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Introduction

Cardiac and, more generally, dynamic imaging is a
very important challenge facing CT. The main
difficulty is that the object being scanned changes
during data acquisition. In cardiac CT there are two
major groups of approaches for dealing with this
issue.
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Approach 1

One is based on gating, i.e. selecting the CT data
which corresponds to a fixed cardiac phase, and then
using mostly that data for image reconstruction. See
e.g. papers by a group from Philips (P. Koken, M.
Grass, C. Bontus, and others), M. Kachelriess, etc.

Local Tomography – p.4/63



Approach 2

The second aproach is based on incorporating a
motion model into a reconstruction algorithm. See
papers by U.v. Stevendaal, C. Blondel, J. Pack, F.
Noo, P. Grangeat, and others.

Typically these algorithms are of iterative nature, but
some progress has been achieved towards noniterative
reconstruction (Taguchi and Kudo 2007, Desbat,
Roux, Grangeat 2007).
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Local Tomography - overview

In this talk we develop local tomography (LT) for
image reconstruction from motion contaminated data.
LT was first proposed in E. Vainberg, E. Kazak, V.
Kurczaev 1981 and K.T. Smith and F. Keinert 1985.
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Local Tomography - overview

The goal of LT is to computeBf , whereB is an
operator that enhances singularities of the objectf
being scanned. InR2, B is an elliptic PDO of order
one (see papers by A. Faridani, D. Finch, F. Natterer,
AK, A. Ramm, and others). The main advantage of
LT is that it does not require irradiating the entire
cross-section of the patient.
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Local Tomography - overview

One possible application of LT is for imaging of
coronary arteries. See W. Spyra, A. Faridani, E.
Ritman, K. Smith 1990 for the first use of LT for
cardiac imaging.
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Background

In AK 2006 we investigated LT in the case of a
dynamically changingf . The main assumption in AK
2006 is that no information about the change inf is
available.

Now we assume that it is known howf moves. While
the problem of motion estimation is quite challenging,
significant progress has been achieved in this area and
good algorithms are available (see e.g. K. Taguchi et.
al. 2006).
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A few words on motion

To describe the motion we use the framework of
continuum mechanics, i.e. we track the location of
individual particles of the objectf over time. For the
purposes of this talk it is assumed that motion is
smooth.
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Overview of results - 1

We propose a new LT functionfΛ, which is related to
f via an operatorB: fΛ = Bf . Because of motion,B
may fail to be a PDO. We obtain the conditions that
guarantee thatB is a PDO. Under these conditions,
similarly to the classical LT inR2, B is a PDO of
order 1.
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Overview of results - 2

Computation offΛ depends on a weight functionΦ.
We show thatΦ can be chosen in such a way that the
operatorB has principal symbol|ξ|.
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Overview of results - 3

In practice tomographic data are discrete, and
derivatives are usually replaced by their mollified
analogues. We consider how mollification affects the
singularities of the LT functionfΛ. Using this
approach we develop an algorithm for finding values
of jumps off using LT.
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Source trajectory

LetC be a smooth curve inR2

[0, T ] ∋ s→ y(s) ∈ R
2, |ẏ(s)| 6= 0, s ∈ [0, T ].

C is also called a source trajectory. Usually the source
moves alongC with constant speed, so we regards
also as time variable.
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More on motion

Fix anys0 ∈ [0, T ] and call it the reference time.
Supposey = ψ(s, x) is the position of the particle at
time s, which is located atx at the reference time
s = s0. We assume that for eachs ∈ [0, T ] the
functionψ(s, x) : R

2 → R
2 is a diffeomorphism.

Physically this means that two distinct points cannot
move into the same position. This assumption is quite
natural, since cardiac motion is not infinitely
compressible.
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More on motion

The inverse ofψ is x = µ(s, y) : R
2 → R

2. µ gives
the original positionx of the particle at the reference
time, which is located aty at times. We assume that
bothψ andµ are identity maps outside of some open
setU , which contains the support of the object, and
ψ, µ ∈ C∞([0, T ] × R

2). As usual, we assume thatC
is at a positive distance fromU .
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More on motion

Obviously,

µ(s, ψ(s, x)) ≡ x, ψ(s, µ(s, y)) ≡ y.

Since matter is conserved, the x-ray density at times
and pointy is given by|∇µ(s, y)|f(µ(s, y)).
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The first LT function

Fix anyΦ ∈ C∞
0 ([0, T ] × R

2) and define the first LT
function:

f1(x) :=

∫ T

0

Φ(s, x)g(s, β(ψ(s, x), s))ds,

where

β(s, y) :=
y − y(s)

|y − y(s)|
.
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The first LT function

andg is the data

g(s, β) :=

∫ ∞

0

|∇µ(s, y(s) + tβ)|

× f(µ(s, y(s) + tβ))dt.
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The first LT function

Then

f1(x) =
1

(2π)2

∫

R2

f̃(ξ)a(x, ξ)e−iξ·xdξ,

where

a(x, ξ) :=

∫ T

0

∫ ∞

0

e−iξ·η(x,s,t)(·)dtds,

η(x, s, t) := µ(s, y(s) + t(ψ(s, x) − y(s))) − x.
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The first LT function

Our goal is to show thatf → f1 is an elliptic PDO.
Fix x ∈ U and consider the curve

γs(t) := µ(s, y(s) + t(ψ(s, x) − y(s))), t > 0,

for somes. Obviously,γs(t) is the preimage of the ray

L(s, x) := {y = y(s) + t(ψ(s, x) − y(s)), t > 0},

at the reference times = s0. γs(t) passes throughx

whent = 1 for anys ∈ [0, T ].
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The first LT function

Denote

A(s, x) :=
d

dt
γs(t)

∣

∣

∣

∣

t=1

= ∇µ(s, ψ(s, x))(ψ(s, x) − y(s)).
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The first LT function

Fix Θ(θ) = (cos θ, sin θ) and consider the equation

Θ · A(s, x) = 0,

which is to be solved fors. Let sj = sj(x, θ),
j = 1, 2, . . . , be the solutions. Our main assumption is
that at least one locally smooth solution exists for all
x ∈ U andθ ∈ [0, π). Clearly, a solutionsj is locally
smooth ifA(sj, x) andA′

s(sj, x) are not parallel.
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The symbol

The stationary phase method gives

a(x, λΘ0) =

2π

λ

∑

j

Φ(sj, x)|s
′
j(x, θ0)||∇µ(sj, ψ(sj, x))|

|∇µ(sj, ψ(sj, x))β(sj, x)|

+O(λ−2), λ→ ∞.

Thusa is a symbol from the classS−1 microlocally
near(x,Θ0).
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The symbol

ChoosingΦ appropriately we can get

a(x, λΘ0) =
2π

λ
+O(λ−2), λ→ ∞.

Thusf1 recovers all the singularities off uniformly,
i.e. regardless of their orientation.
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Artifacts?

The functionf1 may have additional singularities
(artifacts). They may arise if

[y′(s)(1 − t) + tψ′
s(s, x)] − ψ′

s(s, x̃) ‖ ψ(s, x) − y(s)

for somex̃ ∈ U , x 6= x̃, such that

ỹ := y(s)(1 − t) + tψ(s, x) = ψ(s, x̃) ∈ L(s, x).

The condition means that there is a particle
ỹ = ψ(s, x̃), which instantaneously stays onL(s, x).
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Artifacts?
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If ψ′
s is sufficiently small and the component ofy′(s)

perpendicular toψ(s, x) − y(s) is sufficiently large,
then artifacts do not occur.
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The second LT function
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Denoteg(s, β(s, x)) = g(s, u(s, x)).
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The second LT function

To emphasize the singularities inf we take the
Laplacian off1 and retain the leading singular term.
This gives the final LT function

fΛ(x) := −
1

2π

∫ T

0

Φ(s, x)g′′uu(s, u(s, x))ds.

Local Tomography – p.32/63



Summary

Theorem. Suppose for eachx ∈ U andθ ∈ [0, π)
there exists at least ones ∈ (0, T ) such that

1. Θ(θ) · A(s, x) = 0, and

2. A(s, x) andA′
s(s, x) are not parallel.

Suppose also that for anys ∈ [0, T ] andx ∈ U there
is no particley ∈ L(s, x), y 6= ψ(s, x), which
instantaneously stays on the ray. ThenfΛ = Bf ,
whereB is a PDO from the classS1(U) with principal
symbol|ξ|.
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Corollary

Recall the well-known formula:

F−1(1/|ξ|) = 1/(2π|x|), x, ξ ∈ R
2.

Fix ǫ > 0, and let|x|−1
ǫ denote a distribution, which

coincides with1/|x| in a neighborhood ofx = 0, is
C∞ outside ofx = 0, and equals zero for|x| > ǫ.
Define

fpl(x) =
1

2π
|x|−1

ǫ ∗ fΛ(x).

Corollary . Under the conditions of the Theorem, the
mapf → fpl is a PDO from the classS0(U) with
principal symbol1.
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Corollary

The Corollary implies that the differencef − fpl is
smoother thanf in the scale of Sobolev spaces.
Hence the problem of findingf in the motion
contaminated case can be split into two steps. First
one findsfpl, which is a high-frequency component of
f . At the second step one finds the low-frequency
componentf − fpl using an iterative approach. The
main advantage of this method is that to iteratively
find a low-frequency component of an image is much
easier than to iteratively find the whole image.
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Mollification

For numerical implementation we compute a
mollified version

fΛ,ǫ(x) :=

−
1

2π

∫ T

0

Φ(s, x)

∫

w′′
ǫ (u(s, x) − u)g(s, u)duds,

wherewǫ(u) is a family of mollifiers. Hence we need
to study howfΛ,ǫ(x) reflects the singularities off .

Local Tomography – p.36/63



Mollification
Assume thatf is a conormal distribution associated to
a smooth surfaceS. Pickx0 ∈ S and assume that
supp(f) is contained in a small neighborhood ofx0.
Choose a coordinate system such thatx0 is the origin,
andS is described by the equationz2 = h(z1), where
h(0) = h′(0) = 0. Thus thez2-axis is perpendicular to
S atx0.
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Mollification
Represent the Fourier transform off in the form

f̃(ξ1, ξ2) =

∫

A(z1, ξ2)e
i(h(z1)ξ2+ξ1z1)dz1,

where

A(z1, ξ2) ∼
∑

k≥0

Ak(z1)ξ
α−k
2 , ξ2 → ∞,

Ak(z1) ∈ C∞
0 (R) for all k ≥ 0, the asymptotic

expansion can be differentiated with respect toz1 and
ξ2, andα ∈ R is a constant.
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Mollification
We show that

fΛ,ǫ(x0 + ǫz) = Re

{
∫

Kǫ(z, v)w(v)dv

}

for some kernelKǫ(z, v).

The nature of the singularity ofKǫ asǫ→ 0 depends
on the singularity off acrossS.
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Mollification
The leading singular term ofKǫ is given by

Kǫ(z, v) ∼

A0(0)

πǫα+2

∑

j

Φ(sj, x0)
[(e2 · ∇µjβ

′
u)D(sj, x0)]

−α

|∇µjβ(sj, x0) · Θ′
s(sj, x0)|

|∇µj|

×

∫ ∞

0

λα+1 exp {−iλ(∇u(sj, x0) · z − v)} dλ.

We see the dependence onα.
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Mollification
Assumingf has a jump discontinuity, we obtain

∂

∂ρ
fΛ,ǫ(x0 + ǫρe2)

∣

∣

∣

∣

ρ=0

∼ −D(x0)
W0

πǫ
, ǫ→ 0,

whereW0 :=
∫

w(v)
v2 dv.
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Numerical experiment

Original phantom at reference time.
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Numerical experiment

The motion of the medium is described by the
function

ψ(s, x) = x+
{

15 cos(1.2s)25−|x−x0|
25 (cos θ, sin θ), |x− x0| < 25,

0, |x− x0| ≥ 25.

Herex0 = (100, 0) is the center around which the
motion is taking place andθ = 70◦.
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Numerical experiment

At reference time the domain|x1| < 200, |x2| < 200
was split into500× 500 small squares. Then evolution
of the grid was tracked over time. It was assumed that
each square was mapped into a quadrilateral. To
compute the tomographic data we used a ray-tracing
algorithm, which was based on computing the lengths
of intersections of the rays and quadrilaterals.
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Numerical experiment

-200 -100 100 200

-200

-100

100

200

Original image of the phantom at an intermediate
time.

Local Tomography – p.45/63



Numerical experiment

-200 -100 100 200

-200

-100

100

200

Original image of the phantom at an intermediate
time.
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Numerical experiment

Left panel - LT functionfΛ, right panel - gradient of
fΛ.
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Numerical experiment

-200 -100 100 200

0.2

0.4

0.6

0.8

1

Cross-section through the normalized gradient of the
fΛ along the line shown in the previous slide.
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Experiment with noise

Poisson noise was added to the projection data. It was
computed based on104 incident photons per detector
element. All other simulation/reconstruction
parameters are the same.
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Experiment with noise

Left panel - LT functionfΛ, right panel - gradient of
fΛ.
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Experiment with noise
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Cross-section through the normalized gradient of the
fΛ along the line shown in the previous slide.
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Frequency-split reconstruction

Recall that if

fpl(x) =
1

2π
|x|−1

ǫ ∗ fΛ(x).

thenf − fpl is smoother thanf in the scale of Sobolev

spaces.
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Frequency-split reconstruction
Evaluating the integral and keeping the leading
singular terms gives

fpl(x) ∼
R

2π2

∫ T

0

Ψ(s, x)

∫

g′u(s, u)

ux − u
duds.
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Frequency-split reconstruction

Ψ(s, x) =
ϕ(s)κ(θ′(s, x))

ϕ̄(x, θ(s, x))

|A′
s · Θ|

|∇µ(s, ψ(s, x))β(s, x)|

×
|[∇ψ(s, x)]tΘ|2

|ψ(s, x) − y(s)|2(e⊥ · Θ)2
.

After fpl is found, the differencef − fpl can be
computed iteratively.
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Numerical experiments

We use the same motion model and phantom as in the
case of local tomography.
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Numerical experiments

High-frequency localized reconstruction at reference
time. Full grey level scale. Noise-free data, correct
motion model.
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Numerical experiments

-200 -100 100 200

0.2
0.4

0.6
0.8

1
1.2

Hybrid reconstruction. Noise-free data, correct
motion model. Compressed grey level scale.
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Numerical experiments

High-frequency localized reconstruction at reference
time. Full grey level scale. Noisy data, correct motion
model.
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Numerical experiments

-200 -100 100 200
-0.25
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0.75
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1.25

Hybrid reconstruction. Noisy data, correct motion
model. Compressed grey level scale.
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Numerical experiments

High-frequency localized reconstruction at reference
time. Full grey level scale. Noise-free data, wrong
motion model.
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Numerical experiments
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Hybrid reconstruction. Noise-free data, wrong motion
model. Compressed grey level scale.
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Numerical experiments

High-frequency localized reconstruction at reference
time. Full grey level scale. Noisy data, wrong motion
model.
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Numerical experiments
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Hybrid reconstruction. Noisy data, wrong motion
model. Compressed grey level scale.
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