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Summary. A multitype epidemic model is analysed assuming proportionate mixing between types.
Estimation procedures for the susceptibilities and infectivities are derived for three sets of data:
complete data, meaning that the whole epidemic process is observed continuously; the removal
processes are observed continuously; only the ®nal state is observed. Under the assumption of
a major outbreak in a population of size n it is shown that, for all three data sets, the susceptibil-
ity estimators are always ef®cient, i.e. consistent with a

p
n rate of convergence. The infectivity

estimators are `in most cases' respectively ef®cient, ef®cient and unidenti®able. However, if some
susceptibilities are equal then the corresponding infectivity estimators are respectively barely con-
sistent (

p
log(n) rate of convergence), not consistent and unidenti®able. The estimators are applied

to simulated data.

Keywords: Consistent estimator; Counting processes; Estimating equations; Martingales; Multitype
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1. Introduction

This paper concerns estimation procedures for epidemics where individuals are not homogen-
eous but may be classi®ed into di�erent types, assuming homogeneity in terms of susceptibility
and infectivity within each type. Information about these parameters is important for better
understanding the spreading mechanism of the disease, but also when aiming at controlling
future epidemics in that groups with high infectivity and/or susceptibility should receive extra
attention.

The disease is assumed to be an S±I±R (susceptible±infectious±removed) infectious disease
(LefeÁ vre, 1990). The underlying epidemic model adopts the assumption of proportionate
mixing between individuals, meaning that the rate of infection between two individuals is a
product of two terms: the infectivity of the infectious individual and the susceptibility of the
susceptible individual. In Section 2 the model is de®ned in detail.

In Section 3 we derive estimators of the parameters when the complete data are available,
i.e. the time of infection and the time of removal are known for all infected individuals. For
such data the likelihood is explicit and hence maximum likelihood (ML) estimation is feas-
ible, also giving approximate con®dence regions for the parameters. For a homogeneous
population Rida (1991) studied properties of several estimators for this type of data.

Because complete data from epidemics are rarely available two di�erent types of partial
observation of the epidemic are treated in Section 4. The ®rst type is where the removal
process is observed continuously, i.e. for each individual we know whether he or she became
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infected, and if he or she did we also know the time of removal; see Becker and Hasofer
(1997) for estimation procedures in a homogeneous population for such data. The second set
of partial data considered is the ®nal state of the epidemic, i.e. a binary variable for each
individual indicating whether or not he or she became infected. When an epidemic is only
partially observed the likelihood is not explicit so estimation techniques that are not based on the
likelihood must be applied. The susceptibility estimators for the two types of partial data
coincide. They are obtained by using the method of moments by equating suitable martin-
gales equal to their means, and martingale theory is used to obtain approximate con®dence
regions for the parameters. The infectivities are unidenti®able if only the ®nal state is
observed. For the removal data the infectivity estimators are constructed from the system of
di�erential equations that is associated with the deterministic version of the epidemic model.
Unfortunately, no explicit con®dence regions are given, only their asymptotic order. In
Section 5 the performances of the estimators are examined on simulated data. The paper
concludes with a discussion on possible extensions in future research.

The main result of the paper shows that the susceptibilites can always be estimated e�ciently
(
p
n-convergence) whereas a type-speci®c infectivity can only be estimated e�ciently if the

corresponding susceptibility di�ers from all other susceptibilities. Otherwise the estimator is
confounded with other infectivity estimators. In fact, if the complete data are observed such
confounded estimators converge at the very slow rate

p
log�n�, and the estimator suggested

for the removal data is not even consistent. A consequence of the result is that, if individuals
in a group are believed to be equally susceptible, then a postulated hypothesis claiming that
a certain subgroup has higher or lower infectivity than the others, for natural reasons or
because of preventive measures, has little chance of gaining empirical evidence or of being
rejected.

Recently, Rhodes et al. (1996) studied estimation procedures in a similar model for several
levels of informative data, mainly more detailed than those of the present paper in that they
contain information about the actual contacts.

2. The model

Consider a closed population consisting of n individuals. Each individual is classi®ed as one
of k di�erent types labelled i � 1, . . ., k. Let ni denote the number of i-individuals (�i ni � n)
and �i � ni=n denotes the corresponding population proportion.

We now de®ne a continuous time S±I±R epidemic model for this population. Let Si�t�,
Ii�t� and Ri�t� denote the number of susceptible, infective and removed individuals of type
i at time t, i � 1, . . ., k, 04 t <1. Because the population is closed we always have
Si�t� � Ii�t� � Ri�t� � ni. At the start of the epidemic (t � 0) all individuals are susceptible to
the disease (if the population contains immune individuals these are assumed to be known
and treated as not belonging to the population). At this time a small number of individuals
are infected because of some external source. As the epidemic evolves, individuals behave in
the following way. Whenever a susceptible individual becomes infected he or she immediately
becomes infectious and remains so for an exponentially distributed time with mean 1=
,
independent of which type he or she is. During a j-individual's infectious period this
individual has `close contact' with a given i-individual at rate �j�i=n. A close contact is
de®ned as a contact that will result in infection if the other individual is susceptible. Other
close contacts have no e�ect. When the infectious period is over, the individual recovers,
becomes immune and plays no further role in the epidemic. This state is called removed.
The epidemic evolves until the ®rst time � when there are no infectious individuals in the
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population. When this happens no-one can become infected and we say that the epidemic
has terminated. All infectious periods and contact processes are de®ned to be mutually
independent.

An equivalent de®nition of the model is by means of counting processes. Let Ft denote the
history of the epidemic, i.e. the natural ®ltration generated by the epidemic: Ft � ��Si�u�,
Ii�u�, Ri�u�; 04 u4 t, i � 1, . . ., k�. The counting processes Ni�t� � ni ÿ Si�t� and Ri�t� are
adapted to Ft. It should be clear that the model de®ned above is then equivalent to de®ning
the following intensities of the counting processes:

Ni�t� � ni ÿ Si�t� has intensity �i �Si�tÿ��TI�tÿ�, and

Ri�t� has intensity 
 Ii�tÿ�, i � 1, . . ., k.
�2:1�

where �Si�u� � Si�u�=n (similar notation will be used in all processes).
As the model is de®ned it is overparameterized. This follows from the observation that

multiplying all infectivities by a constant and dividing all susceptibilities by the same constant
does not change the intensities in expression (2.1). Thus, one linear combination of the suscep-
tibilities (or the infectivities) may be chosen arbitrarily and assumed to be ®xed. As is customary,
we call the coe�cients f�j g (relative) infectivities, re¯ecting both infectiousness and social
activity, and the coe�cients f�i g (relative) susceptibilities, depending on immunological
factors as well as social activity.

An important parameter in epidemic theory is the basic reproduction number R0, a
parameter de®ned as the mean number of new infections that a typical individual causes in
the initial part of the epidemic. For the model de®ned above

R0 � 
ÿ1
P
i

�i�i�i

(e.g. Becker and Marschner (1990)). This can be explained from the fact that an infected
i-individual on average infects 
ÿ1�i �k �k�k individuals when the whole population is
susceptible, and the probability that an infected individual in the beginning of the epidemic
is an i-individual is �i�i=�k �k�k. It is well known that the probability of a major outbreak
tends to 0 as n!1 if and only if R0 4 1 (e.g. Ball (1983)). The asymptotic results of
Sections 3 and 4 are all on the part of the sample where a major outbreak occurs. Thus, for
the statements not to be empty it is natural to assume that

R0 � 
ÿ1
P
i

�i�i�i > 1.

3. Estimation under complete observation

In this section we derive ML estimators and investigate their properties, for the case that we
observe the whole epidemic process, i.e. all of �Si�t�, Ii�t�, Ri�t�; 04 t4 � , i � 1, . . ., k�. Such
detailed data are rarely available in applications but these estimators can serve as a reference
when studying properties of estimators obtained from more frequently available and less
informative data.

3.1. Deriving estimators
As mentioned in the previous section we may without loss of generality choose one linear
constraint on the infectivities. It turns out to be convenient to let � satisfy the stochastic
constraint
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Pk
i�1
�i�i ~pi � 
, �3:1�

where ~pi � Ri�1�=ni denotes the proportion of all i-types that were ultimately infected. This
means that 
 is expressed in terms of the other parameters and will hence not be shown in the
log-likelihood below.

It follows from general theory for counting processes (e.g. Andersen et al. (1993), p. 402)
that if the epidemic de®ned in Section 2 is observed up to some time t then the log-partial-
likelihood of the data is given by

lt��, �� �
Pk
i�1

�t
0

logf�i �Si�uÿ��TI�uÿ�g dNi�u� ÿ �i �Si�uÿ��TI�uÿ� du

�Pk
i�1

�t
0

logf
 Ii�uÿ�g dRi�u� ÿ 
 Ii�uÿ� du.

The ML estimator for these data is obtained by di�erentiating the log-partial-likelihood with
respect to each parameter, setting each such derivative equal to 0, and solving the system of
equations. When di�erentiating with respect to �i equation (3.1) must be kept in mind.
Straightforward calculations yield the following derivatives:

@lt��, ��
@�j

�Pk
i�1

�t
0

Ij�uÿ�
�TI�uÿ� fdNi�u� ÿ �i �Si�u��TI�u� dug � �j ~pj




Pk
i�1

�t
0

dRi�u� ÿ 
 Ii�u� du

@lt��, ��
@�i

�
�t
0

1

�i
fdNi�u� ÿ �i �Si�u��TI�u� dug.

�3:2�

These expressions can be simpli®ed. Let N�t� � �i Ni�t� and R�t� � �i Ri�t�, the total number
of infected and removed individuals respectively,

Gi, j�t� �
�t
0

�Si�u� Ij�u� du

and

H�t� �P
i

�t
0

Ii�u� du.

Then the equations above may be written as

@lt��, ��
@�j

�
�t
0

Ij�uÿ�
�TI�uÿ� dN�u� ÿ

P
i

�i Gi, j�t� �
�j ~pj



R�t� ÿ �j ~pj H�t�, �3:3�

@lt��, ��
@�i

� Ni�t�
�i
ÿP

j

�j Gi, j�t�. �3:4�

From equation (3.4) we see that the ML estimator of �i when the epidemic is observed until
the end (t � �), as a function of �, is given by

�̂i � �̂i��� � Ni���
�P

j

�j Gi, j���, i � 1, . . ., k.
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The ML estimator for �, and hence also for 
 � 
��� because of equation (3.1), is the
solution to the equations��

0

Ij�uÿ�
�TI�uÿ� dN�u� ÿ

P
i

�̂i���Gi, j��� �
�j ~pj

���R��� � �j ~pj H���, j � 1, . . ., k.

This solution �̂ must be obtained numerically. If the epidemic is only observed until t < �
then the corresponding estimators are the same, just replacing � by t. In Section 5 these and
other estimators are applied to simulated data.

3.2. Variance of estimators
Under some regularity conditions the (asymptotic) variance matrix of the ML estimators is
given by the inverse of the observed information matrix, and the observed information matrix
is de®ned as the matrix of second-order partial derivatives of the log-likelihood multiplied by
ÿ1. This matrix, which we denote by ���, ��, contains as elements

ÿ @
2l� ��, ��
@�j@�j 0

�
��
0

Ij�uÿ� Ij 0 �uÿ�
f�TI�uÿ�g2 dN�u� � �j ~pj�j 0 ~pj 0



R���, �3:5�

ÿ @
2l� ��, ��
@�j@�i

�
��
0

�Si�u� Ij�u� du, �3:6�

ÿ @
2l� ��, ��
@�i@�i 0

�
Ni���=�2

i if i � i 0,

0 otherwise.

(
�3:7�

Being a matrix of stochastic integrals, ���, �� will have an inverse with probability 1. So, for
a given realization of an epidemic which is observed continuously, the variance matrix may
be estimated by numerically inverting the matrix ���̂, �̂�.

3.3. Consistency and rate of convergence of estimators
The derivatives of the log-partial-likelihood, equations (3.3) and (3.4), evaluated at the true
parameter values ��, �� are martingales, viewed as processes indexed by t. These processes
are known as score processes. It is a general property that score processes are martingales but it
can also be seen from equation (3.2): integrating predictable processes with respect to martin-
gales gives us new martingales. The ML estimators are obtained by setting the martingales
equal to their means (equal to 0). This enables us to use theory for martingales to obtain
con®dence intervals for the estimators. Theorems VI.1.1 and VI.1.2 in Andersen et al. (1993)
give asymptotic properties of ML estimators in counting process models which are used
in the theorem below. First we de®ne the deterministic matrix �d to which nÿ1 ���, ��
converges in probability. For this, let �i�t�, �i�t�, �i�t� and �i�t� denote the deterministic
counterparts of �Si�t�, �Ii�t�, �Ri�t� and �Ni�t�, i.e. let them be solutions to the system of
di�erential equations

� 0i�t� � �i �i�t��T��t�,
�0i�t� � 
 �i�t�,

�3:8�

(to be compared with expression (2.1)) with initial condition �i�0� � �i�1ÿ �i��, �i�0� � �i�i�
and �i�0� � 0, where � is a very small number. The reason for choosing the initial proportions
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infective proportional to �i�i comes from the branching approximation of the start of the
epidemic. The asymptotic-type proportions alive (which corresponds to infectious in epi-
demics) satisfy this relationship almost surely on the set of non-extinction (e.g. Jagers (1975),
p. 95). Below we analyse certain integrals of these functions, and it is not di�cult to show that
these integrals converge as �! 0. This is the solution that we consider because it is equivalent
to starting with a few initially infective individuals and assuming a major outbreak (Ball and
Clancy, 1993). Let pi � �i�1�=�i � �i�1�=�i denote the ®nal proportion infected among i-
individuals in the deterministic model and p � �i �ipi the corresponding overall proportion.
Then fpig is the unique positive solution to the system of equations given by

1ÿ pi � exp

�
ÿ �i



P
j

�j pj�j

�
� exp�ÿ�i�, i � 1, . . ., k, �3:9�

e.g. Becker and Marschner (1990). The last equality follows from the linear constraint
�j �j pj�j � 
 corresponding to equation (3.1) for the stochastic model.

De®ne �d as the symmetric 2k� 2k matrix, indexed like ���, ��, with elements�1
0

�j�t� �j 0 �t�
�T��t� �

T��t� dt� �j pj�j 0pj 0



�1
0

�T��t��T��t� dt �
�1
0

�j�t� �j 0 �t�
�T��t�
�T��t� dt�

�j pj�j 0pj 0



p,

�3:10��1
0

�i�t� �j�t� dt, �3:11�

�1=�i�
�1
0

�i�t��T��t� dt

0 i 6� i 0,

8><>: � �i pi=�
2
i

0 i 6� i 0,

(
�3:12�

where the equalities follow from equations (3.8) and the de®nition of fpi g. Note the simil-
arities with equations (3.5)±(3.7).

The proof of the following theorem is found in Appendix A.

Theorem 1. Assume that the whole epidemic process is observed until the end. Then, on the
part of the sample space where there is a major epidemic,

p
n�d

�̂ÿ �
�̂ÿ �

� �
ÿ!d N�0, �d� as n!1,

where �d is the deterministic matrix with elements de®ned by expressions (3.10)±(3.12).
Further, if the true underlying susceptibilities are all unique, i.e. i 6� j �) �i 6� �j, then the
matrix �d is invertible for almost all infectivity vectors � (i.e. except a null set), and for
such �

p
n
�̂ÿ �
�̂ÿ �

� �
ÿ!d N�0, �ÿ1d �,

and the matrix �ÿ1d may be estimated consistently by nÿ1 ���̂, �̂�ÿ1.
Remark 1. When some susceptibilities are identical the matrix �d is not invertible. If for

example �1 � �2, it is easy to show that the ®rst row in �d is just a multiple of the second
row. However, from the ®rst part of the theorem we can still estimate all susceptibilities and
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for each class of types with equal susceptibility we can estimate the corresponding sum
of infectivities weighted by the type frequencies f�i g with

p
n-convergence. For example,

suppose that �1 � �2 6� �k, k > 2. Then we can estimate �1�1 � �2�2 with
p
n-convergence,

but not �1 and �2 separately.

Remark 2. The assumption of a major outbreak is natural for consistent estimation in
epidemic models (e.g. Rida (1991)). As n!1 the dynamics of the start of the epidemic
tends to that of a multitype branching process (BP) with the same R0. In particular if the BP
dies out then, with a suitable coupling argument, so does the epidemic and then only a ®nite
amount of information is ever available, thus giving bounds on the amount of information
contained in a minor epidemic for any ®nite n.

A relevant question in light of the theorem above is the following: is it possible to estimate
the separate infectivities consistently in case the susceptibilities are equal? The somewhat
surprising answer is yes, but at the much slower rate of convergence

p
log�n�.

Because the susceptibilities and certain linear combinations of the infectivities were possible
to estimate with a faster rate of convergence we shall assume that these parameters are known
when showing the slower rate of convergence for the separate infectivity estimators. To
simplify matters even more we assume that there are only two di�erent types of individual.
Thus, assume that �1 � �2 �: � and 
 � �1�1p� �2�2p are known, which means that we
have only one parameter, �1 say. We still write �2 below to simplify the notation. In this
simpler set-up the one-dimensional score process is

l 0t��1� �
�t
0

I1�uÿ� ÿ ��1=�2� I2�uÿ�
�1 I1�uÿ� � �2 I2�uÿ�

�dN�u� ÿ � �S�u�f�1 I1�u� � �2 I2�u�g du �.

The ML estimator �̂1 based on the whole epidemic process is the solution to the equation
l 0� ��1� � 0. Taylor expand l 0� ��̂1� around the true value �1: 0� l 0� ��̂1� � l 0� ��1����̂1ÿ�1� l@� ��*1 �,
where �*1 lies between the estimate and the true value. Rearranging and dividing by

p
log�n�

this is equivalent to

1p
log�n� l

0
� ��1� �

ÿl@� ��*1 �
log�n� ��̂1 ÿ �1�

p
log�n�, �3:13�

and the observed information is

ÿl@� ��1� �
��
0

fI1�uÿ� ÿ ��1=�2� I2�uÿ�g2
�1 I1�uÿ� � �2 I2�uÿ�

dN�u�
�1 I1�uÿ� � �2 I2�uÿ�

. �3:14�

From equation (3.13) we are now ready to claim that the estimator converges at rate
p

log�n�;
the proof is found in Appendix A.

Theorem 2. Assume the set-up given above and that the epidemic is observed completely.
Then, on the part of the sample space where there is a major epidemic, there is a consistent
solution �̂1 (the ML estimator) to the equation l 0� ��1� � 0, and ��̂1 ÿ �1�

p
log�n� is bounded

in probability.

Remark 3. The general result is of course that, within each class of types with equal
susceptibility, the infectivities can be estimated separately at the

p
log�n� rate of convergence.

A heuristic explanation for the observed phenomenon is that, if the type susceptibility is
unique, then this type will have a mean proportion infective that varies over time di�erently
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from all other types. By studying when susceptible individuals tend to become infected it
should hence be possible to estimate the infectivities separately. But, if the susceptibility is
equal to the susceptibility of some other type, then both types will have approximately equal
proportions of infectives all through the epidemic, making it more di�cult to estimate which
type causes more infections. In this situation it is only from the stochastic ¯uctuations of the
proportions of infective individuals around their means that the inference on the infectivi-
ties receives its information; a deterministic model would not be able to identify �1 and �2

separately.
It is worth mentioning that estimation of the infectivities separately is relevant even when

the corresponding susceptibilities are equal. For example, individuals with high infectivity are
more important to reach in vaccination programmes.

In the present paper the susceptibilities are assumed to be ®xed, either di�erent or identical,
as n!1. Of mathematical interest is the intermediate case where susceptibilities coincide as
n!1. If, for example �2 � �1 � bn where bn ! 0, heuristic arguments indicate that the
corresponding infectivity estimators converge at the rate jbnj

p
n if jbnj

p
n!1 and at the

rate log�n� otherwise.

4. Estimation under partial observation

In applications the epidemic process is rarely observed completely. In particular the time of
infection is often unknown. If any longitudinal information is available for an epidemic it is
usually the show of symptoms or the time of diagnosis. It can be argued that this time is
approximately the same as the mathematical term removal times. First, individuals are usually
more infectious soon after their infection and by the time that they have shown symptoms
the infectiousness has often been reduced. Second, and perhaps more important, the social
activityÐand hence the infectivityÐ is often reduced drastically on show of symptoms or
diagnosis. This motivates the study below where we assume that the removal processes for
each type is observed. We also treat the data consisting of the ®nal state of the epidemic,
perhaps the most commonly available data.

4.1. Deriving estimators
4.1.1. Susceptibility estimators
Equation (2.1) de®nes 2k martingales:

Mi,1�t� � Ni�t� ÿ
�t
0

�i �Si�u��TI�u� du, i � 1, . . ., k, �4:1�

Mi,2�t� � Ri�t� ÿ 

�t
0

Ii�u� du, i � 1, . . ., k. �4:2�

Unfortunately, none of these martingales are observable for the data at hand. Instead we
construct k new observable martingales from equations (4.1) and (4.2). By equating the
martingales to their means (equal to 0) this will give k estimating equations and thus enable
estimation of k parameters, an estimation technique known as the method of moments.

Two well-known properties of martingales (e.g. Andersen et al. (1993)) are that integrating
predictable (left continuous) processes with respect to martingales results in new martingales,
and that linear combinations of martingales are also martingales. Hence
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Ui�t; �, �� �
�i



P
j

�j

n
Mj,2�t� ÿ

�t
0

1

Si�uÿ�
dMi,1�u�, i � 1, . . ., k, �4:3�

de®nes kmartingales fUi�. ; �, ��g � U�. ; �, �� (as mentioned previously they are martingales
only for the true parameters ��, �)). The reason for choosing these particular martingales is
that the unobservable du-terms appearing in equations (4.1) and (4.2) cancel out. In fact,
noting that dNi�u� � ÿdSi�u�, we have

Ui�t; �, �� �
�i



P
j

�j

n
Rj�t� �

�t
0

dSi�u�
Si�uÿ�

� �i



P
j

�j

n
Rj�t� ÿ Ai�t�,

where

Ai�t� �
1

Si�0�
� 1

Si�0� ÿ 1
� . . . � 1

Si�t� � 1
,

and Ai�t� � 0 if Si�t� � Si�0� (A�t� denotes the corresponding vector). At t � � this martingale
only depends on the ®nal state. In a fairly large population, and assuming that initially only
few were infective and the rest susceptible (i.e. Si�0�=ni � 1), we have the well-known approx-
imation Ai��� � ÿ log�1ÿ ~pi� where ~pi � 1ÿ Si���=ni � Ni���=ni denotes the observed ®nal
proportion infected i-individuals. This gives us the estimating equations

�i

ÿ1P

j

�j�j ~pj � ÿ log�1ÿ ~pi�.

As mentioned previously the model is overparameterized and we assume that equation (3.1)
holds giving us the estimator

�̂i � Ai��� � ÿ log�1ÿ ~pi�.
The estimator obtained when applying the approximation above is identical with the estimator
derived from the corresponding deterministic model.

4.1.2. Infectivity estimators
If only the ®nal state is observed we cannot estimate more than the k susceptibilities and
linear combinations thereof. This should not be a surprise since data are only k dimensional:
� ~p1, . . ., ~pk�. In particular, it is not possible to estimate R0 � 
ÿ1 �i �i�i�i consistently since
we have no information about the separate infectivities. However, if the removal processes
are observed continuously (i.e. fR1�u�, . . ., Rk�u�; 04 u4 � g� we can also obtain informa-
tion about the infectivities, a situation we now treat.

The author has not been successful in the search for martingales that are suitable for the
estimation of f�i g. Instead estimators are obtained by studying the deterministic system of
di�erential equations (3.8) more closely. Since �i�t� � �i ÿ �i�t� it follows from equations (3.8)
that

�i�t� � �i
�
1ÿ exp

�
ÿ �i

�t
0

�T��u� du
��
� �i�1ÿ expfÿ�i
ÿ1�T��t�g�,

approximating the initial proportion infective, �, to 0. Again using equations (3.8) we thus
have

� 0i �t� � 
 �i�t� � 
 f�i�t� ÿ �i�t�g � 
 ��i�1ÿ expfÿ�i 
ÿ1�T��t�g� ÿ �i�t��. �4:4�
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We therefore pretend that fRi�t�g are counting processes with stochastic intensities

�i�t; �, �� � 0 _ n
��i�1ÿ expfÿ�i
ÿ1�T �R�t�g� ÿ �Ri�t��
(the deterministic functions in equation (4.4) are always non-negative but this may fail for the
stochastic versionsÐ the intensity is then set to 0). We hence have an approximate likelihood
~lt��, �� which we may di�erentiate with respect to �j to obtain approximate score processes
as in Section 3. Divided by n, these are

Vj�t; �, �� � nÿ1
@ ~lt��, ��
@�j

�Pk
i�1

�t
0

�
� j �
i �u; �, ��
�i�u; �, ��

fd �Ri�u� ÿ ��i�u; �, �� dug, �4:5�

where �
� j �
i �u; �, �� is the derivative of �i�u; �, �� with respect to �j and ��i�u; �, �� � nÿ1�

�i�u; �, ��. The estimating equations for �̂ are then given by Vj�t; �̂, �̂� � 0, j � 1, . . ., k,
with �̂ de®ned in Section 4.1.1. The estimator �̂ only relies on the ®nal state of the epidemic
whereas �̂ depends on the removal processes as well. Simulations in Section 5 illustrate the
performance of the estimators.

4.2. Variance of estimators
Taylor expanding the estimators around the true values (�, �) yields

0 I

@�1�V�� ; �*, �*� @�2�V�� ; �*, �*�

 !
�ÿ �̂
�ÿ �̂

 !
� U�� ; �, ��

V�� ; �, ��

 !
, �4:6�

where I denotes the identity matrix, @�1�V and @�2�V are the matrices of partial derivatives with
respect to � and � respectively, and �* and �* are some points along the line between the
true value and the estimates. For later use we de®ne G* as the matrix on the far left-hand side
of equation (4.6) and its estimator Ĝ obtained by replacing �* and �* by the estimates �̂ and
�̂.

Since �̂ is obtained independently of �̂ and because U is a martingale this suggests that the
estimator is approximately Gaussian with a variance matrix which may be estimated by the
observable optional variation matrix process �Û ����. From equations (4.1)±(4.3) and theory
for counting processes (e.g. Andersen et al. (1993)) it follows that the diagonal and o�-
diagonal elements of the estimated variance matrix are given by

� dUi, Ui ���� �
�̂2
i


̂2
P
k

�̂2
k

n2
Rk��� �

1

S 2
i �0�
� 1

fSi�0� ÿ 1g2 � . . . � 1

fSi��� � 1g2

and

� dUi, Uj ���� �
�̂i�̂j

̂2

P
k

�̂2
k

n2
Rk���, i 6� j.

In the next subsection it is shown that the estimator �Û ����, which depends on the removal
processes, is consistent only if the true susceptibilities are all di�erent.

How to estimate the variance of �̂ and the covariance matrix of �̂ and �̂ remains an open
problem; in the next subsection we show the asymptotic order of the matrices. From the
de®nition of Vj�t; �, ��, equation (4.5), it follows that
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Vj�t; �, �� �
Pk
i�1

�t
0

�
� j �
i �u; �, ��
�i�u; �, ��

fd �Ri�u� ÿ 
 �Ii�u� dug

�Pk
i�1

�t
0

�
� j �
i �u; �, ��
�i�u; �, ��

f
 �Ii�u� ÿ ��i�u; �, ��g du. �4:7�

The ®rst sum is a martingale, so the corresponding vector has an available variance estimate,
but for a process like V it is more complicated to estimate the variance matrix. If an estimator
of the full variance matrix of (

U���
V��� � were available, Ĥ say, then the variance matrix of ��ÿ�̂�ÿ�̂ �

would be estimated by Ĝÿ1Ĥ�Ĝÿ1�T. One way to estimate H is to neglect the second term on
the right-hand side of equation (4.7) so that V becomes a martingale. However, this will most
likely result in the variance matrix of V being underestimated.

4.3. Consistency and rate of convergence of estimators
Let Gd be the deterministic 2k� 2k matrix with k� k submatrices

0 I
D1 D2

� �
.

The matrix D1 has � j, j 0 �-element de®ned by

ÿPk
i�1

�1
0

fi
� j ��t� fi � j

0 ��t�=fi�t� dt,

where

fi�t� � 
 ��i�1ÿ expfÿ�i 
ÿ1�T��t�g� ÿ �i�t��
(i.e. fi�t� � � 0i �t�, the solution to equation (4.4)), and fi

� j ��t� is the derivative with respect to �j.
Let fi

�*i ��t� denote the derivative of fi�t� with respect to �i. Then D2 is the matrix with � j, i �-
element

ÿ
�1
0

fi
�j ��t� fi�*i ��t�=fi�t� dt.

The matrix Gd will be the limit of the stochastic matrix G* de®ned as the matrix on the far
left-hand side of equation (4.6).

The proof of the following theorem is found in Appendix A.

Theorem 3. As n!1, on the part of the sample space where there is a major epidemic,

G*
p
n
�ÿ �̂
�ÿ �̂

� �
ÿ!d N�0, ��,

where � is a non-zero matrix. Further, the matrix Ĝ, and hence also G*, converges in
probability to Gd. If all �i are distinct then Gd is invertible for almost all infectivity vectors �
(i.e. except a null set), and for such �

p
n
�ÿ �̂
�ÿ �̂

� �
ÿ!d N�0, Gÿ1d �Gÿ1d

T�,

and the variance matrix of �̂ may be estimated consistently with �Û ����. If some susceptibilities
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are equal, then Gd is not invertible and the corresponding infectivity estimators are not
consistent. Estimators of all susceptibilities and weighted sums of the infectivities with equal
susceptibilities (weighted by their frequencies) still converge at rate

p
n.

5. Simulations

In this section we provide some numerical examples indicating the performance of the
estimators. The hypothetical population consists of two types of individual, equally many of
each (i.e. �1 � �2 � 0:5) and with true parameter values 
 � 1, �1 � �1 � 1 and �2 � �2 � 2
with the interpretation that type 2 individuals are more susceptible and more infective when
infected, perhaps because of higher social activity. Simulations were performed for popu-
lations of size n � 500, 2000, 8000; a factor 4 was chosen so that the standard deviation of the
estimators should reduce by 50%. The simulations were initiated with one infectious individ-
ual of each type, and the remaining population susceptible. Results in the present paper rely
on a major outbreak, so simulations resulting in less than 10% infected were rejected, and
100 major epidemics were simulated for each population.

As mentioned previously the model is overparameterized. Since there are only two types of
individual it was decided to estimate the relative susceptibility �2=�1, the relative infectivity
�2=�1, the basic reproduction number R0 � ��1�1 � �2�2�=2 and 
ÿ1, the average length of
the infectious period. As it turned out, the estimators for the relative infectivity had a much
larger variation. For this reason, and the fact that �2=�1 is always non-negative, ln��2=�1�
was estimated instead.

In Table 1 we show the simulation averages of the estimates for di�erent detailed data and
di�erent population sizes. Within parentheses are the standard errors for the estimates; the
standard errors of the averages are 10 (

p
100) times smaller. As pointed out in Section 4 it is

not possible to estimate the relative infectivity nor the average length of the infectious period
when only the ®nal state of the epidemic is observed. The important parameter R0 is not
estimable either. However, one more function of the parameters is estimable besides the
relative susceptibility �2=�1: �1�0:5�1p1 � 0:5�2p2�
ÿ1, where p1 and p2 are de®ned from the
parameters by equation (3.9). This means that we could estimate �i�0:5�1p1 � 0:5�2p2�
ÿ1,
i � 1, 2, when the ®nal state is observed, quantities interpreted as the accumulated infection
force acting on i-individuals. Being less central the corresponding estimates are not given.
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Table 1. Parameter estimates{

Population Data Estimates for the following parameters and true values:
size n �1=�2 
ÿ1 R0 ln(�2=�1)

2 1 2.5 ln(2) � 0.693

500 Complete 2.003 (0.20) 1.004 (0.03) 2.532 (0.22) 0.827 (1.05)
Removal 2.018 (0.24) 0.895 (0.18) 2.388 (0.32) 0.103 (1.47)
Final state 2.018 (0.24) Ð Ð Ð

2000 Complete 2.001 (0.09) 1.001 (0.02) 2.509 (0.13) 0.782 (0.66)
Removal 2.002 (0.11) 0.935 (0.11) 2.423 (0.24) 0.444 (1.13)
Final state 2.002 (0.11) Ð Ð Ð

8000 Complete 2.000 (0.05) 1.000 (0.01) 2.506 (0.06) 0.730 (0.31)
Removal 2.001 (0.06) 0.974 (0.07) 2.468 (0.17) 0.672 (0.91)
Final state 2.001 (0.06) Ð Ð Ð

{Averages from 100 simulated major epidemics; standard errors of the estimates are given in parentheses.



In Table 1 it is seen that the relative susceptibility is estimated accurately for all types of
data, even in small populations. The gain in precision having the complete data is moderate.
When observing the complete data or the removal processes continuously 
ÿ1 and R0 are
estimated quite accurately even in small populations, only now estimation based on com-
plete observation has better precision than removal estimates, in particular when estimating

ÿ1. The estimators for the relative infectivity have much larger variation than the other
estimators. Here also the removal process performs worse than when the complete data are
available. It is seen that the standard errors are reduced by approximately a half when the
population size is increased by a factor 4 as the limit theorems of Sections 3 and 4 suggest.
This is not as evident for the estimates of R0 and ln��2=�1� based on removal data where
asymptotics seem to catch in in larger populations.

Simulations for populations where the types have equal susceptibility have also been
performed but are not given explicitly. As expected, the ®rst three parameters are estimated
accurately like in the examples above but the estimators of the relative infectivity �2=�1 have
no accuracy at all, not even for complete data and a population size of many thousands.

6. Discussion

In Sections 3 and 4 it was shown that the rates of convergence of the infectivity estimators
were of di�erent order depending on whether the corresponding susceptibilities were unique
or not. In applications this may not be known in advance. Still, there is no need to test the
hypothesis that any susceptibilities are equal. Instead, this is re¯ected in that the elements of
the variance matrix converge at the correct rate, independently of the underlying suscepti-
bilities. For the complete data the variance matrix was estimated by nÿ1���̂, �̂�ÿ1, de®ned in
Section 3, and in the case of equal susceptibilities this matrix will contain elements of di�erent
order. The same is true for the variance matrix of the estimator obtained from the removal
data (Section 4), only this time no estimate of the matrix was readily available.

There are several ways to generalize the multitype epidemicmodel of the present paper; see for
example Ball and Clancy (1993). First, the assumption of exponentially distributed infectious
periods is not suitable for some applications. Several results could be extended to a general
parameterized distribution of the infectious period and also if a latency period was intro-
duced in the model. Loosely speaking, the qualitative statements should remain unchanged; it
is only the expressions for the variance matrices that change. An exception is if the distri-
bution of infectiousness is a constant whence there is no di�erence between observing the
complete data and only observing the removal processes. A theoretically interesting open
problem is to characterize the class of distributions of the infectious period for which the
infectivities may be estimated consistently from the removal data in the case that the
susceptibilities are equal (because of the previous observation about constant infectious
period the class is non-empty). The assumption of equally distributed infectious periods, i.e.
equal mean 
ÿ1, for di�erent types is also a restriction. In applications this might be easier to
cope with since the infectious period is an immunological quantity which usually does not
vary much between di�erent individuals, and the alternative to bring in more parameters also
has its drawbacks.

The contact matrix was assumed to be of the form � � ��T=n, a restriction of the most
general form being an arbitrary matrix � � ��ji�. This assumption is known as proportionate
mixing (e.g. Hethcote and Van Ark (1987) and Becker and Marschner (1990)). The close
contact rate between di�erent types is actually a factor of three ingredients: how infectious a
j-type individual is, how susceptible type i-individuals are and the rate at which the two have
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contact. If this contact rate splits into a product of the `social activity' of the two types, then
� reduces to the form ��T=n as has been assumed in this paper. This assumption is not
suitable when certain community structures, such as households, play an important role in
the spread of disease.
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Appendix A: Proofs

In this section we outline the proofs of the theorems given in the main text. Several details are left out to
reduce the length of the proofs.

A.1. Proof of theorem 1
The statement of theorem 1 follows from theorem VI.1.2 in Andersen et al. (1993) if we can verify the
®ve assumptions denoted A±E. Conditions A, C and E, concerning the parameter space and regularities
on the likelihood, are easily veri®ed and will not be shown. Condition B, for the application at hand,
assumes that

nÿ1���, �� ÿ!p �d

where ���, �� is given by equations (3.5)±(3.7) and �d is the deterministic matrix de®ned by expressions
(3.10)±(3.12). Condition D assumes that �d is positive de®nite, i.e. invertible, and is only needed in the
second part of the theorem.
Start with condition B. From Ball and Clancy (1993) it follows that the diagonal elements appearing

in equation (3.7) divided by n converge in probability to �i pi=�
2
i , where f pi g are de®ned by equation

(3.9). For the same reason, applying Slutsky's theorem, the second term in equation (3.5) divided by n
converges in probability to ��j pj�j 0pj 0=
�p. For the integrals appearing in equations (3.5) and (3.6) a little
more e�ort is needed. De®ne the beginning of the epidemic to be from t � 0 until the ®rst time � when
there are �n infected individuals, i.e. the ®rst time N�t� � �n, where � is a small number. The ®nal part of
the epidemic is de®ned as the time from which R�t�5 n�pÿ �� until � (for ®nite n this period may be
empty). By majorizing the beginning and the ®nal part of the epidemic with suitable multitype branch-
ing processes it can be shown that the contributions from these parts, divided by n, to the integrals can
be made arbitrarily small by choosing � su�ciently small. For the middle part of the epidemic process,
whose time duration is bounded in probability, we may for example apply theorem 11.2.1 in Ethier and
Kurtz (1986). This theorem shows that, if the beginning of the epidemic is overlooked and the time clock
is started at �, then the `bar processes' converge in probability, uniformly on bounded intervals, to the
deterministic functions de®ned by equations (3.8). From this it follows that the middle parts of the
integrals converge in probability. Finally, by choosing � small the limit can be made arbitrarily close to
the solutions of expressions (3.10) and (3.11).
We now argue that, for ®xed andmutually distinct f�i g, �d is invertible (i.e. condition D) for almost all
f�j g obeying the linear constraint �j �j�jpj � 
, which was assumed without loss of generality. It follows
from equation (3.9) that pi � exp�ÿ�i� for all such�. Thus, as we vary� over the allowed con®gurations,
expression (3.12) and the second term of equation (3.10) remain constant. The non-linearity of the system
of di�erential equations (3.8) de®ning the deterministic solution f�i�t�, �i�t�, �i�t�, �i�t�g implies that each
�i, j�-term in expresssion (3.11) and � j, j 0 �-term of equation (3.10) change di�erently as we vary �. This
implies that the subspace for which �d is not invertible has a lower dimension.

A.2. Proof of theorem 2
The statement for theorem 2 follows from equation (3.13) if we can show that l 0� ��1�=

p
log�n� is

bounded in probability and that l@� ��*1 �= log�n� is bounded away from 0 in probability.
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Start with l 0� ��1�=
p

log�n�. It follows from likelihood theory for counting processes (e.g. Andersen et
al. (1993)) that l 0t��1�=

p
log�n� is a zero-mean martingale indexed by t, and its variance is the expectation

of equation (3.14) divided by log�n�. This expectation is unchanged if dN�u� is replaced by its intensity

f�1 I1�u� � �2 I2�u�g�T �S�u� du.
Because � is of the order log�n� and the ®rst ratio under the integral sign has bounded expectation this
implies that l 0� ��1�=

p
log�n� has bounded variance which in turn implies boundedness in probability.

Now we present a heuristic argument that l@� ��*1 �= log�n� is bounded away from 0 in probability. The
®rst factor under the integral sign of equation (3.14) is approximately a squared normal process (except
during the beginning and the ®nal part of the epidemic which may be omitted), and the second factor is
larger than a constant times dN�u�=N�uÿ�. Thus, ÿl@� ��*1 �= log�n� is minorized by some constant with
arbitrarily large probability. A simple proof of this is not known to the author. Instead we outline a
rather long proof which consists of three parts:

(a) to minorize ÿl@� ��*1 � by a similar expression for a continuous time multitype Markov branching
process;

(b) to approximate this new expression with a similar expression now containing a multitype Galton±
Watson branching process;

(c) to show that the corresponding expression is larger than something su�ciently small (but posi-
tive) with arbitrarily large probability.

Along the line of strong approximations of epidemics with branching processes (e.g. Ball and Clancy
(1993)) step (a) is performed by only integrating until the ®rst time when the epidemic and branching
process di�er (the appearance of the ®rst `ghost'), a time of order log�n�. In part (b) we replace the
integration with respect to real time by integration of the induced Galton±Watson process with respect
to generation as a discrete time parameter. This is possible because all individuals have equally distrib-
uted life lengths (equivalent to infectious periods), so individuals of the same generation live approx-
imately around the same time. By choosing c1 and c2 small ÿl@� ��*1 � can thus be minorized by

c1
P�c2 log�n��
k�1

fZ1�k� ÿ ��1=�2�Z2�k�g2
�*1 Z1�k� � �*2 Z2�k�

Z1�k� 1� � Z2�k� 1�
�*1 Z1�k� � �*2 Z2�k�

, �A:1�

where Zi�k� denotes the number of i-individuals in generation k in the multitype Galton±Watson
process. The term Z1�k� ÿ ��1=�2�Z2�k� consists of the sum of Z1�kÿ 1� independent and identically
distributed variables with mean 0 and ®nite variance plus the sum of Z2�kÿ 1� other independent and
identically distributed random variables, also with mean 0 and ®nite variance. Its square is thus sto-
chastically increasing in Z1�kÿ 1� and Z2�kÿ 1�. For multitype Galton±Watson processes Zi�k��ÿk
!Wi almost surely, and the random variable Wi is strictly positive on the set of non-extinction (e.g.
Jagers (1975), p. 95). Let Xk,i be independent and identically distributed random variables with mean 0
and small positive variance. Then these two facts together imply that the quantity in expression (A.1)
can be minorized by

c3
P�c2 log�n��
k�1

� P�c4�k �
i�1

Xk,i

�p
�k
�2

with arbitrarily large probability, by choosing c3 and c4 su�ciently small. The outer sum contains
�c2 log�n�� independent terms, and all except the ®rst few terms can be approximated by the square of a
Gaussian random variable with mean 0 and ®xed positive variance. If we divide the sum by log�n� it
hence converges in probability to a strictly positive constant.

A.3. Proof of theorem 3
To show the ®rst statement of theorem 3 we note from equation (4.6) that this is equivalent to showing
that

p
n

U���
V���
� �

ÿ!d N�0, ��, as n!1
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(� and � are omitted in the notation). Because U�t� is a martingale we can apply Rebolledo's theorem
(e.g. Andersen et al. (1993), p. 83), to conclude that

U���pnÿ!d N�0, �11�.
For showing that V���pn converges to a Gaussian variable we use equation (4.7). The ®rst sum is a
martingale so properly normed it converges to a Gaussian vector; also from Rebolledo's theorem, the
conditions of the theorem are not di�cult to verify. To show that the second sum on the right-hand side
of equation (4.7) multiplied by

p
n converges to a Gaussian random variable we ®rst note that the

integral may be approximated by omitting integration over the beginning and ®nal parts of the
epidemic, as de®ned in the proof of theorem 1. This is true because the factors 
 �Ii�u� and ��i�u� are
negligible for such us, implying that f
 �Ii�u� ÿ ��i�u�g

p
n is negligible on these parts. On the central parts

of the epidemic we apply theorem 11.2.1 in Ethier and Kurtz (1986) to conclude that �
� j �
i �u�=�i�u�

converges in probability, uniformly on ®nite intervals, to f
� j �
i �u�=fi�u�, and theorem 11.2.3 of Ethier and

Kurtz (1986) to conclude that the process f
 �Ii�u� ÿ ��i�u�g
p
n converges weakly to a Gauss±Markov

process. From these observations it follows that V���pn converges to a Gaussian vector. This proves
the ®rst statement of the theorem.
We now show that

Ĝÿ!p Gd.

From previous results it follows that

U��� ÿ!p 0,

so by equation (4.6)

�̂ÿ!p �.

The same is not always true for �̂. However, Vj�� ; �*, �*�, and its partial derivatives, only depend on
�* through ��*�T �R�u�, 04 u4 � . Besides the beginning of the epidemic, which may be omitted in the
integrals, it can be shown that �̂T �R�u� converges in probability to �T��u�, so the same result holds for
��*�T �R�u�. This implies that

@�i�V�� ; �*, �*� ÿ!p Di, i � 1, 2,

as was claimed.
If the susceptibilities f�i g are all distinct it can be veri®ed that Gd is invertible for almost all � by

using a similar argument as when showing that �d was invertible in the proof of theorem 1. When this is
the case the second central limit theorem of the theorem and the consistency statement immediately
follow.
When some susceptibilities are equal the corresponding rows of D1 and D2 are multiples of each

other, so Gd is not invertible. For the same reason the corresponding estimating equations, Vj�� ; �̂,
�̂� � 0, are di�erent only because of stochastic deviations in the susceptibility estimators f �̂i g, so the
corresponding infectivity estimators are not consistent. Still, ��i ÿ �̂i�

p
n is asymptotically Gaussian

because of equation (4.6). Finally, by multiplying Gd from the left by suitable matrices, it is possible
to show that the sum of the infectivity estimators (weighted by the type frequencies), for which the
corresponding susceptibilities are identical, converges to the corresponding true sum at rate

p
n.
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