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Abstract

The design of infectious disease studies has received little attention because they are generally
viewed as observational studies. That is, epidemic and endemic disease transmission happens and
we observe it. We argue here that statistical design often provides useful guidance for such studies
with regard to type of data and the size of the data set to be collected. It is shown that data on
disease transmission in part of the community enables the estimation of central parameters and
it is possible to compute the sample size required to make inferences with a desired precision.
We illustrate this for data on disease transmission in a single community of uniformly mixing
individuals and for data on outbreak sizes in households. Data on disease transmission is usually
incomplete and this creates an identi1ability problem for certain parameters of multitype epidemic
models. We identify designs that can overcome this problem for the important objective of
estimating parameters that help to assess the e2ectiveness of a vaccine. With disease transmission
in animal groups there is greater scope for conducting planned experiments and we explore some
possibilities for such experiments. The topic is largely unexplored and numerous open research
problems in the area of statistical design of infectious disease data are mentioned. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Can infectious disease studies be planned?

There has been relatively little emphasis on the design of studies of infectious dis-
eases. One reason for this is that it is unethical to induce disease transmission in a
human community and this limits the scope for conducting planned experiments. Fur-
thermore, studies of disease transmission in a community are usually thought of as
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observational studies, because we typically acquire data by observing the course of
an epidemic that has arisen naturally. However, we argue here that there are many
important design questions in the study of infectious diseases. These questions are
mainly concerned with determining the type of data and the size of the data set to be
collected. It is our aim to point out such design problems and to illustrate some of
them in detail, with the hope that this will encourage further work in the area.

A general feature that makes it important to design studies of infectious diseases is
that it is usually not feasible to observe disease transmission over the entire commu-
nity. While complete observation is the intention of surveillance systems for noti1able
communicable diseases, surveillance registers nearly always su2er from severe under
reporting, due to both noncompliance by medical o8cers and the occurrence of subclin-
ical infections. In practice it is often only feasible to achieve ‘complete’ observation
in a subset of the community. The important questions of ‘which subset’ and ‘how
large a subset’ require planning. This opens up a rich class of problems, since we have
di2erent types of infectious diseases, di2erent types of communities and variety in the
type of data that can be collected.

One distinguishing feature of infectious disease data is that often only parts of the
infection process and disease progression are observed. We usually do not know the
time when an infection occurred, nor which contact caused the infection. Neither do
we observe when an individual’s infectious period begins or ends. A consequence
of this partial observation is that the data are sometimes inadequate for estimating
central parameters of the transmission model. Identifying a type of data set that can
overcome such non-identi1ability of parameters and determining how well they do this
are important design problems.

The control of disease transmission is of primary interest, so it is not surprising that
many studies are concerned with the assessment of vaccines as a means of prevent-
ing disease transmission. In particular, there is interest in testing whether a proposed
vaccine provides protection against infection and in the estimation of vaccine e8cacy.
An estimate of vaccine e8cacy is made from data on how many of the vaccinated
individuals are infected and how many of the unvaccinated individuals are infected. It
is therefore necessary to design the study so that there are groups of vaccinated and
unvaccinated individuals who are exposed to similar forces of infection over the time
period of observation. It is also necessary to determine the group sizes and the duration
of the study required for e2ective inference about the vaccine e8cacy.

The e2ectiveness of a vaccine can be measured in a number of ways. The most
common interpretation is in terms of the protection it o2ers against infection, relative
to an individual who is not vaccinated. However, when a vaccinated individual does
get infected he=she sometimes gets a milder form of the disease, which may mean that
he=she is less infectious than an infected individual who was not vaccinated. A proper
assessment of the e2ectiveness of the vaccine in the community therefore requires
estimates of the rates of disease transmission between an infective and a susceptible,
where each of the two individuals could be vaccinated or not vaccinated. Therefore up
to four di2erent transmission rates need to be estimated. It is di8cult to estimate these
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rates from the available data because we generally do not observe who infects whom.
We only observe who gets infected. This means that some parameters are not estimable
unless we carefully plan what we are going to observe, with an eye for situations in
which we have some information about who is likely to have infected whom. Data
sets that ensure the estimability of such between and within group transmission rates
are discussed in Sections 3.2 and 6.2.

While studies involving animals must be approved by an ethics committee, they are
generally not constrained to the same degree as studies of disease transmission among
humans. It is therefore possible to conduct planned experiments with animals, and this
increases the range of possible studies substantially. For example, it is possible to set
up a group of animals and begin an outbreak in this group at a known time. One
can then monitor the infection process to determine the times of infection and monitor
disease progression in each infected animal. We discuss some of the unique features
of statistical planning for such studies in Section 7.

2. Introduction to disease transmission models

For readers unfamiliar with epidemic models we introduce two simple models that
form the basis of our discussion.

2.1. Disease transmission in continuous time

The 1rst is an SIR model that describes disease transmission in calendar time. An
epidemic model is said to be of the SIR type if, with respect to the disease, individuals
begin by being susceptible to infection and upon infection they immediately enter an
infectious stage, which is followed by a recovered state where they remain having
acquired immunity from further infection.

With respect to some time origin, let S(t); I(t) and R(t) denote the number of
individuals in the susceptible, infectious and recovered states at time t, respectively.
The population is assumed to be closed so that S(t) + I(t) + R(t) = n for all t. The
chance of disease transmission is described by

Pr{S(t + dt) = s− 1; I(t + dt) = i + 1 | S(t) = s; I(t) = i} � 
si
n

dt: (1)

An underlying assumption is that the community consists of individuals who, with
regard to disease transmission, are homogeneous and mix uniformly with each other.
The parameter 
 is the rate at which an individual has ‘close contact’ with others,
a proportion S(t)=n being with susceptibles so 
I(t)S(t)=n is the rate at which the
I(t) infectious individuals have close contact with susceptibles. By ‘close contact’ is
meant a contact which results in infection if the contacted individual is susceptible. An
alternative way of viewing the parameter 
 is as a product of the actual contact rate
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and the probability of disease transmission given a contact with a susceptible, but here
we are only interested in the product of these quantities.

The infectious period has a duration Y with distribution function F , mean � and
variance �2. The infectious periods are assumed to be mutually independent. If Y
has an exponential distribution we obtain a Markovian model, which has been studied
extensively under the label general epidemic model.

For many diseases there follows a latent period after infection, during which the
infectious agent develops inside the host, with no potential to transmit the disease.
Models with a latent period are often called SEIR models, where E stands for ‘exposed’.

2.2. Epidemic chain models

An epidemic chain tracks the spread of disease in terms of generations. The initial
generation consists of the introductory infectives. Their direct contacts lead to the
infectives of generation 1, who make contacts giving the cases of generation 2, and so
on. An epidemic chain denoted by i0 → i1 → · · · → ir → 0 has i0 initial infectives, i1
infectives in generation 1, and so on until generation r + 1 which contains no cases
and the chain stops at that generation. The → 0 at the end of the notation for the chain
is often omitted with the understanding that the chain stops at that point.

An epidemic chain model describes the spread of the disease in calendar time only
if the disease has a long latent period and a short infectious period, with relatively
little variation, since then cases of the same generation are clustered together at the
same calendar time and cases from di2erent generations are separated in time.

A chain binomial model assumes that each susceptible individual has the same proba-
bility of being infected and the events of escaping infection are independent for di2erent
susceptibles. For generation t it is speci1ed by

Pr{S(t) = s− it ; I(t) = it | S(t − 1) = s; I(t − 1) = i} =
(

s
it

)
pit

i q
s−it
i ; (2)

with pi+qi=1. Here qi is the probability that a susceptible individual escapes infection
when exposed to the i infectives of one generation for the duration of their infectious
period.

With qi =qi for every i, model (2) gives the well-known Reed–Frost chain binomial
model for disease transmission, while qi =q if i¿0 and q=1 if i=0, gives the Green-
wood model; see Bailey (1975, Chapter 14) and Becker (1989, Chapter 2) for details
of these models. The probabilities {qi} could also be generalised to allow variation
between individuals and=or households leading to random e2ects models described in
Becker (1989, Chapter 3).

3. Sampling from a uniformly mixing population

In this section we treat a closed uniformly mixing population of size n, assumed to
be fairly large. The spread of the infectious disease of interest is described by the SIR
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model outlined in Section 2.1. We begin by assuming individuals are homogeneous
and discuss the situation with heterogeneous individuals brieKy in Section 3.2.

3.1. Homogeneous individuals

The parameter 
 denotes the contact rate per time unit and � the mean duration
of the infectious period, so � = 
� is the expected number of infections by one in-
dividual in a completely susceptible population. Often � is referred to as the basic
reproduction number and denoted R0. Its value is of interest because the probabil-
ity of a major outbreak is positive only when the product �s0¿1, where s0 is the
initial proportion of susceptible individuals in the population; (e.g. Ball, 1983). This
means that major outbreaks can be prevented if s0 is made su8ciently small. Speci1-
cally, the proportion of individuals that must be immunized to prevent major outbreaks
is 1 − 1=�, see Becker (1989, p. 8) for example. Clearly � is a central parameter
and we focus on its estimation. A general feature when making inference from one
population is that a major outbreak, i.e., an epidemic, is necessary for consistent es-
timation. It is therefore assumed that a major outbreak has occurred in what follows.
In applications this will be the case since a minor outbreak would usually not be
detected.

Procedures for estimating � have been considered for several types of data observed
on the entire population; see Becker (1989), Rida (1991) and Becker and Hasofer
(1997). However, it is expensive and time consuming to observe the whole popula-
tion, making it relevant to consider inference procedures based on observations from
a subset of the population. First we treat the estimation of � when we collect data
on a sample of individuals on two occasions, namely at a time before the epidemic
season and at a time after the epidemic, when individuals infected during the epi-
demic have become immune. On each occasion every sampled individual is classi1ed
as ‘susceptible’ or ‘immune’. A study of this type was conducted for the study of trans-
mission of inKuenza A(H3N2) in Tecumseh, MI, see Addy et al. (1991) and references
therein.

Assume that n0 individuals are sampled before the epidemic season and that S0 of
them are found to be susceptible, while the remaining n0–S0 are immune and remain
so over the epidemic season (here and in the sequel capital letters denote random
variables). After the epidemic n1 of the S0 individuals who were susceptible at the
1rst-sampling time are tested again and N1 are found to have been infected during
the epidemic season. Based on these data from the two samples we give estimates of
� = 
�, the basic reproduction number, and s0, the proportion of the population that is
initially susceptible.

The parameter s0 is simply estimated by the corresponding sample proportion S0=n0.
Similarly, the sample proportion p̂=N1=n1 ‘estimates’ p̃=N=s0n, the proportion among
the initially susceptible individuals who became infected. To come up with an estimate
for � we use a result from epidemic theory that relates � to p̃. For a major outbreak,
p̃ converges (for large n) to a normal distribution with mean p de1ned as the positive
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solution to

1 − p = exp(−�s0p) (3)

and variance

�2
p̃ =

pq[1 + q(�s0�=�)2]
s0n(1 − q�s0)2 ; (4)

where q = 1 − p and, as before, � and � respectively denote the mean and standard
deviation of the infectious period, see for example Ball (1983). We use (3) as an
estimating equation for �. The estimators for s0 and � are thus

ŝ0 =
S0

n0
and �̂ =

−log(1 − p̂)
ŝ0p̂

: (5)

Large sample inferences can now be based on the following result.

Theorem 1. For the model de;ned above the estimator ŝ0 is the unbiased ML-
estimator for s0; while �̂ is asymptotically equivalent to the ML-estimator for �;
as n0; n1 and n tend to in;nity. For the same limit; (ŝ0; �̂) has a bivariate normal
distribution with mean (s0; �); variances �2

s and �2
�; and covariance �s;� given by

�2
s =

s0(1 − s0)
n0

(
1 − n0

n

)
; �s;� = −�(1 − s0)

s0n0

(
1 − n0

n

)
(6)

and

�2
� = −��s;� +

1
n1

(1 − q�s0)2

s2
0pq

(
1 − n1

s0n

)
+

1
s0n

1 + q(�s0�=�)2

s2
0pq

: (7)

The proof is outlined in the appendix.

The variances and covariance in (6) and (7) are estimated consistently by replacing
the parameters by their estimates. However �=�, the coe8cient of variation of the
duration of the infectious period, must be known. All results rely on a major epidemic,
which is only possible when �s0 ¿ 1, otherwise only few infections will occur and
there is not enough information for consistent estimation. Whenever a positive fraction
is infected in a large community the estimates will satisfy �̂ŝ0¿1.

Remark. The variance and covariance estimates reduce to

�̂2
s =

ŝ0(1 − ŝ0)
n0

; �̂s;� = − �̂(1 − ŝ0)
n0ŝ0

and �̂2
� = −�̂�̂s;� +

(1 − q̂�̂ŝ0)2

n1ŝ
2
0p̂q̂

; (8)

when the sample sizes n0; n1 are small relative to the population size n. An advantage
of these expressions is that we do not need to know the coe8cient of variation �=�.

When designing a study, the sample sizes n0 and n1 should be chosen so that the
estimators ŝ0 and �̂ have the desired precision according to (6) and (7), or (8) if
appropriate, using some plausible values for unknown parameters (see Example 2).
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Note that the parameters 
 and � cannot be estimated separately from such data,
only their product 
� = � can be estimated. This should not come as a surprise
since the data provides no information about the development of the epidemic over
time.

We now give two examples. The 1rst example demonstrates that the proposed esti-
mates from the sample data can indeed have a precision that is good enough to make
the estimates useful.

Example 1. Suppose a sample of 200 individuals is drawn from a large community
at a time prior to the epidemic season, and that 20 of them are found to be immune.
After the epidemic season the 180 individuals who initially tested susceptible are tested
again and it is found that 90 of them were infected since the 1rst test. In the above
notation n0 =200; S0 =180; n1 =180 and N1 =90. It is assumed that n�200 so (8) may
be used. This gives the estimates ŝ0 = 0:90 (0.021), p̂ = 0:50 (0.037) and �̂ = 1:540
(0.065), the standard errors being given in parentheses. The critical immunity level

vc =1−1=� is estimated by v̂c =1−1=�̂=0:351 and its standard error is �̂�=�̂
2
=0:027,

using the �-method. The precision, as reKected by the standard errors, indicates that
the estimates are clearly of practical value.

The next example illustrates how to determine the requisite sample size for a study
aimed at estimating �, or testing a hypothesis about �.

Example 2. Assume that a vaccine is available which provides full protection against
infection by the disease and that a vaccination coverage of 75% of all individuals is
attainable in a large community. The proportion susceptible will then be 25%, making
the reproduction number for the disease in the vaccinated community 0:25�. Major
epidemics are then prevented with probability 1 if 0:25�61, so there is considerable
interest in knowing whether or not the basic reproduction number � exceeds 4. Consider
therefore a study, of the type described above, that seeks to provide evidence that �¡ 4:

A sample of n1 individuals is to be selected from those initially susceptible and
these individuals are tested to determine whether they were infected during the last
epidemic. Our task is to determine the sample size n1. We set up the null hypothesis
H0: �¿4 and seek evidence against H0. As an illustration, we choose n1 by requiring
the probability of rejecting the hypothesis H0: �¿4, at the 5% signi1cance level, to
be at least 0.9 when the true value of � is as low as 3. In other words, we want to
determine the sample size required to give a power of 0.9 for the 5% signi1cance test
when � is actually 3.

For simplicity suppose that s0, the proportion susceptible before the last epidemic,
is known and that the community is large relative to the sample. By Theorem 1 the
estimator �̂ is Gaussian around the true � and with a variance which is estimated
by �̂2

� = (1 − q̂�̂s0)2=s2
0p̂q̂n1. To test H0 against the one-sided alternative HA: �¡4

we reject H0 when �̂¡4 − 1:645�̂�, where 1.645 is the 95% quantile of the standard
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Normal distribution and 4 corresponds to � = 4, the least favourable � under the null
hypothesis. At the design stage we have no estimate for the standard deviation, so
below we replace �̂� by �� with � set at the stipulated value 3. Our desired power
is achieved when 0:9 = Pr(�̂¡4 − 1:645�̂� | � = 3) ≈ �(1=�3 − 1:645), where �(·) is
the distribution function of the standard Normal distribution. This leads to the equation
1:282 = 1=�3 − 1:645, or

n1 = 2:9272
[

(1 − q�s0)2

s2
0pq

]
�=3

; (9)

where the p = 1 − q values are computed from (3) for the speci1ed values of �.
For example, in a completely susceptible population (s0 = 1) the solution to (3) is

found to be p = 0:941 when � = 3 giving the required sample size as n1 = 104. On
the other hand, when the proportion susceptible before the epidemic is only s0 = 0:5
and � = 3, so the actual reproduction number is 0:5 × 3, then the solution to (3)
is p = 0:583 if � = 3 implying that the required sample size is n1 = 20 from (9).
An explanation for the surprising result that a smaller sample su8ces when some
individuals are initially immune, i.e. s0¡1, goes as follows. For a given value of �,
the value of p in the estimating equation (3) increases with s0. Also, the standard
deviation ��, which measures the precision of our estimate for �, increases with p
and hence with s0, for 1xed � and subject to estimating equation (3). Both of these
increases are substantial for p near 1, as is the case for s0 = 1 and �= 3, our value of
interest. It can be shown that s0 = 1 maximizes n1 in (9), so when s0 is unknown the
value of n1 computed for s0 = 1 is a safe choice.

Consider now the case with partial observation of the epidemic over time. In prin-
ciple, it is possible to observe the time of diagnosis for each infected individual. As
the infectivity has often decreased by the time of diagnosis, and since social activity
is reduced when an individual show symptoms, such data are approximately equivalent
to observing the removal processes over time.

Maximum likelihood estimation for � and � when removal times are observed for the
whole population and assuming exponentially distributed infectious periods, is treated
by Bailey (1975, Section 6:83) and applied to smallpox data from an outbreak in
Abakaliki, Nigeria. On the other hand, Becker and Hasofer (1997) address inference
for such data by using martingale theory to construct estimating functions. In the
present discussion our interest is in knowing if data on the removal times of infected
individuals in a subset of the population allows us to estimate these parameters, and
if we can determine the size of the subset required to achieve adequate precision. The
1rst task towards this end is to adapt the methods of estimation to data on removal
times in a subset of the population, and this seems feasible. The task of determin-
ing the size of the subset required to achieve adequate precision is more likely to
be manageable for the approach based on martingale estimating functions because ex-
plicit expressions for standard errors are then available. These are open problems of
considerable interest.
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3.2. Heterogeneous individuals

Even in a uniformly mixing population individuals may di2er in aspects that a2ect
disease transmission. For example, such di2erences can occur because the state of
the immune system depends on factors such as age, gender and=or vaccination status.
One way to treat this heterogeneity is to classify individuals into a few homogeneous
sub-classes (types), and to let the infection rate between pairs of individuals, 
=n,
depend on the types of the pair. Inference procedures based on a sample of individuals
for this situation are yet to be derived. Identi1ability problems may sometimes occur
as was observed by Britton (1998), who considers data from the entire community.
For example, if only the initial and 1nal proportions infected are observed for each
type, then it is not even possible to estimate the basic reproduction number R0, an
important parameter when designing vaccination programs. One way of addressing this
identi1ability problem is to observe outbreaks in a set of households containing di2erent
combinations of types; this idea is illustrated in Section 6.

4. Sampling isolated household outbreaks

Data on disease incidence in households have a long history, because such data are
relatively easy to acquire and the uniform-mixing assumption, which greatly simpli1es
analysis, seems plausible within households. In this section we consider analyses for
such data based on models that assume the force of infection acting from outside
the household is negligible relative to the infection intensity within the household,
when there is an infective in the household. In other words, once infection enters the
household, its outbreak is assumed to evolve independently of disease transmission
occurring in the rest of the population. Bailey (1975) and Becker (1989) use models
derived from such assumptions to analyse data on household outbreaks of measles and
the common cold. The following discussion is presented with reference to households
of size two and three to keep the algebraic expressions simple, but in practice it is of
course important to consider larger households. The analysis presented here is readily
generalised to larger households, although expressions become increasingly complicated
as the household size increases.

4.1. Epidemic chain data

Suppose we have data on the epidemic chains of outbreaks of an infectious disease
in households of size three. Assume that each outbreak begins with one of the three
initial susceptible individuals being infected by a contact with someone from outside the
household. Observations on n such outbreaks give n1; n11; n111 and n12 epidemic chains
of type 1, 1 → 1; 1 → 1 → 1 and 1 → 2, respectively. Suppose that an epidemic chain
binomial model of Reed–Frost type (described in Section 2.2) is believed to describe



50 N.G. Becker, T. Britton / Journal of Statistical Planning and Inference 96 (2001) 41–66

the outbreaks. When we assume that all individuals are homogeneous, with respect to
infectivity and susceptibility, we obtain the probability distribution

Epidemic chain 1 1 → 1 1 → 1 → 1 1 → 2 Total

Probability q2 2pq2 2p2q p2 1
Frequency n1 n11 n111 n12 n

for the epidemic chains, where q=1−p is the probability that a susceptible individual
escapes infection when exposed to one infective for the duration of the infectious
period. Suppose our main interest lies in making statistical inference about the para-
meter p.

The log-likelihood for the chain data is

‘c(p) = constant + n1 log(q2) + n11 log(2pq2) + n111 log(2p2q) + n12 log(p2);

where the constant term does not depend on the parameter p. From ‘c(p) we 1nd the
maximum likelihood estimator for p to be

p̂ =
n11 + 2n111 + 2n12

2n + n11 + n111
;

which is simply the proportion of all exposures leading to infection. The large-sample
variance of p̂ is the reciprocal of the expected information

ic(p) = 2n
(

4 +
q2

p
+

p2

q

)
=

2n
pq

(1 + pq): (10)

Information (10) may be interpreted in terms of information per exposure. Each ex-
posures is a Bernoulli trial with expected information 1=pq about the parameter. The
expected number of exposures generated by the chains is 2n(1 + pq). In contrast, for
households with two susceptible individuals, of which one is infected from outside,
the expected number of exposures is n. Therefore, while outbreaks in households of
size three have only twice as many susceptibles at the start of the outbreak, the ex-
pected information contained in data on these outbreaks has more than doubled. This
is because all outbreaks in households of size three have two initial exposures, but
the chains 1 → 1 and 1 → 1 → 1 also have one secondary exposure. The latter two
chains have a cumulative probability of 2pq, which explains the additional term 2npq
in expected number of exposures. This indicates, in particular, that data on outbreaks
in 20 households of size three with one introductory case gives a more precise esti-
mate than data on outbreaks in 40 households of size two having one primary case.
It is clear that considerable gains can be achieved by designing studies carefully with
regard to sizes of households and number of households to be included in the study;
see Example 3 for more details.
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There is another point of interest. The estimate p̂ is like the estimate of a binomial
success probability, except that the number of trials, the exposures, is random. It is
therefore necessary, when planning the size of the study to make allowance for the
chance element in the number of exposures that might be realized. Consider a study
consisting only of outbreaks in households of size three and we wish to determine how
many outbreaks are needed to achieve a desired precision. Viewing p̂ as a sample
proportion we can use standard methods to determine ne, the requisite number of
exposures to achieve this precision. The next task is to determine how many household
outbreaks are needed so that the probability of them containing at least ne exposures
is high. In other words, we want to 1nd n such that

Pr(2n + n11 + n111¿ne) = 0:95; say; (11)

which we can do by using the large-sample distribution N[2n(1 + pq); 2npq(1 − 2pq)]
for the number of exposures 2n + n11 + n111 (the variance is obtained from the chain
probabilities given above). This distribution depends on p, which is unknown. To
overcome this problem we set p = 1

2 , which gives a conservative value for n, i.e. it
tends to be larger than necessary, since both the mean 2n(1 + pq) and the variance
2npq(1 − 2pq) assume their largest values for p = 1

2 .

Example 3. In contrast to Example 2 suppose that estimation is the main objective,
rather than hypothesis testing. We wish to determine the number of households required
in the sample so that the (approximate) 95% con1dence interval for p has width at
most 0.2.

(a) When all households are of size two, including the initial infective, the total
number of exposures is n, the number of households. The standard error for p̂ is√

p̂q̂=n, so that the width of the con1dence interval is 2× 1:96
√

p̂q̂=n. At the time of
determining sample size we do not have an estimate p̂ and we use the fact that the
largest width occurs when p̂= q̂=1=2. Accordingly we determine n by the requirement
2× 1:96=

√
4n60:2. This gives the required sample size for outbreaks in households of

size two as n = 96.
(b) Suppose now that we sample only households of size three, including the initial

infective. The total number of exposures is then a random variable. We wish to de-
termine n, the required number of households so that the width of the (approximate)
con1dence interval for p is at most 0.2. One way to proceed is to base the con1dence
interval on the large-sample variance given by the reciprocal of the information (10).
That is, determine n by the smallest value such that 2 × 1:96

√
p̂q̂=(2n + 2np̂q̂)60:2.

As p̂ is unknown we use the largest width, which obtains for p̂ = q̂ = 1=2. This gives
n = 39 for the required number of households of size three.

Using (10) amounts to replacing the random number exposures by the mean number
of exposures, which does not allow for the possibility that we might, by chance, have
considerably fewer exposures in our study. With 39 outbreaks it is possible to have
as few as 78 exposures. There are strong arguments to support the claim that the
precision quoted for estimates should correspond to the number of exposures actually
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arising in the study, rather than the number expected on average in such studies. We
might therefore prefer to ensure that the desired 96 exposures, as computed in part (a),
will occur with high probability. Using (11) with ne = 96 and p = 0:5 gives n = 41
as the required number of outbreaks in households of size three. This does not di2er
greatly from the 39 computed above, but it may di2er more in other examples. Note
that we have used p = 0:5 in these calculations and this choice of p gives the largest
value for the required sample size.

4.2. Size of outbreak data

It is generally easier to determine the size of an outbreak than it is to determine
which epidemic chain occurred. A relevant question is therefore: Is it worth the extra
e2ort to determine which chain of infection occurred? To help answer this question
we need to determine how much more informative epidemic chain data are compared
with data on the size of outbreaks.

Let m1; m2 and m3 denote the observed number of household outbreaks with 1, 2 and
3 eventual cases, respectively, when every household is of size three and each outbreak
had one primary case. Expressed in the notation of epidemic chains, we observe only
m1 = n1; m2 = n11 and m3 = n111 + n12. The log-likelihood corresponding to the 1nal
size data m1; m2 and m3 is

‘s(p) = constant + m1 log(q2) + m2 log(2pq2) + m3 log(2p2q + p2):

From ‘s(p) we 1nd the maximum likelihood estimator

p̂ =
6m1 + 11m2 + 12m3 −

√
(6m1 + 7m2)2 + 48(m1 + m2)m3

4(2m1 + 3m2 + 3m3)
: (12)

This estimator cannot be easily intepreted in terms of expected number of exposures
since the number of exposures realized is not observable. The corresponding expected
information is

is(p) = 2n
(

4 +
q2

p
+

2p2

1 + 2q

)
; (13)

and our interest is in comparing this with ic(p), given by (10). A comparison of the
expression (13) with the middle term of (10) helps to make the di2erence apparent.
A comparison in terms of r(p) = is(p)=ic(p) is also instructive, since this is a ratio of
the large sample variances of the ML-estimators for p. Fig. 1 shows the graph on the
relative information r(p) against p.

We see that r(p) decreases as p increases, but very gradually for p ∈ (0; 0:5).
Having the complete epidemic chains is important only when p, the probability of
disease transmission within a household, is large. This is explained by noting that
epidemic chain data is more informative only in that it gives the relative size of n111
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Fig. 1. Information in size of outbreak data relative to chain data.

to n12, and the chains 1 → 1 → 1 and 1 → 2 only occur with some frequency when
p is large. Similar comparisons should be made for larger households.

4.3. Other study objectives

In the above discussion we made statistical inference about the parameter p the
objective of the study. There are several other possible study objectives that might be
used as the focus of the design of the study. For example, our main interest might be in
testing the Reed–Frost assumption qi =qi. On the other hand we might wish to test the
hypothesis that the parameter p is the same as we go from generation to generation in
an epidemic chain. This hypothesis would tend to be rejected when susceptibility varies
between individuals, because the more susceptible household members would tend to
be infected in earlier generations. This indicates a large range of design problems that
are worthy of further work.

5. Observing part of a community of households

The analyses described in Section 4 assume that for individuals in infected house-
holds the chance of acquiring infection from outside the household can be ignored. It
is true that the chance of acquiring infection from a given infective member of the
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household is usually much larger than the chance of acquiring it from a given infec-
tive not belonging to the household. However, in a large epidemic, there will be many
infectives outside the household and the probability of making contact with at least
one of them may not be negligible. Longini and Koopman (1982) propose an analysis,
based on size of outbreak data for a sample of households, that allows disease trans-
mission from outside the household in a simple and pragmatic way. We now consider
this approach.

The type of study is as follows. A random sample of households is selected at a time
prior to the epidemic season and every member of these households has a serological
test to determine their status: susceptible or immune. After the epidemic season all
individuals who were initially susceptible have a second test, to determine their status
at that stage. In other words, we observe who has been infected since the 1rst test.
The advantages of making diagnoses via laboratory tests are that it enables subclinical
cases to be detected and it ensures that case diagnosis is objective. In contrast to studies
discussed in Section 4, the data may now include households in which no outbreak
occurred.

The model used to analyse data from this study contains two parameters. The 1rst
parameter, pb, is the probability of being infected from outside the household during
the epidemic season, and individuals are infected from outside independently. The
subscript ‘b’ indicates between-household transmission. The second parameter, pw, is
the probability of being infected by a given infected individual of the same household,
and the events of being infected are independent for two separate individuals of the
same household. The subscript ‘w’ indicates within-household transmission. The model
can be described as the Reed–Frost model to which pb, the probability of being infected
by an external source, is added. Let psi denote the probability that i of the s susceptibles
present in the household at the start of the epidemic season are infected by the end of
the epidemic season. These probabilities can be computed from the recursive formula

psi =
(

s
i

)
pii(qbqi

w)s−i i = 0; 1; : : : ; s− 1 and pss = 1 −
s−1∑
i=0

psi; (14)

see Longini and Koopman (1982), where qb = 1 − pb and qw = 1 − pw.
For example, for households of size two (susceptibles) we 1nd

p20 = q2
b; p21 = 2pbqbqw ; p22 = p2

b + 2pbqbpw ;

whereas for households of size three we 1nd

p30 = q3
b; p31 = 3q2

bpbq2
w ; p32 = 3pbqbq2

w(2pwqb + pb);

p33 = 1 − p30 − p31 − p32:

In this model pb, the probability of getting infected from the global source of infection,
is viewed as a parameter, i.e. an unknown constant. In reality it is the probability of
getting infected by an infective who is not a household member, which depends on
the size of the epidemic in the community. It is therefore more correct to view pb

as the realization of a random variable. However, its treatment as a parameter in
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Fig. 2. Bias resulting when between-household transmission is ignored: (———) pb = 0:1; (· · · · · · · · · · ·)
pb = 0:2; (− · − · −·) pb = 0:3. (a) Household size 2, (b) Household size 3.

this model does provide a simple and pragmatic way of making allowance for the
possibility of acquiring infection from outside the household when estimating pw, the
parameter of interest. Most of the information about pb comes from knowledge about
the households that are not infected, because we know that each of their members
escaped the global force of infection which was the only force of infection to which
they were exposed. Indeed, observing the households that escape infection is central
to the e2ective estimation of pb and pw.

There are a number of design issues associated with this kind of study. They include
determination of the requisite number of households in the sample and an assessment
of which household sizes are best included for precise parameter estimation. Here we
address two issues concerned with comparisons of the present study setting, where our
sample may contain households that are not infected, with the setting of Section 4,
where only infected households are sampled. For simplicity we illustrate these issues
in the simple case where we have only households of size two and three. First, consider
the bias that arises in the estimate of pw when we focus on infected households and
assume that the between-household transmission rate is negligible compared to the
within-household rate.

Let hsi denote the number of households observed in which i of the s susceptibles
present at the start of the epidemic season are infected by the end of the epidemic
season. The model of Section 4 gives the ML-estimate h21=(h21 + h22) for qw when
we have only data on infected households of size two. Under the present model the
expected value of this ML-estimate is approximately p21=(p21 + p22) = 2qwqb=(1 +
qb). Therefore qw is generally underestimated, but the bias is small when pb≈0. The
amount by which pw is overestimated, on average, is qwpb=(1 + qb), which increases
monotonically with pb, and is shown in Fig. 2a as a function of pw, for pb = 0:1; 0:2
and 0.3. The bias can be substantial when pw is small.

When we have only data on infected households of size three the ML-estimate of
pw is given by (12). This estimate has a large-sample expectation given by

6p31 + 11p32 + 12p33 −
√

(6p31 + 7p32)2 + 48(p31 + p32)p33

4(2p31 + 3p32 + 3p33)
:
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Fig. 3. Information in households of size three relative to that of size 2, (———) between-household
transmission is ignored: (· · · · · · · · · · ·) pb = 0:1; (− · − · −·) pb = 0:3.

Subtracting pw from this gives the bias, which is shown in Fig. 2b as a function of
pw, for pb = 0:1; 0:2 and 0.3. Again, the bias is larger for small values of pw, but it
is substantially smaller than for households of size 2.

The parameter of interest is pw. In Section 4 we found that, for data on epidemic
chains starting with a single primary case, the information about pw more than doubled
for household of size three compared with households of size two. Let us see if this
remains true for data on household outbreaks when we allow for transmission from
outside the household. We simplify the discussion by assuming that pb is known. From
the log-likelihood function

l(pw|pb) = constant +
∑
s; i

hsi logpsi; pw ∈ [0; 1];

the expected information about pw in n households of size s is computed to be

is(pw|pb) = n
s∑

i=1

(@psi=@pw)2

psi
; pw ∈ [0; 1]:

Fig. 3 compares the graphs of r(pw|pb) = i3(pw|pb)=i2(pw|pb), as functions of pw,
for pb = 0:1 and 0.3, with the corresponding ratio for data on infected households and
based on the probability model of Section 4. We 1nd that the information in data on
outbreaks in households of size three relative to outbreaks in households of size two is
high for values of pw as high as 0.7, but declines rapidly beyond that. In fact there is
less information in households of size three for values of pw¿0:9: This is in contrast
to what we found for epidemic chain data in Section 4. It occurs for size of outbreak
data because complete infection is most likely in infected households of size three
when pw is near 1. As a consequence, without the bene1t of observing the individual
epidemic chains, data on outbreaks in households of size three are not so well suited
for distinguishing values of pw near 1.
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The relative information in households of size three is substantially higher when
we allow for disease transmission from outside the household, but it does not depend
greatly on the value of pb.

6. E'ectiveness of a vaccine

When the population consists of some individuals who are vaccinated and others
who are not we simply have di2erent types of individual. The comments in Section
3.2 are relevant, but the case where heterogeneity is due to vaccination warrants sep-
arate discussion for two reasons. Firstly, vaccine studies are easily the most common
type of studies associated with infectious diseases. Secondly, we now have additional
information about the types of individuals and a more speci1c purpose. The purpose is
often to assess the e2ectiveness of the vaccine for both protecting an individual against
infection and restricting the spread of the disease through the community. This is nec-
essary because vaccines are often not fully e2ective, so that vaccinated individuals
can still get infected, albeit at a lower rate. Furthermore, when infected, a vaccinated
individual may react to infection less severely than an unvaccinated individual, and
may consequently have less potential to transmit the disease to others.

Here we focus on a parametric speci1cation of transmission rates, known as propor-
tionate mixing, to obtain parameters that directly reKect the reduction in susceptibility
induced by the vaccine and the reduction in infectivity it induces.

6.1. Observations from a uniformly mixing population

Consider a single fairly large community and suppose that, with respect to disease
transmission, individuals di2er only in that some are vaccinated and others are not.
Every infected individual recovers after an infectious period and is then permanently
immune from further infection. Let us label individuals v or u depending on whether
they are vaccinated or not, respectively. We stipulate a disease transmission rate be-
tween a given infectious unvaccinated individual and a given susceptible unvaccinated
individual of �u
u, and similarly �u
v, �v
u and �v
v for the transmission rates between
the three remaining possible pairs. The model is over-parameterized since �
 = �′
′,
with �′ = c� and 
′ = 
=c, for any positive c. A constraint needs to be imposed on
the four parameters to overcome this identi1ability problem. In the interest of having
parameters with direct epidemiological interpretations it is useful to write the rates !,
!rs, !ri and !rirs, respectively. Our main interest lies in ri = �v=�u and rs = 
v=
u, the
proportionate reduction in infectivity and susceptibility, respectively, for a vaccinated
individual relative to an unvaccinated one. The parameter rs is closely linked to the
concept known as vaccine eAcacy; see Halloran et al. (1992). However, ri is also im-
portant for specifying how e2ective the vaccine is for controlling the spread of disease.
Suppose vaccinated and unvaccinated individuals mix uniformly and we wish to make
inferences about ri and rs from data on an epidemic in this large community.
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Britton (1998) treats methods for making such inference for various types of data
from the whole community, using estimating equations derived from martingale theory.
The relative susceptibility rs has the simple estimator r̂s = log(1 − p̃v)=log(1 − p̃u),
where p̃u is the community proportion infected of those unvaccinated and initially
susceptible and p̃v is the community proportion infected among the vaccinated suscep-
tible individuals. The relative infectivity, ri, is not estimable when only the eventual
numbers infected in the two groups are observed. If, on the other hand, the infection
and=or removal processes of the two sub-populations are observed continuously over
time, then an estimator for ri is available (Britton, 1998) and the estimator is consistent
except for the rather unlikely situation where vaccination reduces infectivity but does
not alter the susceptibility.

Estimation procedures based on samples of the community have so far not been
addressed in the literature. Of course, point estimates for ri and rs can be obtained from
Britton (1998) only replacing community proportions by sample proportions. However,
the uncertainty of such estimates, important when determining sample sizes of a design,
is not known and deserves to be studied.

The di8culty with estimating the relative infectivity ri in certain circumstances stems
from not knowing who infects whom. It is therefore useful to look for situations which
contain information about who is likely to have infected whom. Such information is
contained in data on outbreaks in small groups, perhaps households, where the groups
are comprised of varying numbers of vaccinated and unvaccinated individuals. We
now illustrate this possibility in the simple setting where we have data on outbreaks
in matched pairs of individuals residing in the same dwelling.

6.2. Observations from matched pairs

Consider a study of disease transmission in pairs of individuals, for example sibling
studies with parents assumed to be immune. The pairs could include vaccinated and=or
unvaccinated individuals and the design problem lies in determining how many pairs
should have both unvaccinated, how many with both vaccinated and how many pairs
with one of each. The objective of the study is to assess the e2ectiveness of the vaccine
by obtaining estimates of rs and ri, where these parameters have the same interpretation
as in Section 6.1.

Recall that individuals are labeled v or u depending on whether they are vaccinated
or not. We need the probabilities

Pr(individual y escapes infection by partner x) = qwxy and

Pr(x escapes infection from outside during the study period) = qbx;

where x; y ∈ {u; v}. Label a pair ij if it consists of i vaccinated and j unvaccinated
individuals. The number of pairs of type ij in the study is nij. Label an outbreak
kl if eventually k vaccinated and l unvaccinated individuals are infected in the pair.
The number of observed outbreaks of type kl arising in pairs of type ij is nij;kl.
Then a model, which generalizes that of Longini and Koopman (1982) to two types
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of individual and is a particular case of the model de1ned by Addy et al. (1991), is
given by

Pair Outbreak Frequency Probability

20 00 n20;00 q2
bv

20 10 n20;10 2pbvqbvqwvv

20 20 n20;20 p2
bv + 2pbvqbvpwvv

11 00 n11;00 qbvqbu

11 10 n11;10 pbvqbuqwvu

11 01 n11;01 pbuqbvqwuv

11 11 n11;11 pbupbv + pbuqbvpwuv + pbvqbupwvu

02 00 n02;00 q2
bu

02 01 n02;01 2pbuqbuqwuu

02 02 n02;02 p2
bu + 2pbuqbupwuu

Our objective is to estimate the relative infectivity ri and the relative susceptibility rs.
To this end we introduce the parameterization qbu = e−�b , qbv = e−�brs , qwuu = e−�w ,
qwvu=e−�wri , qwuv=e−�wrs and qwvv=e−�wrirs . This gives a smaller class of models, but it
is one which retains the desirable property of being expressed in terms of parameters
with clear epidemiological interpretations. BrieKy, the parameter �w depends on the
rate of disease transmission within pairs and on the duration of the infectious period,
whereas the parameter �b depends on the duration of the study period and on the global
force of infection assumed to be acting on each individual during that period. The way
ri and rs have been introduced assumes that the reduction in susceptibility is the same
within and between households and that the reduction in infectivity and susceptibility
acts multiplicatively on the force of infection.

Note that the observations n20;00, n11;00 and n02;00 contain no information about
the parameters �w and ri, but they contain most of the information about the pa-
rameters �b and rs. This is seen by noting that they are observations on independent
Bin(n20; e−2�brs ), Bin(n11; e−�b(rs+1)) and Bin(n02; e−2�b ) random variables, respectively.
This provides a basis for determining the number of pairs required for precise esti-
mates of �b and rs. It is worth noting that the n11 pairs of type 11 are not su8cient,
by themselves, to estimate all four parameters, because the four possible outcomes in
such pairs have only three degrees of freedom.

As uninfected pairs provide no information about �w and ri, it is necessary to ensure
that the number of infected pairs is adequate to provide precise estimates of �w and
ri. When the infectivity of the disease is such that a large fraction of pairs escapes
infection, we may need a huge number of pairs in our sample to guarantee an adequate
number of infected pairs. It might be impractical to conduct such a large study. In that
situation we should determine the number of pairs required in the sample to estimate
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�b and rs with adequate precision, and then add a separate sample of infected pairs to
boost the precision of estimates of �w and ri. Of course, an outcome for one of the
additional infected pairs contributes to the estimation of �w and ri via the conditional
probability of the outcome given that it is an infected pair.

The use of standard methods to determine the number of pairs required to achieve
adequate precision in estimates of four parameters is tedious and it is preferable to use
an approximate indirect argument. We will be guided in the determination of sample
size by making calculations under the assumption that for each infection it can be
determined whether it resulted from a within pair contact, or not. Then, for example,
outbreaks of type 20 for households of type 20 can be divided into those where both
partners were infected by the external force of infection and the rest. Similarly the
outbreaks of type 11 in households of type 11 can be broken up into three sub-types
and outbreaks of type 02 in households of type 02 can be broken up into two sub-types.
The consequence is that we then have count data for 14 types of outbreak, instead
of 10. There is then just one probability term for each outbreak, i.e. none of the
probabilities is given by a sum of terms. As a result, maximum likelihood estimation
for the parameters qbu, qbv, qwuu, qwuv, qwvu and qwvv, ignoring their dependence on
�b, �w, ri and rs, is just like estimating parameters of the binomial distribution, and is
therefore straightforward. We exploit this observation by noting that the relationships
rs=ln(qbv)=ln(qbu), ri=ln(qwvu)=ln(qwuu) and ri=ln(qwvv)=ln(qwuv) indicate that precise
estimation of qbu, qbv, qwuu, qwuv, qwvu and qwvv leads to precise estimation of rs and ri.

For the augmented data set the maximum likelihood estimates of qbu and qbv are bi-
nomial proportions with 2n02+n11 and 2n20+n11 trials, respectively. Similarly, estimates
for qwuu, qwuv, qwvu and qwvv are proportions with the expected number of exposures
given by 2n02pbuqbu, n11pbuqbv, n11pbvqbu and 2n20pbvqbv, respectively. Then the large
sample standard deviation for each estimate of an ‘escape infection’ probability q is
given by

√
pq=(expected number of exposures). We suggest that suitable values for

n20, n11 and n20 are determined by requiring that s.e.(q̂)6& for every q̂, for some
small positive &.

Example 4. As an illustration of the above method for obtaining guidance on suitable
values for n20, n11 and n20 we choose & = 0:1 for each q̂. First note that

s:e:(q̂bu) =
√

pbuqbu

2n02 + n11
6

1
2
√

2n02 + n11
60:1

leads to 2n02 + n11¿25. Similarly, s:e:(q̂bv)60:1 leads to 2n20 + n11¿25. Next, note
that

s:e:(q̂wuu) =
√

pwuuqwuu

2n02pbuqbu
6

1
2
√

2n02pbuqbu
60:1

leads to n02¿12:5=(pbuqbu). Similarly, by requiring s:e:(q̂wvv), s:e:(q̂wuv) and s:e:(q̂wvu)
to be 0.1, or less, we 1nd n20¿12:5=(pbvqbv), n11¿25=(pbuqbv) and n11¿25=(pbvqbu),
respectively. It is now necessary to substitute plausible values, or bounds, for qbu and
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qbv. For example, if qbu = 0:7 and qbv = 0:9 are considered appropriate values, then we
obtain the inequalities

n02¿60; n20¿139; n11¿93 and n11¿358:

In practice the value n11 = 358 is likely to be unacceptably large. This value of n11

is needed for the precise estimation of qwvu. However, while q̂wvu contributes to the
estimation of ri, the relationship ri = ln(qwvv)=ln(qwuv) reveals that it is enough to have
precise estimates of qwvv and qwuv. We deduce that the sample sizes n02 =60, n20 =139
and n11 = 93 enable precise estimation of �b, �w, ri and rs.

7. Planning veterinary experiments

There is great interest in controlling infectious diseases in animal populations (e.g.
Bouma et al., 1997) and here there is scope for controlled experiments. It is possible
to determine both the amount and the type of data to be observed. For example, we
can plan to have a closed community of a given size and can decide on the number
of primary cases and 1x the time of their (induced) infection. We can then regularly
check the animals to determine, at least approximately, the times of their infection and
monitor disease progression in infected individuals. We might then ask: How many
animals should be used in the experiment? How should the animals be grouped? What
details of disease progress should be observed? How should di2erent types, perhaps
distinguished by breed or vaccination status, be combined into subgroups?

In Section 7.1 we look at a speci1c design problem involving estimation of infec-
tion probabilities between two types of animal. In Section 7.2 we discuss some open
problems.

7.1. Designs with two types of individual

Suppose we want to design a study for e8cient estimation of the four di2erent
infection probabilities between two types of individual. At our disposal we have n
animals, n=2 of each type say. The design question is to decide how the animals should
be grouped into smaller isolated units and which animals should be chosen as primary
cases. In particular we compare e8ciency when animals are grouped into isolated
pairs to the case when there are three animals in each group. It is shown that the latter
design is generally more e8cient although the resulting analysis is more complicated
(a similar result for the case with homogeneous individuals was derived in Section 4).
It is not necessarily true, however, that more is gained by using even larger groups:
the analysis becomes very complicated and the parameter estimates become more and
more confounded.

Assume that infection spreads according to a Reed–Frost-type model. Label the two
types of individual a and b, and let qxy=1−pxy denote the probability that a susceptible
x-type escapes infection from an infected y-type of the same unit, where x; y∈{a; b}.
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Here we permit four distinct transmission rates, in contrast to the proportionate mixing
assumption used earlier. As the units are isolated there are no probabilities for between
group transmission.

7.1.1. Pair-design
We begin with the design consisting of pairs of animals, one initially infectious and

one susceptible. Let nab denote the number of pairs initially consisting of a susceptible
a-type and an infectious b-type, and let Yab denote the number of these pairs in which
the susceptible animal becomes infected. Di2erent pairs are independent because they
are isolated so Yab ∼Bin(nab; pab). Similar results hold for the pair combinations aa; ba
and bb. For simplicity we identify aa; ab; ba and bb with 1, 2, 3 and 4, respectively.
It is easily shown that ML-estimates, variances and covariances are given by

p̂(2)
i =

yi

ni
; Var(p̂(2)

i ) =
pi(1 − pi)

ni
and Cov(p̂(2)

i ; p̂(2)
j ) = 0: (15)

The variance is estimated consistently when pi is replaced by p̂(2)
i . Prior information

about the parameters and the desired precision for estimators inKuence the number
of pairs of each type that should be used in the design. Without prior knowledge or
precision preferences there should be equally many pairs of each type, i.e. n1 = · · · =
n4 = n=8.

7.1.2. Triplet design
Suppose now that each group initially is comprised of two susceptible animals and

one newly infected animal. There are six possible ways to arrange such a triplet.
These can be denoted a20; b20; a02; b02; a11 and b11, where the letter indicates the
type of the initial infective and the digits indicate the initial numbers of susceptible
a- and b-types, respectively. We only consider the 1rst four types of triplets because
the outcome probabilities of the remaining two are more complicated. To simplify
notation we label these triplets 1, 2, 3 and 4, respectively and, as in Section 7.1.1, the
probabilities paa; pab; pba and pbb are denoted p1; p2; p3 and p4.

Let nk denote the number of triplets of type k and Xk(i) the random number of
k-type triplets with i infected at the end. Then (Xk(0); Xk(1); Xk(2)) has a trinomial
distribution so the log-likelihood is

l(p1; p2; p3; p4) = constant +
4∑

k=1

2∑
i=0

Xk(i) log [Pk(i)]: (16)

The probabilities Pk(i) of ending up with i infected are obtained in terms of p1; : : : ; p4

by enumerating the possible epidemic chains and accumulating the associated proba-
bilities, as in Section 4.1. For example, P1(0) = (1 − p1)2; P1(1) = 2p1(1 − p1)2 and
P1(2) = 1 − P1(0) − P1(1), and for P2(·) we have P2(0) = (1 − p2)2; P2(1) = 2p2(1 −
p2)(1 − p1) and P2(2) = 1 − P2(0) − P2(1). Thus, P1(·) and P2(·) only depend on p1

and p2. Similarly P3(·) and P4(·) only depend on p3 and p4, so these pairs will have
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estimators independent of each other. By symmetry the estimator for p4 will have the
same form as the estimator for p1 and the p3 estimator has the same form as the
p2 estimator, only replacing the indices k = 1 by 4 and k = 2 by 3 throughout. Only
estimation procedures for p1 and p2 are hence treated below.

The ML-estimates, derived by equating the partial derivatives of the log-likelihood
(16) to zero, have no closed form. However, straightforward calculations on (16) lead
to the expected (symmetric) information matrix I with elements

i11(p1; p2) = n1
2(3 + 4p1 − p2

1 )
p1(3 − 2p1)

+ n2
2p2q2(2 − p2)
q1(2p1q2 + p2)

; (17)

i22(p1; p2) = n2
2(p1q2 + 2q1p2)
p2q2(2p1q2 + p2)

and i12(p1; p2) = n2
2p2

2p1q2 + p2
: (18)

The large sample variance matrix for the ML-estimates (p̂(3)
1 ; p̂(3)

2 ) is the inverse of
the 2 × 2 matrix I with elements de1ned above.

In order to specify the design we have to specify the number of each type of triplet
in the study, that is, assign values to n1; : : : ; n4. Without prior knowledge about the
parameters and parameters considered equally important, n1; : : : ; n4 should be chosen to
make the variances of p̂(3)

1 ; : : : ; p̂(3)
4 equal when the corresponding true values are equal.

Symmetry arguments then imply that n1 = n4 and n2 = n3 and the relation between n1

and n2 (and hence between n4 and n3) is obtained by replacing p1 and p2 in (17) and
(18) by a common value p and solving the equation i11(p;p) = i22(p;p). It can be
shown that this implies n2 = n1(3 + 4p−p2)=(3 − 2p + p2), a relation which depends
on p. If p is small there should be approximately equally many of the two triplets,
but if p is large up to three times more b20 triplets than a20 triplets are needed. This
is intuitively clear because when p is small at most one contact will occur in a triplet,
so b20 triplets only carry information about pab and this information is identical to
the information on paa from an a20 triplet. On the other hand, if p is large there will
be a → a contacts in some b20 triplets, so b20 triplets also carry information on paa.
Since a20 only carry information on paa less of these triplets are required for the total
information on paa and pab to be equal.

7.1.3. Comparison between pair and triplet designs
If the true parameters are of the same size p and equally many (=n=8) of each

pair-type are used, then the estimators from the pair design, {p̂(2)
i } given by (15),

have variances and covariances

V (2)(p) =
8p(1 − p)

n
and C(2)(p) = 0: (19)

For the triplet-design the estimators are implicit solutions to ML-estimating equations.
The estimators (p̂(3)

1 ; p̂(3)
2 ) and (p̂(3)

4 ; p̂(3)
3 ) are independent of each other and the vari-

ance matrix of (p̂(3)
1 ; p̂(3)

2 ) is the inverse of information matrix I de1ned by (17) and
(18), and similarly for (p̂(3)

4 ; p̂(3)
3 ). If the true parameters are of the same size p and
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the number of each type of triplet is chosen as discussed in the previous subsection,
then all variances are equal, as are the two non-zero covariances Cov(p̂(3)

1 ; p̂(3)
2 ) and

Cov(p̂(3)
4 ; p̂(3)

3 ). These variances and covariances are

V (3)(p) =
1
n

18p(3 − 2p)
9 + 9p− 7p2 + p3 and C(3)(p) = −p

3
V (3)(p): (20)

It is easily shown that V (2)(p)¿V (3)(p) for 06p60:71. For example, if p=1=2 then
V (2)(0:5) = 2=n whereas V (3)(0:5) = 1:51=n, i.e. a variance reduction of approximately
25%, and if p = 1=4 the variance reduction is 31%. The triplet-design is hence more
e8cient than the pair-design, at least when the disease of interest is not thought to
be highly infectious. Note that the comparison is based on assuming that n, the total
number of animals used, is the same in the two designs.

7.2. Some open problems in veterinary experiments

There is a wide range of open-design problems for veterinary experiments. Here we
brieKy mention a few.

Suppose the spread of a disease within a group of k animals is to be studied. Assume
for simplicity that the individuals are homogeneous and that the disease spreads accord-
ing to the Reed–Frost model with parameter p, see Section 2.2. A relevant question
is: How many of the animals should be initially infected for e8cient estimation of p?
In Bouma et al. (1997) for example, experiments with k = 10 pigs are performed
in which it was decided to infect 5 pigs at the start of the study. As discussed
in Section 4, the precision of inference on p depends on the potential number of
infective-to-susceptible contacts, so we want this number to be large. If few individ-
uals are initially infected further infections may not occur resulting in few potential
contacts. On the other hand, with many initial infectives we have fewer susceptibles
who can accumulate exposures. The optimal balance between these two competing
phenomena, a balance which will depend on the actual value of p, is not yet available.

There is scope to observe the epidemic process in greater detail in a controlled ex-
periment. Besides knowing the time of induced infection for the primary cases it might
be possible to observe, at least approximately, the time of infection for other infected
animals, and the time of 1rst symptoms for each infected animal. In particular, with
such data for groups of size two, it seems feasible to estimate the transmission proba-
bilities, the distribution of the infectious period and the relative infectivity during the
infectious period. Speci1cally, a latency period can be detected from such an analysis.

Estimation of the basic reproduction number R0 is another important problem in
veterinary experiments. However, inference for this parameter might not be transferable
if the experimental environment di2ers substantially from the natural environment. For
precise estimates it is necessary to know the population density and other relevant
components of the natural habitat.
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Appendix. Proof of Theorem 1

The estimator ŝ0 of the proportion s0 is based on a simple random sample from a
1nite population, and the results relating to it are well known.

A similar result holds for p̂ as an estimator for p̃, but we need to acknowledge that
p̃ is determined by the outcome of an epidemic, and is therefore a random variable
whose distribution depends on � and s0. As mentioned, p̃ converges in probability to
p, de1ned in (3), as n→∞, so asymptotically p̂ is also the ML-estimate of p. Again
by (3), � =−log q=(s0p) from which it follows that �̂ is consistent and asymptotically
equivalent to the ML-estimator. Applying the �-method to �̂ and using the independence
of ŝ0 and p̂ we obtain

�2
� =

(
log q
s2
0p

)2

�2
s +

(
1

s0pq
+

log q
s0p2

)2

�2
p̂ =

(
�
s0

)2

�2
s +

(
1 − q�s0

s0pq

)2

�2
p̂

�s;� =
log q
s2
0p

�2
s = −�(1 − s0)

s0n0

(
1 − n0

n

)
; (A.1)

where �2
p̂ is the variance of p̂. The formula Var(p̂)=E(Var(p̂|p̃))+Var(E(p̂|p̃)) now

gives

�2
p̂ =

(
1 − n1

s0n

)
pq− �2

p̃

n1
+ �2

p̃ ≈
(

1 − n1

s0n

)
pq
n1

+ �2
p̃; (A.2)

where �2
p̃ is de1ned in (4). This formula separates the variance into a term for sample

error and a term arising from the randomness in the epidemic outbreak. Combining the
results gives expressions for �s;� and �2

� in (6) and (7), as required.
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