,
and we extended it to allow more distributions than the usual Poisson-
Pareto combination. This proved to be a good idea, since both the Burr
and Weibull distribution provided a better fit than the Pareto distribu-
tion did. Parameter estimation is considerably more complicated for the
new severity distributions, since neither of them are stable under increasing
thresholds, but we were able to sidestep this problem by feeding a custom
log-likelihood into Matlab’s mle procedure, and supplying some carefully
chosen start values.

The timeline simulation approach to pricing was found to be painfully
slow, mostly because it required hundreds of thousands of iterations to give
us reasonably stable estimates of E[S], the expected total loss during the
contract period. In the case of very simplistic models, like the one we consid-
ered in our case study, there is no benefit to be had from using the method,
and it ought to be our last choice. But in more complex models, where we
incorporate features such as causality between events and exact discount-
ing with stochastic interest rates, there is no other way of estimating the
expected total loss, save for pure guesswork.

We did model the claim arrivals with a standard non-homogeneous Pois-
son process (NHPP), rather than a mixed one, simply because the variance-
to-mean ratio of the annual claim counts in our dataset was lower than one,
thus making the Gamma-mixed NHPP and its negative binomial distributed
claim counts unfit for the task. But the low variance could simply be a re-
sult of us having so few observation years (and having had the luck to avoid
years with unusually many claims till now). A useful extension would be to
replace the standard NHPP with a mixed NHPP, and let the user specify a
variance-to-mean ratio of his/her own liking.
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A Appendix: Properties of the Poisson process

Poisson and mixed Poisson processes are used in this thesis, and we state
here some relevant definitions, theorems and general properties that apply to
them. The following section has been adapted mainly from Grandell (1997)
and Mikosch (2004, Chapter 2), and we refer to those books for proofs and
a much more exhaustive treatment of the subject.

A.1 The Poisson distribution

A random variable N that is Poisson distributed has the probability function

P (N = n) =
λn

n!
e−λ, n = 0, 1, . . . . (68)

The intensity λ is a positive, real-valued constant, and it turns out that
E [N ] = V ar(N) = λ. If we replace λ by a random variable Λ, with distri-
bution U , we get the probability function

P (N = n) =

∫ ∞
0−

λn

n!
e−λdU(λ), n = 0, 1, . . . . (69)

This is known as a mixed Poisson distribution, with structure distribution
U . Its mean and variance are

E [N ] = E [Λ] , V ar (N) = E [Λ] + V ar (Λ) ≥ E [N ]

i.e. the variance is greater than in the regular Poisson case. The structure
distribution adds extra uncertainty, which results in overdispersion, or vari-
ance greater than the mean. A popular choice of U in the world of insurance
is the Gamma distribution, with density function

u(λ) =
βα

Γ(α)
λα−1e−βλ, λ ≥ 0. (70)

The resulting mixed Poisson distribution is the familiar Negative Binomial
distribution, with probability function

P (N = n) =
Γ(α+ n)

Γ(α)n!

(
β

β + 1

)α( 1

β + 1

)n
. (71)

A.2 Definition of the (mixed) Poisson process

The Poisson process (cf. Def. 2.1.1 in Mikosch(2004))

A stochastic process {N(t), t ≥ 0} is called a (non-homogeneous) Poisson
process if

1. N(0) = 0 a.s.
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2. The process has independent increments.

3. There exists a non-decreasing right-continuous function µ : [0,∞) →
[0,∞), with µ(0) = 0, such that the increments N(s, t] for 0 ≤ s <
t < ∞ have a Poisson(µ(s, t]) distribution. We call µ the mean value
function of N.

4. With probability 1, the sample paths {N(t, ω), t ≥ 0} of N are right-
continuous for t ≥ 0 and have limits from the left for t > 0. We say
that N has càdlàg sample paths.

We say that N has an intensity function λ(·) if, for any s < t, µ(s, t] has the
representation

µ(s, t] =

∫ t

s
λ(y)dy, s < t, (72)

for some non-negative measurable λ(·). We write µ(0, t] = µ(t).
If µ(s, t] = λ(t−s), then N is said to be a homogeneous Poisson process,

with intensity λ. The interarrival times of a homogeneous Poisson process
are Exp(λ) distributed.

Time-transformed Poisson processes (cf. Prop. 2.1.5 in Mikosch
(2004))

Let µ be the mean value function of a (non-homogeneous) Poisson process
N , and let Ñ be a homogeneous Poisson process with λ = 1. Then

1. The process
{
Ñ(µ(t)), t ≥ 0

}
is a Poisson process, with mean value

function µ.

2. If µ is continuous, increasing, and limt→∞ µ(t) =∞, then
{
N(µ−1(t)),

t ≥ 0} is a homogeneous Poisson process with λ = 1,

The arrival times of N can be written

Tn = µ−1(T̃n), T̃n = W̃1 + . . .+ W̃n, n ≥ 1, (73)

where W̃i ∼ Exp(1), i.i.d.

The mixed time-transformed Poisson process (cf. Def. 2.3.1 in
Mikosch (2004))

Let Ñ be a homogeneous Poisson process with λ = 1, and let µ be the mean
value function of a (non-homogeneous) Poisson process on [0,∞). Let θ > 0
a.s. be a (non-degenerate) random variable, independent of Ñ . Then the
process

N(t) = Ñ (θ µ(t)) , t ≥ 0, (74)

is said to be a mixed Poisson process, with structure variable θ and time-
transformation µ.

42



The Pólya process

If the Gamma distribution (70) is chosen as structure distribution, i.e.
θ ∼ Γ(α, β), and we set µ(t) = t, then N , defined by (74), turns into
the well-known Pólya process. It follows that N(t) has a negative binomial
distribution with parameters α and β/t, i.e.

P (N(t) = n) =
Γ(α+ n)

Γ(α)n!

(
β/t

β/t+ 1

)α( 1

β/t+ 1

)n
, (75)

which means that

E [N(t)] =
α

β
t, V ar (N(t)) =

α

β
t

(
β + t

β

)
.

The state-dependent intensity function of the Pólya process is written

λn(t) =
α+ n

β + t
. (76)
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B Appendix: Claim record

Year Month Day Threshold Total claim amount

1999 05 29 2 462 963 12 249 719
1999 08 16 2 462 963 2 975 570
1999 10 16 2 462 963 2 664 310
1999 10 19 2 462 963 4 843 643
1999 10 21 2 462 963 28 803 160
1999 12 31 2 462 963 2 581 505

2000 01 08 2 394 000 8 998 041
2000 02 29 2 394 000 19 192 770
2000 04 12 2 394 000 2 525 048
2000 11 12 2 394 000 3 506 784

2001 02 18 2 337 891 6 690 285
2001 03 21 2 337 891 6 840 724
2001 04 15 2 337 891 7 735 949
2001 07 06 2 337 891 22 735 453
2001 11 20 2 337 891 5 502 992

2002 01 21 2 284 351 12 231 508
2002 02 02 2 284 351 4 319 936
2002 06 23 2 284 351 11 920 201
2002 08 27 2 284 351 4 047 870
2002 10 15 2 284 351 18 747 798

2003 01 09 2 237 383 11 863 474
2003 02 01 2 237 383 3 315 314
2003 02 09 2 237 383 8 583 331
2003 02 13 2 237 383 72 600 645
2003 04 03 2 237 383 3 288 922
2003 06 11 2 237 383 12 915 567

2004 06 02 2 210 526 7 310 449
2004 08 14 2 210 526 4 556 231
2004 11 04 2 210 526 2 909 459

Table 7: Past claims on the cedant in our case study. The column ’threshold’
lists the mininum reported claim value for each year. All values have been
adjusted for inflation.
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Year Month Day Threshold Total claim amount

2005 04 26 2 172 414 35 481 413
2005 06 09 2 172 414 2 622 755
2005 06 26 2 172 414 2 774 559
2005 07 29 2 172 414 4 013 452
2005 08 11 2 172 414 32 467 085
2005 12 30 2 172 414 6 318 109

2006 02 03 2 131 790 8 562 321
2006 03 25 2 131 790 4 261 930
2006 04 06 2 131 790 2 261 505
2006 05 16 2 131 790 8 693 243
2006 07 12 2 131 790 3 213 754
2006 08 18 2 131 790 32 453 439
2006 10 09 2 131 790 8 872 902
2006 11 04 2 131 790 11 847 422
2006 12 03 2 131 790 3 083 331

2007 05 04 2 096 322 11 513 232
2007 06 13 2 096 322 2 103 970
2007 11 08 2 096 322 6 934 739
2007 11 27 2 096 322 5 070 308
2007 11 29 2 096 322 3 204 505

2008 03 04 2 027 096 2 037 138
2008 06 26 2 027 096 9 915 595
2008 07 26 2 027 096 2 736 579
2008 10 07 2 027 096 30 172 131
2008 12 09 2 027 096 2 318 316
2008 12 31 2 027 096 9 692 615

2009 08 08 2 000 000 2 480 056
2009 08 29 2 000 000 6 822 232
2009 08 31 2 000 000 9 640 000

Table 8: Past claims, continued...

Year: 1999 2000 2001 2002 2003 2004

υi 1.208 1.220 1.278 1.229 1.045 0.973

Year: 2005 2006 2007 2008 2009

υi 0.957 0.971 0.992 1.033 1.000

Table 9: Scale factor, υi.
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C Appendix: Parameter estimates

C.1 u = 2000000

Pareto Est. ll ul Burr Est. ll ul

α̂ 1.89 0.24 3.53 α̂ 2.58E6 1.55E6 3.59E6

θ̂ 7.77E6 0 1.79E7 θ̂ 4.35E10 3.10E10 5.60E10
τ̂ 0.63 0.60 0.66

Poisson Poisson

λ̂ 5.97 4.49 7.46 λ̂ 6.43 4.83 8.02

AIC 1855.1 AIC 1843.6
BIC 1859.6 BIC 1850.2

Log-N Est. ll ul Weibull Est. ll ul

µ̂ 14.81 14.29 15.33 ĉ 5.03E6 2.32E6 7.75E6
σ̂ 1.67 1.28 2.06 τ̂ 0.62 0.44 0.80

Poisson Poisson

λ̂ 6.07 4.56 7.58 λ̂ 6.45 4.85 8.05

AIC 1854.7 AIC 1841.2
BIC 1859.2 BIC 1845.7

Table 10: Parameter estimates for the POT-model, with u = 2000000.

C.2 u = 2462963

Pareto Est. ll ul Burr Est. ll ul

α̂ 2.08 0.11 4.06 α̂ 21.39 0 239.48

θ̂ 9.79E6 0 2.30E7 θ̂ 2.19E6 0 1.92E7
τ̂ 0.74 0.48 0.99

Poisson Poisson

λ̂ 5.31 3.95 6.68 λ̂ 5.31 3.95 6.68

AIC 1746.8 AIC 1745.8
BIC 1751.2 BIC 1752.1

Log-N Est. ll ul Weibull Est. ll ul

µ̂ 14.91 14.46 15.37 ĉ 6.64E6 4.03E6 9.25E6
σ̂ 1.72 1.39 2.04 τ̂ 0.72 0.57 0.86

Poisson Poisson

λ̂ 5.31 3.95 6.68 λ̂ 5.31 3.95 6.68

AIC 1749.8 AIC 1743.8
BIC 1754.2 BIC 1748.2

Table 11: Parameter estimates for the POT-model, with u = 2462963.
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C.3 u = 4000000

Pareto Est. ll ul Burr Est. ll ul

α̂ 3.17 0 7.53 α̂ 25.61 0 385.78

θ̂ 2.16E7 0 5.95E7 θ̂ 8.85E6 0 1.03E8
τ̂ 0.80 0.47 1.13

Poisson Poisson

λ̂ 3.86 2.70 5.02 λ̂ 3.86 2.70 5.02

AIC 1305.9 AIC 1306.8
BIC 1309.6 BIC 1312.2

Log-N Est. ll ul Weibull Est. ll ul

µ̂ 15.21 14.67 15.74 ĉ 8.44E6 0.49E7 1.20E7
σ̂ 1.70 1.32 2.07 τ̂ 0.78 0.59 0.97

Poisson Poisson

λ̂ 3.86 2.70 5.02 λ̂ 3.86 2.70 5.02

AIC 1314.3 AIC 1304.8
BIC 1318.0 BIC 1308.5

Table 12: Parameter estimates for the POT-model, with u = 4000000.
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D Appendix: ML-estimation of parameters

D.1 Number of claims: Poisson

D.1.1 Truncated distribution

If

• Ni|N = n ∼ Bin(n, pi)

• N ∼ Po(λ)

then

P (Ni = ñi) =
∞∑

n=ñi

P (Ni = ñi|N = n)P (N = n)

=

∞∑
n=ñi

(
n

ñi

)
pñii (1− pi)n−ñi

λn

n!
e−λ

=
(λpi)

ñi

ñi!
e−λ

∞∑
n=ñi

[λ(1− pi)]n−ñi

(n− ñi)!

=
(λpi)

ñi

ñi!
e−λeλ(1−pi) =

(λpi)
ñi

ñi!
e−λpi ,

which means that Ni ∼ Po(λpi), a thinned Poisson distribution with thin-
ning parameter pi.

D.1.2 ML parameter estimates

Ni ∼ Po(λpi) ⇔ P (Ni = ñi) =
(λpi)

ñi

ñi!
e−λpi

L(λ) =
m∏
i=1

(λpi)
ñi

ñi!
e−λpi

We take the logarithm and replace ñi by the scaled up values ñiυi (see
Section 2.1.1). This gives us the log-likelihood

l(λ) =

m∑
i=1

[ñiυi log λ− λpi] + constant

dl(λ)

dλ
=

m∑
i=1

[
ñiυi
λ
− pi

]

⇒ λ̂ =

∑m
i=1 ñiυi∑m
i=1 pi

(77)

48



D.2 Number of claims: NegBin

D.2.1 Truncated distribution

If

• Ni|N = n ∼ Bin(n, pi)

• N ∼ NegBin(α, β)

• Λ ∼ Γ(α, β)

then

P (Ni = ñi) =
∞∑

n=ñi

P (Ni = ñi|N = n)P (N = n)

=

∫ ∞
0

∞∑
n=ñi

P (Ni = ñi|N = n)P (N = n|Λ = λ)fΛ(λ)dλ

=

∫ ∞
0

∞∑
n=ñi

(
n

ñi

)
pñii (1− pi)n−ñi

λn

n!
e−λ

βα

Γ(α)
λα−1e−βλdλ

=

∫ ∞
0

βα

Γ(α)

(λpi)
ñi

ñi!
e−(β+1)λλα−1

∞∑
n=ñi

[λ(1− pi)]n−ñi

(n− ñi)!
dλ

=

∫ ∞
0

βα

Γ(α)

(λpi)
ñi

ñi!
e−(β+1)λλα−1eλ(1−pi)dλ

=
βα

Γ(α)

pñii
ñi!

∫ ∞
0

λñi+α−1e−λ(β+pi)dλ =

{
λ =

x

β + pi

}
=

βα

Γ(α)

pñii
ñi!

(
1

β + pi

)ñi+α ∫ ∞
0

xñi+α−1e−xdx

=
βα

Γ(α)

pñii
ñi!

(
1

β + pi

)ñi+α
Γ(ñi + α)

=
Γ(ñi + α)

Γ(α)ñi!

(
β/pi

β/pi + 1

)α( 1

β/pi + 1

)ñi
We recognize the last expression as the probability function of a thinned
negative binomial distribution, and conclude that Ni ∼ NegBin(α, β/pi).

D.2.2 ML parameter estimates

Ni ∼ NegBin(α, β/pi) ⇔

P (Ni = ñi) =
Γ(ñi + α)

Γ(α)ñi!

(
β/pi

β/pi + 1

)α( 1

β/pi + 1

)ñi
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L(α, β) =

m∏
i=1

Γ(ñi + α)

Γ(α)ñi!

(
β/pi

β/pi + 1

)α( 1

β/pi + 1

)ñi
=

m∏
i=1

α(α+ 1) · · · (α+ ñi − 1)

ñi!

(
β/pi

β/pi + 1

)α( 1

β/pi + 1

)ñi
Again, taking the logarithm, replacing ñi by ñiυi, and placing all terms that
do not depend on α or β in a constant term C, yields

l(α, β) =
m∑
i=1

[log Γ (ñiυi + α)− log Γ (α) +

+α log

(
β

β + pi

)
− ñiυi log (β/pi + 1)

]
+ C. (78)

The ML-estimates α̂ and β̂ are obtained by maximising (78), which has
to be done numerically.
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