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Abstract

Consider an infectious disease which is endemic in a population divided into several large sub-communities that interact. Our aim is to

understand how the time to extinction is affected by the level of interaction between communities.

We present two approximations of the expected time to extinction in a population consisting of a small number of large sub-

communities. These approximations are described for an SIR epidemic model, with focus on diseases with short infectious period in

relation to life length, such as childhood diseases. Both approximations are based on Markov jump processes.

Simulations indicate that the time to extinction is increasing in the degree of interaction between communities. This behaviour can also

be seen in our approximations in relevant regions of the parameter space.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

When modelling infectious diseases a simplifying as-
sumption often made is that the social interaction within
the population is homogeneous. This assumption becomes
less credible as the population size increases, i.e. there is a
need for including some kind of population heterogeneity.
A way to include population heterogeneity is to divide the
population into sub-communities. By doing so we can, in
the easiest setting, allow two different levels of social
interaction, one level within and one between sub-commu-
nities. Under these conditions it is natural to let the social
interaction within sub-communities be homogeneous. In
the present paper we study how this new level of social
interaction affects the epidemic behaviour as an infectious
disease is introduced into the population. This we do for
the situation when there are k sub-communities each of size
n, where typical values of k is 2; . . . ; 5 and n is 50,000 or
larger. Throughout this report we will focus on infectious
e front matter r 2007 Elsevier Inc. All rights reserved.
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diseases which have a short infectious period in relation to
life length and give rise to life long immunity, e.g.
childhood diseases. When an outbreak of such a disease
occurs in a community, we have three possible scenarios.
The first being that only a few become infected and the
time to extinction is short. The second one being that many
become infected but the time to extinction is short. We are
interested in diseases that behave as in the third scenario,
namely when many individuals become infected and the
time to extinction is long. When a disease behaves in this
way it is called endemic. During the progression of an
endemic disease there is only a rather small fraction of
infectious individuals present in the population at each
time point, but since the time until disease extinction is
long, the accumulated number of infected individuals may
still be large. Usually the fraction of infected individuals at
each time point fluctuates around some specific level, the
endemic level, until disease extinction.
Whether a disease becomes endemic or not depends on a

number of factors, such as population size, the basic
reproduction number, length of the latency and infectious
period, seasonal effects, etc., see Anderson and May (1991,
pp. 128–143). In the present paper we are primarily
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interested in the effect of a community being divided into
sub-communities. For this reason we neglect most other
heterogeneities, and the most important factors remaining
are a sufficiently large population. The basic reproduction
number, R0, is defined as the expected number of
individuals that a single infectious individual infects in a
large susceptible population during its infectious period.
One can show that the basic reproduction number works as
a threshold which determines the dynamics of the disease
and that it is dimensionless, see Anderson and May (1991,
pp. 13–19). If R0p1, the disease will go extinct rather
quickly. On the other hand, if R041, the disease has a
positive probability to persist in the population over a long
time period. Henceforth R0 is assumed to be greater than
one. The notion of ‘sufficiently large population’ which we
have used above is not a trivial question, and this is
something we discuss in Sections 5 and 6.

When the population is divided into sub-communities
rather than being homogeneously mixing, the dynamics of
the spread of disease becomes more intricate. Now, some
sub-communities may be disease-free, while others contain
infected individuals, and infectious contacts between
individuals from different sub-communities may re-infect
disease-free sub-communities. It seems reasonable to
expect that the mean time to extinction of an endemic
disease depends on the social activity between the different
communities when keeping everything else fixed. This has
been shown to be true by Hagenaars et al. (2004).

Endemic diseases can be modelled stochastically in
several different ways. Depending on the model, different
aspects of the qualitative behaviour of the dynamics of the
disease can be studied. Our aim is to study the expected
time to extinction of an endemic disease in the situation
with a small number of large sub-communities, when each
sub-community starts at the so-called endemic level. The
model used is an SIR model for a population divided into
sub-communities. This model will henceforth be denoted
SIR-SC. For a homogeneously mixing population, from
here on denoted SIR-HM, much work has been done, see
for example van Herwaarden and Grasman (1995), Nåsell
(1999, 2005), and Andersson and Britton (2000b). For
more on epidemic models in general, see Anderson and
May (1991), Andersson and Britton (2000a) and Diekmann
and Heesterbeek (2000).

A short heuristic description of the SIR-HM model is
that all individuals in the community are equally likely to
meet, and that each individual may switch between being
susceptible, infectious and recovered (and immune). Thus,
switches occur according to S! I! R. Another impor-
tant property is that susceptible individuals are born into
the community and that individuals eventually die, i.e.
demographic aspects. This will also give us a nonconstant
community size. The version of this model which we use is
from Nåsell (1999), and does not allow for birth of
infectious individuals. Important results for the SIR-HM
model that we will use are from Nåsell (1999, 2005). There
approximations for the expected time to extinction when
starting at the quasi-stationary level of infection are
derived. Hagenaars et al. (2004) study the same expected
time to extinction as Nåsell but for the case with a small
number of sub-communities. They obtain an approxima-
tion of this expected time, but the approximation is derived
under the assumption of low mixing between communities
and that the infectious period is fairly long in relation to
life length. Human childhood diseases, having infectious
periods of 1–2 weeks out of life lengths of 70–80 years, fall
outside of this domain. For more information on infectious
periods of infectious diseases see Table 3.1 in Anderson
and May (1991, p. 31).
In the present paper we study the SIR model for a

population divided into sub-communities previously stu-
died by Hagenaars et al. (2004) and Lloyd and May (1996)
(who treat a more general model). Similar models can be
found in the metapopulation literature (sometimes also
referred to as patch models), see e.g. Keeling (2000a, b),
Etienne and Heesterbeek (2000), van den Driessche and
Watmough (2002), where they address related topics to
those which we treat here. In a paper by Wonham et al.
(2004) they also treat the situation when there are seasonal
effects. Other versions of SIR models with heterogeneities
are household models and models with several levels of
mixing, where the population is divided into many small
groups, see e.g. Ball and Lyne (2001), Ball et al. (1997) and
Ball and Neal (2002).
In the present paper we have adopted ideas from both

Nåsell (1999) and Hagenaars et al. (2004), trying to find
better approximations for t ¼ EðTQÞ, the expected time to
extinction for a population divided into sub-communities
given that all sub-communities are started at the endemic
level, for diseases with short infectious period with respect
to life length. We present two approximations of t, the first
one is based on similar arguments as in Hagenaars et al.
(2004) and the second one is based on more heuristic
arguments motivating the use of an exponential form.
Further, we show that TQ is exponentially distributed, and
by approximating t, we get that TQ�Expð1=tÞ. Simulations
indicate that our approximations are more suitable for
situations when there is low mixing between sub-commu-
nities and that the second, more heuristically motivated
approximation, performs somewhat better.
In Section 2 we define the sub-community epidemic

model and present results needed later on. In Sections 3
and 4 we describe our two approximations. Section 5 is
devoted to a small simulation study and numerical
evaluations of these approximations. A closing discussion
and summary of our results is given in Section 6.

2. The SIR model for a population divided

into sub-communities (SIR-SC)

We start with a brief look at the SIR model with
homogeneous mixing (SIR-HM) defined in Nåsell (1999).
We have a population which lack social structures
and where individuals may switch between the states
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Table 1

SIR model for a population divided into sub-communities rates for sub-

community j

From To Rate

ðsj ; ijÞ ðsj þ 1; ijÞ mn

ðsj ; ijÞ ðsj � 1; ijÞ msj

ðsj ; ijÞ ðsj � 1; ij þ 1Þ b
n

1

nð1þ �ðk � 1ÞÞ
sj ij þ �

P
uaj

iu

 !
ðsj ; ijÞ ðsj ; ij � 1Þ ðmþ nÞij
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susceptible, infectious and recovered (and immune) accord-
ing to S ! I ! R. Once an individual becomes infected,
this individual will stay so for an exponentially distributed
time with mean 1=n. During this time period the infected
individual makes infectious contacts with a given suscep-
tible individual according to a Poisson process with rate
b=n. All infectious contacts are assumed to result in
instantaneous infection. The demographic aspects of the
model are as follows: susceptible individuals are ‘born’
according to a Poisson process with constant rate mn, and
all individuals live for an exponentially distributed time
with mean 1=m. A consequence of the constant birth rate is
that the population size will fluctuate around n, which is
thought of as being large. This is deliberate to avoid that
the dynamics of the disease depend on extensive population
fluctuations. Once the population becomes disease-free, it
will remain so forever on, since there is no birth or
immigration of infectious individuals. Hence, the disease-
free states are absorbing, and all other states are transient.

When the population is divided into sub-communities
with higher mixing within, the dynamics of the disease
becomes more involved. The simplest case is to let all sub-
communities be equally large, having size n, and to let all
individuals have the same within sub-community contact
rates and the same between sub-community contact rates.
We are interested in the situation when the number of sub-
communities, k, is fixed and small in relation to n. With this
model the population structure is symmetric and we only
need to add one parameter, �, which is the proportion of an
individuals contacts that are with other sub-communities.
This parameter, �, is defined such that � ¼ 0 corresponds to
having k isolated sub-communities, and � ¼ 1 corresponds
to the case where all k sub-communities act as a single large
community of size kn. (One can also think of � as an inverse
distance, where � ¼ 0 corresponds to that all sub-commu-
nities lie infinitely far apart and � ¼ 1 corresponds to the
case when they coincide, and then � works as a measure of
spatial heterogeneity or spatial coupling, see e.g. Keeling,
2000a, b.)

A natural way to model the situation with sub-
communities is to do so such that the overall infectious
pressure in the entire population is kept constant regardless
of the value of �. This also has the advantage that we get
the same basic reproduction number, R0, as for the SIR-
HM model and hence the two models become easier to
compare. The basic reproduction number for the SIR-HM
model is defined as the average number of individuals
which a single infectious individual infects in an otherwise
susceptible population during its infectious period. That is,
a single infectious individual makes infectious contacts at
rate b=n with any given individual of the surrounding n

susceptible individuals, during an infectious period with
mean 1=ðmþ nÞ, since death can occur before recovery.
Thus R0 for the SIR-HM model becomes

R0 ¼
b

mþ n
¼

b
ma

, (1)
where a ¼ ðmþ nÞ=m. For the case with sub-communities,
an infected individual makes contacts with any given
individual within its own sub-community at rate b0=n, and
at rate �b0=n with a given individual in any of the k � 1
surrounding sub-communities. This gives us that the
probability that a contact is within the sub-community is

nb0=n

nb0=nþ ðk � 1Þn�b0=n
¼

1

1þ �ðk � 1Þ
.

If we have a single infected individual in an otherwise
susceptible population, this individual will infect a given
individual within its own sub-community at rate b0=n

during an exponentially distributed infectious period with
mean 1=ðmþ nÞ, and infect a given individual in any of the
k � 1 neighbouring sub-communities at rate �b0=n, hence
the basic reproduction number becomes

R0 ¼
1

mþ n
ðnb0=nþ ðk � 1Þn�b0=nÞ

¼
b0

mþ n
ð1þ �ðk � 1ÞÞ.

Thus, if we let b0 ¼ b=ð1þ �ðk � 1ÞÞ we see that we have
found the proper scale in order to keep R0 independent of
�. For this b0 we have

R0 ¼
b
ma

.

The possible transitions and their rates for the SIR-SC
model are specified in Table 1, which are the same as in
Hagenaars et al. (2004).
We now derive the endemic level. In the stochastic model

this corresponds to the mean in the quasi-stationary
distribution. Let ðXðtÞ;YðtÞÞ; tX0, denote a 2k dimensional
Markov jump process, where X jðtÞ ¼ sj and Y jðtÞ ¼ ij

denote the number of susceptible and infectious individuals
in sub-community j at time t, with random transition rates
defined in Table 1. If we now look at the process of
proportions ðXðtÞ=n;YðtÞ=nÞ, when n is large, this process
can be approximated by the solution of a deter-
ministic system of differential equations corresponding to
the transition rates defined in Table 1. This system
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is given by

dxi

dt
¼ m�

b
ð1þ �ðk � 1ÞÞ

xi yi þ �
X
jai

yj

 !
� mxi,

dyi

dt
¼

b
ð1þ �ðk � 1ÞÞ

xi yi þ �
X
jai

yj

 !
� ðmþ nÞyi. ð2Þ

Setting these equations equal to zero for i ¼ 1; . . . ; k gives
us the stationary points, which turn out to be (1, 0), the
disease-free state, and

ðx̂i; ŷiÞ ¼ ðx̂; ŷÞ ¼
1

R0
;
1

a
1�

1

R0

� �� �
, (3)

which corresponds to the endemic level, and which only
exists if R041. Equating the differential equations from (2)
to 0 when k ¼ 1, gives us the same endemic level as for the
SIR-HM model.

A quasi-stationary distribution is defined as the distribu-
tion after a long time conditioned on that the process has
not been absorbed. The endemic level can be thought of as
the mean of this distribution, which the process fluctuates
around. The quasi-stationary distribution is important
when modelling endemic diseases, since we are interested in
the behaviour of the epidemic until it goes extinct. But,
quasi-stationary distributions give rise to many difficulties
such as questions of uniqueness and existence, see Pollett
and Roberts (1990), and the occurrence of quasi-cycles,
Bartlett (1957) and Dushoff et al. (2004). A longer
treatment of quasi-stationarity concerning birth and death
process is given by van Doorn (1991).

Let Q ¼ fqx;yg denote the quasi-stationary distribution,
where qx;y is the probability that the process ðXðtÞ;YðtÞÞ ¼
ðx; yÞ as t!1, conditioned on that the process has not
been absorbed. Recalling that the lack of memory property
implies an exponential distribution, we have

PðTQ4tþ s j TQ4t; ðXð0Þ;Yð0ÞÞ�QÞ

¼ PðTQ4tþ s j TQ4t; ðXðtÞ;YðtÞÞ�QÞ

¼ PðTQ4s j ðXð0Þ;Yð0ÞÞ�QÞ,

which establishes that TQ is exponentially distributed. The
rate parameter for this exponential distribution is the
intensity with which the process leaves the set of transient
states. For the case with sub-communities the set of states
from which the process can be absorbed is
ðXðtÞ;YðtÞÞ ¼ fðx; yÞ; y ¼ ei; i ¼ 1; . . . ; kg. We state the con-
clusions from above in the following proposition:

Proposition 1. The time to extinction given that the process

is started in the quasi-stationary distribution, TQ, is

exponentially distributed with mean

t ¼
1

maq�;1
, (4)
where

q�;1 ¼
X
x

Xk

i¼1

qx;ei
(5)

and where ei is the ith unit vector.

The reasoning here is the same as in the proof of
Proposition 4.1 in Andersson and Britton (2000b), but this
result was first derived for the homogeneous case by Nåsell
(1999), and if we set k ¼ 1 in Proposition 1 we obtain the
result for a homogeneously mixing population. Another
way of obtaining (4) and (5) from Proposition 1 is via the
Kolmogorov forward equations for the process ðXðtÞ;YðtÞÞ
conditioned on that it has not gone extinct by time t, and
then use the identity PðTQpsÞ ¼ PðYðsÞ ¼ 0Þ.
To completely determine the distribution of TQ, it

remains to derive q�;1. One way to obtain an approximation
for q�;1 is to use a diffusion approximation. Let
ð eX nðtÞ; eY nðtÞÞ be the process defined by

ð eX nðtÞ; eY nðtÞÞ ¼
ffiffiffi
n
p X ðtÞ

n
� x̂;

Y ðtÞ

n
� ŷ

� �
. (6)

One can show that this process converges to an Ornstein–
Uhlenbeck process, ð eX ðtÞ; eY ðtÞÞ, as n tends to infinity, see
e.g. in Ethier and Kurtz (1986, Chapter 11). From the
theory of diffusion processes it is known that this process
has a Gaussian stationary distribution with mean zero and
computable covariance matrix, see e.g. Karatzas and
Shreve (1991, p. 357). This together with (6) gives us that
Y ðtÞ �

ffiffiffi
n
p eY ðtÞ þ nŷ ¼

ffiffiffi
n
p eY ðtÞ þ mY for large n, so that

Y ðtÞ is approximately NðmY ;s
2
Y Þ when t is large. But, now

the approximate marginal distribution of Y ðtÞ for large t is
defined on R, whereas the original process Y ðtÞ is integer
valued and always greater or equal to zero (we cannot have
a negative number of individuals). Thus, if we truncate the
approximate marginal distribution for the number of
infectious individuals at zero and use continuity correction
we get an approximation of the underlying quasi-stationary
distribution according to

q�;1 ¼
1

sY

jððmY � 1Þ=sY Þ

FððmY � 0:5Þ=sY Þ
, (7)

where Fð�Þ and jð�Þ are the standard normal distribution
function and density function, respectively, and

sY ¼ Sdð
ffiffiffi
n
p eY þ nŷÞ ¼

ffiffiffi
n
p

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 � 1þ R2

0=a
q

,

mY ¼ Eð
ffiffiffi
n
p eY þ nŷÞ ¼ n

R0 � 1

aR0
. ð8Þ

Here sY and mY are the expectation and standard
deviation of the marginal process of number of infected
individuals, see Nåsell (1999, Eq. (2.10)), which are
obtained with methods from Karatzas and Shreve (1991).
Using (7) together with Proposition 1 gives us that TQ is
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exponentially distributed with approximate mean

tn �
sY

ma
FððmY � 0:5Þ=sY Þ

jððmY � 1Þ=sY Þ
(9)

with sY and mY from Eq. (8), (cf. Nåsell, 1999, Eq. (2.13)).
From here on tn refers to the case with a homogeneously
mixing population of size n, and all other types of
references to t are for the case with sub-communities
unless otherwise stated. Note that usually mYb1 which
gives us that q�;1 from (7) simplifies to

q�;1 �
1

sY

jðmY=sY Þ

FðmY=sY Þ
�

1

sY

jðmY=sY Þ, (10)

where the last approximation is good when mY=sY43,
since then FðmY=sY Þ � 1 holds. When abR0, which is the

case for childhood diseases, then sY �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðR0 � 1Þ

p
=R0,

and q�;1 from (10) becomes

q�;1 �
1

sY

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðR0 � 1Þ

p
=a

� �
¼

R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pnðR0 � 1Þ

p exp �n
R0 � 1

2a2

� �
ð11Þ

and tn from (9) simplifies to

tn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pnðR0 � 1Þ

p
maR0

exp n
R0 � 1

2a2

� �
. (12)

When the average life length is long in relation to the
average infectious period, Nåsell (2005) shows that (9) is a
too crude approximation when n is only moderately large,
e.g. np2; 000; 000 for a specific set of parameter values
corresponding to measles, see Section 5 below. In Nåsell
(2005) he instead proposes that the quasi-stationary
distribution of the number of infected individuals could
be approximated with a geometric distribution with p ¼

1=mY where mY is from (8). If Y�GeoðpÞ then EðY Þ ¼

1=p ¼ mY which together with Proposition 1 with k ¼ 1
yields the following: When the quasi-stationary distribu-
tion of Y is approximated with a Geoð1=mY Þ distribution
with mean mY from (8), then TQ is exponentially
distributed with approximate mean

tn � n
R0 � 1

ma2R0
, (13)

c.f. Nåsell (2005, Eqs. (8.3) and (9.2)).
Returning to the case with sub-communities again, we

would like to use the techniques described above, but due
to symmetry the resulting Ornstein–Uhlenbeck diffusion
process approximated at the endemic level is independent
of �, and hence not of much help. Due to this, the second
approach will also give us an approximation of the quasi-
stationary distribution which is independent of �, since it
was a geometric distribution with parameter p ¼ 1=my,
where my is as (8), but with n replaced with kn. Despite of
this, we can still say something about the expected time to
extinction for the two extreme cases, � ¼ 0 and 1, using
results from the SIR-HM model. Let tð�Þ be the expected
time to extinction when all k sub-communities, each of size
n, are started at the endemic level, when there is a
proportion � of contacts between sub-communities. (Note
that tð�Þ ¼ tð�; n; k;m; a;R0Þ.) When � ¼ 0 all k sub-
communities are isolated and independent, and all k sub-
communities start at the endemic level of infection, the
expected time until one of the k infected sub-communities
recovers is tn=k, due to independence and that the expected
duration of an epidemic within a sub-community is
exponentially distributed with mean tn, where tn is from
one of Eqs. (9) or (13). Due to the Markov property and
that a disease-free community never can be re-infected
when � ¼ 0, the expected time until one of the k � 1
remaining communities recovers is tn=ðk � 1Þ. Repeating
this argument gives us

tð0Þ ¼ tn

Xk

i¼1

1

i
, (14)

where tn can be approximated using either of Eqs. (9) or
(13). On the other hand, when � ¼ 1, all k communities
behave as one large community of size kn, and we can
again make use of (9) with n replaced by kn, i.e.

tð1Þ ¼ tkn. (15)

If n is small we suggest to approximate tð0Þ and tð1Þ by
using the geometric approximation of tn from Eq. (13),
which gives us

tð0Þ
tð1Þ
¼

Pk
i¼11=i

k
(16)

which is smaller than one for k41, i.e.

tð0Þotð1Þ. (17)

If n is large we recommend to use the truncated normal
approximation of tn from (9) instead. For n such that
mY=sY43 and when we are in the parameter region
corresponding to childhood diseases we can approximate
tn with (12). Inserting this into tð0Þ and tð1Þ from Eqs. (14)
and (15) gives us that

tð0Þ
tð1Þ
�

Pk
i¼11=iffiffiffi

k
p exp �n

R0 � 1

2a2
ðk � 1Þ

� �
(18)

which is smaller than 1 for sufficiently large n, i.e.
tð0Þotð1Þ.

3. Approximation using a recovered (and immune) state

As we have seen, it is hard to find approximations of the
quasi-stationary distribution which depend on �. But, if we
rely on Proposition 1, that TQ is exponentially distributed,
we can approximate t ¼ EðTQÞ directly, instead of going
via approximations of the quasi-stationary distribution.
In Hagenaars et al. (2004) they look at the case when

0o�51 and a is thought of as small, such as a ¼ 2 or 160.
An example of a disease with small a is scrapie among
sheep, see Hagenaars et al. (2004). For scrapie the average
incubation period is a few years which is of the same order
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of magnitude as the average life length of sheep. Hence, for
diseases with small a one can assume that when an
individual recovers from infection, this individual will
likely be removed due to death within a relatively short
time period. This motivates that we can look at the system
from a sub-community view, classifying each sub-community
as either endemic or susceptible. That a sub-community is
endemic here means that the sub-community on average
has a fraction of infected individuals corresponding to the
endemic level ŷ. A sub-community that is susceptible only
contains susceptible individuals. Further, switches between
these two states are assumed to occur instantaneously.
This is a reasonable approximation, since the time it takes
from that a single individual becomes infected until the
endemic level of infection is reached is short in relation to
the time it takes for an endemic sub-community to become
disease-free.

When defining the rate with which susceptible sub-
communities becomes endemic, it is natural to think that
this rate depends on the infectious pressure generated by
the endemic sub-communities. But, we are only interested
in those infectious contacts between sub-communities that
result in a disease invasion and not those that fade out by
chance, so we must take this fact into account. Thus, we
need to derive the probability of this event. Suppose a sub-
community with a fraction x susceptible and 1� x

recovered (and immune) individuals has just been re-
infected, i.e. a single susceptible individual has become
infected. In the early stages of an epidemic it behaves
approximately as a branching process. When there is only
one infected individual in a population with a fraction x

susceptible individuals, the effective reproduction number
becomes xR0. Since the infectious period is exponentially
distributed, the number of children of this one infected
individual, D, will be Geoð1=ð1þ xR0ÞÞ, and we get that the
probability that the epidemic started by this single infected
individual will not fade out by chance, p, is the solution to
the following equation:

1� p ¼ Eðð1� pÞDÞ, (19)

see Andersson and Britton (2000a, pp. 22–25). Solving this
gives us the solution

p ¼ 1�
1

xR0
. (20)

From this we get that the probability that the introduced
disease will not fade out by chance in a fully susceptible
population is 1� 1=R0. The more general result from (20)
is needed later on.

One individual contacts a given individual from one of
the surrounding sub-communities at rate �b0=n, and hence
contacts a fully susceptible sub-community at rate �b0.
Consequently, a sub-community at the endemic level,
having ŷn infected individuals, infects a given susceptible
sub-community at rate �b0ŷn ¼ �bŷn=ð1þ �ðk � 1ÞÞ, which
is the same as the infectious pressure each endemic sub-
community expose each susceptible sub-community to.
This together with that each infectious contact has the
probability 1� 1=R0 that the introduced disease will
become endemic, gives us the rate with which susceptible
sub-communities become endemic.
If we again look at the rate with which sub-communities

becomes disease-free, this is thought of occurring indepen-
dently of everything else, i.e. the time to disease extinction
in a sub-community is exponentially distributed with mean
parameter t. From this we can define a birth and death
process of number of endemic sub-communities, with
transition rates

zj ¼ ðk � jÞj�n
mR0

1þ �ðk � 1Þ
1�

1

R0

� �2

;

Zj ¼ j=tn;

8><>: (21)

where zj is the rate for a transition from j to j þ 1 endemic
sub-communities, and Zj is the rate for a transition from j

to j � 1 endemic sub-communities.
Since � is small, the probability of re-infection will also

be small. Based on this fact Hagenaars et al. (2004) assume
that the probability of more than one re-infection during
the epidemic is negligible. Their approximation can be
described as the expected time to absorption of a birth and
death process for the number of endemic sub-communities,
with rates as in (21), which only allow one birth, or more
formally:

Approximation (Hagenaars et al., 2004). The expected time

to extinction given that the process is started at the endemic

level can be approximated by

tSIð�Þ ¼ tð0Þ þ � ðk þ 1Þ
Xk

j¼1

1

j
� 2k

 !

�t2nmR0 1�
1

R0

� �2

þOð�2Þ, ð22Þ

where tð0Þ is from (14) and tn is any approximation for a

homogeneously mixing population of size n, e.g. (9) or (13).

This corresponds to Eq. (6) in Hagenaars et al. (2004).
Here SI in tSI is used to emphasise that they only use the
two sub-community states, susceptible and infected, in
their approximation.
When a is large the approach to approximate the

expected time to extinction described above is not
completely feasible. Because in this situation, the approx-
imation that an endemic sub-community that becomes
disease-free instantaneously becomes susceptible is not
reasonable. One way to avoid this problem is to add a
recovered (and immune) state to our approximating sub-
community Markov process. A sub-community is defined
as being recovered (and immune) when it is disease-free but
not possible to infect. The difference between this state and
the susceptible state is that, when a sub-community is
recovered (and immune) there is on average a fraction x̂

susceptible and 1� x̂ immune individuals, as opposed to
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the susceptible state which only contain susceptible
individuals.

By introducing this type of transitions for the sub-
communities we have a communication between the
states of sub-communities that can be described as
S! I! R! S, so what we need to define is the rate, x,
with which a community makes a transition from R to S,
since (21) can be used for the other transitions. A transition
from R! S is similar to a I! S transition, so that one
way of defining this rate is to assume that a sub-community
stays immune for an exponentially distributed time with
mean tR. We will return to the definition of tR later.

Let s be the number of susceptible sub-communities and
i be the number of endemic sub-communities out of a total
of k sub-communities, so that k � ðsþ iÞ are recovered
(and immune), then the transition rates become

zs;i ¼ si�
mnR0

1þ �ðk � 1Þ
1�

1

R0

� �2

;

Zs;i ¼
i

tn

;

xs;i ¼
k � ðsþ iÞ

tR
:

8>>>>>>><>>>>>>>:
(23)

There are kðk þ 1Þ=2þ k possible states, and k of them are
disease-free and hence an absorbing class of states. For a
schematic graph of the dynamics of this process, see Fig. 1.

Based on the rates (23) we are able to set up a difference
equation for ~ts;i, the expected time to extinction when starting
with i endemic and s susceptible sub-communities out of k

possible, by conditioning on the first transition and using the
process’ lack of memory. We get the following relation:

~ts;i ¼ Eðftime to extinction from ðs; iÞgÞ

¼ Eðftime spent in ðs; iÞgÞ

þ Pððs; iÞ ! ðs� 1; i þ 1ÞÞ

�Eðftime to extinction from ðs� 1; i þ 1ÞgÞ

þ Pððs; iÞ ! ðs; i � 1ÞÞ

�Eðftime to extinction from ðs; i � 1ÞgÞ

þ Pððs; iÞ ! ðsþ 1; iÞÞ

�Eðftime to extinction from ðsþ 1; iÞgÞ
Fig. 1. Schematic graph of the dynamics in our approximating SIR

Markov jump process for k ¼ 3 sub-communities, where each node is (no.

of susceptible sub-communities, no. of endemic sub-communities) and the

rates are from (23).
which gives us that

~ts;i ¼
1

zs;i þ Zs;i þ xs;i
þ

zs;i

zs;i þ Zs;i þ xs;i

~ts�1;iþ1

þ
Zs;i

zs;i þ Zs;i þ xs;i

~ts;i�1 þ
xs;i

zs;i þ Zs;i þ xs;i

~tsþ1;i, ð24Þ

see Karlin and Taylor (1975, pp. 148–150). In general this
system has no closed form solution. Even so, by looking at
the transition rates (23) and the relation (24), we see that
we can write this as an equation system of the form

~t ¼ vþ A~t, (25)

where ~t ¼ ð~t0;k; ~t0;k�1; . . . Þ
0, v ¼ ðv0;k; v0;k�1; . . .Þ; vs;i ¼ 1=

ðzs;i þ Zs;i þ xs;iÞ, and A is the matrix with transition
probabilities defined by the rates (23). A general solution
to (25) is given by

~t ¼ ðI� AÞ�1v, (26)

which can be solved numerically, where I is the identity
matrix of the same dimension as A. As before, we are
mainly interested in the expected time to extinction when
all k sub-communities are initially endemic, i.e. ~t0;k. This
defines our first approximation of the expected time to
extinction.

Approximation 1. The expected time to extinction given that

the process is started at the endemic level can be

approximated by tSIRð�Þ ¼ ~t0;k, where ~t solves (25).

If we look at tSIR for the case k ¼ 2, using the rates from
(23), we get the following explicit expression:

tSIRð�Þ ¼ tð0Þ þ
�mnR0ð1� 1=R0Þ

2tRt3n
2ð�mnR0ð1� 1=R0Þ

2tRtn þ tR þ tnÞ
, (27)

where tð0Þ is from (14). From (27) one sees that tSIR is
increasing in �, and that if � ¼ 0 then tSIR ¼ tSI. For larger
values of k the calculations becomes more tedious, since the
number of unknown equations increases rapidly.
We now return to the derivation of tR, the expected time

which a sub-community stays recovered (and immune).
When a sub-community becomes recovered (and immune),
there is approximately a fraction x̂ ¼ 1=R0 susceptible
individuals and a fraction 1� x̂ immune individuals. The
problem now is that the probability that an introduced
disease will be able to persist depends on the fraction of
susceptible individuals in the sub-community.
If we look at the probability that the introduced disease

will become endemic, (20), we see that this probability is
zero when we have a proportion of susceptible correspond-
ing to the endemic level, and we know that this probability
is 1� 1=R0 when a sub-community is fully susceptible.
Thus, we can define the expected time which a sub-
community stays recovered (and immune) in terms of the
average time it takes until a fraction ~x4x̂ becomes
susceptible in a sub-community such that the introduced
disease will persist in the population with a pre-specified
probability. A natural, but somewhat arbitrary, choice of
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this probability is ð1� 1=R0Þ=2, i.e. half way between 0 and
1� 1=R0. This gives us that the fraction of susceptible ~x is
the solution to

1�
1

~xR0
¼

1

2
1�

1

R0

� �
,

which is ~x ¼ 2=ðR0 þ 1Þ � 2x̂ when R0 is fairly large.
While a sub-community is treated as recovered (and

immune), no infectious contacts may occur, and the
expected fraction of susceptible xðtÞ at a certain time point
t after becoming disease-free is given by the solution to the
differential equation

dx

dt
¼ mð1� xÞ;

xð0Þ ¼ x̂:

8<: (28)

Solving this equation gives us the relation

xðtÞ ¼ 1� ð1� x̂Þ expð�mtÞ. (29)

If we set xðtÞ ¼ ~x ¼ 2=ðR0 þ 1Þ and solve (29) in terms of t,
we get

t ¼ tR ¼
1

m
log

R0 þ 1

R0

� �
. (30)

Note that the longer we treat a sub-community as
recovered (and immune), the harder it gets for the infection
to persist in the rest of the population. If tR is close to zero,
we lose the effect of the recovered (and immune) state and
the approximation resembles that of Hagenaars et al.
(2004), and if tR tend to infinity it is the same as removing a
sub-community which becomes disease-free. Our sugges-
tion of an approximation of tR, (30), will give relatively
small values. But, as said before, it is hard to find a natural
definition of this quantity.
4. Approximation using an exponential form

When we introduced the SIR model for a population
divided into sub-communities, we derived the expected
time to extinction both for the case when all communities
are isolated and the case when they are mixing as one large
homogeneous community, corresponding to � ¼ 0 and 1,
respectively. We have also mentioned that these two
approximations cannot be improved along the present
lines without improving the approximations for the SIR-
HM model, Eqs. (9) and (13).

For 0o�o1 we now introduce a new approximation,
tExpð�Þ, by simply fitting an exponential curve having tð0Þ
as starting point and approximately tð1Þ as end point such
that t0Expð0Þ ¼ t0SIRð0Þ, i.e. we make use of the behaviour of
tSIR where we expect it to work satisfactory. These imposed
restrictions on the exponential curve determines it com-
pletely, and we propose the following approximation:

Approximation 2. The expected time to extinction given

that the process is started in quasi-stationarity can be
approximated by

tExpð�Þ ¼ tð1Þ � ðtð1Þ � tð0ÞÞ exp �
t0SIRð0Þ

tð1Þ � tð0Þ
�

� �
, (31)

where t0SIRð�Þ is the first derivative of (26) with respect to �,
and tð0Þ and tð1Þ are from Eqs. (14) and (15), respectively.

One can easily verify that tExpð0Þ ¼ tSIRð0Þ, t0Expð0Þ ¼
t0SIRð0Þ, and we see that when t0SIRð0Þbtð1Þ � tð0Þ then
tExpð1Þ � tð1Þ, as desired. To see that this is reasonable,
look at the exponent of (31), �t0SIRð0Þ�=ðtð1Þ � tð0ÞÞ, when
k ¼ 2 and use tSIR from (27). We then get that t0SIRð0Þ ¼
mnðR0 � 1Þ2tRt3n=ð2R0ðtR þ tnÞÞ and a first order expansion
of tR around 1 gives us that tR � 1=ðmR0Þ which together
with the geometric approximation of tn from (13) yields

�
t0SIRð0Þ

tð1Þ � tð0Þ
� � �n3 ðR0 � 1Þ4

R3
0ma2ða2 þ nðR0 � 1ÞÞ

�, (32)

which is a very small number for reasonable parameter
values and choices of n. We illustrate this with a numerical
example: suppose that we have a population which is
separated into two equally large sub-communities of size
n ¼ 50; 000. Suppose further that the average infectious
period is 1 week and a typical individual lives for ca. 70
years, i.e. a � 3500. This together with R0 ¼ 14 and � ¼ 1
gives us that the exponent (32) is approximately �475, and
expð�475Þ � 0, thus tSIRð1Þ � tð1Þ.
5. Examples and simulations

We now compare our two approximations with simula-
tions for some different parameter values and number of
sub-communities. For childhood diseases the average
infectious period is typically 1–2 weeks, see Anderson
and May (1991, pp. 81–86). This together with the
assumption that the average life length among individuals
in the population is 70 years, gives us a-values between
1800 and 3500. Usually, these kind of diseases have values
of R0 around 10 or higher, see Table 4.1 in Anderson and
May (1991, p. 70). We have chosen to set R0 to 14 in
compliance with Nåsell (2005). These are the
parameter values which we will use. As for the number of
sub-communities we have chosen to concentrate on k ¼ 3
and 5.
All simulations have been done using Monte Carlo

simulation and the routines are written in the C-program-
ming language. For graphical presentation MATLAB has
been used. The expected time to extinction when starting in
quasi-stationarity is estimated from the simulations as
follows: initially, 500 epidemics were started at the endemic
level, which is the mean in the limiting quasi-stationary
distribution. Then the epidemics were simulated long
enough for 100 of them to go extinct, and at this time
point, the clock for the remaining 400 simulations was
started. These starting points will be approximately from
the quasi-stationary distribution since the epidemics have
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Fig. 2. In (a)–(f) we have used a ¼ 3500 and R0 ¼ 14, and time is measured in units of life lengths. In (a) and (b) we have a total population size of

ntot ¼ 150; 000, but in (a) there are k ¼ 3 sub-communities where as in (b) k ¼ 5. In (c) and (d) ntot ¼ 900; 000 and k ¼ 3 and 5, respectively. Further, (e) is

same as (d), but here tð0Þ and tð1Þ are approximated with the values corresponding to � ¼ 0 and 1 from the simulation, and tn can be obtained from tð0Þ. In
(f) ntot ¼ 2; 500; 000 and k ¼ 5.
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been started at the endemic level together with the fact that
they had not gone extinct for some time.

Depending on the parameter values we have alternated
between using the truncated normal and geometric
approximation of the quasi-stationary distribution. For
more on the appropriate choice of approximation in
different parts of the parameter region see Nåsell (1999,
Fig. 3). Roughly one can say that for the present parameter
values, the geometric approximation, Eq. (13), is to prefer
if n is smaller than ca. 500,000 to 600,000 and when n is
greater than ca. 2,000,000 one should use the truncated
normal approximation, Eq. (9). For values of n in between,
neither of the approximations work well. In Fig. 2a we
have a total population size of ntot ¼ 150; 000 and k ¼ 3,
i.e. n ¼ 50; 000, and in this parameter region we use the geo-
metric approximation of the quasi-stationary distribution.
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By studying the graphs we see that both approximations
work well for small values of �, but that tExp also works
satisfactory for intermediate values of �. Notice, however,
that the expected time to extinction is too short to say that
the disease is endemic, since the average time to extinction
is � 0:01 life lengths, i.e. less than a year. Still, the
simulations indicate that the expected time to extinction is
increasing in the degree of social interaction between sub-
communities, and that already for small values of � the
expected time to extinction is close to the case when the
population is mixing homogeneously. In Fig. 2b we have
used the same parameter values as in Fig. 2a, but now with
k ¼ 5. Note that since we keep ntot fixed the sub-
community size is smaller. We again see that tExp performs
better than tSIR.

In Figs. 2c and d we have increased the total population
size, ntot, to 900,000. Now we are in a situation where
neither of the approximations of the quasi-stationary
distribution, Eqs. (9) and (13), work satisfactory, but we
have chosen to use the geometric approximation, Eq. (13).
In Figs. 2c and d it is seen that neither of tSIR and tExp
work that well unless � is very small, i.e. ��10�5210�4, and
both tExpð0Þ and tExpð1Þ are quite far away from the
corresponding simulated values. Values of ��10�5210�4

are, however, probably not very realistic. A rough more
realistic ‘small’ value of � is for example if individuals visit
other sub-communities one day per year, then an estimate
of � is 1

365. Instead of using the analytical approximations of
tn; tð0Þ and tð1Þ, we can use the corresponding ‘true’ values
obtained from the simulations. If we do so our approxima-
tions perform better and this is illustrated in Fig. 2e for the
same parameter values as before when ntot ¼ 900; 000 and
k ¼ 3. The behaviour of tSIR and tExp is very similar to that
in Figs. 2a and b. That is, tExp seems to perform better and
the functional form of tExp gives a rather good description
of the expected time to extinction. The improvement in the
behaviour of tSIR and tExp between Figs. 2c and d, and
Fig. 2e is an indication of that both our approximations are
sensitive to the initial approximations of tn, tð0Þ and tð1Þ.

In Fig. 2f we have five sub-communities and a total
population size of 2,500,000, and in this situation we use
the truncated normal approximation of the quasi-station-
ary distribution of tð1Þ, and the geometric approximation
for tn and tð0Þ. Once again the behaviour of our
approximations is similar to what we have seen before,
but tExp does not work particularly well for intermediate
values of �.

6. Discussion

In the present paper we have been concerned with
approximations of t, the expected time to extinction for an
SIR model for a population divided into sub-communities,
when each sub-community is started at the endemic level of
infection. Our aim has been to understand the effect of the
level of population subdivision on the time to extinction.
We have mainly focused on endemic diseases which have a
short average infectious period in relation to average life
length, such as childhood diseases.
Our first approximation, tSIR (Approximation 1),

extends a method presented in a paper by Hagenaars
et al. (2004). In Hagenaars et al. (2004) they are mainly
interested in diseases with long infectious period (small a),
such as scrapie among sheep, in situations where the social
activity between sub-communities is low, i.e. 0o�51.
Under these circumstances they argue that the underlying
SIR model can be analysed from a sub-community view,
where each sub-community is classified as either fully
susceptible or endemic, and they approximate the dynamics
in the population with a birth and death process for the
number of endemic sub-communities, which only allow for
one re-infection. The expected time to extinction for this
process, tSI from Eq. (22), is then a reasonable approxima-
tion of t. Here we are mainly interested in childhood
diseases. Based on similar arguments as those made in
Hagenaars et al. (2004), we argue that it is necessary to
introduce a recovered (and immune) state when classifying
sub-communities in order to avoid over-estimation of t.
For this extended model we approximate the underlying
SIR model with a Markov jump process for the number of
endemic sub-communities, see Fig. 1, and estimate t with
the corresponding expected time to extinction tSIR. We
present a general solution form for an arbitrary number of
k sub-communities in Eq. (26), which can be solved
numerically, and we present an explicit expression for the
case when k ¼ 2 in (27).
Simulations indicate that the expected time to extinction

is increasing in the degree of social interaction between
sub-communities, which also can be seen in tSIR. Further,
tSIR is more suitable to use when the degree of social
activity between sub-communities is very low. One crucial
part with this approximation is that it is difficult to find a
natural way of defining the time which we let a sub-
community stay recovered (and immune). If one could
improve this part of the approximation, it is possible that
tSIR could work better when the degree of social activity
between sub-communities is somewhat higher. Further-
more tSIR is rather sensitive to the initial approximations of
tn, tð0Þ and tð1Þ. Depending on the parameter values we
use either the truncated normal or geometric distribution
respectively.
Our second approximation, tExp (Approximation 2), is

motivated in a slightly different way. At the end of Section
2 the time to extinction for the two extreme cases where
derived, i.e. tð0Þ and tð1Þ. These two approximations only
rely on results for the SIR-HM model, and cannot be
improved without improving results for that model. The
idea behind tExp is to approximate the expected time to
extinction with an exponential curve starting at tð0Þ and
which has tð1Þ as approximate end point and having
t0Expð0Þ ¼ t0SIRð0Þ, since tSIR is reasonable to use when the
social activity between sub-communities is very low. When
comparing tExp with simulations the same behaviour as for
tSIR is seen. It works satisfactory when the degree of social
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activity is low, and it is increasing in the degree of social
activity.

To conclude, tSIR is only suitable to use for small values
of � and tExp is suitable to use for intermediate as well as
small values of �. Thus, tExp is the best approximation of
the two. Note, however, that the use of these approxima-
tions is not recommended unless we are in the parts of the
parameter region where either of the SIR-HM approxima-
tions of the quasi-stationary distribution is good. To our
knowledge these approximations are the only ones at hand
which deal with the expected time to extinction when a is
large.

In the present paper it was also shown that TQ, the time
to extinction given that the epidemic process is started in
the quasi-stationary distribution, is exponentially distrib-
uted, see Proposition 1. This result is important when
talking about other quantities of interest such as critical
community size.

Some possible improvements of the present results has
been commented above, but as always it would be tractable
to leave the assumption of exponential infectious periods
which in most situations is not realistic. This would be
interesting to do for both the SIR-HM and the SIR-SC
model. Another, perhaps easier, generalisation of the
model would be to allow for differently sized sub-
communities. At least for the latter situation, the frame-
work provided in the present paper could possibly be used.
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