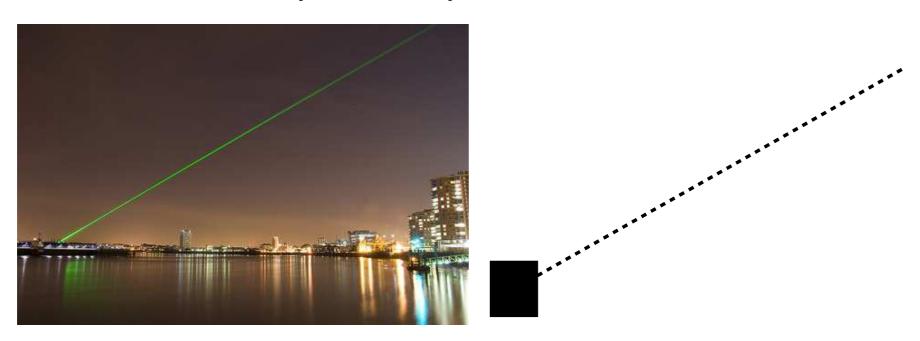
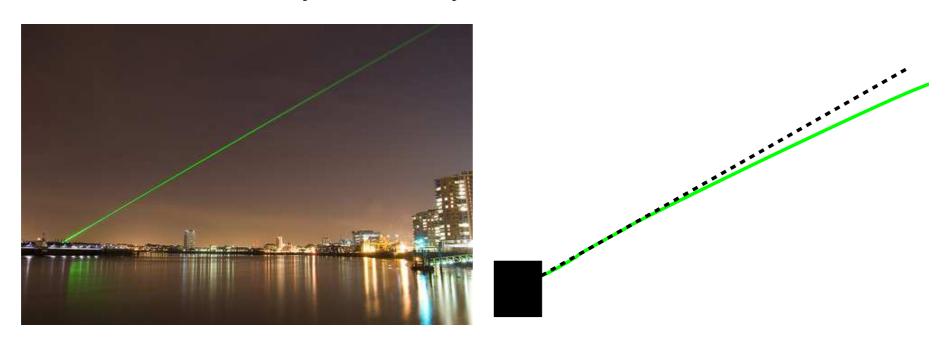
Rigidity of broken geodesics and inverse problems for radiative transfer equation

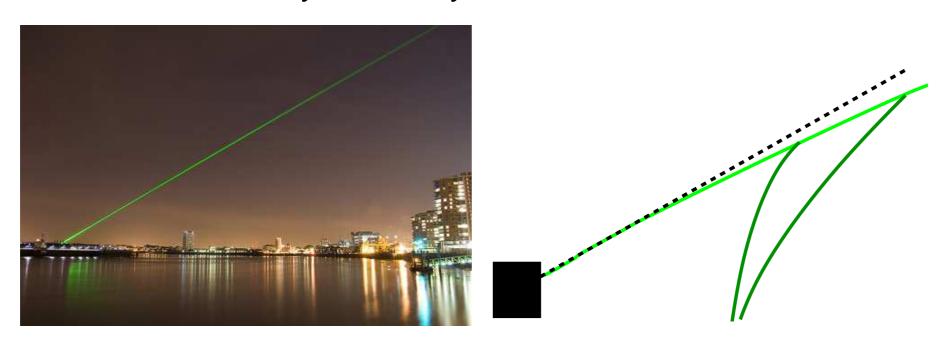
Matti Lassas

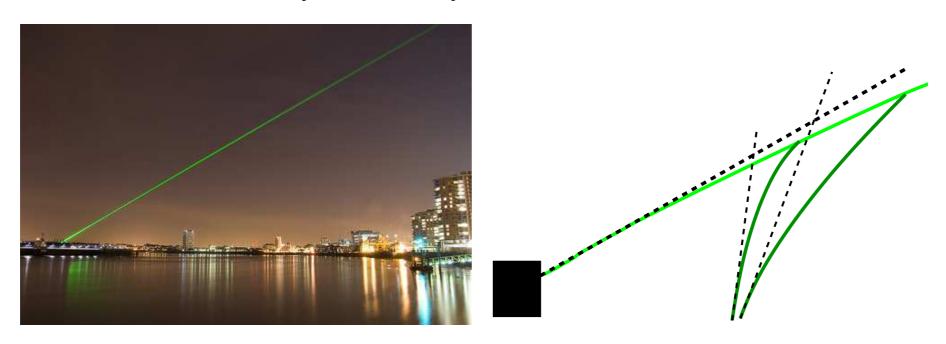
in collaboration with

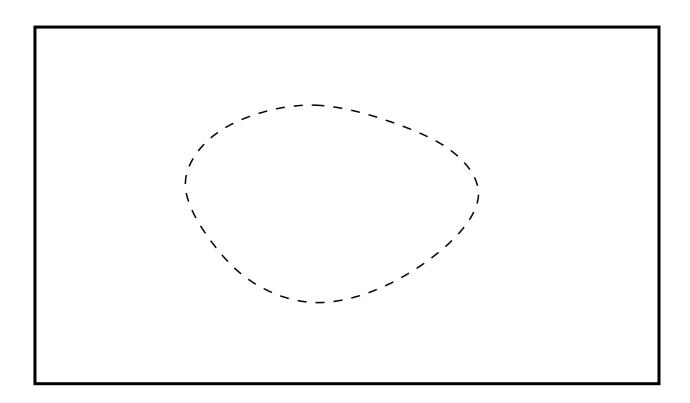
Yaroslav Kurylev Gunther Uhlmann

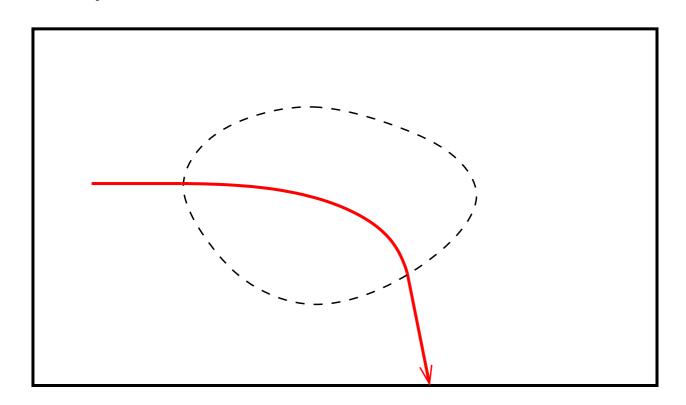


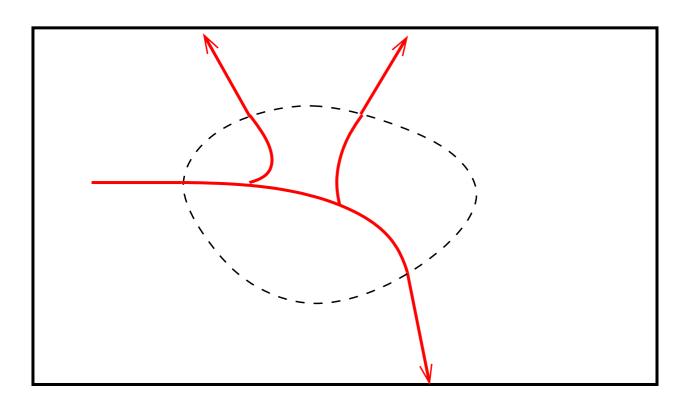


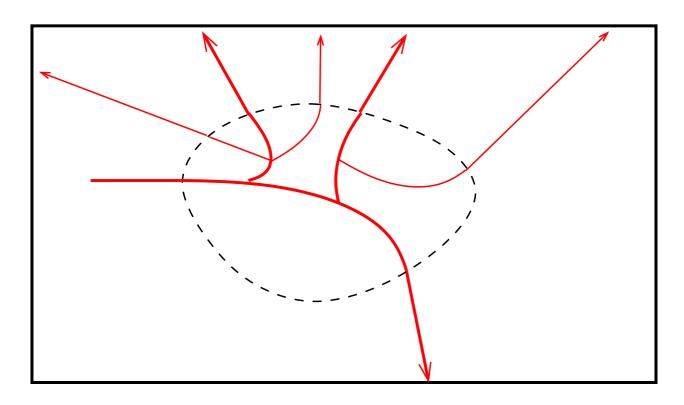












Radiative transfer equation. Consider

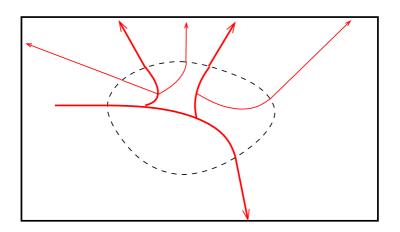
$$(Hu)(t, x, \xi) + \sigma(x, \xi)u(t, x, \xi) - (Ku)(t, x, \xi) = 0$$

 $u(t, x, \xi)|_{t=0} = w(x, \xi).$

Here $t \in \mathbb{R}_+$ and $(x, \xi) \in SN = \{(x, \xi) \in TN : ||\xi||_g = 1\}$. H is the geodesic flow on the sphere bundle $SN \times \mathbb{R}$,

$$Hu(t, x, \xi) = \frac{\partial u}{\partial t} + \xi^{i} \frac{\partial u}{\partial x^{i}} - \xi^{i} \xi^{j} \Gamma_{ij}^{k}(x) \frac{\partial u}{\partial \xi^{k}},$$

$$Ku(t, x, \xi) = \int_{S_{x}N} K(x, \xi, \xi') u(t, x, \xi') dS_{g}(\xi').$$

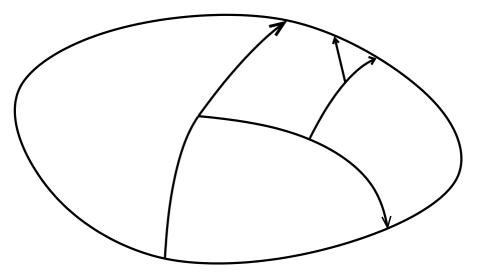


Previous results on radiative transfer the problem:

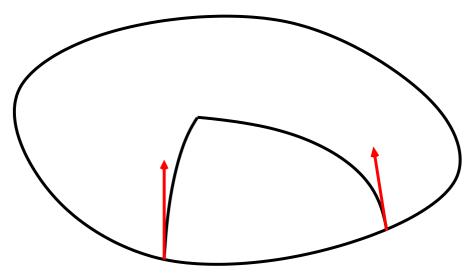
- Choulli-Stefanov
- McDowall
- Arridge

Determination of a non-trapping metric using travel times

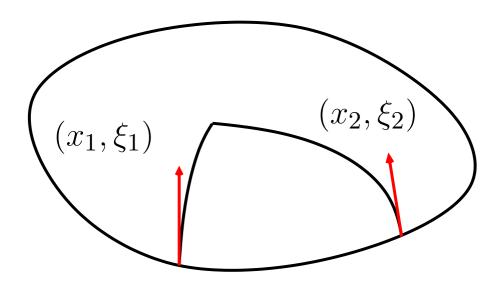
- Mukhomethov, Romanov
- Michel
- Gromov
- Croke, Otal
- Sharafutdinov
- Pestov-Uhlmann
- Stefanov-Uhlmann



Let us consider single scattering in M.



Let us consider single scattering in ${\cal M}$.



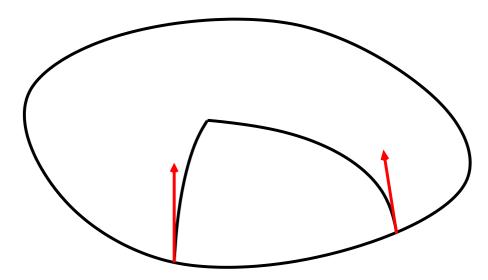
Denote by $\gamma_{x,\xi}$ be a geodesic with $\gamma_{x,\xi}(0) = x$, $\partial_t \gamma_{x,\xi}(0) = \xi$. Let $x_1, x_2 \in \partial M$, $\xi_1 \in S_{x_1}M$, $\xi_2 \in S_{x_2}M$. We say that (x_1, ξ_1) , (x_2, ξ_2) and time t are in broken scattering relation if

$$\gamma_{x_1,\xi_1}(s_1) = \gamma_{x_2,\xi_2}(s_2), \quad \text{ and } t = s_1 + s_2,$$

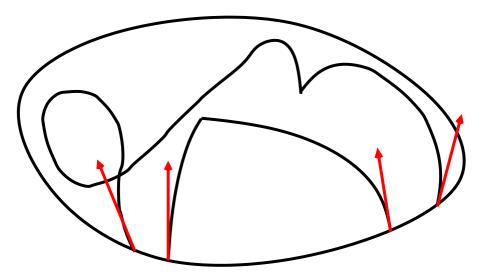
Then we denote

$$((x_1, \xi_1), (x_2, \xi_2), t) \in \mathcal{B}.$$

Then there is a broken geodesic from (x_1, ξ_1) to $(x_2, -\xi_2)$.

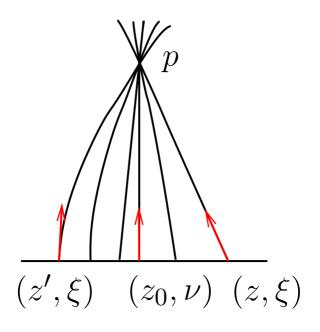


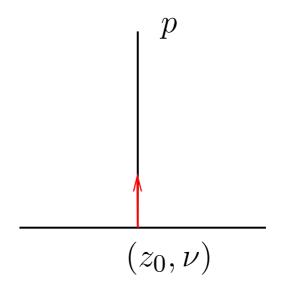
Theorem 1 Let (M,g) be a compact Riemannian manifold with a non-empty boundary of dimension $n \geq 3$. Then ∂M and the broken scattering relation $\mathcal B$ determine the manifold (M,g) up to an isometry.



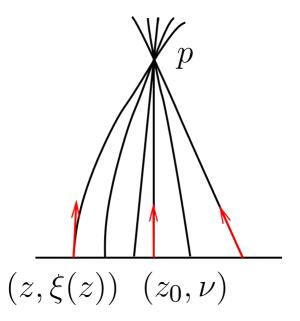
Theorem 2 Let (M,g) be a compact Riemannian manifold with a non-empty boundary of dimension $n \geq 3$. Then ∂M and the broken scattering relation $\mathcal B$ determine the manifold (M,g) up to an isometry.

Idea of the proof. Using boundary data we want to recognise when a family of geodesics intersect at the same point.

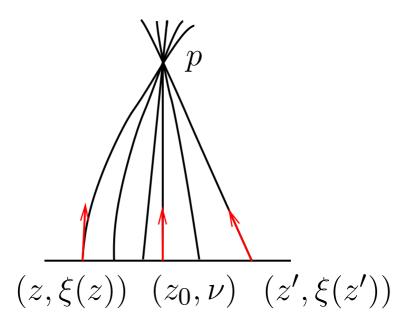




Let $z_0 \in \partial M$, $U \subset \partial M$ its neighborhood and $p = \gamma_{z_0,\nu}(t_0)$.



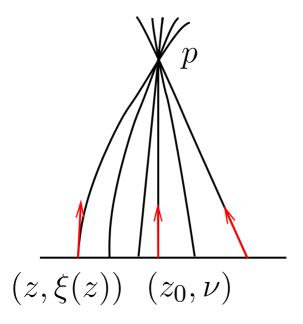
Let $z_0 \in \partial M$, $U \subset \partial M$ its neighborhood and $p = \gamma_{z_0,\nu}(t_0)$.



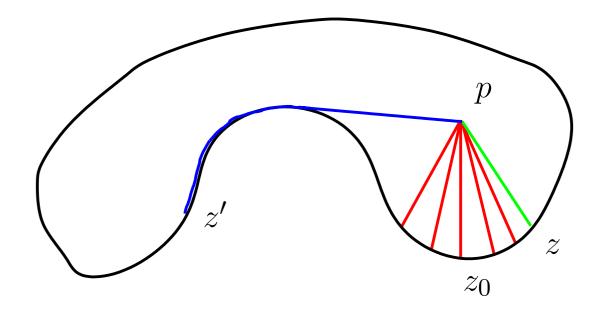
If all geodesics $\gamma_{z,\xi(z)}$ intersect at p and $t(z)=\mathrm{dist}\,(z,p)$, then

$$((z, \xi(z)), (z', \xi(z')), t(z) + t(z')) \in \mathcal{B}, \quad z, z' \in U \subset \partial M, \quad (1)$$
$$\xi(z_0) = \nu, \quad t(z_0) = t_0, \quad dt(z)|_{z_0} = 0. \quad (2)$$

Definition 1 $(U, \xi(\cdot), t(\cdot))$ is a family of focusing directions for z_0 and t_0 if (1) and (2) are valid.



Lemma 1 Let $(U, \xi(\cdot), t(\cdot))$ be a family of focusing directions for $z_0 \in \partial M$ and $t_0 < \tau(z_0)$ where $\tau(z_0)$ is a critical distance determined by the boundary data. Then all geodesics $\gamma_{z,\xi(z)}, \ z \in U$ intersect at the point p and $t(z) = \operatorname{dist}(z,p)$.



Lemma 2 Let $(U, \xi(\cdot), t(\cdot))$ be a family of focusing directions for $z_0 \in \partial M$ and $t_0 < \tau(z_0)$. The broken scattering relation \mathcal{B} determines function

$$z \mapsto \operatorname{dist}(z, p), \quad z \in \partial M, \ p = \gamma_{z_0, \nu}(t_0).$$

Boundary distance functions.

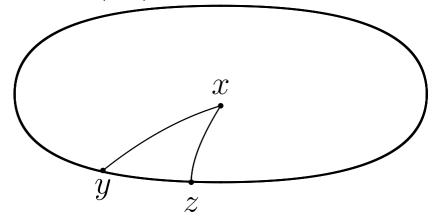
For $x \in M$ define

$$r_x(z) = \operatorname{dist}(x, z), \ z \in \partial M.$$

Let

$$R: M \to C(\partial M), \quad R(x) = r_x.$$

Next we consider R(M) as a submanifold on $C(\partial M)$.



In the Belishev-Kurylev-Tataru method the boundary distance functions are used to solve hyperbolic inverse problems.

Lemma 3 (Kurylev) The set R(M) has a Riemannian manifold structure which is isometric to (M,g).

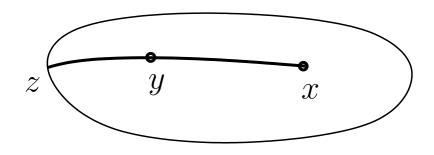
Example: Assume that (M,g) is compact and all geodesics are the shortest paths between their endpoints. By triangular inequality we have

$$||r_x - r_y||_{C(\partial M)} \le \operatorname{dist}(x, y), \quad x, y \in M.$$

For any $x,y\in M$ the geodesic from x to y hits later to $z\in\partial M$ and

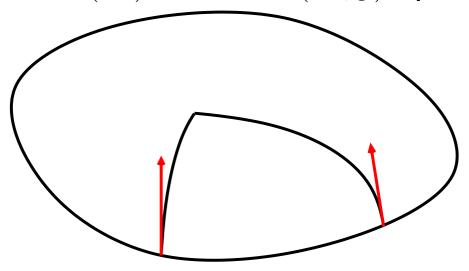
$$||r_x - r_y||_{C(\partial M)} \ge |r_x(z) - r_y(z)| = \text{dist}(x, y)$$

Then (M, d) is isometric to $(R(M), \|\cdot\|_{\infty})$.



Lemma 4 (Kurylev) The set R(M) has a Riemannian manifold structure which is isometric to (M, g).

The broken scattering relation \mathcal{B} determines the boundary distance functions R(M) and thus (M,g) upto an isometry.



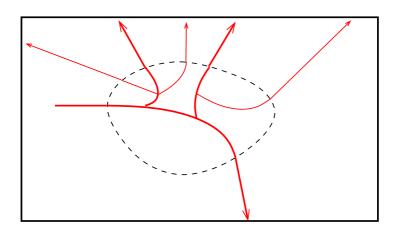
Inverse problem or radiative transfer equation. Consider the equation

$$(Hu)(t, x, \xi) + \sigma(x, \xi)u(t, x, \xi) - (Ku)(t, x, \xi) = 0,$$

 $u(t, x, \xi)|_{t=0} = w(x, \xi).$

on a complete and simple Riemannian manifold (N, g).

$$Hu(t, x, \xi) = \frac{\partial u}{\partial t} + \xi^{i} \frac{\partial u}{\partial x^{i}} - \xi^{i} \xi^{j} \Gamma_{ij}^{k}(x) \frac{\partial u}{\partial \xi^{k}},$$
$$Ku(t, x, \xi) = \int_{S_{x}N} K(x, \xi, \xi') u(t, x, \xi') dS_{g}(\xi').$$

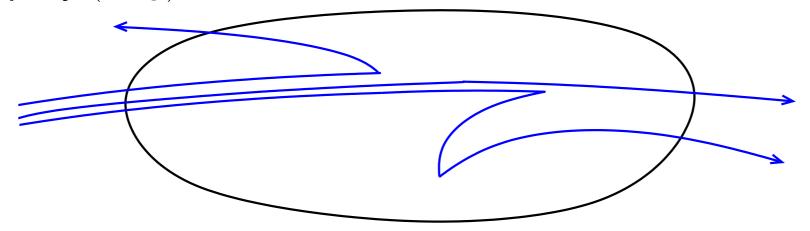


Let $M \subset N$ be compact, $U = N \setminus M$. Assume that we are given the measurement map

$$A: C_0^{\infty}(SU) \to C^{\infty}(\mathbb{R}_+ \times SU), \quad A(u|_{t=0}) = u|_{\mathbb{R}_+ \times SU}.$$

Theorem 3 Let N be a complete simple manifold of dimension $n \geq 3$, $M \subset N$ be compact and strictly convex. Assume that $K \in C_0^\infty(SM \dot{\times} SM)$ and $K(x, \xi, \xi') > 0$ for all $x \in M^{\mathrm{int}}$.

Then $U = N \setminus M$ and the measurement map A determine uniquely (M, g).

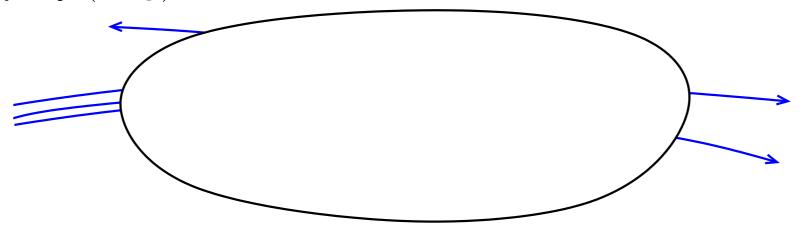


Let $M \subset N$ be compact, $U = N \setminus M$. Assume that we are given the measurement map

$$A: C_0^{\infty}(SU) \to C^{\infty}(\mathbb{R}_+ \times SU), \quad A(u|_{t=0}) = u|_{\mathbb{R}_+ \times SU}.$$

Theorem 4 Let N be a complete simple manifold of dimension $n \geq 3$, $M \subset N$ be compact and strictly convex. Assume that $K \in C_0^\infty(SM \dot{\times} SM)$ and $K(x, \xi, \xi') > 0$ for all $x \in M^{\mathrm{int}}$.

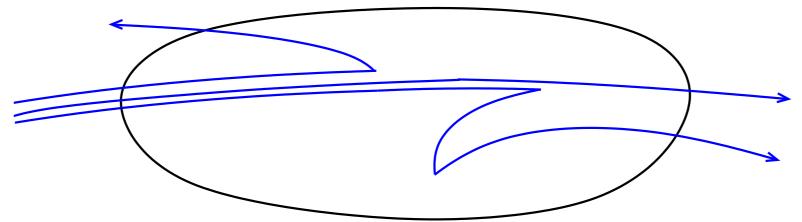
Then $U = N \setminus M$ and the measurement map A determine uniquely (M, g).



Idea of solution: Consider the Born series

$$u = u_0 + u_1 + u_2 + u_3 + \dots, \quad u_{j+1} = (H + \sigma)^{-1} K u_j.$$

Using Melrose-Uhlmann-Greenleaf calculus of conormal distributions, we can show that the ballistic photons u_0 and the single scattering photons u_1 dominate in the Born series.



Consider $X = \mathbb{R}^n$ with coordinates $x = (x', x'') \in \mathbb{R}^d \times \mathbb{R}^{n-d}$. Denote

$$S = \{x' = 0\}, \quad \Lambda = N^*S.$$

We say that $u \in \mathcal{D}'(X)$ is a Lagrangian distribution associated with Λ and denote $u \in I^m(X; \Lambda)$, if

$$u(x) = \int_{\mathbb{R}^d} e^{ix' \cdot \theta} a(x, \theta) d\theta, \quad a(x, \theta) \in S^{m+n/4-d/2}(X \times \mathbb{R}^d \setminus 0).$$

Note that $WF(u) \subset \Lambda$.

If $\Lambda_1, \Lambda_2 \subset T^*X$ are two cleanly intersecting Lagrangian manifolds, we can define

$$u \in I^{p,l}(X; \Lambda_1, \Lambda_2), \quad WF(u) \subset \Lambda_1 \cup \Lambda_2.$$

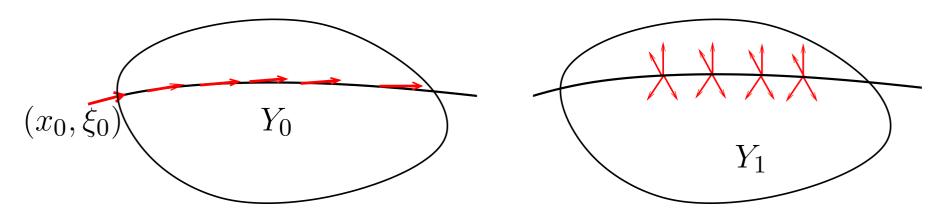
In the following we use X = SN.

Let $\gamma_0 = \gamma_{x_0,\xi_0}$ be geodesic starting from (x_0,ξ_0) and

$$Y_0 = \{ (\gamma_0(t), \partial_t \gamma_0(t)) \in SN : t \in \mathbb{R} \},$$

 $Y_1 = \{ (x, \xi) \in SN : x \in \gamma_0(\mathbb{R}) \}$

and define $\Lambda_0 = N^*Y_0$ and $\Lambda_1 = N^*Y_1$.



Let u be solution with the initial data $u|_{t=0}=\delta_{x_0,\xi_0}$. Let $\widehat{u}(k,x,\xi)=(\mathcal{L}u(\cdot\,,x,\xi))(k)$ be the Laplace transform of u in time t. Then

$$(P+\sigma+k)\widehat{u}-K\widehat{u}=w_0$$
 in $(x,\xi)\in SN$,

where $w_0(x,\xi) = \delta_{(x_0,\xi_0)}(x,\xi)$ and

$$Pv(x,\xi) = \xi^{j} \frac{\partial v}{\partial x^{j}}(x,\xi) - \xi^{l} \xi^{j} \Gamma^{m}_{lj}(x) \frac{\partial v}{\partial \xi^{m}}(x,\xi).$$

The operator $P + \sigma + k$ has a right inverse

$$\widehat{Q}_k: C_0^\infty(SN) \to C^\infty(SN).$$

Mapping properties of \widehat{Q}_k and the parametrix Q of H are known by Melrose-Uhlmann-Greenleaf calculus.

We can write $K = K_1K_2$,

$$K_j f(x,\xi) = \int_{S_x N} K_j(x,\xi,\xi') f(x,\xi') dS_g(\xi'), \quad j = 1,2$$

where $K_j(x, \xi, \xi') \in C_0^{\infty}(SN \dot{\times} SN)$.

The terms in the Born series can be written as

$$\widehat{u}_{j}(k) = \widehat{Q}_{k}(K\widehat{Q}_{k})^{j-1}K\widehat{u}_{0}(k)$$

$$= \widehat{Q}_{k}K_{1}G^{j-1}K_{2}\widehat{u}_{0}(k), \quad j \geq 1,$$

where for fixed k the operator

$$G = K_2 \widehat{Q}_k K_1$$

is pseudodifferential operator of order (-1), that is, an operator increasing smoothness by one.

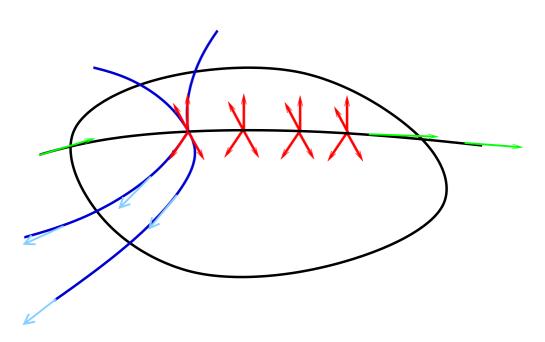
Lemma 5 We have

$$\widehat{u}_0(k, x, \xi) = c_0(x, k) \delta_{Y_0}(x, \xi) \in I^{r_0}(SN; \Lambda_0), \quad r_0 = (2n - 3)/4,$$

$$\widehat{u}_j(k) \in I^{r_j, -\frac{1}{2}}(SN; \Lambda_1, \Lambda_2), \quad r_j = -j + \frac{1}{4} + \epsilon, \ \epsilon > 0, j \ge 1$$

where Λ_2 is the flow-out of Λ_1 in char (P^{-1}) .

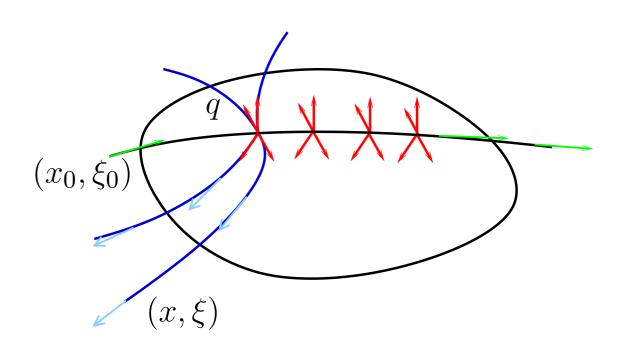
Thus with a fixed k the solution $\widehat{u}(x,\xi,k)$ determines the singularities of $\widehat{u}_1(x,\xi,k)$.



Singularities of $\widehat{u}(x,\xi,k)$ determine all points (x,ξ) , $x \notin M$, such that there is a broken geodesic from (x_0,ξ_0) to (x,ξ) with a breaking point in M^{int} . Let $q=\gamma_0(s)$ be the breaking point.

As $k \to \infty$, the principal symbol of $\widehat{u}(k)$ near $\Lambda_2 \setminus \Lambda_1$ has the asymptotics

$$a^{p}(x,\theta;k) = e^{k(dist(x_{0},q)+dist(q,x))}(c_{1}(x,\theta) + \mathcal{O}(k^{-1}))$$



Thus the singularities of $\widehat{u}(x,\xi,k)$ determine all points (x,ξ) , $x \notin M$, such that there is a broken geodesic from (x_0,ξ_0) to (x,ξ) with a breaking point in $M^{\rm int}$ and the function

$$dist(x_0, q) + dist(q, x), \quad q = \gamma_0(s_1).$$

Thus the singularities of $\widehat{u}(x,\xi,k)$ determine the broken scattering relation $\mathcal B$ that further determines (M,g) upto an isometry.

