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Abstract

The internet community pussokram.com can be considered as a social network, which
developed in time. Data on times when contacts between members took or received are
available. We will use two process models to study the dynamic properties of the network.
A pure birth process model is used to describe the time between contacts. A probability
model for the order, which new contacts are established is also applied. In the analysis,
ML-estimates and profile log-likelihood confidence intervals are calculated.

Internetsamfundet pussokram.com kan betraktas som ett socialt nätverk, som utveck-
las i tiden. Uppgifter p̊a när deltagare tog eller tog emot besök är tillgängliga för analys.
Vi använder tv̊a modeller för att studera nätverkets dynamik. En ren födelseprocess
används för att beskriva tiden mellan de kontakter en enskild medlem tar. En sanno-
likhetsmodell för ordningen som nya kontakter tas formuleras och studeras. Analyserna
bygger p̊a ML-skattningar och profil log-likelihooder.
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Chapter 1

Introduction

In this paper, we will use the contact data from the internet community pussokram.com
to study the dynamic development of a network of social contacts. The events in this
community can be represented as a dynamic network where the members are nodes and
the contacts, or visits, are edges. Our aim is to study how the number of visits grows
in time. Our goal is to understand the dynamic of this social network. We will use two
different approaches. In the first the number of contacts are considered as pure birth
processes. For each of n users, N1(·), N2(·), . . . , Nn(·) counts the number of visits. Indi-
vidual processes started at the time the first visit happened. In the second approach we
investigate how the probability to receive or make a new visit depends on the number of
previous visits.

In the second chapter, we introduce the background of the internet community pus-
sokram.com and describe the concept of preferential attachment process. This kind of
process which is based on the development of degree numbers can be seen as a pure
birth process. In the third chapter, we will estimate the jump intensities. And in chapter
four we consider a model for how previous visits influence the probabilities for future visits.

To achieve our goal in this paper, we will study two models:

� a pure birth process model which describes the successive times between contacts;

� a probability model where the aim is to describe how a new contact is chosen or
from whom a contact is taken. The models try to describe how the choices depend
on the number of previous contacts.
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Chapter 2

Background and Description

2.1 The Internet Community Pussokram.com

Pussokram.com was a Swedish Internet community for adolescents and young adults to
upload social video clip, write blog and communicate with others. Now it exists no more
and a new social website, 24suprme.com replaces it. During the spring and summer 2002,
the community had around 30 000 active users. The mean user age was 21 years and
approximately 70% of the users were female. Both age and sex were self-reported. It is
possible to have multiple accounts on the community. A crude check on the number of
accounts linked to every unique e-mail address indicates that this was not very common
(More than 99.7% of the membership accounts are associated with a unique e-mail ad-
dress and no e-mail address is associated with more than five accounts) [4].

pussokram.com had a pronounced romantic profile, where

1. Users were encouraged to send messages to others that they were secretly in love
with; The provider answered questions related to love and sex posed by the users
under the pseudonym Dr.love;

2. The design of the HTML pages made use of a romantic iconography well known
to the targeted users (with Valentine’s heart, deep red colors, etc. see Figure 2.1).
Nevertheless, a quick glance through some of the public guest books revealed that
many of the contacts taken were also non-romantic.

There were four major modes of communication at pussokram.com. A brief descrip-
tion of the four types of contacts follows:

1. The Messages were in effect intra-community e-mails. Messages were private in the
sense that no one in the community, except the sender and receiver, could access
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Figure 2.1: Screenshot of a typical user homepage at pussokram.com. ”User A”, ”User
B”, etc. symbolize user names.
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them. Not even information on how many messages other users had received are
retrievable for other users.

2. In Guest book signing, each user had a guest book that every community member
was free to write in.

3. Flirt or ’friendship request’: user A could ask user B to be her friend. If user
B accepts user A’s request then they could both easily see if the other is online
whenever they are logged into pussokram.com. Information on the friends of a
specific user is private to the user only.

4. A Friendship relation was established after acceptance of a friendship request, as
described above. The friendship network was thus bi-directional. A friendship could
be canceled by any of the friends [4].

We will only consider the Guest book generated by any of these users. Our data con-
sist of all the users activities on pussokram.com logged for 514 days from 13:39:25h on 13
February 2001 (t=0) to 1:39:25h on 11 July 2002. The smallest time-unit on the log is 1s.
The observations can be presented as a list telling who contacted whom at which time. In
the Appendix, we listed the first 10 visits and the last 11 visits during the period to show
the relationships. This also shows the form of the data that we analyze. We analyze the
activities of all users registered at time t = 0, as well as the activities of any new users
during this time span. Only the activities on the community will be studied; nevertheless
this recruitment might induce higher initial growth of active users.

2.2 Statistical Background

In this paper, we will study the dynamic network described above. The individuals who
wrote in others guestbooks are active users and the individuals whose guestbooks were
written are passive users. One individual can be active user and passive user at the same
time.

A preferential attachment process can be seen as a stochastic urn process, meaning a
process in which discrete units of wealth, usually called ”balls”, are added in a random
or partly random fashion to a set of objects or containers, usually called ”urns” [5]. A
preferential attachment process is an urn process in which additional balls are added con-
tinuously to the system and are distributed among the urns as an increasing function of
the number of balls the urns already have. In the most commonly cases, the number of
urns also increases continuously, although this is not a necessary condition for preferential
attachment [6]. In this paper, the individuals are the ”balls” and they join randomly to
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different states (the amounts of contacts), which are ”urns” in preferential attachment
process. Additional individuals are continuously coming into the system and the states
are increasing over time. We will study whether the probability that a user obtains a new
contact will be proportional to the previous contact number.

In connection with this dynamic network, some models are formulated and some al-
gorithms are developed for calculation. The analyses are build on the development of
degree numbers (the states) and can be described with a pure birth process (A pure birth
process is a birth-death process with null death rates for all of the states).

2.3 Description

In the data, id1 and id2 denote the active users respective passive users (cf the Appendix).
Their activities are listed according to chronological order. This builds a dynamic net-
work. The users are the nodes in the network. Whenever one contact occured, one link
was formed and casted from active user to passive user. We describe a simple network in
Figure 2.2. When the participant, id 34215, visited others, an arrow was casted from her
to the passive user precisely at the time the contact occured and when she was visited, an
arrow was from the active user to her at the time the contact occured. The time is marked
over the arrows. When the other participants visited or were visited at certain time, a
new arrow would be formed and casted from or to her. Therefore, a dynamic network was
formed. We notice that the user, id 34215, visited also herself. Overview the data of Guest
book for 514 days, the frequencies for different users to make and receive visits are various.

Figure 2.3 shows the number of visits made and received. Each point corresponds to
a specific user. The horizontal coordinates are the number of visits made and the vertical
coordinates are the number of visits received.

The points near the horizontal axis (e.g. in the ring on horizontal axis) indicate that
the corresponding users made visits frequently but received rarely. The situation is the
opposite for the users near vertical axis (e.g. in the ring on vertical axis). The users were
visited fairly many times, however they rarely visited others. The overall situation for
majority users is that less visits they received than made.

There are 18063 active users during the 514 days. And for 92.04%, the total number
of visits is less than 10. In the other words, a majority of active users did not make visits
frequently. Moreover, some active users visited different members at the same day. It
means that the development of the visit numbers is kind of leap-style instead of step by
step.
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Figure 2.2: The simple dynamic network of user 34215

Figure 2.3: The number of visits made and the number of visits received
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Figure 2.4: The number of users with different number of visits made

The histogram in Figure 2.4 reports the number of users with 1 through 10 visits. The
horizontal coordinates are the number of visits made and the vertical coordinates are the
number of active users. State i gives that the users made i visit(s) during the period. The
proportion is decreasing with the increase of states. Many users generated only one visit
during the 514 days.

There are 13774 passive users. Not all of them were active users. 88.34% passive users
did not receive visits frequently, less than 10 during the period. Some passive users were
visited by several users at the same time.

The histogram in Figure 2.5 shows the number of users with 1 through 10 visits. The
horizontal coordinates are the number of visits received and the vertical coordinates are
the number of passive users. The proportion of users decreases with the increase of states.
The amounts of active users as well as passive users are descreasing.
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Figure 2.5: The number of users with different number of visits received
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Chapter 3

Pure Birth Process Models

The analyses in this chapter are based on the assumption that the users stayed at state i
for a random time that is exponentially distributed. λi is defined as the intensity to leave
state i and 1/λi is the mean time to stay. A particular feature is that a participant can
make serveral contacts at the same time. This implies that, opposite what is commonly
assumed in birth process, there are jumps from state i to i+ k, where k > 1.

3.1 A Non-parametric Model for the Jump Intensi-

ties

For the convenience of analysis, we estimate only the first 20 visiting intensities without
any assumption of a parametric representation of the intensities. The intensities are es-
timated by the ratio of the amount of users jumping from state i and the time of users
staying at state i. The estimated visit intensities shown i Table 3.1 are ML-estimated (cf
the likelihood equation 3.3 below). As we mentioned before, this kind of jump is leap-
style. If the user jumped from state i to i+ k, she would not be at state i+ 1, ...i+ k− 1
and not spend any time in these states either.

λi =

∑
jump from state i∑

time at state i
(3.1)

The results are shown in Table 3.1.

A crude check on the intensities indicates that the intensities are increasing with the
number of previous contacts which means that the users will stay at a higher state for a
shorter time.
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Table 3.1: The intensities to make visits at the first 20 states
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.0034 0.0060 0.0085 0.0106 0.0129 0.0152 0.0170 0.0183 0.0216 0.0206
λ11 λ12 λ13 λ14 λ15 λ16 λ17 λ18 λ19 λ20

0.0215 0.0285 0.0293 0.0292 0.0261 0.0336 0.0311 0.0291 0.0290 0.0443

The ML-estimates of the visited intensities for the users are shown in Table 3.2.

Table 3.2: The intensities to receive visits at the first 20 states
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.0489 0.0062 0.0087 0.0105 0.0121 0.0140 0.0147 0.0178 0.0166 0.0218
λ11 λ12 λ13 λ14 λ15 λ16 λ17 λ18 λ19 λ20

0.0207 0.0251 0.0264 0.0268 0.0297 0.0331 0.0311 0.0312 0.0317 0.0423

Obviously, the first intensity is much larger than others. This indicates that the users
stayed at the first state for a very short time before jumping to the next state. From the
second state, the jump intensities are increasing with the increase of the states, which
indicates that the higher the state, the shorter time the users will stay.

3.2 Likelihood-Equations

We have estimated the jump intensities without any model and notice that the intensities
develop over the states. Now we try to find a regular pattern of them.

Assume that user j starts a birth process at the time of the first visit and denote the
jump intensities with λ1, λ2, . . . . Let τj,i be the time the user j spends at the state i,
i = 1, 2, ..., Nj. Nj is the last state user j stays. Then

f(τj,i) = λie
−λiτj,i , (3.2)

τj,i, i = 1, 2, . . . , Nj are independent and exponentially distributed random variables.
This property is used to derive the likelihood. The likelihood function for user j is then

Lj =

Nj−1∏
i=1

(λie
λiτj,i)Zj,iexp(−λNj

τj,Nj
), (3.3)

where

Zj,i =

{
1 if user j jumped from state i

0 otherwise
(3.4)
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The log-likelihood for user j is

lj = ln(Lj) = ln(

Nj−1∏
i=1

(λie
−λiτj,i)Zj,iexp(−λNj

τj,Nj
)) (3.5)

and the log-likelihood for all of the users is

l =
∑
j

lj =
∑
j

Nj−1∑
i=1

Zj,iln(λi)−
∑
j

Nj∑
i=1

Zj,iλiτj,i =

=
N−1∑
i=1

Zi.ln(λi)−
N∑
i=1

Zi.λiτi. =
N−1∑
i=1

Zi.ln(λi)−
N∑
i=1

λiTi.

(3.6)

In Equation 3.6, Zi. is the number of jumps from state i; Ti. is the total time all users
spending at the state i. If some users jumped over state i, the time for the users at state
i is null. N is the largest number of visits among all of the users and equal to 859 which
means that some user made 859 visits during the 514 days.

3.3 A Parametric Model for the Jump Intensities

Assume the jump intensities model is λi=γi
δ as is done in [3], and insert it into 3.6 in the

previous section. Then

l =
N−1∑
i=1

Zi.ln(γiδ)−
N∑
i=1

γiδTi. (3.7)

Differentiating Equation 3.7 with respect to γ respective δ yields

∂l

∂γ
=

1

γ

N−1∑
i=1

Zi. −
N∑
i=1

iδTi. (3.8)

and

∂l

∂δ
=

N−1∑
i=1

Zi.ln(i)− γ
N∑
i=1

iδTi.ln(i). (3.9)

Equating (3.8) to 0 gives the solution of γ which maximizes the log-likelihood function
of γ. That is

γ =

∑N−1
i Zi.∑N
i i

δTi.
. (3.10)
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Insert the solution (Equation 3.10) into (3.7) and yields a equation with δ

l(δ) =
N−1∑
i

Zi.(ln(
N−1∑
i

Zi.) + δln(i)− ln(
N∑
i

iδTi.))−
N−1∑
i

Zi.. (3.11)

Defferentiating the above function with respect to δ yields

∂l

∂δ
=

N−1∑
i

Zi.ln(i)−
N−1∑
i

Zi.

∑N
i i

δTi.ln(i)∑N
i i

δTi.
(3.12)

Equating the above function to 0 gives δ̂ = 0.7023, and insert it into Equation 3.10
yields γ̂ = 0.0048. Table 3.3 shows the first 20 visiting intensities estimated by this model.

Table 3.3: The intensities to make visits at the first 20 states
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.0048 0.0077 0.0103 0.0126 0.0147 0.0168 0.0187 0.0205 0.0223 0.0204
λ11 λ12 λ13 λ14 λ15 λ16 λ17 λ18 λ19 λ20

0.0256 0.0273 0.0288 0.0304 0.0319 0.0334 0.0348 0.0362 0.0376 0.0390

Comparing Table 3.1 and Table 3.3, the numerical in these two tables are very similar.
The following figure shows their tiny differences.

Figure 3.1: The differences between jump intensities estimated using the non-parametrical
approach (solid line) and the parametric approach (dotted line)
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In Figure 3.1, the horizontal coordinates are the states and the vertical coordinates are
the visit intensities. The dotted line is the jump intensities estimated by the parametric
model and the solid line is by non-parametric model.

The dotted line lies above the solid line for most states indicates that the visit inten-
sities estimated by parametric model are a little bit larger than the intensities without
model. The dotted line is nearly linear, meaning that the time users stay at states de-
creases almost proportionally with the increase of states.

With the same model, we estimate the intensities to receive visits and yield δ̂ = 0.6410
and γ̂ = 0.0051. The intensities of the first 20 states are shown in Table 3.4.

Table 3.4: The intensities to be visited at the first 20 states
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.0051 0.0079 0.0103 0.0124 0.0143 0.0161 0.0177 0.0193 0.0208 0.0223
λ11 λ12 λ13 λ14 λ15 λ16 λ17 λ18 λ19 λ20

0.0237 0.0250 0.0264 0.0276 0.0289 0.0301 0.0313 0.0325 0.0336 0.0347

Comparing the visited intensities with two estimations in Figure 3.1, the horizontal
coordinates in the figure are the states and the vertical coordinates are the visited intensi-
ties. The dotted line is the jump intensities estimated by parametric model and the solid
line is by non-parametric model.

The largest difference between the two lines is that the the first state has the largest
jump intensities among the 20 states in the solid line. The solide curve falls down from
the first states to the second state and then increases. Meanwhile, the dotted line is nearly
linear and increase all the way. The reason to the difference is probably that the time
between the first two visits is short in reality. So the visited intensity is estimated fairly
large with non-parametric model.

It seems that the first state is a special situation. In that case we adjust the model
so that it is only valid from state 2. δ̂ decreases to 0.5908 and γ̂ increases to 0.0061. The
new comparing figure is shown below.

In Figure 3.3 the dotted line is the visited intensities estimated by parametric model
and the solid irregular curve is by non-parametric model. The two curves are very near
each other. But for most states, the visited intensities estimated by parametric model are
a little larger than the ones by non-parametic model.
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Figure 3.2: The differences between jump intensities estimated using the non-parametrical
approach (solid line) and the parametric approach (dotted line)

Figure 3.3: The differences between jump intensities estimated using the non-parametrical
approach (solid line) and the parametric approach (dotted line) without state 1
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3.4 Confidence Intervals Based on Profile Likelihoods

We have estimated the value of δ̂ in the previous section. However, in practice it is more
informative to construct confidence interval for parameters than to test hypothesis about
their values. We illustrate Equation 3.11 with profile log-likelihood interval.

The profile log-likelihood function l(δ) is the function of δ that gives the maximal
likelihood obtainable for each δ (the maximum taken over the parameter δ) [2].

Evaluated at δ = δ̂, the profile log-likelihood confidence interval for δ is the set of δ
for which

−2[l(δ)− l(δ̂)] ≤ χ2
1(95%)[1]. (3.13)

The differences between l(δ) and l(δ̂) are shown in the following figures.

Figure 3.4: The profile confidence interval of visit respective visited log-likelihood function

In the two figures above, the smallest numerical-unit on the horizotal coordinate is
0.001. A 95% confidence interval is formed by all δ such that [l(δ)− l(δ̂)] ≥ −1

2
χ2

1(95%).
The figure on the left is for the visit intensities and figure on the right is for the visited
intensities. The vertexes of the two curves indicate where δ is exactly equal to δ̂ and
the log-likelihood functions are maximized. In that case, δ̂ is equal to 0.7023 respective
0.6410 for the visit and visited intensities.
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Chapter 4

Probability Model for the Order

We have analyzed the pure birth process model for jump intensities from state i to state
i + k. The jump intensities increase almost proportionally with the increase of state i.
The higher state, the shorter time users will stay. It seems that the higher state one
participant stays, the more eager she is to jump. We will now consider an analysis which
only takes the order in which new connections are established into account.

4.1 Probability to Receive Visits

In this section, we will study the probability to receive visits at different states.

Assume that the probability for user i to receive visits depends on the amount of visits
has been made until time t. We assume that

pi,t =
bαi,t∑
bαk,t

, (4.1)

where bi,t is the visited number of a specific user i in the system until time t and bk,t is
visited number of user k (k = 1, 2, . . . ). α is a parameter to describe how the probability
varies depending on the visits already received.

If α = 0, the probability to receive a new visit is equal for each user. If not, the
probability varies over time because bk,t is not a constant, varies over time and depends
on the number of visits a person has made previously. To simplify the computation, the
time is limited to be integral days, t = 1, 2, . . . , 514.

Assume that users receiving visits do not depend on each other. So the probability for
different users to receive a new visit is independent. Because of it, the likelihood function
of the probability for a specific user i is

18



Li(α) =
∏
t

bαi,t∑
k b

α
k,t

, (4.2)

then the log-likelihood function is

li(α) =
∑
t

αln(bi,t)−
∑
t

ln(
∑
k

bαk,t) (4.3)

.
For all the users in the system until time t, the log-likelihood function is the sum of

log-likelihood funtions of every user

l(α) =
∑′

(
∑
t

αln(bi,t))−
∑′

(
∑
t

ln(
∑
k

bαk,t)), (4.4)

where
∑′ indicates the summation over the indices of the users that received visits

until time t.

Differentiating Equation 4.4 with respect to α yields

∂l

∂α
=

∑′∑
t

ln(bi,t)−
∑′∑

t

∑
k b

α
k,tln(bk,t)∑
k b

α
k,t

(4.5)

Since the dynamic graph that we are studying is very large. It has not, for numerical
reasons, been possible to carry through these calculations. We have here only made a
simple analysis on the contacts taken during the last day by solving the ML-equation

∂l

∂α
=

∑′
(ln(bi,514))−H

∑
k b

α
k,514ln(bk,514)∑
k b

α
k,514

, (4.6)

where
∑′ denotes summation over the indices of the persons that are visited at the

last day; H is the number of users who received visits at the last day, and
∑

k is over all
persons in the system.

Equating the above function to zero yields α̂ that maximizes the log-likelihood func-
tion (Equation 4.4) based on the contacts during the last day. As we mentioned be-
fore, it is more interesting to consider the confidence interval of α̂ than its value. If
[l(α)− l(α̂)] ≥ −1

2
χ2

1(95%), α belongs to the 95% confidence interval.

The differences between l(α) and l(α̂) is shown in Figure 4.1. In the figure, the smallest
numerical-unit is 0.0001 on the horizontal axis. The vertical coordinates are the differ-
ences between l(α) and l(α̂). We know from the figure that the confidence interval of α̂ is
approximately between −0.1156 and 0.6169. When α̂ equals to 0.2690, the log-likelihood

19



function is maximized. However, the fact that α̂ = 0 is in the interval indicates that the
hypothesis that the probability to receive a new visit is independent of the number of
previous visits cannot be rejected.

Figure 4.1: The differences between l(α) and l(α̂)

4.2 Probability to Make Visits

We have illustrated the probability to receive a new visit and come to the conclusion that
different passive users have the same probability to receive a new visit. Then how is the
situation for users to visit others?

Assume that the probability for user i to visit others until time t is

pi,t =
bβi,t∑

k b
β
k,t + cβ

, (4.7)

where bk,t, k = 1, 2, . . . is the amount of visits of user k in the system until time t and
bi,t is the amount of visits of a specific user i. β is a parameter and c is constant. In this
paper, c is assumed to be 1.

Therefore, the likelihood function of user i is
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Li(β) =
∏
t

bβi,t∑
k b

β
k,t + cβ

(4.8)

For all of the users in the system until time t, insert c = 1, the log-likelihood function is

l(β) =
∑′∑

t

βln(bi,t)−
∑′∑

t

ln(
∑
k

bβk,t + 1), (4.9)

where
∑′ indicates the summation over the indices of the users that made visits until

time t.

Differentiating Equation 4.9 with respect to β yields

∂l

∂β
=

∑′∑
t

ln(bi,t)−
∑′∑

t

(

∑
k b

β
k,tln(bk,t)∑
k b

β
k,t + 1

) (4.10)

We only make analysis on the visits made at the last day by solving the ML-equation

∂l

∂β
=

∑′
ln(bi,514)−H

∑
k b

β
k,514ln(bk,514)∑
k b

β
k,514 + 1

(4.11)

where
∑′ denotes summation over the indices of the persons that made visits at the

last day; H is the number of users who made visits at the last day, and
∑

k is over all
persons in the system.

Equating the above function to zero yields β̂ which maximizes the log-likelihood func-
tion based on the contacts during the last day. As we did with α̂, we calculate a 95%
profile confidence interval of β̂. Figure 4.2 shows the differences between l(β) and l(β̂).

In Figure 4.2, the vertical coordinates are the differences between l(β) and l(β̂). The
minimun numerical-unit on horizontal is 0.0001. The confidence interval of β̂ is between
0.3835 and 1.0262. When β̂ = 0.7193, Equation 4.9 is maximized.

The fact that β̂ = 0 is not in the 95% profile confidence interval indicates that we can
reject the hypothesis that different users have the same probability to make a new visit.
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Figure 4.2: The differences between l(β) and l(β̂)
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Chapter 5

Conclusion and Discussion

With the previous results, we come to the following conclusions.

With the pure birh process model to analyse the time between two visits to make or
to receive, we got that the amount of visits has a slightly slower than linear development.
With the jump intensities, we can also estimate approximately the time one individual
needs to reach a certain state.

With the probability model describing the relationship between taken and received
visits, we got different results for the two kinds of probabilities. Because α̂ = 0 is in the
95% confidence interval of α̂, we come to the conclusion that the probability to be visited
is the same for all of the users regardless of the number of visits received. This seems
natural since the number of visits is not known to other users. However, β̂ = 0 is out of
the 95% confidence interval, so the probability for different users to make visit depends on
the number of previous visits. The positive values of β̂ indicates that the more previous
visits one individual has, the higher probability for her to make a new visit.

However, in our analysis, there are some defects. First of all, the data between day
495 and day 507 are missing. The website was maybe under maintenance, so users could
not log in and did anything. This would make error in our calculation.

Second, the estimates with non-parametric model and parametric model differ much
from the fifth state. The intensities estimated by two ways in general matches each other,
specially the first four states. However, the estimates without model fluctuate much from
the fifth state and over. Our opinion is that from the fifth state, less than 1000 users left
in the system, and even less users at the later states (The reducing of the users are shown
in Figure 2.4 and Figure 2.5). The shrinkage of data size affects the intensity estimates
without model. So the less data, the more inaccurate intensities would be estimated.
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The visited intensity estimated with non-parametric model at the first state differs
from the estimate with model, although there are more than 5000 users in the system.
The reason is probably that in reality users are passionate about visiting others in the be-
ginning, the time interval between two visits is small. Thus the total time for users to be
visited at the first state is short and we yield a fairly large jump intensity at the first state.

At the later states, users’ enthusiasm waned. Less and less users in the system visited
the guest books. The total time at the later accordingly decreases and the intensities in-
crease. The curves of visiting intensities and visited intensities are similar. This identify
our estimates from another aspect.

Third, when we illustrate the relationship between two specific users, We assume that
the probabilities for users to make visits or to receive visits are independent. This as-
sumption is a little over-theoretical. For example, if two users knew each other, then the
probability to visit each other would be probably higher than to visit other non-familiar
users. However when we estimate the probabilities, we did not account this kind of factor
into our analysis. Therefore there will be a certain gap between the estimates and reality.

The last but not least defect is when we estimate the parameter α and β, we did not
take all the days. Because of the limitations of computing capacity, we just calculate the
last day and make a simple analysis on the contacts occurs during the last day. There is
an error between the result and reality for certain. And unfortunately, we do not know
how large the error is. We could yield a more accurate result if we could approach a more
effective computing system.
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Appendix

Table 5.1: The first 10 visits
id1 id2 time

34215 8936 1.56
34215 34215 1.64
42172 34215 1.65
42183 42172 1.71
8838 8560 1.72
42172 8560 1.72
8560 8560 1.72

123154 8560 1.73
42183 8560 1.74
8936 8936 1.75

Table 5.2: The last 11 visits
id1 id2 time

172430 174138 513.37
143842 174157 513.37
162363 174157 513.37
174233 137070 513.38
174195 174157 513.39
172430 174232 513.39
174233 174157 513.39
28897 151940 513.43
162229 173284 513.46
138829 168547 513.47
172899 173503 513.50
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