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ABSTRACT 

A two-parameter epidemic model allowing any specified heterogeneous contact 
structure is studied. With the use of recursive formulas for the final size distribution, 
as in (Addy, Longini and Haber, Biometrics, 47:961-974, 1991), the score test of the 
hypothesis that the heterogeneous structure is nonsignificant is derived. The test 
may be used if there is uncertainty about the spreading mechanism of an infectious 
disease and a known heterogeneous structure, such as geographical or social struc- 
ture or both, would be apparent if the disease spread through person-to-person 
contacts. © Elsevier Science Inc., 1997 

1. I N T R O D U C T I O N  

During the last ten years, much of the research in epidemic theory 
was aimed at incorporating heterogeneous structures in the population 
and finding out how this heterogeneity affects certain properties of the 
model, such as the basic reproduction number and the probability for a 
major epidemic outbreak. For  a fixed and finite population, a technique 
has been developed for computing the distribution of the final outcome 
for such models, a method based on recursive formulas [1-4]. 

In the present paper, these results will be used to construct a simple 
test of the hypothesis that the population mixes homogeneously, where 
the alternative is any specified heterogeneous contact structure. In a 
human population, such prespecified structures could, for example, be 
families, geographic structure, social structure, or a mixture of them. If 
the population consists of animals or plants, one might consider the 
"nearest  neighbors" structure (the model assumes that animals/plants 
infect their neighbors at a higher rate). 

If the disease we are interested in is known to spread through 
person-to-person contacts, then the hypothesis of homogeneity seems 
very unl ikely--so the test should certainly reject the hypothesis and 
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hence not be very informative. However, for several infectious diseases, 
the exact mechanism with which it is spread is not known. Common 
alternatives to diseases spreading through person-to-person contacts 
are, for example, airborne diseases and diseases spreading through a 
common water source. The test presented in this paper can therefore be 
interpreted as a test to see whether a disease spreads through person- 
to-person contacts. It is only when this hypothesis is rejected that one 
might move on to estimation of certain parameters in the model. An 
investigation of procedures for estimating these parameters would be 
far from simple under the general alternative hypothesis treated in this 
paper. 

The data needed for the test is a binary variable for each individual 
indicating whether or not he was infected at the end of the epidemic. 
The score statistic Equation (10) or its approximation Equation (11) is a 
linear combination of pairwise products of these variables and is thus 
straightforward to compute [at least Eq. (11)]. Because we are testing 
for homogeneity against heterogeneity, the total number of infected 
individuals carries no information in itself about the hypothesis. The 
information on which our test is based is who is infected given the total 
number infected. We will condition on this number when we derive the 
distribution of the score statistic, the total number being sufficient for a 
nuisance parameter under the hypothesis of homogeneity. 

This is the plan for the rest of the paper. In Section 2, the model is 
defined, the recursive formula is presented, using the results of Addy et 
al. [1], and the hypothesis is stated. The score statistic of the hypothesis 
and the test procedure are given in Section 3. Unless the population is 
small, certain difficulties appear in the test procedure, which are treated 
in Section 4. Simulations of epidemics are presented in Section 5, to 
convey a sense of how severe the heterogeneous structure must be to be 
detected. Finally, in Section 6, the paper at hand is related to similar 
work found in the literature, with a discussion of possible extensions of 
the present work. 

2. THE MODEL AND HYPOTHESIS 

The epidemic model is a Susceptible, Infective and Removed (SIR) 
model with general distribution for the infectious periods and with 
arbitrary contact rates between each pair of individuals. Consider a 
closed population consisting of n individuals, labeled 1,..., n, in which 
an infectious disease is spread. At the start of the epidemic, we assume 
one individual, say u, has just become infected from some external 
source, and everyone else is susceptible. Individuals who are infected 
become infective immediately (no latent period) and remain so for a 
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time duration with distribution F. During the infectious period, individ- 
ual i makes contact with other individuals according to independent 
Poisson processes; at rate Ai./, he makes contact with individual j, j ~= i 
(see the end of the section for an interpretation of Aij). If a contact is 
made with a susceptible individual, the individual becomes infected and 
infective; otherwise nothing happens. When i's infectious period has 
ended, he becomes immune and plays no further role in the 
epidemic--we say that i has been removed. All contact processes and 
infectious periods are defined to be mutually independent. The epi- 
demic evolves until the first time at which there are no infective 
individuals in the population; when this happens, n o  one spreads the 
disease and no one can get infected. The epidemic stops, and the state 
of the population at this time is called the final outcome (i.e., which 
individuals have been removed and which are still susceptible). 

Note that an i-to-j infection is possible only when i is infective and j 
is susceptible. At such times, there is no "opposite" contact process, so 
Aj, i need not equal hi, / for the construction to be consistent. Thus the 
parameter Ai, / is the rate of transmission between i and j when i is 
infective and j is susceptible. Let A ={Ai,/} denote the contact matrix 
where we define hi, i "= 0 for all i, because it is assumed that self-infec- 
tion is impossible. 

The distribution of the final outcome for this epidemic model has 
been derived by Addy et al. [1] and is given by recursive formulas that 
are presented below. First, we need some more notation. All vectors in 
this paper will be binary and have dimension n. The ith component of a 
vector k is denoted ki, and [k[ .'= Ei ki, the number of l's. All matrices 
will be n × n with O's on the diagonal unless otherwise stated. Let ~b be 
the Laplace transform of the infectious period, oh(a):= f~e-aXdF(x), 
and for vectors a and k write O(a) k := l-I n ,hCa ~k, Further, we write 

i =  1 W x  i j • 

Ek= for k l ...Ek.n 
0 ~ J l  = 0 Jn = o* 

Suppose k u is a binary vector such that the uth component, k~, 
equals O, and let pu(k"; A) denote the probability that exactly those 
individuals i with k~' = 1 were ultimately infected (besides individual u). 
Then these probabilities may be computed through the recursive for- 
mula 

k u 

~ _ , p u ( j ; A ) O [ A ( 1 - e u - k U ) ] - ( J + e u ) = l ,  for 0 ~< kU ~ < 1 - %,  (1) 
j = 0  

where % is the uth unit vector and 1 is the vector with 1 in each 
component. 

In this paper, I wish to make some inference on the contact matrix A 
after having observed the final outcome of an epidemic. For a general 
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matrix, there are n ( n -  1) parameters and an n-dimensional vector is 
observed, so the number of parameters have to be reduced to have a 
well-posed statistical problem. What we do is to assume A to be of the 
form A~,~ = 0 and, for i :~ j, 

A 
}~i,j ~-" -n "[" 8ci , j  (2) 

where C = {c~,j} is some prespecified matrix with nonnegative elements 
and ci, i = 0. (The factor 1 / n  has been inserted to simplify notation and 
for asymptotic reasons.) We have thus reduced the number of parame- 
ters to only two, A and 8. Within this model, we will construct a test of 
the hypothesis 

H 0 : 8  = 0, against the alternative HA: 8 > 0, (3) 

which means that we have a homogeneous population that mixes 
uniformly instead of the alternative 8 > 0 when i--, j contacts with 
large c i j  are more likely. 

The model contains the unknown nuisance parameter A. Heuristi- 
cally, this implies that the total number infected carries no information 
about 8. For this reason, we will condition on the observed number 
infected and base our test on who were infected, given this number. 
The formal statistical reason for conditioning on the total number 
infected is that this number is sufficient for A under the null hypothesis. 

The matrix C should be interpreted as some measure of "closeness." 
An example is ci, j = 1 if i and j belong to the same family and ci, ~ = 0 
otherwise. Another example is c i j  = d ( i , j )  -1, where d(., .) is some 
geographic or social distance or both, with the interpretation that 
"close" individuals infect each other at a higher rate. In both of these 
examples, the matrix C, and hence A, is symmetric, but this must not 
always be the case. In fact, Ai, j should be thought of as the product of 
three factors A i j = K i j~ io~ ,  where K i j is the contact rate between i and 
j (naturally symmetric), ~i is i's i'nfectivity, and o~. measures how 
susceptible j is. So, for example, if i is an adult and j is a child, we 
might have Ai, j > Aj, i owing to the fact that children more easily catch a 
cold than adults do. This is in fact one question that we will be able to 
test by using the results of the next section. 

3. TESTING FOR HOMOGENEITY 

In this section, we will derive a test of the hypothesis stated in 
Equation (3). Because no uniformly most powerful test exists, we will 
derive the score test, the test that maximizes power for alternatives 
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close to the null hypothesis (i.e., small 8). In applications, it is rarely 
known which individual(s) started an epidemic. We will assume this to 
be unknown and act as if the starting individual were randomized; and, 
because all individuals are equally susceptible under the null hypothesis, 
we will randomize according to the uniform distribution. (A similar 
analysis can be performed if the initial infective is known or if some 
other distribution of the initial infective is preferred--this situation is 
treated in the remark after Theorem 3.1.) 

Suppose we observe the final-state vector k; that is, that exactly those 
individuals i with k i = 1, were infected. Then the score test should be 
based on 

~-~8 logP(k; A, 8) a=0' (4) 

where P(k; A, 8) is the probability that k is the final outcome if the 
initial infective is drawn completely at random from the whole popula- 
tion. This means that P(k; A, 8 ) =  n - lE . ;k  = l P " ( k - e . ;  A, 8), using the 
notation in Equation (1) and associating A, 8 with the matrix A defined 
in Equation (2). As mentioned earlier, we will condition on the observed 
number of infected, Ikl, so Expression (4) should actually contain 
- ± log P(lk 1; A, 8 )18 = 0. This factor will depend only on data through [k 1, a8 
which is why it is omitted. 

From the recursive formula in Equation (1), it is possible to show the 
following theorem. Its proof, which is given in Appendix 1, is somewhat 
technical although not deep. The main ingredients are basic combina- 
torics and changing the order of summation. 

THEOREM 3.1 

The log-derivative for the model defined in Section 2 is 

-~-a l°g P(k;  A' 8 ) 0 8  a=o=-~(k~ 'Ck-[3kkrC1)  ' (5) 

where ot k and [3 k are coefficients depending onby on k through k = Ikl. 
Further, these coefficients are defined through the recursive formulas 

k - l )  
k j - -1  ( j - -1  ~b'[A(1- k / n ) ]  ) 

( ) pj-I~b[A(1- k / n ) l k - J  t~J-E-~T+J d p [ A ( 1 - k / n ) ]  j= l  n - 1  
j - 1  

=0 ,  k =  2 . . . . .  n, (6) 
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k - l )  

k j - 1  
( n_ l ) Pi-lq~[ A(1- k/n)] 

j = l  
j - 1  

k ~b' [ A(1  - k/n)] 
-J(%flJ+J ~b[A(1-k/n)] ) 

= 0 ,  k = l  . . . . .  n, (7) 

where {py} are themselves defined recursively by 

k-1 (kj  -1 ) 
j~__o - ~ j  ~ Pi ~b[ h(1- k /n)] -(/+1)= 1, k = l  . . . . .  n. (8) 

Remark. Theorem 3.1 was for the case where the initial infective was 
unknown and drawn completely at random from the whole population. 
More generally, if to, is the probability that u is the initial infective, 
then the log-derivative in the theorem becomes (Eu.k_l ta , )  -1 
~.u;k,=ltOur[, where r~, = OtkkTC(I-e,e~)k- Ol k [3kkTC(1--e:). - 

The distribution of Equation (5) depends on the nuisance parameter 
A. Under the null hypothesis (8 = 0), each realization with the same 
total number infected has equal probability by symmetry. Let Pk-1 = 
Pk-1(A) denote the probability that k -  1 individuals, besides the ini- 
tially, infect!ye,, are ultimately infected. We then have p u ( k - % ,  A,0)= 

1{k--I}- and Equation (8)is simply Equation (1)when 8 = 0. For Pk- 
the case where the initial individual is randomized, we have P(k, A, 0) = ( 1-1 Pk- 1 k . This implies that k = [kl is sufficient for A, so we condition 
upon this number, making a k a constant term. We may therefore omit 
the factor a k / k  in Equation (5) when we construct the test statistic. 

If ci,.=c for all i, where ci,.=Eyci,y, then the term k r C l  in 
Equation (5) becomes kflkC and is constant, given k. Thus we should 
use KTCK = F,i,yci,yKiKj as the test statistic of the hypothesis (we 
write uppercase letters for random vectors and variables). The interpre- 
tation of ci,.= c is that the average number of contacts is the same for 
each individual--it is only who is contacted that may differ. 

If, on the other hand, ci. ~ %. for some i and j, one has to compute 
flk through Equations (6)-(8). From these equations, it is seen that ¢1 k 
is a function of the nuisance parameter A. ~Ihe most natural way to 
proceed is to replace A by a good estimator under the null hypothesis. 
When 8 = 0, the population mixes uniformly and the present model 
reduces to what is sometimes called the Generalized Epidemic Model. 
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I m I I g m g e  DB 

Two well-known results for the Generalized Epidemic Mo d e l - - fo r  
example, Martin-L6f [5]--state that, in a large population, a major 
outbreak can occur only if A > 1 and that, in case of a major outbreak in 
a large population, the distribution of the final proportion infected is 
concentrated about z, where 

~" is the positive solution of the equation x = 1 - e -xx. (9) 

It follows that A = - ~ log(1 - ÷), where ÷ = k / n  is the observed pro- 
portion infected, is a good estimator for A if the population is fairly 
large. Consequently, let /3 k be defined from Equations (6)-(8) com- 
puted with A = A. 

This implies that Equation (5) is approximately equivalent to the 
statistic 

T= Eci,jKiKj- flkECi,.Ki. (10) 
i , j  i 

Numerical results indicate that, even in a small population, flk "~ k / n  
for rather arbitrary A and distribution F (see Figure 1 for a population 
of size n = 50, A = 1.4, and F the exponential distribution). This sug- 
gests that Equation (10) may be substituted by 

T ' =  E c i , j K i K j - ÷ E c i , . K i  = E c i , j K i ( K j - ÷ ) ,  (11) 
i , j  i i , j  

0.8  
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0 .4  

0 .2  
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FIG. 1. /3 k for n : 50, A = 1.4, and F ~ exp(1) compared with the line k/n .  
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where ÷ (=  ~,i K i / n )  is the observed proportion infected. When we 
calculate the level of significance, we shall use the conditional null 
distribution of T'  (or T), given the observed number of infected 
individuals k. This distribution is obtained from the underlying uniform 

()" distribution of the epidemic, which puts equal mass ~ to each 

configuration k -- (k 1 . . . . .  k n) such that Ik[ = E"i=I k i = k. It has no closed 
form but, in a small population, it can, of course, be derived analytically. 
An alternative approach is to approximate the distribution by simula- 
t i o n - h o w  this is done is discussed in Section 4. 

If we observe an epidemic outbreak and want to test for homogene- 
ity, we should use the following test procedure. 

TEST PROCEDURE 

Reject the hypothesis 6 = 0 if  the observed value t o f  Equation (10) is 

large compared with the distribution o f  T, which puts equal mass " ~ ) -  l to 

each realization (k a . . . . .  k , )  such that E~ffi 1 ki = k (k is the observed total 
number infected). Replacing the statistic T by T' ,  defined in Equation (11), 
gives an approximation that is simpler to calculate. 

4. LARGE POPULATION APPROXIMATIONS 

When the population size n is fairly large--say, 100--two difficulties 
arise in the test procedure described in Section 3. The first is to 
calculate the exact value of Ok from Equations (6)-(8). In principle, this 
is easy, but the equations are numerically unstable (even a powerful 
computer may have problems in computing /350 when n = 100, and this 
is a fairly small population). After /3 k has been calculated, the second 
difficulty is to derive the exact conditional distribution of T in Equation 
(10), given the observed number infected k = Y'.~= 1 ki. 

These two problems motivate the need for approximations valid 
when  n is fairly large, which is the case treated in this section. To 
emphasize the dependence on n, we will attach a superscript in our 
notation whenever necessary. It is assumed that, as n ~ ~, 

n 

c,,j ,  and E Ci, j ~ 1~i • 17, (12) 
j = l  

where A, {~i}, and 77 are fixed positive constants. These assumptions 
imply that the average number of "homogeneous contacts" by an 
individual tends to a bounded limit and that, for a fixed positive 8, the 
number of contacts from the heterogeneous population structure is of 
the same order as the corresponding number from the homogeneous 
part. 
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In Appendix 2, it is shown that the approximation /~n)_ ÷ = k / n  
holds for "likely" k. This approximation justifies the use of T' defined 
in Equation (11) instead of T given in Equation (10), and this new 
statistic is very easily computed. The second problem remains: to derive 
an approximation for the conditional null distribution of T', given the 
observed number of infected k. This is the distribution that puts equal ()1 
mass ~ to each k such that Ikl = k. 

One way to approximate the conditional null distribution is by means 
of simulation. For fixed n and k, an outcome of the epidemic can be 
simulated simply by choosing k among the n individuals completely at 
random. When this has been done, it is straightforward to compute the 
value of T'. Through many repetitions of this procedure, the distribu- 
tion of T' may be approximated by the induced empirical distribution. 

A natural question is whether there exists a unique central limit 
theorem for the conditional distribution of T'. The answer is no. The 
asymptotic distribution of T' depends heavily on the contact matrix 
C (n). With different choices of C (n), satisfying Equation (12), a very 
broad class of limit distributions can be obtained. We will examine just 
two examples, with the Gaussian and X 2 distributions as limits. 

EXAMPLE 1. WITIfIN-FAMIL Y INFECTIVITY 

Testing procedures for this example have been studied previously 
[6-9]. The alternative hypothesis here is that there is an increased rate 
of infecting members of one's own family. This increased rate may or 
may not depend on the size of the family. For example, Schork [6] treats 
a slightly different model in which he assumes ci, j -- 1 if i and j belong 
to the same family, independent of the family size. Britton [7] considers 
the case ci, j = 1 / ( f  - 1) if i and j are in the same family whose size is f. 
This choice simplifies the test statistic because ci,.= 1 for all individuals 
(except singles). Here we treat the general case and let ci,j = ~f if i and 
j belong to the same family of size f ,  where { o~f} are specified nonnega- 
tive coefficients. Let Nf,~ denote the number of families of size f with i 
infected individuals at the end of the epidemic, 0 <~ i <<, f ~ fro,x, where 
fm.x is the size of the largest family. With this new notation we have 
n = E{0 ,~ i ,~ f ~ f.,°x} f g f ,  i and k = Eto ,~ i ,~ f ~ fmax) iNf, i, and Equation (11) 
becomes 

f m a x f  f m a x f  

r ' =  E E ¢ x f i ( i - 1 ) N f ,  i - ~ "  E E ( f  - 1 ) ~ f i N f ,  i. (13) 
f = 2 i = l  f = 2 i = l  

We seek the asymptotic conditional distribution of T', given ÷. It can be 
shown [10] that, if the proportion of different family sizes as well as ÷ 
converge, then the conditional distribution of the vector N (n) = {N~'~ )} 
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converges in distribution to a singular Gaussian vector. This implies that 
the conditional distribution of T',  a linear combination of N ("), con- 
verges to a normal, distribution. It can also be shown that the condi- 
tional normalizing moments are 

and 

E ( T ' I ~ )  = 0  

var(T '  I ÷) = 2÷2(1 - ÷)2 ]~ a ~ f ( f  - 1)nf 
f 

+ ~ . 3 ( l _ ¢ . ) ( ~ f  c l ~ f ( f  _ l ) 2 n f  [ ~ ' f c t f f ( f  - a ) n f ] 2  } 
- n ' 

where nf denotes the number of families with size f .  
For the specific case o~f = 1, considered by Schork [6], T'  may also be 

written as Ef, i i[i - 1 - ÷ ( f  - 1)]Nf, i. If, instead, we have af  = 1 / ( f  - 1), 
as in Equation [7], we get T'  = Ef, i ~ 2 i(i - 1)Nf, i / ( f  - 1) + -~N1.1 - n÷ 2 
(note that af  has to be defined only for f >t 2 because, in single 
individual families, there is no one to infect further). The variance 
expression for this choice of {af} is 292(1-  ~)2 Ef  f n f / ( f -  1)+ ÷3(1 - 
÷)(n I - n2 / n ) .  

EXAMPLE 2. MULTITYPE EPIDEMIC 

Here we consider a population consisting of two groups (or types) of 
equal size where it is suspected that there might be an increased contact 
rate between individuals belonging to the same group. The same exam- 
ple is analyzed further in Appendix 2. We define the contact matrix C 
by ci, j = l__/n if i and j are in the same group and ci, j = 0 otherwise. Let 
M 1 and M E denote the proportion infected in the two groups. Using 
Equation (11), we get T '  = - ( 1  - ÷ ) / 2 +  n(M-- 1 - ~t2)2/(8÷), and, given 
k (i.e., given ÷), the randomness comes solely from (M--1- ~t2)2. Be- 
cause (M 1 + ~t2)/2 = ÷, this test is equivalent to the X 2 t e s t .  The test 
procedure is thus to reject the null hypothesis if n(.M 1 - M2)2/[4÷(1 - 
9)] is large compared with the X 2 distribution with 1 degree of freedom. 

More generally, if we have k subpopulations of equal size, we get a 
X 2 test with k -  1 degrees of freedom. If the sizes are different, one 
also will obtain a X 2 test if the model is suitably parametrized. 

5. SIMULATIONS OF EPIDEMICS 

To get a sense of the magnitude of heterogeneity (i.e., the size of 8 
in comparison with A) that is necessary for detection by the test, I have 
performed some simulations. The answer will, of course, depend on the 
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type of heterogeneity considered. For  the case in which the heterogene- 
ity is due to families or households, the reader  is referred to Britton [7], 
where a special case of the present test is also illustrated with several 
sets of real data. In the present section, we simulate an epidemic 
modeling the spread of a disease among cows in a cattle house, say, 
where it is assumed that there is a higher risk of infecting the right and 
left "neighbor" if the disease spreads from cow to cow. In this situation, 
the infected cows should tend to cluster, meaning that infected cows will 
stand close to each other. If, on the other hand, the disease is caused by 
food or water, then there would be no reason for the clustering to 
appear. In this made-up example, we assume for simplicity that all cows 
have exactly two neighbors, one to the left and one to the fight, 
meaning that they stand in a circle. We label the cows 1 . . . . .  n so that 
the heterogeneous contact matrix C has nonzero elements ci.i_ 1 = 
Ci, i+ 1 = 1 (for i = 1, this is interpreted as cl, n = C l ,  2 = 1) and the remain- 
ing elements of C are 0. Because g . =  g,~-i  ÷ ci,~+l = 2 for each i, the 
second term in Equation (10) is a constant. The test statistic that we 
should use is hence only the first term of Equation (10), which is 
equivalent to 

n-1 
T = cl ,nK1K n + ~ ci,i+lKiKi+ 1. (14) 

i = l  

I have simulated epidemics for different population sizes; the sizes were 
chosen as n = 25, 50, 100, and 200. For  each of these sizes, epidemics 
with various magnitudes of heterogeneity were simulated. In all simula- 
tions, A + 8 was kept fixed equal to 1.25, resulting in outbreak sizes 
with, on the average, 30-50% of the whole population. The degree of 
heterogeneity, denoted by Y in Table 1, was measured by the relative 
proportion of 8; that is, 3' = 8 / ( 8  + A)= 8/1.25.  The choices of 3' 

TABLE 1 

Simulations of an Epidemic in a Cattle House: Percentage of Simulations Rejecting 
the Hypothesis of Homogeneity at the 5% Level (and 1% level within parenthesis) 

for Different Population Sizes and Degrees of Heterogeneity 

Population Degree of Heterogeneity (3,) 
Size (n) 0 0.01 0.05 0.10 0.20 0.50 

25 1.6 (0.5) 2.5 (1.0) 3.7 (1.1) 5.5 (1.7) 11.9 (4.9) 39.7 (22.1) 
50 2.5 (0.3) 3.8 (0.5) 9.1 (2.3) 15.4 (5.7) 31.1 (13.4) 82.4 (63.7) 

100 5.4 (0.2) 6.1 (0.9) 15.1 (4.3) 28.3 (11.3) 57.2 (30.4) 98.5 (93.8) 
200 4.8 (1.5) 9.0 (3.7) 21.0 (9.4) 45.2 (26.4) 82.0 (67.1) 99.6 (99.5) 
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were 0%, 1%, 5%, 10%, 20%, and 50%. The epidemic was initiated by 
one single infected cow (which cow being irrelevant owing to symmetry), 
and the distribution of the infectious periods was chosen to be the 
exponential distribution (/z was normed to 1). For each combination of 
n and y, 1000 simulations resulting in outbreaks of more than five 
infected cows were performed (the reason for this restriction is given 
below). 

Because of the time consumption required to compute the exact 
conditional null distribution of T in Equation (14) for different values 
of n and outbreak sizes, the distributions were approximated by using 
the normal distribution. This is, of course, not recommended in real 
situations when the population is small. However, in the present con- 
text, the only purpose of the simulations is to show what combinations 
of y and n are necessary to get a test with descent power. If the total 
outbreak size is very small, the normal approximation is not even 
approximately true. For this reason, simulations resulting with five or 
fewer infected were neglected. Because T is integer-valued, 1 /2  was 
used as a continuity correction to improve the normal approximation. 
Table 1 gives the percentage of the simulations that were rejected at the 
5% significance level, with the corresponding percentage at the 1% 
level given in parenthesis. From Table 1, one concludes that, if the 
degree of heterogeneity is less than 10%, a population of several 
hundred is needed for the test to have a reasonable chance of rejecting 
the hypothesis of homogeneity; whereas, if the degree of heterogeneity 
is larger, it may be detected with fewer than 100 cows. For y = 0, we see 
that the size of the tests seems approximately correct, at least when n is 
fairly large. 

6. DISCUSSION 

The case in which the heterogeneous structure of interest is the 
presence of families has been studied previously by several authors. 
With the choice of c id  = 1 / ( f  - 1) if i and j belong to the same family 
whose size is f (see Example 1), the test procedure using T' of this 
paper coincides with the test suggested by Britton [7], originally from 
[10]. In the paper at hand, the score statistic is obtained by using exact 
methods; only the approximation /3 k ~ ÷ relies on a large population. 
Britton [10] derives a central limit theorem for the final state of the 
population and uses this to approximate the likelihood. The score 
statistic is then obtained by differentiating the approximate log likeli- 
hood. Walter [8] proposes a test statistic, which is the first term of 
Equation (13) with af = 1, for the hypothesis that the disease does not 
aggregate in families. Leaving out the negative term in Equation (13) 
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has the effect that large families influence the statistic more than do 
small families. To avoid this effect, Fraser [9] suggests a statistic that is 
the first term of Equation (13) with a f - - 1 / f .  Commenges et al. [11] 
derive the score test for the hypothesis of homogeneity between groups 
(or, equivalently, families) when the alternative hypothesis is that ran- 
dom effects, in a logistic regression model, of individuals belonging to 
the same group are positively correlated. The resulting score statistic for 
their model is of the same type as the present one. If all explanatory 
variables are identical, the score statistic of their model is like Equation 
(13), with a r = 1 in the first term and a f  = 2 in the second term. This 
means that an equivalent version of the statistic is E~-=o;E{=oi(i - 
2f~)Nf. i. Although the test statistic proposed in the present paper is 
similar to the one in Commenges et al. [11], the technique used to 
derive the test differs. The reason for this is that the two models are 
fundamentally different. The model in Commenges et al. [11] is de- 
signed to allow dependencies within families due to random effects--for 
example, explaining genetic similarities--and all individuals behave 
independent ly  conditional on the random effects. In the present model, 
individuals infect each other, so they are dependent in a more genuine 
way. 

Test procedures, based on models for infectious diseases, suggested 
for testing homogeneity when the alternative is a general specified 
heterogeneous structure have received less attention in the literature. 
However, in Chapter 5 of Becker [12], such testing procedures are 
discussed. The main emphasis there is on epidemics observed over time 
in which "dose" individuals can be separated into disjoint groups, but 
an example in which "close" is the same as "living close to each other," 
which does not separate the population, also is discussed. The test 
statistics presented in Chapter 5 of Becker [12] either are similar to the 
Mantel-Haenzel statistic or are quadratic forms. The present statistic, 
Equation (10), share several properties with these statistics--for exam- 
ple, the first term is also a quadratic form. In the present paper, the 
statistic is derived as the score statistic in a parametrized epidemic 
model. Recently and independently, a similar test of homogeneity was 
constructed by Commenges and Jacqmin-Gadda [13]. They treat a 
random-effect model describing the occurrence of, for example, nonin- 
fectious diseases. For this model, they derive the score test for the 
hypothesis of homogeneity, when the alternative hypothesis is that 
certain parameters, associated with the survival distribution functions, 
of different individuals are correlated in a rather arbitrary way. Just as 
for the family (or group) structure mentioned above, the model and the 
technique used to derive the test are different even though the resulting 
test statistic is similar. 
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The alternative hypothesis in the present paper is rather general but, 
unfortunately, the null hypothesis is not. It would therefore be of great 
interest to derive the corresponding test statistic when the null hypothe- 
sis is generalized. For example, one might want to allow children to 
have a higher infection risk than adults when testing for family effects. 
With a more general null hypothesis, one would also be able to test for 
certain heterogeneous structures sequentially, in more and more com- 
plex models until the hypothesis of homogeneity is accepted. For 
example, if the family effect is significant, one might want to test the 
effect of schools or other "semilocal" structures. In principle, a test 
statistic under such a generalized null hypothesis may be derived from 
the recursive formula of Equation (1); however, it seems to be difficult 
to do so in practice. The resulting test statistic will most likely be more 
complicated than the present statistic [Eq. (10) or its approximation, Eq. 
(11)]. 

APPENDIX 1. P R O O F  OF T H E O R E M  3.1 

First, we show Equation (5). Fix a vector k. For u such that k ,  = 1, 
let r~, := P " ' ( k - e , ;  h , 0 ) / P " ( k - e ~ ;  X,0), where pu' denotes the deriva- 
tive with respect to 3. Then 

- • 8  logP(k;  A, 8) 8 = 0 

:Al°g[Xu:k~uffilPU(k-eu'~A'~)] ~=o 

.k=l P (k - e . ,  h,O) 
Eu: k.= i P U ( k - e u ;  h,0) 

1 P" ' (k -e . ;  A,O) 1 E 
= -k u: k.=lZ ~ ~ u , A - -  ~ -ku: kuffil rt" 

The third equality is true because all k terms in the denominator sum 
are equal. This follows because, when 8 = 0, we have a homogeneously ()1 

n- -1  mixing population. So, by symmetry, P"(j;  A,0) = j pj, where pj is 

the probability that j individuals, besides individual u, will get infected, 
and j = Ijl. By comparing the preceding equation with Equation (5), 
we see that the first part of the theorem is proved if we can show that 
Elu:  k ,  ffi 1~ r~  = ~ k ( k r C k  - ¢lkkrC1). It follows from Equation (1) that 

k - e  u 

k= Y'. ~ P"(j;X, 8)*[A(8)(I-k)]  -(j+'') VS>~0, (A1) 
u;ku=l j f f iO  
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where A(8) is the matrix with off-diagonal elements given by Equation 
(2). It is straightforward to show that ~ [A(0XI -k ) ]  -(j+eu) = th(A(1- 
k/n))-(1+ 1) and that 

-~8 • [ A( 8)(1  - k ) ]  -(J+~") ~ ~o 

= qb ' [A(1 -k /n ) ]  e ~ ) r C ( l _ k ) "  
6[  3.(1 - k/n)]'i+2 (J + 

Thus, differentiating both sides of Equation (A1) with respect to 8, 
setting 8 = 0, and changing the order of summation gives us 

0 = pj~b[ h(1 - k / n ) ]  
j=0 

x Y'. I2 ~ f -  ~ [ ~ ( l - k / n ) l  (J+e"lrC(l -k)  " 
j ; j<ku ;ku= l  
Ijl=j j.=O 

(A2) 

For 0 ~< j < k, let 

4 ~-i):= E E r;  
j ; j~k  u;ku= l 
Ijl=j j .=0  

so, for fixed j, s~ k-j) is the first part of the inner sum in Equation (A2). 
With this definition, we have s~ 1) = Etu:k.ffi 1)r~,, which is the quantity 
that we want to show equals ak(krCk -/3kk:rC1). We now state and 
prove a lemma. 

LEMMA A.1 

For 2 <<. i < k, 

S(k )--  E c(1) 'Jk-j" ( i 3 )  
j;j < k 

~1=i-1 

Proof. By the definition of s~ k-j), the right- and left-hand sides of 
Equation (A3) are equal to 

Z Z rj" and Z Z r~-j-e., 
j ; j~k  u;ku=l j ; j<k  u;(k-j)u=l 

~ l f k - i  ju=O li[= i -  1 
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The first of these two sums contains (kk_i)i terms and the respectively. 

latter has (ik_l}(k--i+l)={~_i}i, that is, the same. Further, each 
\ I X I 

term in the first sum is also found in the second. This completes the 
proof. • 

If we use the identity )2. j;j~k E. ;k .  = 1 (J + % ) r  =(j + 1)(k ~1 )k  T, which 

t j l  = j j .  = 0 

is easy to show, and rearrange in Equation (A2), it follows that 

s~ ) = k ~ ' [  A(1 - k/n)] k r C ( l _  k) 
t~[ A(1 - k/n)] 

l/ l{(n 1 1  
pj_ld~[ A(1- k /n)] k-y 

q~'[A(1-k/n)] j -1  ×(s~k-J*l)-j ~[A(l_k/n)] (k-1)krC(1-k)) )  (A4) 

We are finally able to prove that s(k I) = ak(kTCk - flkkrCl), which 
we do by induction. Suppose k satisfies [k I= I. From Equation (A4), it 
then follows that s (1) = {~b'[h(l- I/n)]/dp[A(1- I/n)]}krCl because 
kTCk = 0 when lk['= 1 because the diagonal elements of C are all 0). 
So, with O~ 1 f l l  -~- -~ ' [A(1  - 1/n)]/~[A(1 - l / n ) ] ,  Equation (A4) is sat- 
isfied. 

Assume now that s(~9 = ak,(k ' rCk ' -  flk,k'TC1) for all k' such that 
k '  = [k'[ < k and let k satisfy [k[ = k. Then, for 1 < j < k - 1, 

S(k-j+l)= E (i) Sk-v  
v ;v~  k Ivl=k- j 

= E aj(k-v)rC(k-v) - 
v;v~  k 

[ v l=k -  j 

E ~j f l j ( k - v )  r c l .  
v ; v ~ k  

Ivl~k- j 

The first equality is Lemma A.1 and the second follows from the 
induction assumption. Basic combinatorics implies that the first sum on 

aj [ ~-~_. ~ k r C k  is true ,he. ht- an  si e equa, to , , (t is o n l y  
\ / 

the diagonal elements of  C are all 0). The second sum equals 

im lios that 

j - 1  r 
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If we insert this into Equation (A4), we see that s~ 1) may clearly be 
written as ak(krCk -/3kkrC1), which completes the induction step. 

In the theorem, it was also claimed that aj, ~j, and pj satisfy 
Equations (6)-(8), which we now prove. That pj are defined by Equa- 
tion (8) is a direct consequence of Equation (1) with 6 = 0, which can 
also be deduced from Equation (A1) with 6 = 0. To show the defining 
recursive formulas for % and /3j, we use Equation (A4), with s~ k-j+ 1) 
replaced by the expression in Equation (AS). Extend the summation in 
Equation (A4) to j = k and write the same term with opposite sign in 
front of the summation: 

S(k 1) = a k ( k r C k  - flkkC1) 

k 1 ~ j - 1  
I k T c  k 

Pk-1 i l l (n-- l )  

j-1 qb'[h(1-k/n)] } 
x % ~ L -  i- + j ~b[ A ( 1 -  k/n)] 

+ k r C l ( ~  - 1  
n - 1  , ,1 1) 

- j  

. qb'[ A ( 1 -  k / n ) ]  x {' J,sJ + I k/,,)] }" 

Because both sums must be identically 0, we see that % and /3j are 
defined as was claimed. 

APPENDIX 2. VERIFICATION OF L A R G E  P O P U L A T I O N  
A P P R O X I M A T I O N  

As indicated in Figure 1, a natural guess is that /3k ~") ----- k/n for all k 
or, more strictly, v[,xln(") ---, x, for x~ [0 ,1 ]  as n---,oo ([nx] denotes the 
integer part of nx). This is a conjecture that the author has not been 
able to prove. However, under H 0 for fixed A > 1 and in the case of a 
major epidemic, the proportion infected, IK(")l/n, converges in proba- 
bility to % defined in Equation (9). This means that it suffices to know 
/3k ~") for k - - m ' .  In this appendix, we therefore show that, in a large 
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population, the approximation Ok (n) = "~ = k / n  holds, where k now is 
the observed number infected. This justifies the use of T'  instead of T, 
defined by Equations (11) and (10), respectively, in a fairly large 
population. 

Equations (6)-(8) defining ilk (n) are independent of the contact 
matrix C (n). We may thus choose C (n) of a simple form for which 
asymptotic results for the distribution of K <n) are known. Our choice is 
to separate the population into two subpopulations and to assume 
increased infectivity within each subpopulation. Let C (n) have elements 

c(,)_ [ 1/n if max{i,j} < n/2  or min{i,j} > n/2  
i , i -  [ 0 otherwise 

(A6) 

and define, as before, c~'9 = 0. This means that we have a symmetric l , l  

two-type epidemic, which falls under a more general model treated by 
Ball and Claney [4]. 

For the asymptotics, it turns out to be convenient to use a somewhat 
different parametrization. Assume C (") to be of the form in Equation 
(A6), but let A (") = A(")(6) have off-diagonal elements A(i,n](6)=(A - 

. (n) 6/2) /n  + oci,j, where A is considered to be fixed but 6 may vary in the 

interval [0, 2 A]. The reason for choosing this parametrization is that the 
law-of-large-number limit for the overall proportion infected remains 
constant as we vary 6. Thus, the final proportion infected will contain 
information only about A and not about 6, the parameter of interest. 
This means that, asymptotically, the final proportion infected is an 
ancillary statistic and the Conditionality Principle tells us to condition 
on the observed value of this proportion [14]. Note that there is a 
one-to-one correspondence between this parametrization and the one in 
Equation (2) and that the hypothesis remains unchanged, so we have 
the same model. 

We should look for an approximation of P(k; A - 6 / 2 ,  6) for the 
contact matrix defined by Equation (A6). Assume, for simplicity, that n 

= v'n/Zb and m 2 = is even so that n/2  is an integer, and define rn 1 ~i= 1~i 
~']=,,/2+lki. This means that m 1 is the number infected in the first 
subpopulation and m 2 is the corresponding number in the second. Let 
P(ml,m2; A -  6 /2 ,  6) denote the probability that m 1 individuals in the 
first subpopulation and m 2 in the second were infected. By symmetry, 
we then have 

) )1 
p ( k ; a _ 6 / 2 , 8 ) = [ n / 2  -a[n/2 p(m, ,m2;a_8/2 ,6)"  

m: 
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If M 1 and M 2 are the corresponding random variables and M i = 
M i / ( n / 2 )  with i = 1,2, denote the proportion infected, Equation (4.9) 
in Ball and Clancy [4] states that, in case of a major epidemic, 

The matrices S and -= are 2 x 2 and doubly symmetric. Matrix S has 
diagonal elements $1,1 = $2,2 = 1 - (1 - ~')(A/2 + 8/4)  and off-diagonal 
elements $1, 2 = $2,1 = - ( 1 -  ~-)(A/2-  8/4) .  The matrix ,= has diagonal 
elements -=1,1 = -=2,2 = r(1 - ~-)[1 +(1 - r)r2(2A 2 + 82/4) /4]  and the 
other two elements are E1,2 =-=2,1 = r ( 1 -  r)2(A 2 - 82/4) /2 ,  where r 2 
is the variance of the infectious period, r 2 .'= f~ x 2 dF(x) - [ f~ x dF(x)] 2, 
assumed to be finite. 

For a sequence {m(1 n), m(2 ")} such that "(")  "-'(") ~ ( ' rn /2  - ax/n, r n / 2  " ' 1  , " ' 2  

- at-n-) for fixed a, Equation (A7) justifies the following approximation 
of the log likelihood: 

logP[ m~"), m(2"); X - 8 / 2 ,  81 

4 t " ' l  r - ~- - 

Di f ferent iat ing the right-hand side with respect to 8 and then setting 
8 = 0 g ives--af ter  some algebra, preferably done using a computer 
program--exactly the right-hand side in Equation (A8). We hence 
approximate the log derivative by 

_ _  1 - z  
e8,9 logP[m( ,O,m(n) ;A_8/2 ,8]  8=0 = 2 

_ + n 

8z t 1 
(A8) 

To find an approximation of /3  k, we now compare this large-population 
approximation with the corresponding exact result for this particular 
choice of C. The exact log derivative can be obtained from results of 
Section 3. First note that 

- • 8  logP(ml ,m2;  A -  8 / 2 , 8 )  8=o 

a logP(ml ,mE,A,  8) ~=0 ~ • 

e8 

1 e logP(ml,m2;A, ,O)L,= . 
2 OA' (A9) 
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The first term is given by Equation (5). The second term also can be 
obtained from Equation (5) with a different choice of C (we may choose 
a different C because 8---0). Let C=n-l[llr-diag(1)]. With this 
choice of C, the contact rates are, for i ~=j, hi, j = h / n  + g/n ,  so 
P(m~, m2; h + h,0) = P(ml, m2; A, h). The negative term on the fight- 
hand side of Equation (A9) hence equals Equation (5) multiplied by 
- 1/2  with C = n - l [ l l r  --diag(1)]. Using Equation (5)with these choices 
of C and observing that m I + m 2 = k, we get 

- • 8  logP(ml ,m2;  A -  8 / 2 , 8 )  8=o 

( - (1  1 )  Otk ml(ml  1) + m2(m2 --1) -- /3 k -~ k 
= T  n - 

_112[ k(k_.- 1 ) n  flkn~nlk]) 

t~k k[  1 - k / n  n ] 
= 2 + - m 2 )  2 

(A10) 

If we compare the last row in Equation (A10), which is an exact result, 
with the large-population approximation [Eq. (A8)] and remember that 
k / n  = ÷ = r asymptotically, we see that we must have /3 k -- ÷. We also 
note that a k -~ n, as a by-product. 

It is worth emphasizing that we have only motivated the approxima- 
tion /3 k = ÷ = k / n  for k -- ~-n, because the central limit theorem of Ball 
and Clancy [4] justifies approximations of P (ml ,m2 ;g )  only when 
mx, m 2 E ( r n / 2  - a ~ ' ,  7 n / 2  - a~fn-). Fortunately, the probability that 
we will observe such m 1 and m 2 can be made arbitrarily close to 1 by 
choosing a large, a consequence of the same theorem. 

This paper is part of a PhD thesis written under the guidance of .4ke 
Svensson, who is gratefully acknowledged. The author was supported in part 
by The Bank of Sweden Tercentenary Foundation. 
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