
Biometrika (2004), 91, 2, pp. 363–382

© 2004 Biometrika Trust

Printed in Great Britain

Estimating vaccine efficacy from small outbreaks

B NIELS G. BECKER

National Centre for Epidemiology and Population Health, Australian National University,
Canberra ACT 0200, Australia

niels.becker@anu.edu.au

 TOM BRITTON

Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden

tom.britton@math.su.se

S

Let C
V

and C0 denote the number of cases among vaccinated and unvaccinated
individuals, respectively, and let v be the proportion of individuals vaccinated. The
quantity e@=1− (1−v)C

V
/(vC0 )=1− (relative attack rate) is the most used estimator of

the effectiveness of a vaccine to protect against infection. For a wide class of vaccine
responses, a family of transmission models and three types of community settings, this
paper investigates what e@ actually estimates. It does so under the assumption that the
community is large and the vaccination coverage is adequate to prevent major outbreaks
of the infectious disease, so that only data on minor outbreaks are available. For a com-
munity of homogeneous individuals who mix uniformly, it is found that e@ estimates a
quantity with the interpretation of

1− (mean susceptibility, per contact, of vaccinees relative to unvaccinated individuals).

We provide a standard error for e@ in this setting. For a community with some heterogeneity
e@ can be a very misleading estimator of the effectiveness of the vaccine. When individuals
have inherent differences, e@ estimates a quantity that depends also on the inherent
susceptibilities of different types of individual and on the vaccination coverage for different
types. For a community of households, e@ estimates a quantity that depends on the rate of
transmission within households and on the reduction in infectivity induced by the vaccine.
In communities that are structured, into households or age-groups, it is possible that e@
estimates a value that is negative even when the vaccine reduces both susceptibility and
infectivity.

Some key words: Epidemic; Estimation; Infectivity; Measles outbreak data; Multitype branching process;
Susceptibility; Vaccine efficacy.

1. I

An ideal vaccine induces complete protection against infection in every vaccinee. In
practice, some vaccinated individuals become cases, so this ideal is not achieved. It is
therefore important to have measures of vaccine efficacy and methods for estimating these
from data, in a variety of settings. Here we consider such estimation from data on out-
breaks in a community having a vaccination coverage that is adequate to prevent major
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epidemics. For example, countries such as Finland and some Pan-American countries
have achieved vaccination coverages adequate to eliminate measles. Current measles
incidence in such countries is due to minor outbreaks arising from importation of infected
individuals and the subsequent chains of transmission. De Serres et al. (2000) propose the
use of such data for monitoring the process of elimination for the disease.

It may seem to be of minor importance to estimate the effectiveness of a vaccine when
it is effective enough to achieve the state of elimination. However, it is thought that
immunity may wane over time unless it is occasionally boosted by exposure to disease,
and it is therefore quite important to monitor the effectiveness of a vaccine when the
opportunity for exposure to disease has been reduced dramatically.

We introduce our assumptions about the transmission of infection for a community of
homogeneous susceptible individuals who mix uniformly in § 2. In § 3 we describe a model
for the way individuals respond to vaccination, in terms of how susceptible to infection
vaccinated individuals are and how infectious they are, should they become infected. Some
measures of vaccine efficacy are given. The rest of the paper investigates what

e@=1−
C
V
/v

C
0
/(1−v)

, (1·1)

which is used very widely in epidemiological studies of ‘vaccine efficacy’, actually estimates
in our model formulations. Here v is the known vaccination coverage, C

V
is the observed

number of vaccinated cases and C0 is the observed number of unvaccinated cases. In § 4
we look at the estimator e@ for a community of homogeneous individuals who mix uni-
formly. In the derivation of its standard error we obtain expressions, interesting in their
own right, for the variance-covariance matrix of the total progeny of a multitype Galton–
Watson branching process. Section 5 proposes a way of combining data from a number
of minor outbreaks, and the method is applied to measles outbreak data from Australia.
In § 6 we show that, in a heterogeneous community, e@ estimates a quantity that depends
on the relative susceptibility, both inherent and vaccine-induced, of different types of
individual and on the vaccination coverages of different types. In § 7 we show that,
in a community of households, e@ estimates a quantity that depends on the reduction
in susceptibility induced by the vaccine, but also on the rate of transmission within
households and the reduction in infectivity induced by the vaccine.

The importance of the results lies in showing that in this setting, with homogeneous
individuals, the widely-used e@ gives a useful estimator of vaccine efficacy for a wide class
of vaccine responses. This does not happen generally. For example, Smith et al. (1984)
point out that e@ depends on the vaccine response when each individual is subjected to a
constant force of infection, while Becker & Utev (2002) show that e@ generally under-
estimates e, given by equation (3·2), from data on major outbreaks. It is also important
to point out that there are many real-world settings where e@ can seriously mislead us, and
to quantify this bias.

Throughout the paper we consider a closed community of n individuals, where n is
assumed to be large.

2. T  

We begin by outlining the assumptions made about transmission of infection, with
reference to a community of homogeneous individuals who mix uniformly. Assume, for
the moment, that there is no vaccine-induced immunity in the community. Individuals
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may be susceptible to infection, currently infectious or removed. Removed individuals are
those who acquired immunity after recovering from infection. We define an infectious
contact by an infected individual as one that is sufficiently close for the infection to be
transmitted if the contacted person is a susceptible individual. Following infection, an
infected individual has infectious contacts with other individuals at a rate depending on
the stage of the infection within the infected individual. We describe this rate by an
infectiousness function b(x), where x is the time since infection; see Becker (1989, § 3·1).
The infection has a latency period if b(x)=0 for small x. For larger x the infectious-
ness function typically rises to a peak after which it declines to zero, at which time the
individual becomes a removal. In general, b(x) is any individual-specific nonnegative
stochastic process defined for positive x. Infectiousness functions corresponding to different
individuals are assumed to be mutually independent. It is known, see for example Ball &
Clancy (1993), that the final outcome of susceptible-infective-removed epidemic models
depends on b(x) only through the distribution of B0=∆

2
0
b(x)dx, the total area under the

infectiousness function. In particular, a latency period does not affect the distribution of
the final size of the epidemic. A common choice for b(x) is

b(x)=b (0∏x∏T ),

where b is a constant. Setting T¬1 gives the Reed–Frost model in continuous time,
for which B0¬b, while T~Ex (1) gives the general stochastic epidemic, for which
B0~Ex (1/b); see for example Andersson & Britton (2000, p. 16).

When the infected individual mixes uniformly with other community members each
individual is equally likely to be contacted, so the contact rate exerted on a specific
individual x time units after infection is b(x)/n. Contacts with individuals who are already
infected or removed have no effect.

3. R  

The response to vaccination consists of a change in the way an individual’s immune
system responds to invasion by, and internal development of, the infection agent. Our
concern lies with the way this is reflected by a change in the susceptibility to infection
and a change in the individual’s infectiousness function. We first describe the effect of
vaccination on susceptibility. At time t, let the probability that a susceptible individual
makes an infectious contact in the small time increment [t, t+dt) be given by l

t
dt. Here

l
t
is the sum of the values of all infectiousness functions at time t, divided by n. The

probability that the individual is infected, in this time increment, is l
t
dt if he is unvaccinated

and Al
t
dt if he is vaccinated. The fact that individuals respond differently to vaccination

is accommodated by taking A to be a random variable.
It may be that an individual in whom vaccination induces an immunological response

acquires a milder form of the illness, if ever infected, making them less infectious. To
quantify a possible reduction in the potential to infect others let B0 denote the total area
under the infectiousness function when the infected individual is unvaccinated and let
B
V
=BB0 when the infected individual is vaccinated. The relative infection potential B lies

between zero and unity when vaccination reduces infectivity. In our formulation B is
taken to be random, to allow for variation in vaccine response, and for simplicity is
assumed to be independent of B0 . A value of B<1 arises when the duration of the
infectious period or the level of infectiousness achieved at different times, or both, are
reduced by vaccination.
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The effect of vaccination on susceptibility and infectivity is described by the joint
probability distribution

pr (A=a
i
, B=b

i
)=p
i
(i=1, 2, . . . , k). (3·1)

This discrete formulation can provide a good approximation to any realistic distribution
by suitable choices of k, a

i
, b
i
and p

i
. It is likely that A and B are correlated in practice.

There are several different ways of measuring the efficacy of a vaccine; see Halloran et al.
(1999) for a survey. For example, eS=1−E(A) measures the reduction in susceptibility,
while eSI=1−E(AB) measures the combined effect of reduced susceptibility and reduced
infectivity. The measure of ‘vaccine efficacy’ given by

e=1−
pr (a vaccinated individual becomes infected)

pr (an unvaccinated individual becomes infected)
=1−

E(C
V
)/v

E(C
0
)/(1−v)

(3·2)

is widely used in epidemiological studies; see Orenstein et al. (1985, 1988). A disadvantage
of the measure e is that it is not clear how it relates to the parameters {a

i
, b
i
, p
i
} which

describe the effect of vaccination on disease transmission. The popularity of e stems from
its simple interpretation and the fact that it has an obvious estimator, namely

e@=1−
proportion of cases among vaccinated individuals

proportion of cases among unvaccinated individuals
=1−

C
V
/v

C
0
/(1−v)

.

Below we express e in terms of model parameters for three community settings with the
aim of determining what e@ estimates in those settings.

4. C   

Consider a large population of homogeneous individuals who mix uniformly and who
are all susceptible to a certain infectious disease, with a transmission process as described
in § 2. The expected number of infectious contacts an initial infected individual has during
the course of his infection is R0=E(B0 ), where B0 is defined in § 2. The reproduction
number of infectives is less than R0 , the basic reproduction number, when some com-
munity members have acquired immunity from previous exposure to the infection or by
vaccination.

Now suppose that a fraction v of individuals are vaccinated and that their responses,
in terms of susceptibility and infectivity, vary independently in the manner described in § 3.
Individuals are then of type 0, 1, 2, . . . , k, where label 0 refers to unvaccinated individuals
and 1, 2, . . . , k refer to vaccinated individuals with different responses to vaccination. A
minor outbreak in such a population can be described by a multitype epidemic model,
where type is specified by vaccination status and vaccine response. Type-i individuals have
susceptibility a

i
and infectivity b

i
, with a0=b0=1 by definition. Then p

i
, the proportion

of community members of type i, is given by

p
0
=1−v, p

i
=vp

i
(i=1, 2, . . . , k).

For this setting, the reproduction number after vaccination is given by

R
V
=R
0
∑
k

i=0
a
i
b
i
p
i
=R
0
{1−v+vE(AB)}; (4·1)
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see for example Becker & Marschner (1990), Becker & Starczak (1998) and below.
Assume that the vaccination coverage is high enough to prevent epidemics; that is,
assume that R

V
∏1. Then the size of an outbreak initiated by a small number of intro-

ductory cases can be approximated by the total progeny in a branching process, with
infections interpreted as births; see Ball & Clancy (1993). A heuristic argument for this
approximation is that, when few individuals are infected, it is unlikely that a contact
occurs with a previously infected individual. As a consequence, each infectious individual
infects new individuals essentially independently, and whenever individuals ‘give birth’
to new individuals independently we are in the branching process paradigm. Let C(n)

i
denote the eventual number of type-i individuals who are infected in a community of size
n (i=0, . . . , k). We approximate the distribution of these random variables by the corre-
sponding random variables of a multitype branching process, using C

i
to denote the total

progeny of type i. Below we drop the index n and interchangeably mean the epidemic and
the approximating branching process, the approximation relying on n being large. We are
interested in the distribution of

C=AC0C1eC
k
B=Z0+Z1+Z2+ . . . ,

where Z
t
denotes the vector of the various types of infected individual in generation t.

Generation 0 consists of the primary cases of the outbreak, generation 1 consists of the
individuals infected by the primary cases, and so on.

With the aim of obtaining an expression for the e of (3·2), we derive an expression for
the mean of C, namely

E(C)=E(Z
0
)+E(Z

1
)+E(Z

2
)+ . . . , (4·2)

which gives the expected number eventually infected for each of the various types of
individual. To this end we introduce the matrix M= (m

ij
), where m

ij
is the mean number

of type-i individuals infected by a single type-j infective. From the formulation for the
transmission and the vaccine response it follows that

m
ij
=R
0
a
i
b
j
p
i
.

To see this note that the infection rate between an infectious type-j individual and a given
susceptible type-i individual is a

i
b
j
b(x)/n, x time units after infection of the former. The

probability of infection for this pair is therefore

1−EqexpA−aibj P b(x)dx/nBr=1−E{exp (−a
i
b
j
B
0
/n)}jE(a

i
b
j
B
0
/n).

Since there are np
i

type-i individuals the expected number of infectious contacts with
type-i individuals is a

i
b
j
E(B0/n)npi=mij . In matrix form, M satisfies

M=R
0A p0 b

1
p
0
… b

k
p
0

a
1
p
1
a
1
b
1
p
1
… a

1
b
k
p
1

e e P e

a
k
p
k
a
k
b
1
p
k
… a

k
b
k
p
k
B=A p0R0a

1
p
1
R
0

e

a
k
p
k
R
0
B (1 b1 . . . bk )=dUbT,
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say. The subscript in vector dU indicates that this formulation is for a community of
uniformly-mixing individuals.

We now return to the expected final size of the epidemic given in equation (4·2). Using
E(Z
i+1
|Z
i
)=MZ

i
, we find E(Z

i
)=MiE(Z0 ) and

E(C)= (I+M+M2+ . . .)E(Z
0
)= (I−M)−1E(Z0 ), (4·3)

where I is the identity matrix and the last equality requires the largest eigenvalue of M
to be less than 1. The largest eigenvalue of M is R

V
=R
0
W

i
a
i
b
i
p
i
=aTUb as noted in

equation (4·1). The assumption R
V
<1 simply ensures that a major outbreak cannot occur.

Furthermore, it is easily verified that the form for M implies that

(1−M)−1=I+
1

1−dTUb
M=I+

1

1−R
V
M.

A natural assumption is that the types of the initial infectives depend on their relative
susceptibility and their abundance; that is, E(Z

0
)=cdU is plausible, where c is some scalar

constant. A little algebra then shows that

E(C)= (I−M)−1E(Z
0
)=cAI+ 1

1−R
V
dUbTB dU= c

1−R
V
dU . (4·4)

We now use this to obtain an expression for the vaccine efficacy e in terms of model
parameters. Note that

e=1−
pr (a vaccinated individual becomes infected)

pr (an unvaccinated individual becomes infected)

=1−
expected proportion of vaccinated individuals who become infected

expected proportion of unvaccinated individuals who become infected

=1−
E(C
1
+ . . .+C

k
)/nv

E(C
0
)/n(1−v)

=1−
E(C
V
)/v

E(C
0
)/(1−v)

,

where C
V
=C1+ . . .+Ck is the number of vaccinated individuals who become cases.

Using

E(C0 )= (1, 0, . . . , 0)E(C), E(CV )= (0, 1, . . . , 1)E(C),

and equation (4·4) in the expression for e, we obtain

e=1− ∑
k

i=1
a
i
p
i
=1−E(A)=eS .

We have shown that, if enough individuals are vaccinated in a community of homogeneous
individuals, thus ruling out the possibility of a major outbreak, then e is equivalent to eS ,
which is a measure of the reduction in susceptibility due to vaccination.

The result is important in two ways. First, it means that in this setting e has a clear
and useful interpretation as a measure of the protection vaccination provides against
infection, and this is true for a wide range of vaccine responses. In this setting e does
not depend on the vaccine’s effect on infectivity nor on the distribution of the infection
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potential B0 . Secondly, this useful measure of vaccine efficacy is estimated by

e@=1−
proportion of cases among vaccinated individuals

proportion of cases among unvaccinated individuals
=1−

C
V
/v

C
0
/(1−v)

,

when the vaccination coverage v is known and the eventual numbers of cases among
vaccinated and unvaccinated individuals, C

V
and C0 , are observed.

In the Appendix an approximate standard error for e@, valid under the assumption that
Z0¬cdU , is shown to be

 (e@)=Sq (1−e@(1−ve@)C
+
A1− i

0
C
+
BA1−e@1−v

+
1

vBr ,
where C

+
=C
V
+C0=W

k
i=0
C
i
is the observed total number of cases and i0 is the initial

number of infectious individuals. If i0 is unknown a conservative estimate is obtained by
setting i0=1. The derivation of the above standard error requires that var (B0 ) be finite.
It is interesting that the standard error, derived using the d-method, does not depend on
var (B0 ) even though the variance-covariance matrix of C does depend on var (B0 ).

5. C   

The estimator e@ considered in § 4 is based on one minor outbreak and its variance is
inversely proportional to the outbreak size and therefore may not be very small for minor
outbreaks. One way of obtaining an estimator with higher precision is to combine data
from several separate outbreaks, which we now outline briefly. Separate outbreaks can be
distinguished by observing where and when the cases arise, but preferably by means of
identifying the virus strain for each case.

Suppose we have data from J different minor outbreaks from a community in which a
proportion v are vaccinated with the same type of vaccine. Each such minor outbreak
gives an estimate of the vaccine efficacy,

e@
j
=1−

C(j)
V
/v

C(j)
U
/(1−v)

( j=1, 2, . . . , J ),

where C(j)
V

and C(j)
U

are the numbers of vaccinated and unvaccinated cases in outbreak j.
Since these are minor outbreaks it is natural to combine the C

V
’s and C

U
’s of different

outbreaks by the averages of the different outbreaks. Our combined estimator is hence
given by

e@C=1−
C9 V/v

C9 U/(1−v)
,

where C9 V=W
J
j=1
C(j)
V
/J and C9 U=W

J
j=1
C(j)
U
/J.

A standard error for e@C can be derived by the d-method, using the fact that outbreaks
are independent. It turns out to have the form of the standard error for e@ based on only
one single outbreak divided by √J; that is

(e@C )=Sq (1−e@C ) (1−ve@C )JC9
+
A1− i:

0
C9
+
BA1−e@C1−v

+
1

vBr ,
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where C9
+
=WJ
j=1
C(j)
+
/J is the average total number of cases and i:0=W

J
j=1
i(j)
0
/J is the

average number of initial cases. If unknown, i(j)
0
, the initial number of infectives in out-

break j, can be set to 1 implying that i:0=1 to provide a conservative standard error.

Example 1.Measles was eliminated in the state of Victoria, Australia, following a state-
wide campaign of vaccination in 1998. Since then Victoria has practised enhanced
surveillance for measles, including identification of the measles strain for each case.
Importations of measles infection have led to 33 outbreaks of measles since then, including
14 with secondary infections. The total number of cases was 208, of whom 29 had been
vaccinated.

From the Australian Childhood Immunisation Register, serological surveys and past
data on immunisation schedules it is estimated that the vaccination coverage in Victoria
is 82%, with most susceptible individuals falling into the 15–35 year age group. The
vaccination coverage can be assumed constant since 1998, as effective routine vaccination
is in place to vaccinate infants at age 12 months. The community is assumed to be
homogeneous.

This leads to the estimate e@C=0·964, with standard error (e@C )=0·0066. The small
standard error indicates that this kind of estimation is of practical value.

6. C     

Now consider individuals who differ even in the absence of vaccination. In other words,
there is an inherent difference between individuals, which may be a biological difference,
a difference in social mixing or both. Suppose there are l types of individual, labelled
1, . . . , l. We refer to them as ‘base’ types to distinguish them from vaccine-induced
differences.

Disease transmission in such a heterogeneous community is described by a multi-
type epidemic model. In such models the distribution of B0 , the total area under the
infectiousness function, may differ between types of individual. The rate of mixing between
individuals of different types may also differ; see Andersson & Britton (2000, Ch. 6) for a
detailed description of the multitype model.

To introduce our notation, which is analogous to that of § 4, suppose for the moment
that no-one has acquired immunity from either vaccination or previous exposure to
the infection. Let m

rs
=a
r
v
r
b
s

be the mean number of individuals of type r that an
initial infective of type s infects, where v

r
is the proportion of individuals of type r. The

assumption that each m
rs

splits into a product of the form

(term depending on r only)× (term depending on s only)

is known as proportionate, or separable, mixing. In § 4 we saw that our assumption about
vaccine response created different types of individual for whom the mean matrix is of the
proportionate mixing form. Here we add the proportionate mixing assumption for base
types. Strictly speaking, a constraint is needed to make the parameters {a

r
} and {b

r
}

identifiable, but our calculations do not require that this constraint be specified. The
proportionate mixing assumption ensures that the basic reproduction number R0 has the
simple form

R
0
= ∑

l

r=1
a
r
b
r
v
r
;

see Becker & Marschner (1990).
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Now suppose that a fraction v
r

of base type-r individuals are vaccinated and that
individuals may respond differently to vaccination. We introduce k

r
possible vaccine

responses for individuals of type r. Post-vaccination, we label the types of individual ri,
where the first letter indicates the base type and the second letter indicates the type of
vaccine response. There are then a total of Wl

r=1
k
r
types of vaccinated individual and l

types of unvaccinated individual. The vaccination responses are described by

pr (A
r
=a
ri
, B
r
=b
ri
)=p
ri
(i=1, 2, . . . , k

r
, r=1, 2, . . . , l)

and a
r0
=b
r0
=1, for each r, because 0 refers to unvaccinated individuals. The proportion

of type ri individuals is given by

p
ri
=q (1−vr )vr , when i=0,

v
r
p
ri
v
r
, otherwise.

(6·1)

In this notation, the post-vaccination reproduction number is

R
V
= ∑

l

r=1
a
r
b
rA ∑kr
i=0
p
ri
a
ri
b
riB , (6·2)

which is the multitype analogue of (4·1). Assume that the vaccination coverage is adequate
to prevent epidemics, that is R

V
∏1. Then the size of an outbreak initiated by a small

number of introductory cases can be approximated by the total progeny in a multitype
branching process. We are interested in the distribution of the final size vector C, whose
typical element gives the eventual number of cases among those of base type r with vaccine
response i. As before, C=Z0+Z1+Z2+ . . . , where Z

t
denotes the vector of the various

base and vaccine responses types of infected individuals in generation t. Generation 0
consists of the introductory cases of the outbreak. The individuals infected by direct
contact with the introductory cases make up generation 1, and so forth.

The mean E(C) satisfies equation (4·3), but the expressions for the elements of M now
reflect inherent heterogeneity as well as heterogeneity due to varying vaccine response. In
the present setting the elements of the mean matrix M are given by m

ri,sj
=a
r
a
ri
p
ri
b
s
b
sj
.

We may write

M=dMTbTMT ,

where the (l+Wl
r=1
k
r
)-vectors dMT and bMT are given by

dTMT= (a1a10p10 , . . . , a1a1k
1

p
1k
1

, a
2
a
20
p
20
, . . . , a

2
a
2k
2

p
2k
2

, . . . ,

a
l
a
l0
p
l0
, . . . , a

l
a
lkl
p
lkl
),

bTMT= (b1b10 , . . . , b1b1k
1

, b
2
b
20
, . . . , b

2
b
2k
2

, . . . , b
l
b
l0
, . . . , b

l
b
lkl
).

The subscript in dMT and bMT indicates that this formulation is for multitype individuals.
The largest eigenvalue of the matrix M=dMTbTMT is simply dTMTbMT which is exactly R

V
,

as given in equation (6·2). The assumption R
V
=dTMTbMT<1 is equivalent to assuming

that the multitype branching process is subcritical.
It is reasonable to assume that E(Z0 ) is proportional to dMT thus reflecting both relative

susceptibility and relative abundance of the different types. This leads to

E(C)= (I−M)−1E(Z
0
)=cAI+ 1

1−R
V
dMTbTMTB dMT= c

1−R
V
dMT ,

provided R
V
=dTMTbMT<1.
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To obtain E(C0 ), the expected number of unvaccinated cases, we sum those elements
of E(C) corresponding to unvaccinated individuals of the various types. This gives

E(C0 )=
c

1−R
V
∑
l

r=1
a
r
p
r0
.

To obtain E(C
V
), the expected number of vaccinated cases, we sum those elements of E(C)

corresponding to vaccinated individuals of the various types, which gives

E(C
V
)=

c

1−R
V
∑
l

r=1
∑
k
r

i=1
a
r
a
ri
p
ri
.

Substituting p
ri
, as given by (6·1), leads to

e=1−
expected proportion vaccinated individuals to become infected

expected proportion unvaccinated individuals to become infected

=1−
E(C
V
)/v

E(C
0
)/(1−v)

=1−
Wl
r=1
a
r
v
r
v
r
E(A
r
)/v

Wl
r=1
a
r
(1−v

r
)v
r
/(1−v)

, (6·3)

where v=Wl
r=1
v
r
v
r
is the overall vaccination coverage.

As for a community of homogeneous individuals, e is only affected by the vaccine’s
reduction of susceptibility and not by the vaccine’s effect on infectivity once infected.
However, the e in (6·3) also depends on the inherent susceptibility of different types of
base individual, their relative abundances and their vaccination coverages. Therefore, the
quantity estimated by

e@=1−
C
V
/v

C
0
/(1−v)

in a multitype setting has an interpretation that is somewhat obscure. The following two
examples give an indication of where care is needed.

Example 2. Suppose that the same fraction of each base type of individual is vaccinated,
that is v

r
=v for all r. This occurs, for example, when vaccinees are selected at random,

irrespective of type. Then

e=1− ∑
l

r=1
c
r
E(A
r
),

where c
r
=a
r
v
r
/Wl
i=1
a
i
v
i
. The last term is a weighted average of the E(A

r
), with weights

c
r
reflecting the relative susceptibility and relative abundance of the base types, and there-

fore e@ estimates a sensible concept of vaccine efficacy. In the particular case when the
vaccine induces the same expected reduction in susceptibility for all base types, so that
E(A
r
)=E(A) for all r, we obtain

e=1−E(A).

Therefore e@ estimates a characteristic that depends only on the vaccine when it induces
the same mean reduction in susceptibility for all base types and an equal fraction of each
base type is vaccinated. In other words, the estimator is then robust with respect to
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differences in the a
r
and in the b

r
among base types. However, e@ estimates a quantity that

depends on the heterogeneity inherent within this community when vaccination coverages
v
r

differ. Therefore, it is desirable that vaccinees be selected at random when assessing
vaccines.

Example 3. Suppose now that there are two types of individual, and that the vaccine
responses are the same for both types; that is, l=2 and E(A1 )=E(A2 )=E(A). Then
equation (6·3) becomes

e=1−
a
1
v
1
v
1
+a
2
v
2
v
2

a
1
(1−v

1
)v
1
+a
2
(1−v

2
)v
2

1− (v
1
v
1
+v
2
v
2
)

v
1
v
1
+v
2
v
2
E(A).

Without loss of generality assume that a1<a2 , so type-2 individuals are more susceptible.
Then e increases with v1 and decreases with v2 . This implies that e can take any value
between two extremes. For v1=0 and v2=1 we have e=1− (a2/a1 )E(A), its lowest value,
while v1=1 and v2=0 gives e=1− (a1/a2 )E(A), its highest value. If vaccinees are selected
at random, implying that v1=v2 , then e=1−E(A) as in the homogeneous community.

It is seen that e can even attain a negative value, when a2 is large enough, the vaccine
effect is modest and most vaccinations are of type-2 individuals. For example, when
a2/a1=5, E(A)=0·5, v1=0 and v2=1 we find e=−1·5. This negative value for e is
misleading since the vaccine is clearly protective; it reduces susceptibility by 50% for both
types. The explanation lies in the fact that vaccinees are type-2 individuals who, even after
vaccination, are more susceptible than unvaccinated type-1 individuals. The proportion
infected among vaccinated individuals will therefore be higher than the proportion infected
among unvaccinated individuals, thus giving a negative e. This example shows that e is
not always a sensible measure of vaccine efficacy when applied to outbreaks in multitype
communities.

A more suitable assessment of vaccine efficacy in the case of multitype outbreaks is to
measure e separately for each type, assuming types are distinguishable. This requires that
the vaccination coverage for each type be known. The corresponding estimates are then

e@
r
=1−

C
Vr
/v
r

C
0r
/(1−v

r
)
(r=1, . . . , l),

where C
Vr

and C
0r

are the numbers of type-r cases among vaccinated and unvaccinated
individuals, respectively. The quantity e@

r
estimates e

r
=1−E(A

r
). If a single measure of

the vaccine efficacy is desired the weighted average e@C=Wr vre@r could be used. It estimates
eC=1−Wr vrE(Ar ), the mean reduction in susceptibility in the community.

7. C  

Consider homogeneous individuals who reside in a community consisting of a large
number of households. A detailed presentation of an epidemic model for a community of
households is given by Ball et al. (1997). We outline only the assumptions needed for our
focus on estimating vaccine efficacy. Let n

i
denote the proportion of households of size i

(i=1, . . . , h), so that n:=Wi ini is the mean household size. Contacts are more frequent
between two household members than they are between two individuals who do not share
the same household. The transmission assumptions of §§ 2 and 4 are modified for this
scenario in the following way. At x time units after infection, an infected individual has
infectious contacts with a specific individual outside the household at a rate b(x)/n.
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Additionally, he has contacts with each individual of his household at a rate hWb(x),
which is independent of the household size. The constant hW reflects the enhanced rate of
contacts within the household.

Imagine one infected individual in this community when no-one has acquired immunity
from either vaccination or previous exposure to the infection. Let R

c
=E(B0 ) be the

expected number of individuals from other households to whom infection is transmitted
by this infective. Furthermore, assuming the infective resides in a household of size i, let
m
i

denote the expected eventual number of cases in the household neglecting further
external infections. Expressions for m

i
can be obtained using certain recursive formulae;

see for example Andersson & Britton (2000, § 2.4). Several different basic reproduction
numbers can be defined for this initial infective, depending on the way we attribute
infections to an individual. Becker & Dietz (1996) define four different basic reproduction
numbers for infectives in a susceptible-infectious-removed epidemic model for a com-
munity of households. Here we attribute to an infective all of the primary infectives he
generates, by direct contact, in other households, as well as all secondary cases arising in
those households. In other words, secondary cases are not attributed to the infectives
within the household, whose contacts actually caused their infections, but instead to
the infective who generated the primary case of their household. This choice is made
because the resulting basic reproduction number has an explicit expression, which is

R
0
=R
c
∑
k

i=1

in
i
n:
m
i

(Hall & Becker, 1996; Ball et al., 1997), and a major outbreak is possible if and only
if R0>1.

Now suppose that a fraction v of all individuals, chosen from among the households
in some specified way, are vaccinated and that individuals may respond differently to
vaccination. As before, individuals can then be of type 0, 1, 2, . . . , k, where 0 indicates
unvaccinated individuals and the proportion of different types of vaccine response is
specified by {p

r
}, as in the distribution (3·1) above. We now have types of individual and

types of household. Distinguish the type of household by label n= (n0 , n1 , . . . , nk ), where
n
i
is the number of type-i individuals in the household. For any given external contact

made by an infective, let p
nr

be the probability that this contact is with a type-r individual
from a household of type n. These probabilities depend on the response probabilities {p

r
}

and on the way vaccinations are allocated among households. The probability that the
type-r individual is infected by this contact is a

r
. Let m

nri
denote the mean number of cases

of type i that result within the household of kind n, given that the primary household case
is of type r and neglecting further external infection. Their expressions can be obtained
using recursive formulae for a multitype epidemic model (Andersson & Britton, 2000,
§ 6.1). In this notation the reproduction number after vaccination is

R
V
=R
c
∑
k

i=0
b
i
∑
r,n
a
r
p
nr
m
nri
; (7·1)

see Becker & Starczak (1998). A major outbreak is possible if and only if R
V
>1.

Assume v is large enough to prevent epidemics, that is R
V
>1, so that the size of an

outbreak initiated by a small number of introductory cases can be approximated by the
total progeny in a suitably-defined subcritical branching process. One way to define such
a branching process is in terms of the proliferation of infected households, as is done by
Bartoszyński (1972). For our purpose it is more appropriate to think in terms of the
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proliferation of infected individuals, with infections attributed to infectives as described
above. Let C

i
denote the eventual number of type-i individuals who are infected. We are

interested in C=Z
0
+Z
1
+Z
2
+ . . . , where Z

t
denotes the vector of the various types of

infected individual in generation t. Generation 0 consists of the introductory cases and all
secondary cases in their households. Generation 0 cases infect a number of individuals
from different households. These newly infected individuals and all secondary cases in
their households make up generation 1. Generation 2 consists of all individuals directly
infected by generation 1 cases, as well as all cases in the households of those new primary
infectives, and so forth.

The mean E(C) satisfies equation (4·3), but the expressions for the elements of
M= (m

ij
) now reflect the household structure of the community and the mean sizes of

household outbreaks. The element m
ij

is the expected number of type-i individuals infected,
infectives of the next generation, by a single type-j infective. It may be expressed as

m
ij
=b
j
R
c
∑
r,n
a
r
p
nr
m
nri

and we may write

M=dHbT ,

where element i+1 of the (k+1)-vector dH is R
c
W

r,n
a
r
p
nr
m
nri

and element i+1 of the
(k+1)-vector b is b

i
, for i=0, 1, . . . , k. The subscript in dH indicates that this formulation

is for a community of households. As before, the form of the matrix M implies that its
largest eigenvalue is dTHb, which is exactly R

V
, as given in (7·1), so the assumption R

V
<1

is identical to saying that this multitype branching process is subcritical.
For this form of M we can easily verify that

(I−M)−1=I+
1

1−R
V
M,

provided that R
V
=dTHb<1.

Note that Z0 gives the numbers of type 0, 1, 2, . . . , k individuals in the households
infected initially. Assume that the community outbreak is initiated by a few individuals,
possibly one, making a contact with an external infective. If external contacts are made
randomly it is reasonable to assume that E(Z0 ) is proportional to dH . This leads to

E(C)= (1−M)−1E(Z
0
)=cAI+ 1

1−R
V
dHbTB dH= c

1−R
V
dH ,

provided R
V
<1.

Therefore, E(C0 )= (1, 0, . . . , 0)E(C) and E(C
V
)= (0, 1, . . . , 1)E(C) lead to

e=1−
E(C
V
)/v

E(C
0
)/(1−v)

=1−
(1−v) W

r,n
a
r
p
nr
Wk
i=1
m
nri

v W
r,n
a
r
p
nr
m
nr0

. (7·2)

Contrary to the community setting of §§ 4 and 6, in the present setting e depends also on
the b

i
’s, the vaccine’s effect on infectiousness once infected. This is because m

nri
, the expected

number of infected type-i individuals in a household of type n, in an outbreak initiated
by one primary household infective of type r and neglecting external infection, depends
on the b

i
’s. For a simple illustration of this fact, suppose that b

r
=0. Then the primary
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case will not spread the disease further, implying that

m
nri
=q1, for i=r,

0, for iNr.

Now consider equation (7·2) for some specific examples. The first example merely shows
that equation (7·2) reduces to the e of § 4 under appropriate specific assumptions. The
next two examples are intended to reveal the extent to which various factors influence
expression (7·2), to help us understand what e@ is estimating in this setting. The final
example demonstrates that selecting individuals for vaccination at random does not make
e@ unbiased for 1−E(A) when the community has a household structure.

Example 4. Suppose all households are of size 1. Then ‘household type’ coincides with
‘individual type’, giving

p
nr
=q1−v, when r=0,

vp
r
, otherwise,

m
nri
=q1, when r= i,

0, otherwise,

so that e reduces to 1−E(A), as it should since the setting is then equivalent to that
considered in § 4, namely a community of homogeneous individuals who mix uniformly.

Example 5. Suppose all households are of size 2, that exactly one individual per house-
hold is vaccinated and that the Reed–Frost model applies; see § 2. Denote the household
types by (0, j ), for j=1, 2, . . . , k, where 0 refers to the unvaccinated individual and j refers
to the type of vaccinated individual in the household. Then

p
(0,j)r
=qpj/2, when r=0 or j,

0, otherwise,

m
(0,j)ri
=G1, when r= i=0 or r= i= j,

1−qa
jW
, when r=0 and i= j,

1−qb
jW
, when r= j and i=0,

0, otherwise,

where qW is the probability that one susceptible avoids infection from his infected house-
hold partner when both are unvaccinated individuals. Substituting these quantities and
v=0·5 into equation (7·2) gives

e=1−
E{A+ (1−qAW )}
E{1+A(1−qBW )}

=
E(qAW−AqBW )
E(1+A−AqBW )

. (7·3)

Under the natural assumption that A∏1 and B∏1, implying that vaccination never
increases susceptibility or infectivity, it can be shown that e∏1−E(A).

This result may tempt us to use e@ as a conservative estimator of 1−E(A), but this is
unwise, first, because the inequality is strict except for some trivial cases. More importantly,
e can be substantially less than 1−E(A). For example, with pr (A=0·9, B=0·1)=1 and
qW=0·1 we obtain e=−0·479. Not only is this far removed from 1−E(A)=0·1, but e is
negative although the vaccine reduces both susceptibility and infectivity.

The negative value of e is explained as follows. The stipulated effect of the vaccine’s
reduction in susceptibility is modest, while the reduction in infectivity is substantial.
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Unvaccinated individuals have a slightly higher chance of being infected by an external
contact than their vaccinated partners do, but they have a much lower chance of being
infected by a within-household contact because of the low infectivity of their vaccinated
partner. As a consequence, more vaccinated than unvaccinated individuals tend to be
infected in this setting. Therefore, e@ underestimates eS=1−E(A) and the greater the
reduction in infectivity, in other words the better the vaccine performs, the more is eS
underestimated to the extent that a negative effect may be indicated. In short, the measure
e and its estimator e@ can be misleading when based on data from a structured community.

We now consider more specific versions of (7·3) that help to quantify the extent of any
underestimation of eS .

Case 1. When there is no transmission within households, that is qW=1, the process
behaves like a uniformly mixing community. We indeed obtain e=1−E(A)=eS when we
substitute qW=1.

Case 2. Suppose the vaccine has an all-or-nothing effect, with the probability of vaccine
failure being pF ; that is, pr (A=B=1)=pF=1−pr (A=0). Then (7·3) becomes

e= (1−pF )q 1

1+pF (1−qW )r∏1−pF=eS ,
which is never negative. However, the deflation factor can be as low as 1

2
, tending towards

this as pF�1 and qW�0.

Case 3. Suppose the vaccine affects susceptibility, but not infectivity; that is, A may
have any distribution, but B¬1. Then (7·3) becomes

e=
E(qAW )−qWE(A)
1+ (1−qW )E(A)

.

If we also assume that A∏1, so that one cannot become more susceptible from
vaccination, then simple calculus gives 0∏e∏1−E(A). The two extremes are obtained
when A¬1 and A¬0 respectively.

Case 4. Suppose instead that the vaccine has no effect on susceptibility; that is, B may
have any distribution, but A¬1. Equation (7·3) then becomes

e=
qW−E(qBW )
2−E(qBW )

.

If we also assume that B∏1, so that the vaccine does not increase infectivity, then it is
straightforward to show that −(1−qW )∏e∏1−E(A)=0. The upper bound is attained
for B¬1, corresponding to no vaccine effect. The lower bound is attained for B¬0,
corresponding to a vaccine that blocks transmission completely. In other words, e@
estimates a negative quantity, even though the vaccine reduces disease transmission.

Example 6. Again suppose that all households are of size two, but now a proportion v
of randomly selected households have both members vaccinated and the remaining
households have no vaccinated member. The possible household types are (0, 0) and (i, j ),
for 1∏ i∏ j∏k, where the two indices refer to the types of the two individuals of the
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household, assumed ordered according to vaccine responses. We have

p
(i,j)r
=G1−v, when i= j=r=0,

vp2
i
, when i= j=r=1, 2, . . . , k,

vp
i
p
j
, when 1∏ i< j∏k and r= i or j,

0, otherwise,

m
(i,j)rs
=G1+ (1−qarbrW ), when i= j=r=s=0, 1, 2, . . . , k,

1, when 1∏ i< j∏k and either r=s= i or r=s= j,

1−qa
s
b
rW
, when 1∏ i< j∏k and r= i, s= j or r= j, s= i,

0, otherwise.

Substituting these into equation (7·2) gives

e=1−
E{A
1
(2−qB1A2W )}

1+pW
,

where (A1 , B1 ) and (A2 , B2 ) are independent and identically distributed random variables
with distribution (3·1). Under the natural assumption that A∏1 and B∏1 it can be
shown that

1−E(A)∏e∏1−{E(A)/(1+pW )}.

Note that the inequality with respect to 1−E(A) here is in the opposite direction to that
in Example 5. This means that e not only depends on the effect of the vaccine and on the
community structure, but also on how vaccinations are distributed over the community.

In the particular case of an all-or-nothing response we obtain

e=1−A1+pFpW1+pW B pF ,
which increases with pW and decreases with the failure rate pF . The lower and upper
bounds on e are obtained in the limit as pF tends to 1 and 0, respectively.

Example 7. Again suppose that all households are of size two, but now a proportion v
of randomly selected individuals are vaccinated. The possible household types are (i, j ),
for 0∏ i∏ j∏k, where, as before, the indices refer to the types of the two individuals
ordered according to vaccine response. We have

p
(i,j)r
=G(1−v)2, when i= j=r=0,

v(1−v)p
j
, when 0= i< j∏k and r=0 or j,

v2p2
i
, when i= j=r=1, 2, . . . , k,

v2p
i
p
j
, when 1∏ i< j∏k and r= i or j,

0, otherwise,

m
(i,j)rs
=G1+ (1−qarbrW ), when i= j=r=s=0, 1, 2, . . . , k,

1, when 0∏ i< j∏k and either r=s= i or r=s= j,

1−qa
s
b
rW
, when 0∏ i< j∏k and r= i, s= j or r= j, s= i,

0, otherwise.
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Substituting these into equation (7·2) gives

e=1−
(1−v)E(1−qA1W+2A1−A1q

B
1W )+vE{A1 (2−q

B
1
A
2W )}

1+ (1−v)pW+vE{A1 (1−qB1W
)}

,

where (A1 , B1 ) and (A2 , B2 ) are independent and identically distributed random variables
with distribution (3·1). We do not analyse this e in detail, but point to the important fact
that this example demonstrates that random vaccination does not make e@ unbiased for
1−E(A) when the community has a household structure.
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T echnical details

T he total progeny of a multitype branching process. Here we derive a standard error for e@ for a
community of homogeneous individuals who mix uniformly. We begin by deriving expressions for
the variance-covariance matrix of the total progeny in a multitype branching process, a quantity
interesting in its own right. For a single-type branching process the variance for the total progeny
is known, see Jagers (1975, p. 39) for example, but we have not found the variance matrix for the
total progeny of a multitype Galton–Watson branching process in the literature.

Consider a multitype Galton–Watson process with k+1 different types of individual labelled
0, 1, . . . , k. Let p(j) (r) denote the offspring distribution of a type-j individual, j=0, . . . , k, where r
is a (k+1)-vector. Let Z(j)

t
= (Z(j)

t0
, . . . , Z(j)

tk
)T be the vector specifying the numbers of individuals

of the different types in generation t assuming the process started with one type-j individual in
generation zero; that is Z(j)

0
=1
j
, the (k+1)-vector with its jth element unity and all its other

elements zero. The vector Z(j)
1

has distribution p(j) (r), so its probability generating function is

f (j) (s)=E(sZ(j)
1
)=E(sZ(j)

100
. . .sZ(j)

1kk
)=∑
r
p(j) (r)sr .

Define the mean matrixM= (m
ij
) by m

ij
=E(Z(j)

1i
)= f (j)

i
(1
A
), where 1

A
is the (k+1)-vector with all

elements unity and f (j)
i

denotes the partial derivative of f (j) with respect to s
i
. It is well known,

e.g. Jagers (1975, p. 88), that E(Z(j)
t
)=Mt1

j
. Define also the second-order moments of the offspring

distribution

c(j)
uv
=E(Z(j)

1u
Z(j)
1v
)−m

uj
m
vj
=q f (j)uu (1A )+ f (j)u (1A ){1− f (j)u (1A )} (u=v),f (j)

uv
(1
A
)− f (j)

u
(1
A
) f (j)
v
(1
A
) (uNv),

(A·1)

where f (j)
uv
(s) is the second derivative of f (j) (s) with respect to s

u
and s

v
.

The total number of individuals, of the various types, up to generation t is defined by the vector
Y (j)
t
=Wt
r=0
Z(j)
r
. Each component of Y (j)

t
is increasing in t, so that Y (j)

t
tends to a limit Y (j)

2
and

t�2. From standard theory for branching processes (Jagers, 1975) it is known that the largest
eigenvalue R of the matrix M determines whether Y (j)

2
can be infinite or not. For R<1, known as

the subcritical case, Y (j)
2

is finite almost surely and so is its expected value E(Y (j)
2
). From now on

assume that we are in the subcritical case R<1, implying that the branching process will surely
die out.
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Let h(j)
t
(s)=E(sY(j)

t
), the probability generating function for Y (j)

t
. By conditioning on what happens

in the first generation and using the fact that each of the individuals of the first-generation initiates
an independent multitype branching process, we obtain the recursion equation

h(j)
t
(s)=s

j
f (j){h

t−1
(s)}.

This recursion can be used to derive the mean vector and variance-covariance matrix of the total
progeny. Taking the partial derivative of h(j)

t
(s) with respect to s

i
and setting s=1

A
gives recursive

formulae whose solution, in vector notation, is E(Y (j)
t
)= (I−Mt+1 )(I−M)−11

j
. Since the largest

eigenvalue of M is less than unity, we can take limits as t�2 to obtain E(Y (j)
2
)=G1

j
, where the

matrix G= (I−M)−1 has typical element=g
ij
=E(Y (j)

2i
).

The elements of the variance matrix for Y (j)
2

are derived in a similar fashion, using second-order
partial derivatives of h(j)

t
(s). The result is

s(j)
ir
=cov (Y (j)

2i
, Y (j)
2r
)= ∑

k

u=0
∑
k

v=0
c(j)
uv
g
ui
g
vr
+ ∑
k

u=0
m
uj
s(u)
ir
,

for all i, j, r, which may be written

s(j)
ir
= ∑
k

s=0
∑
k

u=0
∑
k

v=0
g
js
g
ui
g
vr
c(s)
uv
. (A·2)

The variance-covariance matrix for a process started by more than one individual is simply the
sum over such elements, one for each ancestor, since all ancestors start independent branching
processes.

We now consider some forms for M and {c(j)
uv
} of particular interest in our epidemic context.

Proportionate mixing. All community settings considered in this paper have a mean matrix of
the form M=dbT. Its largest eigenvalue R, denoted by R

V
in previous sections, is then given by

R=dTb=Wk
i=0
d
i
b
i
. It is assumed to be less than 1 and then

G= (I−M)−1=
1

1−R
dbT+I.

This means that

g
ij
=E(Y (j)

2i
)=qdjbj/(1−R)+1 (i= j ),d

i
b
j
/(1−R) (iN j ).

These are the first moments of the total progeny assuming that there was one ancestor of type j.
It is often not known who started the epidemic. In previous sections we assume that the expected
numbers of initially infected individuals of the different types are given by E(Z0 )=cd for some
constant c. Let C denote the vector of total progeny under this assumption. Then the mean vector
of C has elements

E(C
i
)=c ∑

k

j=0
d
j
E(Y (j)
2i
)=

cd
i

1−R
, (A·3)

a result given in previous sections.
To obtain expressions for the variance-covariance terms s(j)

ir
defined by (A·2) we need to know

the variance-covariance terms defined by (A·1). For epidemics these are determined by the model
and the distribution of the area under the infectiousness function. For an individual, given his value
of B0 and that, upon vaccination, his response makes him type j, the numbers of infectious contacts
this individual has with each of the different types follow independent Poisson distributions. The
Poisson number of contacts with type-u individuals has mean b

j
d
u
B0/E(B0 ) (u=0, . . . , k), the

denominator coming from the definition that the unconditional expected number of contacts is
b
j
d
u
. When we drop the conditioning on B0 the numbers of contacts with the different types become

dependent, unless B0 is deterministic. It can be shown that the variances and covariances for these
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numbers of contacts are

c(j)
uu
=b2
j
d2
u
t2+b

j
d
u
, c(j)
uv
=b2
j
d
u
d
v
t2 (uNv),

where t2=var (B0 )/{E(B0 )}2=var (B0 )/R20 is the squared coefficient of variation. Making use of the
assumed structure of M in (A·2) we find that

s(j)
ir
=cov (Y (j)

2i
, Y (j)
2r
)=G d2i bj(1−R)3q(1+t2 )z+ (1−R)(t2bj+2bi )+ (1−R)2d

i
r (i=r),

d
i
d
r
b
j

(1−R)3
{(1+t2 )z+ (1−R)(t2b

j
+b
i
+b
r
)} (iNr),

where R=Wk
u=0
b
u
d
u

and z=Wk
u=0
b2
u
d
u
.

These are the variance-covariance terms for the vector Y (j)
2
, that is given that there was one

ancestor of type j. In the previous sections we assumed that the expected number of initial infectives
of each type is proportional to susceptibility and the abundance of the type. Here we make a
slightly stronger assumption by assuming this relationship for the actual numbers rather than the
expected numbers, i.e. that Z0¬cd for some c. Since all ancestors constitute independent branching
processes it follows that the covariance terms are then given by

s
ir
=cov (C

i
, C
r
)=c ∑

k

j=0
d
j
s(j)
ir
=G cRd2i(1−R)3qA1+ t2RB z+ (1−R)2bi+ (1−R)2d

i
r (i=r),

cRd
i
d
r

(1−R)3qA1+ t2RB z+ (1−R)(bi+br )r (iNr).

(A·4)

The classical Reed–Frost and general epidemic models correspond to t2=0 and t2=1 respectively.

Standard error of e@ for a homogeneous community. We now derive an approximate standard
error for the estimator e@ in the setting of § 4. Recall that d

i
=a
i
p
i
R0 , where p0=1−v and p

j
=vp

j
( j=1, . . . , k), and that the estimator of the vaccine efficacy was defined as

e@=1−
1−v
v AC1+ . . .+CkC

0
B=h(C0 , . . . , Ck ),

say. We apply the d-method (Rao, 1973, § 6a.2), to h(C0 , . . . , Ck ) to obtain the approximate
expression

var (e@)j ∑
k

i=0
∑
k

j=0
h
i
(m
0
, . . . , m

k
)h
j
(m
0
, . . . , m

k
) cov (C

i
, C
j
),

where h
i
denotes the partial derivative of h(c0 , . . . , ck ) with respect to c

i
, and m

i
=E(C

i
). Inserting

expressions for the partial derivatives we obtain

var (e@)jA1−vv B2q (m1+ . . .+mk )2m4
0

var (C
0
)+
1

m2
0
∑
k

i=1
var (C

i
)−2

m
1
+ . . .+m

k
m3
0

∑
k

i=1
cov (C

0
, C
i
)

+
1

m2
0
∑
k

iNj�1
cov (C

i
, C
j
)r .

The first- and second-order moments of the C0 , . . . , Ck are given by (A·3) and (A·4), respectively.
This gives a variance expression containing c, which comes from assuming Z0¬cd. Let the total
number of initial infectives be i0=c W

k
j=0
d
j
. Then the variance formula becomes

var (e@)j
R(1−R)E(A){1−v+vE(A)}

i
0

qE(A)1−v
+
1

vr .
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From this expression it is seen that the approximate variance of e@ does not depend on t, the
coefficient of variation of the area under the infectiousness function. In other words, the variance
of e@=1− (1−v)C

V
/vC0 does not depend on t even though the variances of C0 and C

V
do.

Admittedly, this is only an approximate conclusion because higher-order terms in the Taylor
expansion are omitted when applying the d-method. This result holds more generally, when the
variance of B0 depends on the type of the individual.

In the expression for var (e@), the quantities E(A) and R are unknown and must be estimated.
Naturally, E(A) is estimated by 1−e@. We estimate R by replacing Wk

j=0
m
j

in the expression
Wk
j=0
m
j
= i
0
/(1−R), see (A·3), by the corresponding observed value C

+
. This gives the estimator

RC=1− i0/C+ and with these estimates we obtain the standard error

 (e@)=Sq (1−e@)(1−ve@)C
+
A1− i

0
C
+
BA1−e@1−v

+
1

vBr .
If i0 , the initial number of infectives, is unknown a conservative estimator is obtained by replacing
i0 by 1.
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