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Abstract

We consider a stochastic model for the spread of a susceptible–infective–removed (SIR)
epidemic among a closed, finite population, in which there are two types of severity
of infectious individuals, namely mild and severe. The type of severity depends on the
amount of infectious exposure an individual receives, in that infectives are always initially
mild but may become severe if additionally exposed. Large-population properties of the
model are derived. In particular, a coupling argument is used to provide a rigorous
branching process approximation to the early stages of an epidemic, and an embedding
argument is used to derive a strong law and an associated central limit theorem for the
final outcome of an epidemic in the event of a major outbreak. The basic reproduction
number, which determines whether or not a major outbreak can occur given few initial
infectives, depends only on parameters of the mild infectious state, whereas the final
outcome in the event of a major outbreak depends also on parameters of the severe state.
Moreover, the limiting final size proportions need not even be continuous in the model
parameters.
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1. Introduction

This paper is concerned with a susceptible–infective–removed (SIR) epidemic model
describing the spread of an infectious disease in a closed, finite community (see, for exam-
ple, Lefèvre (1990) and Andersson and Britton (2000)). At a meeting in August 2003 in
Mariefred, Sweden, attended by epidemiologists, mathematicians, and statisticians, the need
for epidemic models allowing different degrees of severity of disease was expressed by several
epidemiologists. Examples of diseases for which this is relevant include measles (Aaby et al.
(1998), Butler et al. (1994), Morley and Aaby (1997)), varicella (Parang and Archana (2004)),
hepatitis-B (Medley et al. (2001)), and dengue fever (Mangada and Igarashi (1998)). Typically,
the degree of severity of a case depends on the amount of disease exposure an individual has
received, and in severe cases the disease tends to spread more than in mild cases. In the present
paper, ‘severity’ refers to how infectious an individual is and not to the degree of illness, though
in reality the two are often correlated. It is the former that is relevant to the spread of the
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epidemic, which is the focus of the present paper, whereas the latter is of course important from
both an individual and a national health perspective.

In this paper, a model which attempts to capture the features of how varying severity affects
the spread of a disease in a homogeneously mixing community is defined and studied. The
model, which we call the exposure-dependent severity (EDS) model, has two different severities,
mild and severe, and is defined without any specific disease in mind. Individuals who become
infected are initially mild cases, but they may subsequently become severe cases if they are
exposed further to the disease. (The extension to more than two different severities is discussed
briefly at the conclusion of the paper.) The large-population behaviour of the EDS model is
analysed. The basic reproduction number R0, which determines whether a major outbreak is
possible given few initial infectives, depends only on parameters governing the mild infectious
state. However, the final size in the event of a major outbreak depends also on parameters
governing the severe state. Furthermore, the limiting final size as the population becomes
infinite depends on the parameters in a surprising way; it is discontinuous in the initial proportion
infected as well as in other model parameters.

The paper is organised as follows. The EDS model is defined in Section 2, where both a
real-time description and a so-called Sellke construction of the epidemic (Sellke (1983)), which
is used to analyse the model, are presented. A heuristic explanation of the final size equations in
a large community is given in Section 3, which also contains a numerical example illustrating
that the asymptotic final infected proportions of different types may be discontinuous in the
model parameters. The asymptotic behaviour of the model as the population size tends to
infinity is analysed rigorously in Section 4. In Section 4.1, an embedding argument is used to
prove a strong law and an associated central limit theorem for the final outcome of an epidemic
initiated by a strictly positive asymptotic proportion of infectives. In Section 4.2, we treat the
case of when the number of initial infectives is held fixed as the population size tends to infinity.
A coupling argument is used to justify a branching process approximation for the early stages
of an epidemic, and the final outcome of an epidemic in the event of a major outbreak is studied
using embedding techniques. The paper concludes with a brief discussion in Section 5.

2. The EDS epidemic model

2.1. Definition of the model

Consider a closed, homogeneously mixing population consisting initially (i.e. at time t = 0)
of n susceptible individuals, m mildly infectious individuals, 0 severely infectious individuals,
and 0 removed individuals. A given mildly infectious individual makes contact with any
given individual at the points of a homogeneous Poisson process of rate λM/n throughout an
infectious period I (M) having distribution FM. A given severely infectious individual makes
contact with any given individual at the points of a homogeneous Poisson process of rate λS/n

throughout an infectious period I (S) having distribution FS. Each time a susceptible individual
is contacted it becomes mildly infectious with probability pM. Each time a mildly infected
individual is contacted it becomes severely infectious with probability pS. Contacts with
severely infectious individuals have no effect. All infectious periods, contact processes, and
outcomes of contacts are mutually independent. The epidemic continues until there are no
mildly or severely infectious individuals in the population.

It is worth emphasising that the mild and severe infectious periods of an individual may or
may not overlap, and that, if they overlap, the mild infectious period may end before or after
the severe infectious period has ended. To be more specific, if a mildly infectious individual is
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contacted successfully during its mild infectious period, then it contacts any given individual
at rate (λM + λS)/n until one of its infectious periods ends. If the mild infectious period ends
first, then it contacts any given individual at rate λS/n until its severe infectious period ends,
after which it is removed and plays no further role in the epidemic. If the severe infectious
period ends first, then it contacts any given individual at rate λM/n until its mild infectious
period ends, after which it is removed and plays no further role in the epidemic. Alternatively,
if the first successful contact with a mildly infectious individual occurs after its mild infectious
period has ended, then it still becomes severely infected and again is removed at the end of its
severe infectious period.

2.2. Sellke construction of the model

We now construct the model above using methods from Sellke (1983). We label the m

initial mildly infectious individuals −(m−1), −(m−2), . . . , 0 and the susceptible individuals
1, 2, . . . , n. For i = −(m−1), −(m−2), . . . , n, let Q

(M)
i and Q

(S)
i be random variables expo-

nentially distributed with intensities pM and pS, respectively, and let I
(M)
i and I

(S)
i be random

variables distributed according to FM and FS, respectively. These 4(m + n) random variables
are mutually independent. The variable Q

(M)
i is the resistance of individual i against becoming

mildly infectious and Q
(S)
i the extra resistance of individual i against becoming severely

infectious once mildly infectious. (Note that Q
(M)
i , i = −(m − 1), −(m − 2), . . . , 0, need not

be defined, as these individuals are mildly infectious at the start of the epidemic.) The variables
I

(M)
i and I

(S)
i denote individual i’s mild and severe infectious periods if it becomes so infected.

The epidemic is constructed as follows. At any time t ≥ 0, individual i accumulates exposure
to infection at rate (λMYM(t) + λSYS(t))/n, where YM(t) and YS(t) respectively denote the
number of mild and severe infectives at time t . An initial mild infective, j say, remains so for a
period of length I

(M)
j . It becomes severely infectious if and when its accumulated exposure to

infection reaches Q
(S)
j and remains so for a period of length I

(S)
j . Similarly, a susceptible, i say,

becomes mildly infectious if and when its accumulated exposure to infection reaches Q
(M)
i and

remains so for a period of length I
(M)
i . If and when individual i’s accumulated exposure to

infection reaches Q
(M)
i + Q

(S)
i , it becomes severely infectious and remains so for a period of

length I
(S)
i . (As mentioned above, note that a person can be both mildly and severely infectious

at the same time; ‘additionally infectious’ might thus be a better name for the second state.)
The epidemic ceases as soon as there are no mild or severe infectives present in the population,
i.e. when YM(t) = YS(t) = 0.

Observe that, under the above construction, it is possible for a mild infective to infect itself
and hence become severely infected. If this possibility is also allowed in the model described
in Section 2.1, then it is easily verified that the Sellke construction yields a process that is
probabilistically equivalent to that model. The infectious periods clearly follow the correct
distributions and the lack-of-memory property of the exponential distribution ensures that the
infection processes are equivalent.

The assumption that an individual can infect itself may appear unrealistic, although it
can be thought of as permitting the possibility of a mild infective spontaneously becoming
severely infectious. The construction can be modified to exclude this possibility. However, the
assumption does not affect the asymptotic behaviour of the model as n → ∞, and the analysis
is simplified by retaining it.

The model can in fact be generalised to allow the contact rate to vary over time without
affecting the final size distribution. The random quantities λMI (M)/n and λSI (S)/n are the
accumulated infection forces exerted on a given individual by a given mild and severe infective,
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respectively. If the contact rate t time units after infection is λM(t) and λS(t) for mild and severe
infectives, respectively, where the functions λM(t) and λS(t) may be deterministic or random,
then it is clear from the Sellke construction that the final outcome of this extended epidemic
model coincides with that of the previous model, provided that λMI (M) and λSI (S) are chosen
such that they have the same distributions as

∫ ∞
0 λM(t) dt and

∫ ∞
0 λS(t) dt , respectively. Thus,

for example, a latency period (λi(t) = 0 for t ≤ Li , i = M, S) does not affect the distribution
of the final outcome.

3. Heuristics and a numerical example

3.1. Final size equations

Assume that the initial number of susceptibles n is large, and let µ = m/n. Let rM denote
the proportion of susceptibles who ultimately become mildly infectious and note that some of
these may also become severely infectious. Let rS denote the proportion of susceptibles who
ultimately become severely infectious, and let r0 denote the proportion of initial mild infectives
who become severely infectious during the course of the epidemic. The total force of infection
exerted on an individual during the entire epidemic is then given by

τ = λMιM(µ + rM) + λSιS(µr0 + rS), (1)

where ιM and ιS are the mean infectious periods for mild and severe infectives, respectively.
This follows because n(µ+rM) is the total number of mild infectives, each of which has contact
with a given other individual at the average accumulated rate λMιM/n; similarly, n(µr0 + rS)

is the total number of severe infectives, each of which has contact with a given other individual
at the average accumulated rate λSιS/n. A susceptible individual is infected by a single contact
with probability pM, so the probability that a given susceptible ultimately becomes mildly
infectious is 1 − exp[−pM(λMιM(µ+ rM)+λSιS(µr0 + rS))], which also gives the proportion
of susceptibles who are eventually mildly infected, i.e. rM. To derive an expression for rS,
the probability that a susceptible ultimately becomes severely infectious, requires a bit more
thought. For this event to happen, a susceptible individual must first become mildly infectious
and later severely infectious. From the Sellke construction, this happens if the sum of the mild
and severe resistances does not exceed the total force of infection. The mild resistance (denoted
by Q

(M)
i in Section 2.2), i.e. the accumulated force necessary for a susceptible to become mildly

infectious, is exponentially distributed with parameter pM. Similarly, the additional severe
resistance Q

(S)
i is exponentially distributed with parameter pS. Thus,

rS = P[Q(M)
i + Q

(S)
i < λMιM(µ + rM) + λSιS(µr0 + rS)];

conditioning on Q
(M)
i yields

rS =

⎧⎪⎨
⎪⎩

1 − pMe−pSτ − pSe−pMτ

pM − pS
if pM �= pS,

1 − (1 + pτ)e−pτ if pM = pS = p, say.

Recall that τ is defined in (1). Finally, an initial mild infective becomes severely infectious
if its severe resistance is less than the total force of infection, which happens with probability
r0 = 1 − e−pSτ .
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To summarise, we have the following set of balancing equations for the final infected
proportions of different types, rM, rS, and r0. If pM �= pS then

rM = 1 − exp[−pM(λMιM(µ + rM) + λSιS(µr0 + rS))], (2)

rS = 1 − 1

pM − pS
(pM exp[−pS(λMιM(µ + rM) + λSιS(µr0 + rS))]
− pS exp[−pM(λMιM(µ + rM) + λSιS(µr0 + rS))]), (3)

r0 = 1 − exp[−pS(λMιM(µ + rM) + λSιS(µr0 + rS))]. (4)

If pM = pS = p then (3) is replaced by

rS = 1 − (1 + p(λMιM(µ + rM) + λSιS(µr0 + rS)))

× exp[−p(λMιM(µ + rM) + λSιS(µr0 + rS))].
Consider a sequence of epidemics, indexed by the initial number of susceptibles n, with

the nth epidemic initially having mn mildly infectious individuals. Let µ now denote
limn→∞ n−1mn, which we assume to exist. Suppose that µ > 0. In Corollary 1, below, we
prove that under mild regularity conditions, as n → ∞, the proportions of the different types
ultimately infected converge almost surely to the smallest positive solution of the balancing
equations (2) to (4). (As explained in the remark following Corollary 1, if (rM, rS, r0) and
(r ′

M, r ′
S, r ′

0) are two positive roots of (2) to (4) satisfying rM < r ′
M, then rS < r ′

S and r0 < r ′
0.

Thus, by the smallest positive root we mean smallest in all components, and such a root is well
defined.) We also prove an associated central limit theorem (Theorem 1).

Suppose that µ = 0, which would be the case if mn were held fixed as n → ∞, for example.
Note that r0 no longer enters the right-hand sides of the equations (2) to (4), although (4)
still gives the probability that a given initial mild case ultimately becomes severely infectious.
Equations (2) and (3) now admit the solution rM = rS = 0, corresponding to a major outbreak
not occurring. If a major outbreak does occur then the asymptotic proportions of different types
ultimately infected are given by the smallest strictly positive solution of (2) and (3), and satisfy
a central limit theorem (Theorem 3).

Suppose that mn is held fixed as n → ∞. Then, during the early stages of the epidemic, the
probability that a contact is made with a previously infected individual is very small and the
process of mild infectives can be approximated by a branching process. Moreover, as n → ∞,
severe cases arise only if the branching process does not become extinct. This approximation is
made fully rigorous in Theorem 2. The offspring distribution of the approximating branching
process has mean R0 = λMιMpM, since, as n → ∞, a given mild infective makes contacts at
rate λM throughout an infectious period having mean ιM, and each contact is successful with
probability pM. Recall that the quantity R0 is known as the reproduction number (see, for
example, Heesterbeek and Dietz (1996)) and is a threshold parameter for the epidemic, in that
if m is small and n large, a major outbreak can occur only if R0 > 1. Note that R0 depends
only on parameters relating to mild infectives, but that if a major outbreak occurs then its size
depends also on parameters relating to severe infectives.

3.2. A numerical example

We now illustrate how the deterministic solutions to the balancing equations (2) to (4) may
look. We let µ = 0.01, λMιM = 1, λSιS = 2, and pM = pS = p, and examine the solutions
(rM, rS, r0) as a function of p. In Figure 1, the equations have been solved numerically and all
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Figure 1: All solutions for rM, in the range 0.8 ≤ p ≤ 0.9, for the equations (2) to (4), with µ = 0.01,
λMιM = 1, λSιS = 2, and pM = pS = p.

solutions for rM are plotted in the range 0.8 ≤ p ≤ 0.9 (as might be guessed from the figure,
there is only one solution forp < 0.8 andp > 0.9). As noted above, the final proportion infected
converges almost surely to the smallest positive solution to the set of equations (2) to (4). As a
consequence, we see that the example exhibits a discontinuity at around p∗ ≈ 0.8705. For
values of p slightly smaller than this critical value the limiting proportion mildly infected
is around 0.158, whereas for values just above p∗ the limiting proportion mildly infected
suddenly jumps up to around 0.735! There are similar discontinuities in rS and r0 (not shown
in the figure) for the same value of p. There are only discontinuities if both the reproduction
number R0 is smaller than its threshold of 1 and the epidemic is started with a positive fraction
initially infectious (i.e. µ > 0). The heuristic argument for the discontinuity is that, even though
the model is below threshold, the initial proportion mildly infected makes the epidemic ‘less
subcritical’ and, as the parameters move towards criticality (as p grows, in our example), there
is a critical point (below threshold!) at which the initial proportion mildly infectious suddenly
makes the epidemic supercritical. Similar behaviour was observed by Scalia-Tomba (1985) for
an SIR model in which a susceptible has to be successfully contacted twice before it becomes
infected, i.e. for an extreme case of the EDS model in which mild infectives make no infectious
contacts (λMιM = 0). Also, in several deterministic models of infectious diseases allowing
endemic situations – as opposed to the transient nature of the present SIR model in a closed
community – similar discontinuities have been observed, for example by Greenhalgh et al.
(2000) and van den Driessche and Watmough (2002). This is known as (backward) bifurcation,
referring to the situation in which equations have one solution up until a certain point, at which
there suddenly exist more (cf. Figure 1).

We now compare the deterministic solutions discussed above with some simulations of
the stochastic model in a finite population. Figure 2 shows the empirical distribution of the
final outcome of the stochastic EDS epidemic when n = 1000, m = 10, λM = 1, λS = 2,
pM = pS = p, and I (M) and I (S) are each exponentially distributed with unit mean (i.e. the
same parameter values as in the deterministic example). The results are based on 10 000
simulations. The upper two figures, showing the numbers of mild infectives, can be compared
with the deterministic solutions of Figure 1, evaluated at p = 0.8 (for the upper-left figure) and
p = 0.9 (for the upper-right figure). Since the epidemic is started with 10 mild infectives it might
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Figure 2: The final outcomes of 10 000 simulations of the stochastic EDS model for p = 0.8 (left-hand
column) and p = 0.9 (right-hand column). We plot frequency versus the numbers of mild cases (upper
row), severe cases (centre row), and initial cases severely infected (lower row). See the text for further

details.

die out quickly for both choices of p. This is confirmed by the simulations. In the deterministic
solutions of Figure 1 (assuming that an outbreak occurs), it is seen that the ultimate fraction
mildly infected is about 0.045 when p = 0.8 and 0.795 when p = 0.9. In the simulations for
p = 0.8, nearly all simulations result in small outbreaks, i.e. with an ultimate fraction mildly
infected not too far from 0.045; however, approximately 1% of simulations, hardly visible in
the figure, have outbreaks in which this fraction is more than 0.5. On the other hand, in the
simulations for p = 0.9, a greater number of the simulations have large outbreaks with this
fraction close to 0.795, but there are still quite a few small outbreaks. Loosely speaking, the
general conclusion in the stochastic setting seems to be that the outbreak size for a given p will
be close to the final size solution of the deterministic equation for a possibly slightly different p̃.
As a consequence, for values of p close to the bifurcation point, the outbreak may agree with
the final size equation for a value p̃ on the other side of the bifurcation point.

4. Rigorous asymptotic analysis of the model

In this section, we examine asymptotic properties of the model when n tends to infinity,
so we equip all parameters depending on n with an n-index. We treat two different initial
configurations. Let µn = n−1mn. Then, either there is a positive proportion of initial mild
infectives (µn → µ as n → ∞, where µ > 0) or else there is a fixed number of initial mild
infectives, i.e. mn = m for all n. In the first case, we prove a strong law and a central limit
theorem for the ultimate proportion of the different types infected. In the second case, we prove
a threshold limit theorem indicating that either a minor outbreak occurs, and thus only a few
individuals become infected, or else a major epidemic occurs and a more-or-less deterministic
fraction of the population ultimately becomes infected. A central limit theorem for the final
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outcome of a major epidemic is also presented. Approximations to the initial stages of the
epidemic are obtained by coupling the epidemic process to a suitable branching process and,
for the case of a major outbreak, properties of its final outcome are obtained using embedding
techniques.

4.1. The case µn → µ > 0 as n → ∞
We study the asymptotic final outcome of the model as n → ∞ by adapting the embedding

argument of Scalia-Tomba (1985), (1990). We use weak convergence in the space of bounded
functions on [0, ∞] equipped with the supremum metric. For any real-valued function f = f (t)

with domain [0, ∞], let ‖f ‖ = supt∈[0,∞] |f (t)|.
Consider the Sellke construction of Section 2.2. For i = 1, 2, . . . , n and t ∈ [0, ∞], let

R
(M)
i (t) = 1{Q(M)

i ≤t}, R
(S)
i (t) = 1{Q(M)

i +Q
(S)
i ≤t},

and
Ai(t) = λMI

(M)
i R

(M)
i (t) + λSI

(S)
i R

(S)
i (t),

where 1{·} is an indicator function. Thus, Ai(t) is the total force of infection exerted on the
population by individual i if it is exposed to t units of infectious pressure. For i = −(mn − 1),

−(mn − 2), . . . , 0 and t ∈ [0, ∞], let

R
(0)
i (t) = 1{Q(S)

i ≤t} and Ai(t) = λSI
(S)
i R

(0)
i (t),

meaning that Ai(t) is the severe infectious pressure exerted by initial mild infective i on the
population if it is exposed to t units of infectious pressure. For t ∈ [0, ∞], let

Ã•n(t) =
n∑

i=−(mn−1)

Ai(t), R(M)•n (t) =
n∑

i=1

R
(M)
i (t), R(S)•n (t) =

n∑
i=1

R
(S)
i (t)

and

R(0)•n (t) =
0∑

i=−(mn−1)

R
(0)
i (t).

The final outcome of the epidemic can be determined as follows. The mn initial mild
infectives exert in total T

(n)
0 = ∑0

i=−(mn−1) λMI
(M)
i units of infectious pressure on the popu-

lation from their mild infectious state. These T
(n)

0 units of infectious pressure will create
Ã•n(n

−1T
(n)
0 ) further units of infectious pressure, which may in turn create further infectious

pressure. For k = 0, 1, . . . , let

T
(n)
k+1 = T

(n)
0 + Ã•n(n

−1T
(n)
k ). (5)

Then k∗
n = min{k : T

(n)
k+1 = T

(n)
k } is well defined since the population is finite. Let T

(n)∞ = T
(n)
k∗
n

and
Z(k)

n = R(k)•n (n−1T (n)∞ ), k = 0, M, S.

It is easily verified that T
(n)∞ is the total force of infection exerted during the course of the

epidemic (also known as the total cost of the epidemic), Z
(0)
n is the number of initial mild

cases that eventually become severe cases, and Z
(M)
n and Z

(S)
n are the numbers of susceptible
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individuals that at some time become mild and severe cases, respectively. Note that Z
(M)
n

includes those individuals that eventually go on to become severe cases.
To study the asymptotic behaviour of (Z

(0)
n , Z

(M)
n , Z

(S)
n ), it is convenient to assume that

epidemics for different ns are constructed using a common set of random variables

{(Q(M)
i , Q

(S)
i , I

(M)
i , I

(S)
i ), i ∈ Z}

defined on a probability space (�, F, P) and distributed as described in Section 2.2. For
t ∈ [0, ∞], let

rj (t) = E[R(j)
1 (t)], j = M, S,

r0(t) = µ E[R(0)
0 (t)],

a(t) = E[A1(t)] = λMιMrM(t) + λSιSrS(t),

a0(t) = µ E[A0(t)] = λSιSr0(t),

where ιj = E[I (j)
1 ], j = M, S. It is easily verified that

r0(t) = µ(1 − e−pSt ),

rM(t) = 1 − e−pMt ,

rS(t) =

⎧⎪⎨
⎪⎩

1 − pMe−pSt − pSe−pMt

pM − pS
if pM �= pS,

1 − e−pt (1 + pt) if pM = pS = p.

Lemma 1. Suppose that n−1µn → µ as n → ∞, where µ > 0, and that ιj < ∞, j = M, S.
Let ã(t) = a0(t) + a(t). Then

‖n−1Ã•n − ã‖ a.s.−−→ 0 as n → ∞, (6)

where ‘
a.s.−−→’ denotes almost-sure convergence.

Proof. For t ∈ [0, ∞],

n−1Ã•n(t) = mn

n

1

mn

0∑
i−(mn−1)

Ai(t) + 1

n

n∑
i=1

Ai(t)
a.s.−−→ ã(t) as n → ∞,

by the strong law of large numbers. Thus, there exists an E ∈ F such that P[E] = 1 and, for
all ω ∈ E,

lim
n→∞ n−1Ã•n(t, ω) = ã(t), t ∈ (Q ∩ [0, ∞]) ∪ {∞}, (7)

where Ã•n(t, ω) denotes the random variable Ã•n(t) evaluated at ω. Fix an ω ∈ E and an
ε > 0. Now, ã(0) = 0 and ã(∞) < ∞, so, since ã(t) is nondecreasing in t , there exist a q ∈ N

and t1, t2, . . . , tq ∈ Q such that 0 = t0 < t1 < t2 < · · · < tq < tq+1 = ∞ and

0 < ã(ti) − ã(ti−1) < 1
2ε, i = 1, 2, . . . , q + 1. (8)

From (7), there exists an N ∈ N such that

|n−1Ã•n(ti , ω) − ã(ti)| < 1
2ε, i = 0, 1, . . . , q + 1, n ≥ N. (9)
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Since Ã•n(·, ω) ≡ Ã•n(t, ω) is also nondecreasing in t , it follows from (8) and (9) that
‖n−1Ã•n(·, ω) − ã(·)‖ < ε, n ≥ N . Thus, ‖n−1Ã•n(·, ω) − ã(·)‖ → 0 as n → ∞, since
ε > 0 is arbitrary, and the lemma follows, since P[E] = 1.

Corollary 1. Suppose that the conditions of Lemma 1 are satisfied. Let

τ ≡ τ(µ) = min{t > 0 : t = λMµιM + ã(t)}

and suppose that ã′(τ ) < 1, where a prime denotes differentiation. Then n−1T
(n)∞

a.s.−−→ τ and

n−1Z
(i)
n

a.s.−−→ ri(τ ), i = 0, M, S, as n → ∞.

Proof. Let T̄
(n)
k = n−1T

(n)
k , k = 0, 1, . . . , ∞. It then follows from (5) and the definition

of T
(n)∞ that T̄

(n)∞ = min{t ≥ 0 : t = T̄
(n)
0 + n−1Ã•n(t)}. Since ã′ is continuous on [0, ∞)

and ã′(τ ) < 1, there exists a � > 0 such that t > λMµιM + ã(t) for all t ∈ (τ, τ + �).
Now T̄

(n)
0

a.s.−−→ λMµιM as n → ∞, by the strong law of large numbers. In conjunction with
Lemma 1, this implies that there exists an F ∈ F such that P[F ] = 1 and, for all ω ∈ F ,

lim
n→∞ ‖n−1Ã•n(·, ω) − ã(·)‖ = 0 and lim

n→∞ T̄
(n)
0 = λMµιM. (10)

Fix an ω ∈ F and an ε ∈ (0, �). Let

C1 = min
t∈[0,τ−ε]{λMµιM + ã(t) − t},

C2 = τ + ε − λMµιM − ã(τ + ε).

Note that the definitions of τ and � respectively imply that C1 > 0 and C2 > 0. Furthermore,
by (10), there exists an N ∈ N such that, for all n ≥ N ,

inf
t∈[0,τ−ε]{T̄

(n)
0 (ω) + n−1Ã•n(t, ω) − t} > 1

2C1,

τ + ε − T̄
(n)
0 (ω) − n−1Ã•n(τ + ε, ω) > 1

2C2,

whence T̄
(n)∞ (ω) ∈ (τ −ε, τ +ε). Thus, T̄ (n)∞ (ω) → τ as n → ∞, since ε ∈ (0, �) is arbitrary,

so

T̄ (n)∞
a.s.−−→ τ as n → ∞,

since P[F ] = 1. It is easily seen that results equivalent to (6) hold for R
(k)•n , k = 0, M, S, from

which it immediately follows that

n−1Z(k)
n

a.s.−−→ rk(τ ), k = 0, M, S, as n → ∞.

Remark 1. It is easily verified that ri(τ ) = ri , i = M, S, and r0(τ ) = µr0, where (rM, rS, r0)

is the smallest positive solution of the heuristic equations (2) to (4), and that τ is then given
by (1). Note that if τ and τ ′, τ < τ ′, are positive roots of t = λMµιM+ã(t), then ri(τ ) < ri(τ

′),
i = M, S, 0, meaning that the smallest positive root of (2) to (4) is well defined.

We now derive a central limit theorem for the final outcome of the epidemic. Before stating
the main result some more notation is required. For t ∈ [0, ∞], let Xn(t) = (Ã•n(t), R

(0)•n (t),
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R
(M)•n (t), R

(S)•n (t))� and �(t) = limn→∞ n−1 cov(Xn(t)), where, for a vector-valued random
variable X, say, cov(X) denotes the variance-covariance matrix of X. Write �(t) as

�(t) =

⎡
⎢⎢⎢⎣

σ̃ 2
A(t) σA0(t) σAM(t) σAS(t)

σA0(t) σ 2
0 (t) σ0M(t) σ0S(t)

σAM(t) σ0M(t) σ 2
M(t) σMS(t)

σAS(t) σ0S(t) σMS(t) σ 2
S (t)

⎤
⎥⎥⎥⎦ . (11)

Let σ 2
i = var(I (i)

1 ), i = M, S. Elementary calculations yield that

σ 2
0 (t) = r0(t)(1 − µ−1r0(t)), σ 2

i (t) = ri(t)(1 − ri(t)), i = M, S,

σ0M(t) = σ0S(t) = 0, σMS(t) = rS(t)(1 − rM(t)),

σA0(t) = λSιSσ 2
0 (t), σAM(t) = λMιMσ 2

M(t) + λSιSσMS(t),

σAS(t) = λMιMσMS(t) + λSιSσ 2
S (t),

σ̃ 2
A(t) = λ2

S(σ 2
S r0(t) + ι2Sσ 2

0 (t)) + λ2
M(rM(t)σ 2

M + ι2Mσ 2
M(t))

+ λ2
S(rS(t)σ 2

S + ι2Sσ 2
S (t)) + 2λMλSιMιSσMS(t).

For t ∈ [0, ∞], let B(t) = [bij (t)] be the 4 × 4 matrix with elements given by

b11(t) = (1 − ã′(t))−1ã′(t),
b21(t) = (1 − ã′(t))−1r ′

0(t),

b31(t) = (1 − ã′(t))−1r ′
M(t),

b41(t) = (1 − ã′(t))−1r ′
S(t),

bij (t) = 0, j > 1.

LetJ be the 4×4 matrix with elements all equal to 1, and let I be an identity matrix whose dimen-
sion is apparent from its context. For n = 1, 2, . . . , let Zn = (Ã•n(T̄

(n)∞ ), Z
(0)
n , Z

(M)
n , Z

(S)
n )�,

and, for t ∈ [0, ∞], let µZ(t) = (ã(t), r0(t), r1(t), r2(t))
�. By ‘

d−→’ we denote convergence in
distribution.

Theorem 1. Suppose that the conditions of Lemma 1 and Corollary 1 are satisfied, that
σ 2

i < ∞, i = M, S, and that n1/2(µn −µ) → 0 as n → ∞. Then n−1/2(Zn − nµZ(τ))
d−→ Z

as n → ∞, where Z is a four-dimensional zero-mean normal random vector with variance-
covariance matrix given by

�Z = (I + B(τ ))�(τ )(I + B(τ )�) + µλ2
Mσ 2

MB(τ )JB(τ )�.

Proof. For t ∈ [0, ∞], let A•n(t) = ∑n
i=1 Ai(t) and A

(0)•n (t) = ∑0
i=−(mn−1) Ai(t). The

sample paths t �→ A1(t) are càdlàg (continuous from the right with left limits) and nondecreas-
ing, so, by Example 2.11.16 of van der Vaart and Wellner (1996),

n−1/2(A•n − E[A•n]) w−→ X as n → ∞, (12)

where X is a zero-mean Gaussian process and ‘
w−→’ denotes weak convergence. A result

equivalent to (12) holds for each of A
(0)•n and R

(k)•n , k = 0, M, S. For t ∈ [0, ∞], let
X•n(t) = (Ã•n(t), R

(0)•n (t), R
(M)•n (t), R

(S)•n (t))�. Then

n−1/2(X•n − E[X•n]) w−→ X as n → ∞, (13)
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where X is a four-dimensional zero-mean Gaussian process whose covariance function satisfies
cov(X(t)) = �(t), t ∈ [0, ∞]. (It is easily seen that the finite-dimensional distributions of
n−1/2(X•n−E[X•n]) converge to those of X by using the Cramér–Wold device, and asymptotic
tightness of n−1/2(X•n−E[X•n]) follows from Lemma 1.4.3 and Theorem 1.5.4 of van derVaart
and Wellner (1996).) Corollary 1 implies that T̄

(n)∞
p−→ τ as n → ∞, where ‘

p−→’ denotes
convergence in probability. Therefore, by Slutsky’s lemma and the continuous mapping theorem
(Example 1.4.7 and Theorem 1.3.6 of van der Vaart and Wellner (1996), respectively), it follows
from (13) that

n−1/2(X•n(T̄
(n)∞ ) − E[X•n](T̄ (n)∞ ))

d−→ X(τ ) as n → ∞.

Now,

n−1/2(Ã•n(T̄
(n)∞ ) − nã(τ )) = n−1/2(Ã•n(T̄

(n)∞ ) − nã(T̄ (n)∞ )) + n1/2(ã(T̄ (n)∞ ) − ã(τ )).

By the mean value theorem, n1/2(ã(T̄
(n)∞ ) − ã(τ )) = n1/2(T̄

(n)∞ − τ)ã′(ηn) for some ηn lying
between T̄

(n)∞ and τ . Recall that T̄
(n)∞ = T̄

(n)
0 + n−1Ã•n(T̄

(n)∞ ) and τ = λMµιM + ã(τ ). Thus,

n1/2(T̄ (n)∞ − τ) = n1/2(T̄
(n)
0 − λMµιM) + n−1/2(Ã•n(T̄

(n)∞ ) − nã(τ )), (14)

and it follows that

(1 − ã′(ηn))n
−1/2(Ã•n(T̄

(n)∞ ) − nã(τ ))

= ã′(ηn)n
1/2(T̄

(n)
0 − λMµιM) + n−1/2(Ã•n(T̄

(n)∞ ) − nã(T̄ (n)∞ )). (15)

Now,

n−1/2(E[Ã•n](T̄ (n)∞ ) − nã(T̄ (n)∞ )) = n1/2(n−1mn − µ)µ−1a0(T̄
(n)∞ )

p−→ 0 as n → ∞,

since n1/2(n−1mn − µ) → 0 and T̄
(n)∞

p−→ τ as n → ∞. Furthermore, by the central limit
theorem,

n1/2(T̄
(n)
0 − λMµιM)

d−→ W0 as n → ∞,

where W0 is independent of X(τ ) and is normally distributed as follows: W0 ∼ N(0, µλ2
Mσ 2

M).
For t ∈ [0, ∞], write

X(t) = (X
Ã
(t), X

(0)
R (t), X

(M)
R (t), X

(S)
R (t))�.

Now ηn
p−→ τ as n → ∞, so, since ã(t) is continuously differentiable and ã′(τ ) < 1, it follows

from (15) and Slutsky’s theorem that

n−1/2(Ã•n(T̄
(n)∞ ) − nã(τ ))

d−→ (1 − ã′(τ ))−1(ã′(τ )W0 + XA(τ)) as n → ∞. (16)

Using (14), it then follows that

n1/2(T̄ (n)∞ − τ)
d−→ (1 − ã′(τ ))−1(W0 + XA(τ)) as n → ∞. (17)

For k = 0, M, S, we have

n−1/2(R(k)•n (T̄ (n)∞ )−nrk(τ )) = n−1/2(R(k)•n (T̄ (n)∞ )−nrk(T̄
(n)∞ ))+n1/2(rk(T̄

(n)∞ )− rk(τ )). (18)
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By applying the mean value theorem to the final term in (18), using (17), and arguing as above,
we find that, as n → ∞,

n−1/2(R(k)•n (T̄ (n)∞ ) − nrk(τ ))
d−→ X

(k)
R (τ ) + (1 − a′(τ ))−1r ′

k(τ )(W0 + XA(τ)). (19)

Recall that Z
(k)
n = R

(k)•n (T̄
(n)∞ ), k = 0, M, S. It follows from (16) and (19) that

n−1/2(Zn − nµZ(τ))
d−→ Z as n → ∞,

where Z = (I + B(τ ))X(τ ) + B(τ )W and W = (W0, W0, W0, W0)
�. Theorem 1 follows by

noting that X(τ ) and W are independent.

4.2. The case mn = m for all n

We study the initial behaviour of the epidemic by adapting the coupling argument of Ball
and Donnelly (1995) to the present model. Let (�, F, P) be a probability space on which are
defined the following independent sets of random quantities.

(i) Hi = (I
(M)
i , I

(S)
i , η

(M)
i , η

(S)
i , ξ

(M)
i , ξ

(S)
i ), i = −(m−1), −(m−2), . . . . These are inde-

pendent and identically distributed according to H = (I (M), I (S), η(M), η(S), ξ (M), ξ (S)),
where the components of H are independent, I (k), k = M, S, is distributed according to
Fk , and η(M), η(S), ξ (M), and ξ (S) are homogeneous Poisson processes on [0, ∞) with
respective rates λM, λS, λM, and λS.

(ii) χ
(n)
i , n = 1, 2, . . . , i = 1, 2, . . . . For each n = 1, 2, . . . , the χ

(n)
i , i = 1, 2, . . . are

independent and uniformly distributed on {1, 2, . . . , n}.
(iii) χ̃i , i = 1, 2, . . . . These are independent and uniformly distributed on {−(m − 1),

−(m − 2), . . . , 0}.
(iv) Ui, i = 1, 2, . . . . These are independent and uniformly distributed on (0, 1).

Denote the epidemic described in Section 2.1 by En. A realisation of En can be constructed
as follows. For i = −(m − 1), −(m − 2), . . . , 0, during its mild infectious period, having
length I

(M)
i , the initial mild infective i makes contact with the initial susceptibles at the points

of η
(M)
i , and with the initial mild infectives at the points of nm−1ξ

(M)
i . (If ξ is a simple

point process on [0, ∞) with points at t1 < t2 < · · · , then the point process with points at
αt1 < αt2 < · · · , α > 0, is denoted by αξ , which hence has a rate changed by a factor of 1/α.)
For k = 1, 2, . . . , the kth contact made with the initial susceptibles is with individual χ

(n)
k , and

the kth contact made with the initial mild infectives is with individual χ̃k . For k = 1, 2, . . . ,
if the kth contact occurring in En is with a susceptible then that individual becomes mildly
infective if Uk < pM (otherwise the contact is ignored); if it is with a mild infective then that
individual becomes a severe case if Uk < pS (otherwise the contact is ignored); and if it is
with an immune individual then nothing happens. The kth susceptible infected by the epidemic
adopts the set of random quantities Hk; if t denotes this individual’s time of infection then it
makes contacts during [t, t + I

(M)
k ] at times given by {t +η

(M)
k } ∪ {t +nm−1ξ

(M)
k }. Suppose

that a mild case (governed by Hk , say) becomes a severe case at time t ; then, in addition to
any contacts remaining from this individual’s mild infectious period, it makes contacts during
[t, t + I

(S)
k ] at times given by {t + η

(S)
k } ∪ {t + nm−1ξ

(S)
k }. The epidemic stops when there are

no remaining mild or severe cases in the population.
The above random quantities can also be used to define a realisation of a Crump–Mode–Jagers

branching process, with m initial ancestors labelled −(m − 1), −(m − 2), . . . , 0, as follows.
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For i = −(m − 1), −(m − 2), . . . , 0, initial ancestor i lives for time I
(M)
i and has potential

births at times given by η
(M)
i . For k = 1, 2, . . . , the kth potential birth in the branching process

gives rise to a new individual if Uk ≤ pM. Suppose that the kth actual birth in the branching
process occurs at time t > 0. Then that individual lives until time t + I

(M)
k and has potential

births at times given by {t + η
(M)
k } ∩ [t, t + I

(M)
k ]. For t ≥ 0, let Yn(t) denote the number of

mildly infectious individuals in the epidemic En at time t and let Y (t) denote the number of
individuals alive in the branching process at time t . Observe that Yn(t) and Y (t) coincide at
least up until the first time a contact is made with an individual that is not susceptible.

For n = 1, 2, . . . , let

Mn = min{k ≥ 2 : χ
(n)
k ∈ {χ(n)

1 , χ
(n)
2 , . . . , χ

(n)
k−1}}.

Note that this is the ‘birthday problem’ and it is well known (see, for example, Aldous (1985,
p. 96)) that n−1/2Mn

d−→ M as n → ∞, where M is a random variable with probability
density function f (x) = x exp(− 1

2x2), x > 0. As in the proof of Theorem 2.1 of Ball
and Donnelly (1995), the Skorokhod representation theorem implies that we may assume the
χ

(n)
i , n = 1, 2, . . . , i = 1, 2, . . . , to be constructed such that n−1/2Mn

a.s.−→ M as n → ∞,
where M is now also defined on (�, F, P). Let AE ∈ F denote the set on which the branching
process {Y (t), t ≥ 0} becomes extinct and let Z denote the total progeny of the branching
process, excluding the m initial ancestors. (Thus, Z(ω) < ∞ if and only if ω ∈ AE.)

Theorem 2. (a) For P-almost all ω ∈ AE, as n → ∞,

(i) Z
(M)
n → Z and

(ii) Z
(k)
n → 0, k = 0, S.

(b) For P-almost all ω ∈ � \ AE, Z
(M)
n → ∞ as n → ∞.

Proof. Suppose that ω ∈ AE and let Zp(ω) denote the total number of potential births
that take place in the branching process. Then, for almost all ω ∈ AE, Zp(ω) < ∞ and
Mn(ω) > 1

2n1/2M(ω) for all sufficiently large n. Thus, for such ω and all sufficiently large n,
every birth in the branching process corresponds to a new mildly infectious case in the epidemic
En. For i = −(m − 1), −(m − 2), . . . , let Wn,i be the time, from its initial infection until it
contacts an initial infective, that the individual governed by Hi has to wait in En. Note that
Wn,i

a.s.−−→ ∞, i = −(m − 1), −(m − 2), . . . , as n → ∞. Hence, for P-almost all ω ∈ AE, no
contacts are made with initial infectives in En for all sufficiently large n, and part (a) of the
theorem follows. Part (b) is proved by noting that the above argument implies that, for almost
all ω ∈ � \ AE and each 
 ∈ N, if Z(ω) ≥ 
 then Z

(M)
n (ω) ≥ 
 for all sufficiently large n.

Theorem 2 enables the distribution of the size of a minor outbreak to be approximated for
large n. We now determine the asymptotic distribution of the final outcome of a major outbreak.
Let pE denote the extinction probability of the branching process {Y (t), t ≥ 0}.
Lemma 2. Let (bn) be any sequence of real numbers such that bn → ∞ and n−1bn → 0 as
n → ∞. Then

lim
n→∞ P[Z(M)

n ≤ bn] = pE.

Proof. For k = 1, 2, . . . ,

lim inf
n→∞ P[Z(M)

n ≤ bn] ≥ lim inf
n→∞ P[Z(M)

n ≤ k] = P[Z ≤ k], (20)
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by Theorem 2. Letting k → ∞ in (20) yields

lim inf
n→∞ P[Z(M)

n ≤ bn] ≥ pE. (21)

For ε ∈ (0, 1), let {Yε(t), t ≥ 0} be the branching process constructed from {Y (t), t ≥ 0} by
ignoring births in {Y (t), t ≥ 0} independently and with probability ε. Let pE(ε) denote the
extinction probability of {Yε(t), t ≥ 0}. Following Whittle (1955), note that if Z

(M)
n ≤ εn then

the branching process {Yε(t), t ≥ 0} is a lower bound for {Yn(t), t ≥ 0}. Thus, if Z(ε) denotes
the total progeny of {Yε(t), t ≥ 0} (not including the initial ancestors), then

lim sup
n→∞

P[Z(M)
n ≤ bn] ≤ lim sup

n→∞
P[Z(n−1bn) ≤ bn] ≤ lim sup

n→∞
pE(n−1bn).

Now, pE(n−1bn) → pE as n → ∞, so we have

lim sup
n→∞

P[Z(M)
n ≤ bn] ≤ pE. (22)

The lemma follows from (21) and (22).

We now give a more precise definition of a major outbreak. For n = 1, 2, . . . , the epidemic
En is said to give rise to a major outbreak if it infects at least log n susceptibles, i.e. if the event
Gn = {Z(M)

n ≥ log n} occurs. It follows from Theorem 2 and its proof that P[Gn] → 1 − pE
as n → ∞.

Let R0 = λMpMιM. It then follows from standard branching process theory that pE < 1 if
and only if R0 > 1. Suppose that R0 > 1 and let τ = min{t > 0, t = a(t)}. Recalling (11),
for t ≥ 0 let

�̃(t) =
⎡
⎣

σ 2
A(t) σAM(t) σAS(t)

σAM(t) σ 2
M(t) σMS(t)

σAS(t) σMS(t) σ 2
S (t)

⎤
⎦ ,

where σ 2
A(t) is obtained by letting µ → 0 in the expression for σ̃ 2

A(t), and let B̃(t) = [b̃ij (t)]
be the 3 × 3 matrix with elements

b̃11(t) = (1 − a′(t))−1a′(t),
b̃21(t) = (1 − a′(t))−1r ′

M(t),

b̃31(t) = (1 − a′(t))−1r ′
S(t),

b̃ij (t) = 0, j > 1.

For n = 1, 2, . . . let Z̃n = (A•n(T̄
(n)∞ ), Z

(M)
n , Z

(S)
n )�, and for t ∈ [0, ∞] let

µ
Z̃
(t) = (a(t), rM(t), rS(t))�.

Theorem 3. Suppose that R0 > 1, that σ 2
i < ∞, i = M, S, and that a′(τ ) < 1. Then

[n−1/2(Z̃n − nµ
Z̃
(τ )) | Gn] d−→ Z̃ as n → ∞,

where Z̃ is a three-dimensional zero-mean normal random vector with variance-covariance
matrix given by

�̃Z = (I + B̃(τ ))�̃(τ )(I + B̃(τ )).
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Proof. First note that it follows from Lemma 2 that

lim
n→∞ P[Z(M)

n > bn | Gn] = 1

for any sequence (bn) such that bn → ∞ and n−1bn → 0 as n → ∞. It then follows (see the
proof of Theorem 3.12 of Ball and Neal (2003)) that there exists a b > 0 such that

lim
n→∞ P[Z(M)

n > bn | Gn] = 1.

Observe that Lemma 1 holds in the present setting, with µ = 0, implying that ã(t) = a(t), t ∈
[0, ∞]. The equation a(t) = t has roots t = 0 and t = τ , and arguing as in the proof of
Corollary 1 shows that

min{T̄ (n)∞ , |T̄ (n)∞ − τ |} a.s.−→ 0 as n → ∞.

Recall that Z
(M)
n = R

(M)•n (T̄
(n)∞ ), so, again arguing as in the proof of Corollary 1, we find that

[T̄ (n)∞ | Gn] p−→ τ and [Z(i)
n | Gn] p−→ ri(τ ), i = M, S, as n → ∞.

(The zero root of a(t) = t is excluded since limn→∞ P[Z(M)
n > bn | Gn] = 1.)

A realisation of [Z̃n | Gn] can be constructed as follows. Construct the epidemic En in
real time using the construction described at the start of this subsection. Stop this construction
as soon as log n susceptibles have been infected, and let T ∗

n denote the sum of the remaining
mild infectious periods of all those individuals that are infectious at that time. Now use the
embedding construction of Section 2.3.1 with m+[log n]+1 initial mild infectives, which exert
T

(n)
0 = λMT ∗

n units of infectious pressure on the population, and n − �log n� − 1 susceptibles,
where �·� denotes the integer-part function. Note that n−1/2T

(n)
0

a.s.−−→ 0 as n → ∞. Theorem 3
now follows by an argument similar to that in the proof of Theorem 1, since [T̄ (n)∞ | Gn] p−→ τ

as n → ∞.

5. Discussion

The EDS model of this paper is designed to describe a transmittable disease that might have
different severities, with these severities also affecting the amount of possible further trans-
mission. The model does so by letting infected individuals first become mildly infectious and
later, if exposed sufficiently further to the disease, become severely infectious. This exposure-
dependent severity is one way of modelling the phenomenon of interest. A perhaps less realistic
feature of the model is that the severe infectious state can occur during and/or after the mild
infectious state – as mentioned above, ‘additionally infectious’ might be a better name for the
second state. It would perhaps be more realistic to allow for an increased infectivity during
the infectious period if exposed to enough additional exposure, but to have this increase in
infectivity stop when the (original) infectious period ends. However, such a model is less
tractable from a mathematical point of view.

An alternative model that may capture the same feature is one in which each individual can
become only mildly or severely infected (and not both, as in the EDS model), and in which the
chances that a contacted individual becomes mildly or severely infected depend on the state
of the individual transmitting the disease. A possible advantage of such an infector-dependent
severity model is that an infected individual is only ever in one of the two infectious states;
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however, this might also be a disadvantage: once an individual has been infected, the infection
severity might very well depend on possible extra exposure. The authors intend to study a
model with such an infector-dependent severity in a forthcoming paper.

The present model permits only two types of severity, mild and severe. It is mathematically
straightforward to extend the present model to allow for several severity stages. The same
qualitative features remain, i.e. the reproduction number, R0, depends only on parameters of the
mildest state, whereas the final size, in the case of a major outbreak, depends on the parameters
of all states, and possibly in a discontinuous way. In fact, the model can be extended further to
allow the severity to depend continuously on an individual’s exposure to the disease, by defining
the model directly in terms of the functions Ai of Section 4.1 and noting that (subject to a mild
moment condition) the proofs still hold if the sample paths of Ai are càdlàg and nondecreasing.

Important problems in preventing infectious disease outbreaks, beside modelling the epi-
demic, are statistical inference and the study of the effects of vaccination. Neither of these
problems has been addressed in the present paper. In particular, an interesting open problem is
to model and analyse how vaccination affects susceptibility and potential severity, and how this
in turn affects R0. The fact that the final size may be discontinuous in the model parameters
indicates that interesting features may also be found when analysing the effects of vaccination.
Indeed, the simulations described in Section 3.2 suggest that the reduction of R0 to below its
usual critical value of 1 may not be sufficient to prevent major outbreaks.
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