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ABSTRACT. An epidemic model for the spread of an infectious disease in a population of

families is considered. The score test of the hypothesis that there is no higher infectivity

between family members is constructed under the assumption that the epidemic process is

observed continuously up to some time t. The score process is a martingale as a function of t

and by letting the number of families tend to in®nity, a central limit theorem for the process

can be proved. The central limit theorem not only justi®es a normal approximation of the

test statisticÐit also suggests a smaller variance estimator than expected.
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1. Introduction

In this paper we study what we call the standard epidemic for a population of families (SEF),

an epidemic model allowing an increased infectivity between individuals of the same family.

Often the term household is used instead of family, the essential feature is that the population

is separated into many small subgroups. We will focus attention on how to test the hypothesis

that there is no increased infectivity rate between family members. If the disease we are

interested in is transmitted by close person-to-person contacts this hypothesis of course seems

very unlikely. However, for several diseases the mechanism by which the disease is transmitted

is not known. Thus, the hypothesis should be thought of as modelling more `̀ long-range''

contacts which also approximates indirect transmission such as for example transmission

through a common water source or air-borne.

For the case when the observed data consist of the ®nal outcome of the epidemic, i.e. for each

family we observe how many were infected and how many were not, Britton (1997) has derived

the asymptotic locally most powerful test. If M f ,i denotes the number of size f families with i

individuals infected at the end of the epidemic, and p~ is the observed overall proportion infected,

then this test statistic is

T � p~M1,1 �
Xfmax

f�2

Xf

i�0

i(iÿ 1)

f ÿ 1
M f ,i: (1:1)

The conditional distribution of T , given p~, is approximately (asymptotically) Gaussian. Under

the null hypothesis the mean is ìT � p~2 N and the variance is

ó 2
T � 2p~2p~2

P fmax
f�2 m f f =( f ÿ 1)� p~3~q(m1 ÿ m2

1=N ),

where m f is the number of size f families, N �P f fm f is the size of the population and

~q � 1ÿ p~.

There are several other tests suggested for the same hypothesis under other similar models;

see Britton (1997) for a survey. Like (1.1), all these tests are based on the ®nal outcome of the

epidemic.

In this paper we construct a test of the same hypothesis but now assuming that the whole
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epidemic process is observed up to some time. The test statistic (given in (3.1)), which now is a

function of how long we have observed the epidemic, is known as the score process; it is the

derivative of the log likelihood with respect to the `̀ within-family'' parameter. Even for a

population of moderate size, the exact distribution of this process is not known. However, it

follows from theory for counting processes that the process is a martingale. When the number of

families is increased we may therefore use martingale theory to prove a central limit theorem

(CLT) for the score process.

An interesting implication of the CLT is that the variance function of the limit process is

strictly less than the limit of the sequence of variance functions. For example, if we observe the

whole epidemic until it terminates, it is seen that the variance of the limit variable is only one

half the size of the limit of the sequence of variances. Thus, the CLT not only justi®es a normal

approximation, it also corrects the size of the test one would obtain if the limit of the variance

functions was used when normalizing.

Further, the asymptotic results tell us that the amount of information our test is based upon is

not proportional to the number of infections we observe, but rather information increases

linearly with the observation-time of the epidemic process. In other words, infections occurring

at `̀ odd'' times carry more information.

This is the plan for the rest of the paper: In section 2 we de®ne the model and derive the

likelihood for a realization. In section 3 we state our main results concerning the score process

and its asymptotic behaviour. In section 4 we interpret the asymptotic results and discuss

possible generalizations and extensions. The longer proofs are found in the appendix.

2. The standard epidemic for a population of families

SEF is an extension of the well-known general epidemic model (GE). The ®rst two properties

are identical with GE: (i) the length of infectious periods are i.i.d. with an exponential

distribution having mean 1=ã, and (ii) during an individual's infectious period, she makes

contact with other individuals according to a Poisson process with intensity parameter ë, each

contact is made with an individual chosen at random from the whole population (beside

herself). In SEF we also have an extra rate to infect family members: during the infectious

period she also makes contact according to another Poisson process with intensity ä. For this

contact process the contact is made with a family member and each family member has equal

probability of being chosen. If a contact is made with an individual not yet infected this

individual becomes infected and infective, otherwise nothing happens. All Poisson processes,

infectious periods and random selection numbers are de®ned mutually independent. When the

infectious period terminates an individual is considered to be immune, said to be removed, and

plays no further role in the epidemic.

SEF is a special case of models described by other authors, for example Ball & Clancy (1993)

(who treat a different asymptotic situation, however) and the model in Ball et al. (1997) slightly

modi®ed. Ball et al. (1997) generalize SEF by letting the length of the infectious period follow

an arbitrary distribution, still being i.i.d. for different individuals. We are, however, not only

interested in the ®nal outcome of the epidemic but the whole epidemic process. To retain the

Markov structure of the process we impose the restriction of exponentially distributed infectious

periods. The restriction can be relaxed to let the infectious period follow any phase-type

distribution, a class of distributions dense in the class all distributions on the positive axis; more

about this and other generalizations in section 4.

Suppose there are n families, labelled 1, . . ., n, in the population and let f i denote the size

of family i. At the start there has to be someone infective for anything to happen, assume
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for example that one individual in family 1 is infective at t � 0. Let Si(t), I i(t) and Ri(t)

respectively denote the number of susceptible, infective and removed in family i at time t and

let S(t), I(t) and R(t) be the corresponding population totals (S(t) �PiSi(t) etc.). Note that

we have the linear relation Si(t)� I i(t)� Ri(t) � f i and hence also S(t)� I(t)� R(t) �P
i f i �: N (the population size). At time instants when an individual changes state (i.e.

become infected or removed) we de®ne the individual to be in the new state which means

that the processes are right continuous. Let fF tg t>0 be the natural ®ltration, F t :�
ó ((Si(s), I i(s), Ri(s)); 0 < s < t, i, . . ., n).

In later sections we will assume n, the number of families, gets large. Whenever this has to be

emphasized relevant symbols will have an n attached to them.

If Ni(t) :� I i(t)� Ri(t) � f i ÿ Si(t) denotes the number of individuals in family i that

have been infected before (or at) t, SEF can be de®ned using counting processes. The

vector N(t) � (N1(t), R1(t), . . ., Nn(t), Rn(t)) is a 2n-dimensional counting process with

F t-intensities

ëi(t) � Si(tÿ)
ë

N ÿ 1
I(tÿ)� ä

f i ÿ 1
I t(tÿ)

� �
for Ni(t) and

ãi(t) � ãI i(tÿ) for Ri(t): (2:1)

This is true because Ni(t) increases by 1 iff a susceptible individual in family i has contact

with an infective individual; there are Si(tÿ) susceptible individuals in family i and each of

them have contact with a given infective individual of a different family at rate ë=(N ÿ 1) and

a given infective individual of the same family at rate ë=(N ÿ 1)� ä=( f i ÿ 1). This explains

ëi(t). The intensity ãi(t) � ãI i(tÿ) follows because Ri(t) increases by 1 iff an infective in

family i is removed and each infective is removed at rate ã. The vector N(t) only jumps one

component at a time since these processes can be de®ned through stochastic time changes of

independent Poisson processes, and it is well-known that a ®nite number of independent

Poisson processes have distinct jumps with probability 1. If the family size is 1 ( f i � 1), we

have 0 in the denominator but then either Si(tÿ) � 0 or I i(tÿ) � 0, so formulas will be

consistent if we adopt the convention 0=0 � 0 which is assumed throughout this paper.

Let Q denote the probability measure for which N(:) is a vector of independent Poisson

processes with constant intensity 1. If we observe the epidemic up to time t, it is well known from

counting process theory (cf. Andersen et al., 1993) that the likelihood relative to Q is given by

dP

dQ

����
F t

� exp
Xn

i�1

� t

0

log ëi(s) dNi(s)� logãi(s) dRi(s)ÿ (ëi(s)� ãi(s)ÿ 2) ds

 !
: (2:2)

Later we want to make inference on the parameter ä; in particular we want to test the

hypothesis ä � 0 against the alternative ä. 0. We therefore supress ë and ã in notation and let

Pä denote the probability measure which has ä as `̀ within-family'' parameter; for the same

reason we write ëi(:; ä). We base our statistical test on the likelihood ratio Lt(ä) � dPä=dP0jF t
.

The most powerful test is to reject the hypothesis whenever Lt(ä), or equivalently l t(ä) �
log Lt(ä), is large. Unfortunately, in our speci®c case the test depends on ä and no uniformly

most powerful test exists. We proceed by maximizing the power for small ä and hence use the

score statistic l9t(0) as our test statistic.

3. Main results

In counting process theory it is known (cf. Andersen et al., 1993) that the derivative of the log

likelihood of a counting process, called the score process, de®nes a local martingale. In the
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present model this can be checked explicitly; using (2.1) and (2.2) straightforward calculations

render

l9t(ä) �
Xn

i�1

� t

0

ë9i(s; ä)

ëi(s; ä)
dNi(s)ÿ ë9i(s; ä) ds

� �

�
X

i: f i . 1

� t

0

Ii(sÿ)=fi ÿ 1)

ëI (sÿ)=(N ÿ 1)� äIi(sÿ)=( fi ÿ 1)
(dNi(s)ÿ ëi(s; ä) ds),

where ë9i(s; ä) denotes the derivative with respect to ä. Because ëi(s; ä) is the intensity of

Ni(s) under Pä, l9t(ä) is seen to be a (Pä, F t)-local martingale, it is even a martingale since

l9t(ä) is bounded for ®xed n. We have thus shown the following.

Proposition

If we observe SEF up to t, the locally most powerful test (the score test) of the hypothesis

ä � 0 against alternatives ä. 0 is based on

Y (t) :� ël9t(0) �
X

i: f i . 1

� t

0

I i(sÿ)=( f i ÿ 1)

I(sÿ)=(N ÿ 1)
(dNi(s)ÿ ëi(s; 0) ds): (3:1)

If we look at Y (t), it makes sense as a test of ä � 0. If many infections occur in families with

a relatively high proportion of infectives our statistic will become large and this also speaks in

favour of the alternative.

This kind of test statistic is only useful if its distribution under the null hypothesis, P0, is

known. Below we prove a CLT for the process Y (t) rescaled in time and size. For a population

with many families we may use this result to approximate the distribution of Y (t).

From now on we will only use P0 in this paper. Under P0 SEF reduces to GE (the general

epidemic model): the family structure is irrelevant when ä � 0 since there is no extra within-

family infectivity. We may thus use known results from this model when proving a CLT. One

such result (e.g. Martin-LoÈf, 1986) is that as the population size grows, the ®nal proportion

infected is concentrated around the solutions to the equation x � 1ÿ exp (ÿëx=ã). If ë < ã, 0

is the only solution. In fact, when this is the case, the number of infected individuals is known

to be bounded in probability as the population size tends to in®nity. If ë. ã, there are two

solutions, 0 and a second solution

ð 2 (0, 1) is the positive solution to the equation x � 1ÿ exp (ÿëx=ã): (3:2)

We call it a major epidemic if we end up close to ð. More precisely, if R(n)(1) is the ®nal

number of removed, i.e. the total number of individuals ultimately infected by the epidemic,

we say that a major epidemic has occurred if R(n)(1)=N (n) .ð=2 (N (n) is the population

size). It is also known for GE that the number of infections in any ®nite time interval [0, t] is

bounded in probability as the population size grows (e.g. Ball, 1995). This result is true for

any choice of ë and ã. In the case of a major epidemic the duration of the epidemic is known

to be of order log n.

Heuristically, many random events must be under consideration for a CLT to have a chance to

be valid. For this reason and because of the properties of GE mentioned above, we assume that

ë. ã and that the time for which the epidemic is observed grows like log n. The correct,

somewhat unusual, scaling of our martingale turns out to be

M (n)(t) :� Y (n)(t log n)��������������
n log n
p N (n)

N (n) ÿ 1
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� N (n)

n

����������
n

log n

r X
i: f i . 1

� t logn

0

I
(n)
i (sÿ)=( f i ÿ 1)

I (n)(sÿ)
(dN

(n)
i (s)ÿ ë(n)

i (s; 0) ds) (3:3)

which is a martingale with respect to P
(n)
0 and the ®ltration ~F (n)

t :� F (n)
t logn. The factor

N (n)=(N (n) ÿ 1) is asymptotically irrelevant but is there to simplify notation in what follows.

Note that the integration stops if I (n)(sÿ) � 0 because then I
(n)
i (tÿ) � 0, t > s for each i so

the integrand is 0=0 which we de®ned as 0 in section 2.

As the population grows we have to make some regularity assumptions on the family-size

frequencies. We make things easy for us by assuming that m
(n)
f , the number of families of size f,

satis®es m
(n)
f =n � p f independent of n and that p f � 0 for f . fmax, so fmax is the largest

family size. Let ì �P f fp f � N (n)=n denote the average family size, the ®rst factor in the

second row of (3.3) is then ì.

The optional and predictable variation processes of M (n) are given by

[M (n)](t) � ì2 n

log n

X
i: f i . 1

� t logn

0

I
(n)
i (sÿ)

( f i ÿ 1)I (n)(sÿ)

 !2

dN
(n)
i (s) (3:4)

hM (n)i(t) � ì2 n

log n

X
i: f i . 1

� t logn

0

I
(n)
i (s)

( f i ÿ 1)I (n)(s)

 !2

ë(n)
i (s; 0) ds

� ëì

log n

� t logn

0

X
i: f i . 1

I
(n)
i (s)2S

(n)
i (s)=( f i ÿ 1)2

I (n)(s)
ds < ëìt: (3:5)

The `̀�'' in (3.5) would be `̀�'' if the right-hand side contained the factor N=(N ÿ 1). The

last inequality is true because I
(n)
i (s)2S

(n)
i (s) < I

(n)
i (s)( f i ÿ 1)2 so the sum in the numerator is

less than the denominator. (See for example Andersen et al. (1993) for more properties on

martingales and their optional and predictable variation processes.) This implies bounded

second moments of M (n)(t) for each t

var (M (n)(t)) � E([M (n)](t)) � E(hM (n)i(t)) < ëìt: (3:6)

We will now split up M (n) into three martingales, the ®rst containing all very large jumps of

M (n), the second containing the remaining jumps that are not negligible and the third containing

the rest. The size of a jump M (n) may do at time s is smaller than, and of the same order as,

ì
���
n
p

=(
����������
log n
p

I (n)(sÿ)). Hence we de®ne the events A
(n)
k (s), k � 1, 2, 3, by

A
(n)
1 (s) :� 1 < I (n)(sÿ) ,

����������
n

log n

r
1

g(n)

( )

A
(n)
2 (s) :�

����������
n

log n

r
1

g(n)
< I (n)(sÿ) ,

����������
n

log n

r
g(n)

( )

A
(n)
3 (s) :�

����������
n

log n

r
g(n) < I (n)(sÿ)

( )
,

where g(n) is a function tending to in®nity slow enough (g(n) � (log n)1=4 will do). Let

1
A

( n)

k
(s)

denote the corresponding indicator functions and de®ne from them three martingales.

For k � 1, 2, 3, let
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M
(n)
k (t) :� ì

����������
n

log n

r X
i: f i . 1

� t logn

0

1
A

( n)

k
(s)

I
(n)
i (sÿ)

( f i ÿ 1)I (n)(sÿ)
(dN

(n)
i (s)ÿ ë(n)

i (s; 0) ds):

The following three properties are easy to check: (i) M
(n)
1 , M

(n)
2 and M

(n)
3 are martingales. (ii)

M (n) � M
(n)
1 � M

(n)
2 � M

(n)
3 . (iii) The largest possible jump in M

(n)
3 tends to 0 as n!1.

We will show that M (n) converges to a Gaussian process but this will be the case only if we

have a major epidemic. This means we would like to condition on the event that there is a major

epidemic but then M (n) is no longer a martingale. However, we can modify M (n) to let it start at

a stopping time de®ned as the ®rst time when a fairly large number, say log n, of individuals

have been infected and this modi®ed process is a martingale with respect to the naturally

modi®ed ®ltration (see sect. II.4.4 in Andersen et al. (1993) for details of such martingales). It

is known (Martin-LoÈf, 1986) that the event that log n individuals actually will get infected,

asymptotically coincides with the event that there is a major epidemic. Further, the modi®ed

process and M (n) will be asymptotically identical because whatever happens before the stopping

time is asymptotically negligible, as is the time until the stopping time occurs (on the log n-

scale). This is how the conditioning event in the results below should be treated in order apply

theory for martingales.

Before showing weak convergence of M (n) we state some preliminary results, the correspond-

ing proofs are found in the appendix.

Lemma 1

M
(n)
1 ) 0 (weak convergence to the constant 0-process).

Lemma 2

hM (n)
2 i(t) !

P
(n)
0

0 8t > 0:

Lemma 3

Given that there is a major epidemic,

hM (n)
3 i(t) !

P
(n)
0

v(t) 8t > 0,

where

v(t) � á((t ÿ t1)� ^ t1)� (1ÿ ð)á((t ÿ 2t1)� ^ t2),

á � ë
P fmax

f�2 fp f =( f ÿ 1), 2t1 � 1=(ëÿ ã) and 2t2 � 1=(ãÿ (1ÿ ð)ë).

Remark. Hence v(t) equals 0 until t1, it then starts increasing linearly with slope á until

t � 2t1 when its linear growth decreases to (1ÿ ð)á, after t � 2t1 � t2 it remains constant. See

Fig. 1 below.

Once the lemmas above have been proven it is straightforward to show our main result.

Theorem

Let M (n) be the (P
(n)
0 , ~F (n)

t ) martingale de®ned in (3.3). Then, given that there is a major

epidemic,

M (n) ) M as n!1,

320 T. Britton Scand J Statist 24

# Board of the Foundation of the Scandinavian Journal of Statistics 1997.



where M is a Gaussian martingale with independent increments such that [M](t) � hMi(t) �
v(t); v(t) is de®ned in lemma 3 and plotted in Fig. 1.

Proof. Lemma 2, 3 and the discussion before lemma 1 together imply that M
(n)
2 � M

(n)
3

) M by Rebolledo's theorem for local martingales (th. II.5.1 in Andersen et al., 1993, or

Rebolledo, 1980). The martingale M
(n)
1 has to be treated separately because hM (n)

1 i(t)!p h(t), a

strictly positive deterministic function, so Rebolledo's theorem would not go through on M (n)

itself (the reason why not is that, even though the `̀ large-jumps-part'' of M (n), M
(n)
1 , converges

in probability to the `̀ 0-process'', its variation process hM (n)
1 i does not converge to 0 which is

needed in Rebolledo's theorem). However, by lemma 1 we may apply Slutsky's theorem on M
(n)
1

and M
(n)
2 � M

(n)
3 to conclude the statement of the theorem.

The theorem justi®es a normal approximation to the distribution of Y (t) in (3.1). Unfortu-

nately, Y (t) contains the nuisance parameter ë and the variance function v(t) is a function of ë
and ã. It is natural to replace these parameters by their ML-estimators but it is not obvious that

the same asymptotic results are still valid. This turns out to be the case however, and we state

the result as a corollary. The proof is found in the appendix.

Let M̂ (n) be like M (n) with the parameter ë replaced by its ML-estimator under the model

with ä � 0, that is

M̂ (n)(t) :� ì

����������
n

log n

r X
i: f i . 1

� t logn

0

I
(n)
i (sÿ)

( f i ÿ 1)I (n)(sÿ)
dN

(n)
i (s)ÿ ë̂(n)

t S
(n)
i (s)

I (n)(s)

N (n) ÿ 1
ds

� �
where

ë̂(n)
t � N (n)(t log n)

�� t logn

0

I (n)(s)
S(n)(s)

N (n) ÿ 1
ds:

Corollary

Given that there is a major epidemic, M̂ (n) ) M as n!1, where M is as in the theorem.

Further, v(t), the variance function of M, may be consistently estimated by v̂(n)(t) which is

de®ned like v(t) only with ë, ã and ð replaced by ë̂(n)
t , ã̂(n)

t � R(n)(t log n)=
� t logn

0
I (n)(sÿ) ds

and ð̂(n) which is the solution to (3.2) with ë̂(n)
t and ã̂(n)

t .

If we observe a SEF up to some time t and want to test the hypothesis ä � 0 the corollary

implies that we shall use the following.

Fig. 1.
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Test procedure

Reject the hypothesis ä � 0 if Ŷ (t) is large compared with the normal distribution with mean

0 and variance (N ÿ 1=N )2v̂(t=log n)n log n. Here Ŷ (t) is the statistic obtained by replacing

ë with ë̂ t in Y (t), and as before N is the population size and n denotes the number of families.

4. Discussion

We have shown that the normed score process, M (n), converges to a Gaussian process with

variance function v(t) (see Fig. 1). This variance function is not the same as the limit of

var (M (n)(t)). It is straightforward from lemma 5 to show that var (M (n)(t)) converges to a

function which increases with the same slopes as v(t) but now on the double sized intervals

(0, 2t1) and (2t1, 2t1 � 2t2) respectively. In particular, if we observe the whole epidemic the

variance of the normed limit variable is

v(1) � v(2t1 � t2) � á(t1 � t2(1ÿ ð)) �
ãð
Xfmax

f�2

fp f =( f ÿ 1)

2ë(ëÿ ã)(ãÿ (1ÿ ð)ë)

which is only half the limit of var (M (n)(1)). The CLT thus tells us that the more crude

method to normalize with the limiting standard deviation gives the wrong size of the test.

In the theory of inference, v(t) is known as the expected information. It increases linearly

which means that the information is proportional to the time we observe the epidemic, a result

which might seem obvious at ®rst. On the other hand intuition tells us that the information

should be proportional to the number of infections we observe but this is not true. Almost all

infections, a proportion tending to 1, take place arbitrary close to 2t1 � 1=(ëÿ ã) on the log

time scale; this follows from (A.3). So, loosely speaking, if we observe the epidemic during a

time interval of ®xed length l (on the log-time scale) we will not have more information to

answer the hypothesis if this interval contains the point 2t1 and we observe almost all infections,

than if the interval does not contain 2t1 and we would observe an ever decreasing fraction of all

infections. Infections taking place when there are not many infectives in the population hence

carry much more information than infections occurring when many individuals are infective.

This can be understood because if a susceptible person is infected when any of her family

members is infective but very few in the whole population are infective we would be almost

certain that there was an increased within-family infectivity. On the other hand if this happened

when a positive fraction of the whole population were infective we would not be so sure that the

infection was caused by the family member.

In applications the type of data considered in this paper is less common than data consisting

of the ®nal outcome of an epidemic. A motivation for the present work is therefore to see how

much we would gain by collecting the present, more informative, data. That is, how much power

do we gain by collecting this data? It can be seen that we may detect alternatives of order

1=
��������������
n log n
p

for the present data whereas when we observe only the ®nal outcome, the alterna-

tives have to be of order 1=
���
n
p

or larger to be detected. This means that we may detect

alternatives that are closer to the null hypothesis if we observe the whole epidemic process.

However, since the difference is only of order
����������
log n
p

, the gain is moderate and has to be

compared with the extra cost of collecting this type of data.

SEF has some properties which might not be very realistic in applications, for example:

exponentially distributed infectious periods; that the extra intensity of making contact with

family members, ä, is independent of the family size; and the assumption that all individuals

behave likewise in terms of getting infected and spreading the disease further.
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The assumption of exponentially distributed infectious periods can be relaxed. If instead we

assume that these periods follow any phase-type distribution then the score test (3.1) remains

unchanged. (A phase-type distribution is de®ned as the time to absorption in a continuous-time

®nite-state Markov chain with one absorbing state. This class of distributions is dense in the

class of all distributions on the positive real line, cf. Asmussen (1987). The likelihood will be

different from that in (2.2) but terms coming from the phase-type distribution will cancel when

forming the likelihood ratio just like ãi(:) disappeared. The CLT will not be the same in that the

variance function v(t) will be different.

The model was de®ned so that individuals make contact with other family members with

increased rate ä. This means that a given infective in a size f family makes contact with a given

susceptible of the same family with the additional rate ä=( f ÿ 1). A more general model is of

course to let these contact rates be of the form ä 3 g( f ) where g(:) is an arbitrary non-negative

function. All results in the present paper still hold for this generalized model, just replace

1=( f ÿ 1) by g( f ) everywhere.

Another generalization is to allow individuals to behave differently, that is to have a multi-

type population. The different behaviour could be a combination of variable susceptibility,

variable infectivity and variable distribution of the infectious period. Although notationally

heavier and technically more involved, several of the results in the present paper are straight-

forward to extend to such models.

Instead of testing for within-family infectivity one can extend the present model to test

the relevance of an arbitrary pre-speci®ed contact structure. We would then have a matrix

C � fc j,kg where c j,k indicates how `̀ close'' individual j is to k. A natural extension of the

present model then says that during js infectious period she contacts k with the intensity

ë=(N ÿ 1)� äc j,k . Just like in the family case the null hypothesis is ä � 0. The locally most

powerful test for this extended model should be based on

Y (t) :� ël9t(0) �
XN

j�1

� t

0

X
k

I k(sÿ)ck, j

I(sÿ)=(N ÿ 1)
dN j(s)ÿ ëS j(s)

I(sÿ)

N ÿ 1
ds

� �

which should be compared with (3.1), (I k(s) is now the indicator for the event that individual

k is infective at s and likewise for Sk(s)). To obtain a weak convergence result for this process

one has to assume some properties on the matrix C but this is beyond the scope of this paper.

In survival analysis similar hypothesis and corresponding test have been derived by

Commenges & Andersen (1995). In such models families may be heterogeneous in that each

family has a random parameter affecting the hazard rates for individuals belonging to the family.

However, given these random parameters, individuals behave independently of each other

whereas in the present paper individuals of the same family are genuinely dependent: if someone

of your family gets infected this suddenly increases your risk of getting infected.
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Appendix

Let E. 0, assume E,ð=2 but for the moment otherwise arbitrary (ð was de®ned in (3.2)).

De®ne three stopping times

çn :� inf ft . 0; N (n)(t) > Eìng
rn :� inf ft . 0; N (n)(t) > (ðÿ E)ìng
ó n :� inf ft . 0; I (n)(t) � 0g:

Remember that ìn is the population size and N (n)(t) :� I (n)(t)� R(n)(t) is the number of

individuals that have been infected by time t. The ®rst two stopping times depend on E which

is suppressed in notation. The results below hold independently of E, which is why we may

choose E suitably small later.

The following four properties can be deduced from Barbour (1975). In Svensson (1995) they

are stated formally for a more general model.

In case of a major epidemic:

çn=log n !
P

(n)
0

1=(ëÿ ã) �: 2t1, (A:1)

(ó n ÿ rn)=log n !
P

(n)
0

1=(ãÿ ë(1ÿ ð)) �: 2t2, (A:2)

rn ÿ çn remains bounded in probability, and (A:3)

inf
f t;çn< t<rng

I (n)(t)=ìn is bounded away from 0 in probability. (A:4)
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What these results heuristically say is that, on the log-time scale, more or less everyone is

susceptible before 2t1 and after this time a proportion ð are removed and the rest remain

susceptible. Equations (A.1)±(A.4) will be used throughout this section.

Before proving lemmas 1±3 we need a lemma.

Lemma 4

Let 0 , â, 1 and E. 0. In case of a major epidemic

sup
fu;u , â2 t1ÿEg

I (n)(u log n)=nâ !
P

(n)
0

0,

inf
fu;â2 t1� E, u , 2 t1�(1ÿâ)2 t2ÿEg

I (n)(u log n)=nâ !
P

(n)
0 1,

sup
fu;u . 2 t1�(1ÿâ)2 t2�Eg

I (n)(u log n)=nâ !
P

(n)
0

0:

The idea behind the proof is that, before 2t1 log n we can approximate the number of

infectives by a birth and death process with positive drift, and after 2t1 log n we approximate the

number of infectives with another birth and death process, now with negative drift and a large

initial population. Consequently, we apply results for birth and death processes which together

with (A.1)±(A.4) gives the desired result. A detailed proof is found in Britton (1996).

We now prove the three lemmas which are used in the proof of the theorem which is the main

result of this paper. The ®rst two are straightforward but the third is a bit more involved although

not deep.

Proof of lemma 1. We separate M
(n)
1 into the integrated counting process and its compensator

V
(n)
1 (t) :� ì

����������
n

log n

r X
i: f i . 1

� t logn

0

1
A

(n)
1

(s)

I
(n)
i (sÿ)

( f i ÿ 1)I (n)(sÿ)
dN

(n)
i (s)

V
(n)
2 (t) :� ì

����������
n

log n

r X
i: f i . 1

� t logn

0

1
A

(n)
1

(s)

I
(n)
i (sÿ)

( f i ÿ 1)I (n)(sÿ)
ë(n)

i (s; 0) ds

and show that V
(n)
i ) 0, i � 1, 2, which will prove the lemma since M

(n)
1 � V

(n)
1 ÿ V

(n)
2 .

V
(n)
1 and V

(n)
2 are non-decreasing in t, their maxima are obtained at ó n=log n and by

(A.1)±(A.3) it follows that

ó n=log n !
P

(n)
0

2(t1 � t2):

Thus, it suf®ces to show that

V
(n)
i (t9) !

P
(n)
0

0, i � 1, 2,

where t9 . 2(t1 � t2).

We start with V
(n)
1 . By (3.6),

ëìt9 > E([M (n)](t9)) > E([M
(n)
1 ](t9)) � E([M

(n)
1 ](t9)j[M

(n)
1 ](t9) . 0)P([M

(n)
1 ](t9) . 0):

The process [M
(n)
1 ](t9) is just like (3.4) with 1

A
(n)
1

(s)
in the integrand. We condition on
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[M
(n)
1 ](t9) . 0 which implies that we must have a jump when 1

A
(n)
1

(s)
� 1. So, by the de®nition

of A
(n)
1 (s)

E([M
(n)
1 ](t9)j[M

(n)
1 ](t9) . 0) . 0) >

ì2 n

log n

1

( fmax ÿ 1)2

g2(n) log n

n
!1,

from which we conclude that P([M
(n)
1 ](t9) . 0)! 0. But V

(n)
1 (t9) � 0 whenever

[M
(n)
1 ](t9) � 0, so V

(n)
1 (t9) !

P
(n)
0

0:

We now show that V
(n)
2 (t9) !

P
(n)
0

0, the convergence actually holds a.s. (the `̀�'' below would

be an equality if that factor N=(N ÿ 1) was added to the right hand sideÐthe same holds in the

next proof)

V
(n)
2 (t9) � ë��������������

n log n
p

X
i: f i . 1

� t9logn

0

1
A

(n)
1

(s)

I
(n)
i (s)S

(n)
i (s)

( f i ÿ 1)
ds

<
ë��������������

n log n
p

� t9logn

0

1
A

(n)
1

(s)
I (n)(s) ds

<
ë��������������

n log n
p

� t9logn

0

����������
n

log n

r
1

g(n)
ds � ët9

g(n)
! 0:

Proof of lemma 2. Similarly to (3.5),

hM (n)
2 i(t) � ì2ç

log n

X
i: f i . 1

� t logn

0

1
A

(n)
2

(s)

I
(n)
i (s)

( f i ÿ 1)I (n)(s)

 !2

ë(n)
i (s; 0) ds

� ìë

log n

� t logn

0

1
A

(n)
2

(s)

X
i: f i . 1

I
(n)
i (s)2S

(n)
i =( f i ÿ 1)2

I (n)(s)
ds

<
ìë

log n

� t logn

0

1
A

(n)
2

(s)
ds � ìë

� t

0

1� �������
n

logn

p
1

g(n)
< I(n)(u logn) ,

�������
n

logn

p
g(n)
	 du:

Apply lemma 4 with â � 1=2� E, respectively, for arbitrary small E, to conclude that this

integral converges to 0 in probability.

In order to prove lemma 3 we need another lemma (lemma 5 below). The proof of this lemma

contains basic combinatorics which may be used because, conditioned on the total numbers of

susceptibles and infectives at some time t, each con®guration with the right marginals has equal

probability under P0.

We introduce some more notation:

N
(n)
f ,s,i(t) :�Pn

j�11f f j� f ,S
(n)
j

( t)�s,I
(n)
j

( t)�ig

is the number of size f families and s susceptible and i infective individuals at t. Further, let

G (n) :� ó (S(n)(t), I (n)(t); t > 0) be the ó-algebra generated by the whole epidemic process if

we were not observing the epidemic on family level, so G (n) � F (n) :� ó (F (n)
t ; t > 0).

Whenever possible we will drop n in our notations. De®ne ô0 � 0 and let ôk be the time at

which the kth `̀ jump'' (either infection or removal) of the process was made. De®ne the
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embedded discrete-time epidemic process by S~(k) � S(ôk), I~(k) � I(ôk) and R~(k) � R(ôk) �
ìnÿ S(ôk)ÿ I(ôk). Conditioned on G (n) all these variables are constants.

Below we write

k

i j

� �
for the trinomial coef®cient k!=i! j!(k ÿ iÿ j)!, and k( l) for k(k ÿ 1) � � � (k ÿ k � 1).

Lemma 5

For 1 < i < i� s < f , t > 0 and in case of a major epidemic,

1

log n

� t logn

0

N
(n)
f ,s,i(u)

I (n)(u)
du !

P
(n)
0

h f ,s,i(t)

where

h f ,s,i(t) � 1fi>1g
f

i s

� �
p f

ì
(1fs� fÿ1g(t ^ 2t1)� ((t ÿ 2t1)� ^ 2t2)(1ÿ ð)sð fÿsÿ1)

Proof. Let i, s, f and t be ®xed satisfying the assumptions of the lemma, let r � f ÿ sÿ i

and write X (n) for the left-hand side in the lemma. Throughout the proof it is essential to keep

in mind that i > 1. We will show that

E(X (n)jG (n)) !
P

(n)
0

h f ,s,i(t)

and

var (X (n)jG (n)) !
P

(n)
0

0:

Together with the observation that 0 < X (n) < t, which follows since the numerator in the

integral is less than the denominator, this will prove the lemma. In the proof c is a generic

constant independent of n and the realisation of the epidemic.

We start with the conditional expectation. Let

pk(s, i) � f

i s

� �
I~(k)(i)S~(k)(s)R~(k)(r)

(I~(k)� S~(k)� R~(k))( f )

< c
I~(k)

n

� �i

, (A:5)

the last inequality is true since I~(k)� S~(k)� R~(k) � ìn. Then pk(s, i) is the G (n)-conditional

probability that a size f family has s susceptible, i infective and r � f ÿ sÿ i removed

individuals at ôk . It follows that E(N f ,s,i(ôk)jG (n)) � m f pk(s, i). This implies

E(X (n)jG (n)) �
� t

0

E(N f ,s,i(u log n)jG (n))

I(u log n)
du

� f

i s

� �
p f

ì

� t

0

S(u log n)(s)(I(u log n)ÿ 1)(iÿ1) R(u log n)(r)

(ìnÿ 1)( fÿ1)

du:

The last integral converges to h f ,s,i(t) in probability because of lemma 4 and (A.1)±(A.4). The

key to this is that, for u , 2t1: S(u log n)=ìn � 1 and I(u log n)=ìn � R(u log n)=ìn � 0, and

for 2t1 , u , 2(t1 � t2): S(u log n)=ìn � 1ÿ ð, I(u log n)=ìn � 0 and R(u log n)=ìn � ð.

It remains to show that the conditional variance converges to 0 in probability. When we

condition on G (n) we can split up the integral in X (n) into separate parts corresponding to

intervals [ôk , ôk�1) and the integrand is constant on each such interval. Let k �
max fk; ôk < tg denote the number of jumps in [0, t], and de®ne ôk�1 � t. Then
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var (X (n)jG (n)) � 1

(log n)2

Xk
k�0

ôk�1 ÿ ôk

I~(k)

� �2

var (N f ,s,i(ôk)jG (n))

� 2

(log n)2

X
0< j , k<k

(ôk�1 ÿ ôk)(ô j�1 ÿ ô j)

I~( j)I~(k)
cov (N f ,s,i(ô j), N f ,s,i(ôk)jG (n)): (A:6)

We show that both the variance and covariance terms appearing in (A.6) are dominated by

c(I~(k)� I~( j)).

Given G (n), N f ,s,i(ôk) is, for large n, approximately bin (m f , pk(s, i)) so var (N f ,s,i(ôk)jG (n))

� m f pk(s, i)(1ÿ pk(s, i)). By the last inequality in (A.5) this implies var (N f ,s,i(ôk)jG (n)) <

cI~(k).

In the second sum of (A.6), ô j , ôk , so if we condition on F (n)
ô j

we have

E(N f ,s,i(ô j)N f ,s,i(ôk)jG (n)) � E(N f ,s,i(ô j)E(N f ,s,i(ôk)jF (n)
ô j

, G (n))jG (n)),

and

E(N f ,s,i(ôk)jF (n)
ô j

, G (n)) �
X
s9,i9

pj,k(s9, i9; s, i)N f ,s9,i9(ô j),

where pj,k(s9, i9; s, i) is the G (n)-conditional probability that a size f family in state (s9, i9) at

ô j will be in (s, i) at ôk (we will not need to derive what this probability equals). Using this,

one can show that

cov (N f ,s,i(ô j), N f ,s,i(ôk)jG (n)) �

m f(2)

f

i s

� �X
s9,i9

(S~( j)ÿ s9)(s)(I~( j)ÿ i9)(i)(R~( j)ÿ r9)(r)

(ìnÿ f )( f )

pj(s9, i9) pj,k(s9, i9; s, i)

� m f pj(s, i) pj,k(s, i; s, i)ÿ m2
f pj(s, i) pk(s, i): (A:7)

The two terms with m f to the ®rst power (remember that m f(2)
� m2

f ÿ m f ) are both less than

cI~( j). It remains to show that the absolute value of the difference of the two m2
f -terms is

bounded by cI~(k). But
P

s9,i9 pj(s9, i9) pj,k(s9, i9; s, i) � pk(s, i),

(S~( j)ÿ s9)(s)(I~( j)ÿ i9)(i)(R~( j)ÿ r9)(r)

(ìnÿ f )( f )

� S~( j)(s)I~( j)(i)R~( j)(r)

(ìn)( f )

1� O
1

I~( j)

� �� �
and

f

i s

� �
S~( j)(s)I~( j)(i)R~( j)(r)=(ìn)( f ) � pj(s, i):

By (A.5) it hence follows that the value of the difference is less than m2
f (c=

I~( j))(I~( j)=ìn)i(~I(k)=ìn)i < cI~(k).

Thus, by (A.6)

var (X (n)jG (n)) <
c

(log n)2

Xk
k�0

ôk�1 ÿ ôk

I~(k)

� �2

I~(k)

� c

(log n)2

X
0< j , k , k

(ôk�1 ÿ ôk)(ô j�1 ÿ ô j)

I~( j)I~(k)
(I~( j)� I~(k))

<
ct log n

(log n)2

� t logn

0

1f1(u) . 0g
I(u)

du � ct

� t

0

1f I(u logn) . 0g
I(u log n)

du:

By lemma 4 the integral converges to 0 in probability.
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Proof of lemma 3. Similar to hM (n)
1 i and hM (n)

2 i we have

hM (n)
3 i(t) � ëìN

N ÿ 1

X
f ,s,i

i2s

( f ÿ 1)2

� t

0

1
A

(n)
3

(u logn)

N
(n)
f ,s,i(u log n)

I (n)(u log n)
du:

On each integral term above with i > 1 we can apply lemma 4 (with â � 1=2 and arbitrary

small E) which together with lemma 5 implies that the integral term converges in probability

to

f

i s

� �
p f

ì
3

0

((t ÿ t1)� ^ t1)� (1ÿ ð) fÿ1((t ÿ 2t1)� ^ t2)

(1ÿ ð)sð fÿ1ÿs((t ÿ 2t1)� ^ t2)

8<: if i . 1

if i � 1, s � f ÿ 1

if i � 1, s , f ÿ 1:

Finally, if we multiply these terms by ëìi2s=( f ÿ 1)2, their sum equals

á((t ÿ t1)� ^ t1)� (1ÿ ð)á((t ÿ 2t1)� ^ t2),

where á � ë
P

f . 1 fp f =( f ÿ 1). This is what was claimed in the lemma.

Proof of Corollary. By th. VI.1.1. and VI.1.2. in Andersen et al. (1993) it follows that

ë̂(n)
t !

P
(n)
0
ë, ~ã(n)

t !
P

(n)
0
ã and

���
n
p

(ë̂(n)
t ÿ ë)!D Z, as n!1,

where Z is normally distributed with mean 0 and variance ðì. From this the consistency

statement follows and also that
���
n
p

(ë̂(n)
t ÿ ë) is bounded in probability. We know that

M (n) ) M , so the statement M̂ (n) ) M will follow by Slutsky's theorem if we can show that

M̂ (n)(t)ÿ M (n)(t) !
P

(n)
0

0

for each t, and since

ë̂(n)
t !

P
(n)
0
ë

this will follow if

M̂ (n)(t)=ë̂(n)
t ÿ M (n)(t)=ë !

P
(n)
0

0

which we now show. From the de®nition of M (n) and M̂ (n),

M̂ (n)(t)

ë̂(n)
t

ÿ M (n)(t)

ë
� ���

n
p 1

ë̂(n)
t

ÿ 1

ë

 !
ì����������

log n
p

X
i: f i . 1

� t logn

0

I
(n)
i (sÿ)

( f i ÿ 1)I (n)(sÿ)
dN

(n)
i (s):

The factor
���
n
p

(1=ë̂(n)
t ÿ 1=ë) is bounded in probability, so this converges to 0 in probability if

(log n)ÿ1=2U n !
P

(n)
0

0,

where

Un :�
X

i: f i . 1

�1
0

I
(n)
i (sÿ)

( f i ÿ 1)I (n)(sÿ)
dN

(n)
i (s):

Let ôk be as above and Ek :� fI~(k)ÿ I~(k ÿ 1) � 1g is the event that the k th jump is an

infection. On Ek we let ÷k � i if I~i(k)ÿ I~i(k ÿ 1) � 1, i � 1, . . ., n. This means that ÷k is a
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marker for which family received the infection. We have assumed there is one infective at the

start of the epidemic so if there ultimately are N (1) infected there will in all be 2N (1)ÿ 1

jumps. An alternative way to write the sum of integrals above is thus

Un :�
X

i: f i . 1

�1
0

I
(n)
i (sÿ)

( f i ÿ 1)I (n)(sÿ)
dN

(n)
i (s) �

X2N (1)ÿ1

k�1

1Ek

I~÷k(k ÿ 1)

( f÷k ÿ 1)I~(k ÿ 1)
: (A:8)

Further

E 1Ek

I~÷k(k ÿ 1)

f÷k ÿ 1

����F ôkÿ1
, G

 !
� 1Ek

Xn

i�1

I~i(k ÿ 1)

f i ÿ 1

S~i(k ÿ 1)

S~(k ÿ 1)
<

I~(k ÿ 1)

S~(k ÿ 1)
: (A:9)

Remember that F t is the ó-algebra generated by the epidemic process up to t if we observe

the population on family level and G is the ó-algebra generated by the whole epidemic

process but now only observing the population totals.

By (A.8) and (A.9), E(Un) <
P

k(1Ek
=S~(k ÿ 1)) < N (1)=S(1). As mentioned in section

3, the proportion infected (� N(1)=ìn � 1ÿ S(1)=ìn) is concentrated around ð in case of a

major epidemic. So if we let Bn � fS(n)(1)=ìn > (1ÿ ð)=2g it follows that P(Bn)! 1. Pick

E. 0 arbitrary. Then

P
1����������

log n
p Un . E
� �

� P(1Bn Un . E
����������
log n

p
)� P(1

BC
n

Un . E
����������
log n

p
)

<
E(1Bn U n)

E
����������
log n
p � P(BC

n ) <
1� ð=2

(1ÿ ð=2)E
����������
log n
p � P(BC

n )! 0:
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