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S

This paper is concerned with estimation of the threshold parameter R* for a stochastic
model for the spread of a susceptible� infective� removed epidemic among a closed,
finite population that contains several types of individual and is partitioned into house-
holds. It turns out that R* cannot be estimated consistently from final outcome data, so
a Perron–Frobenius argument is used to obtain sharp lower and upper bounds for R* ,
which can be estimated consistently. Determining the allocation of vaccines that reduces
the upper bound for R* to its threshold value of one, thus preventing the occurrence of
a major outbreak, with minimum vaccine coverage is shown to be a linear programming
problem. The estimates of R* , before and after vaccination, and of the secure vaccination
coverage, i.e. the proportion of individuals that have to be vaccinated to reduce the upper
bound for R* to 1 assuming an optimal vaccination scheme, are equipped with standard
errors, thus yielding conservative confidence bounds for these key epidemiological para-
meters. The methodology is illustrated by application to data on influenza outbreaks in
Tecumseh, Michigan.
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1. I

Epidemic models have a long history going back at least to Bernoulli (1760), who
used a mathematical method to evaluate the effectiveness of variolation against smallpox,
with the aim of influencing public health policy. By far the most important result to
come out of mathematical epidemic theory is the celebrated threshold theorem, which
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dates back to the pioneering work by Kermack & McKendrick (1927), and, in modern
terminology, states that a major epidemic can occur only if the basic reproduction
number R0 (Heesterbeek & Dietz, 1996) is larger than its threshold value of one. The
result is important because it implies the critical vaccination coverage, i.e. the proportion
of susceptible individuals that need to be vaccinated in order to prevent an epidemic
occurring. However, for it to be practically relevant, it is necessary that modelling
assumptions adequately reflect what happens in real-life epidemics. The early models
were deterministic and assumed a community of homogeneous individuals who mix
uniformly. Subsequently, these models have been extended to take account of stochasticity,
individual heterogeneities and social structures that yield non-uniform mixing; see for
example Bailey (1975), Anderson & May (1991) and Andersson (1999). In order to deter-
mine the critical vaccination coverage in practice, estimates of model parameters are
required. Thus procedures for statistical inference have been developed, often focusing on
estimation of epidemiologically important parameters, such as the basic reproduction
number R0 , both before and after vaccinating a specified proportion of individuals, and
the critical vaccination coverage; see for example Anderson &May (1991, Ch. 5, 7), Becker
(1989, Ch. 8), Becker & Britton (1999) and Andersson & Britton (2000, Ch. 12).
One departure from homogeneous mixing, that has received considerable interest

recently and has an important impact on model behaviour, is that attributable to the
household structure of most human populations (Becker & Dietz, 1995; Ball et al., 1997).
Most of the work on the so-called households model has assumed only one type of
individual but with different rates for within- and between-households infections. However,
heterogeneities, such as those corresponding to age, sex and response to vaccine, can
have a significant effect on disease spread. Ball & Lyne (2001) studied the probabilistic
behaviour of a stochastic multitype susceptible� infective� removed households model
and, in particular, derived a threshold parameter R* , the households model equivalent
of R0 , that determines whether or not a major outbreak can occur; see also Becker &
Hall (1996). Statistical inference for this model from final outcome data, possibly only for
a sample of households in the community, will be considered in a future paper by Ball
and Lyne. However, the between-households infection rates are not identifiable from such
data, and consequently neither are the epidemiologically important parameters R* , before
and after a vaccination policy, and the associated critical vaccination coverage. Similar
phenomena have previously been observed by Greenhalgh & Dietz (1994) and Britton
(2001) for multitype epidemics without household structure.
In the present paper, estimation of the above epidemiologically important parameters

is studied for a stochastic model incorporating both household structure and individual
heterogeneity, using two different models for vaccine action. In the first model, a vaccinated
individual is either rendered completely immune or the vaccine has no effect. In the second
model, vaccinated individuals have a reduced probability of infection given exposure to
infection. These models are defined in Smith et al. (1984) and, following Halloran et al.
(1992), are referred to as ‘all-or-nothing’ and ‘leaky’, respectively. The above mentioned
identifiability problems are overcome by deriving sharp upper and lower bounds for R* ,
both before and after a vaccination scheme, which can be estimated consistently from
final outcome data, thus enabling one to estimate the secure vaccination coverage, that
reduces the upper bound for R* to one. Furthermore, all of these estimates are equipped
with asymptotic standard errors, as the number of households in the community becomes
large, yielding asymptotically conservative confidence intervals. Determination of the
allocation of vaccines that reduces the upper bound for R* to one with minimal vaccine
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coverage is shown to be a linear programming problem, in contrast to the case where the
infection rates are known, when a complex nonlinear optimisation problem has to be
solved, unless between-households infection is proportionate mixing; see § 2·3.
The stochastic multitype susceptible� infective� removed households epidemic model

is described in § 2, where its threshold behaviour and final outcome are outlined. The
threshold parameters following a vaccination scheme, using the two models for vaccine
action, are determined and optimal vaccination schemes are briefly discussed. Estimation
of the epidemiologically important parameters is considered in §§ 3 and 4, with point
estimates being given in § 3 and uncertainty being treated in § 4. The methodology is
illustrated in § 5 by an application to data on influenza outbreaks in Tecumseh, Michigan,
and the paper concludes with a brief discussion in § 6.

2. M, ,   

2·1. Model

The model under consideration in this paper is that of Ball & Lyne (2001) for the
spread of a susceptible� infective� removed epidemic among a closed, finite population
that contains J classes of individuals, labelled 1, . . . , J, and is partitioned into households.
Let J={1, . . . , J} and

N
0
=qn= (n

1
, . . . , n

J
)µZJ : n

j
�0( jµJ), dnd= ∑

jµJ
n
j
�1r .

Suppose that, for nµN0 , the population contains m
n
households of category n, where a

household of category n contains n
j
individuals of class j ( jµJ ). Let m=W

nµN
0

m
n
denote

the total number of households in the population, let N
j
=W
nµN
0

n
j
m
n
denote the total

number of individuals of class j in the population ( jµJ ) and let N=W
nµN
0

dndm
n
denote

the total number of individuals in the population. Assume that N, and hence N
j
( jµJ )

and m, are finite. ThusN={nµN0 :mn>0} is finite.
The epidemic is initiated by some individuals becoming infected at time t=0, with the
remaining individuals in the population all assumed to be susceptible. For jµJ, the
infectious periods of class-j infectives are each distributed according to a finite random
variable T (j)

I
, having an arbitrary but specified distribution with mean m

j
. For i, jµJ,

throughout his or her infectious period a given class-i infective makes global contacts with
any given susceptible of class j in the population at the points of a homogeneous Poisson
process having rate lG

ij
/N
j
and, additionally, he or she makes local contacts with any given

susceptible of class j in his or her own household at the points of a homogeneous Poisson
process having rate lL

ij
. Let LL= (lL

ij
) and LG= (lG

ij
). All the Poisson processes describing

infectious contacts, whether or not either or both of the individuals involved are the same,
as well as the random variables describing infectious periods, are assumed to be mutually
independent. A susceptible becomes infective as soon as it is contacted by an infective and
is removed, and plays no further part in the epidemic, at the end of its infectious period.
The epidemic ceases as soon as there is no infective present in the population; see Ball &
Lyne (2001) for further discussion of this model and for rigorous proofs of the informal
arguments outlined below.

2·2. T hreshold behaviour and final outcome

Suppose that the number of households m is large. Then, during the early stages of an
epidemic initiated by a small number of infectives, the probability that a global contact
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is with an individual residing in a previously infected household is small. Thus the initial
growth of the epidemic can be approximated by a process in which each global contact
is with an individual in an otherwise completely susceptible household. The process of
infected households in this approximating process follows a multitype branching process,
with type space J, where the type of an infected household is given by the class of its
initial, globally contacted, infective. Let M= (m

ij
), where, for i, jµJ, m

ij
is the mean

number of class-j global contacts that emanate from a typical type-i infected household.
Suppose that M is positively regular; that is 0∏m

ij
<2 (i, jµJ ) and there exists nµN

such that all the elements ofMn are strictly positive. Let R* denote the maximal eigenvalue
of M. Then the approximating branching process has extinction probability strictly less
than one if and only if R*>1 (Mode, 1971, Ch. 1, Theorem 7.1). Thus, for large m, the
probability of a global epidemic, i.e. one infecting a large number of households, is nonzero
if and only if R*>1.
In order to compute R* , expressions for m

ij
(i, jµJ ) are required. For nµN, let

a
n
=m
n
/m denote the proportion of households in the population that have category n

and, for iµJ and nµN, let a
i
(n)=n

i
m
n
/N
i
be the probability that a class-i individual

chosen at random in the population resides in a household of category n. Consider a
completely susceptible household of category n and suppose that a class-i individual
residing in that household is contacted globally. That class-i individual will start a
realisation of a single-household epidemic, whose internal dynamics are determined
purely by local infection since, in the branching process approximation, all global con-
tacts are with individuals in completely susceptible households. For jµJ, let Y

j
denote

the number of class-j individuals that are ultimately infected by this single-household
epidemic, including the initial infective if j= i, and let T A

j
denote the sum of the infectious

periods of those Y
j
class-j infectives. Let m

n,i,j
(LL )=E(Y

j
) and note that, by Wald’s identity

for multitype susceptible� infective� removed epidemics (Ball, 1986, Corollary 3.2),
E(T A
j
)=E(T (j)

I
)m
n,i,j

(LL )=m
j
m
n,i,j

(LL ). During the above single-household epidemic, for
kµJ, each class-k infective makes class-j global contacts at total rate lG

kj
, so the expected

total number of class-j global contacts that emanate from this single-household epidemic
is W
kµJ
m
k
m
n,i,k

(LL )lG
kj
. Finally, conditioning on the household category of a typical type i

infected household yields

m
ij
= ∑
nµN
a
i
(n) ∑
kµJ
m
n,i,k

(LL )m
k
lG
kj

(i, jµJ).

An algorithm for computing m
n,i,j
(LL ) (nµN0 ; i, jµJ ) is given in the Appendix.

Suppose that the number of households m is large, the number of initial infectives is
small and a global epidemic occurs. For jµJ, let z

j
denote the expected proportion of

class-j susceptibles that are ultimately infected and let T
j
denote the sum of the infectious

periods of all the class-j infectives during the epidemic. Now T
j
jN
j
z
j
E(T (j)
I

)=N
j
z
j
m
j
, so

T
j
/N
i
jc
j
z
j
m
j
/c
i
, where c

i
=N
i
/N is the proportion of class-i individuals in the population

(iµJ ). Thus the probability that a given class-i susceptible avoids global infection during
the epidemic is approximately given by

p
i
=expA− ∑

jµJ
c
j
z
j
m
j
lG
ji
/c
iB (iµJ), (2·1)

since this individual is contacted globally by a given class-j infective at rate N−1
i
lG
ji
. For

large m, distinct individuals avoid global infection approximately independently of each
other. Thus the ultimate spread of infection within a household having category n, that
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did not contain any initial infectives, is approximately distributed as that of a multitype
single-household epidemic model, E

n
(LL, p) say, where p= (p1 , . . . , pJ ), studied by Addy

et al. (1991), in which, in addition to local infection, during the course of the epidemic
individuals avoid infection from outside the household independently and with probability
p
i
for a class-i susceptible (iµJ ). For iµJ, let m

n,i
(LL, p) be the expected number of class-i

individuals that are ultimately infected by E
n
(LL, p). An algorithm for computing m

n,i
(LL, p)

(nµN0 , iµJ ) is given in the Appendix.
For iµJ, z

i
can be interpreted as the probability that a randomly chosen initial class-i

susceptible is ultimately infected by the epidemic. If we condition on the category of
household in which this initial susceptible resides and note that if it resides in a household
of category n then its chance of ultimate infection is m

n,i
(LL, p)/n

i
, it follows that

z
i
= ∑
nµN
a
i
(n)m
n,i

(LL, p)/n
i

(iµJ), (2·2)

which, together with (2·1), is a set of J implicit equations for z= (z1 , . . . , zJ ). Note that
z=0 is a root of (2·2). It is shown in Ball & Lyne (2001, § 5.2), that, provided the J×J
matrix A having elements

a
ij
= ∑
kµJ
m
i
lG
ik
∑
nµN
a
k
(n)m
n,k,j

(LL ) (i, jµJ)

is positively regular, if R*∏1 then z=0 is the only solution of (2·2) in [0, 1]J, while
if R*>1 then there is a unique second root, with z

i
>0 (iµJ ), yielding the expected

proportion of individuals of different classes that are infected by a global epidemic.

2·3. Vaccination

Consider first the case of all-or-nothing vaccines and suppose that vaccinated individuals
are rendered immune independently, with probability e

i
for a class-i individual (iµJ ). For

nµN and 0∏r= (r1 , . . . , rJ )∏n, where inequalities between vectors are to be interpreted
elementwise, let v

n,r
denote the proportion of households of category n that have had r

members vaccinated, and let v={v
n,r
: nµN, 0∏r∏n}.

For i, jµJ, let m
ij
(v) denote the expected number of class-j global contacts that emanate

from a single-household epidemic that is initiated by a randomly chosen class-i individual
being contacted globally. The probability that a randomly chosen class-i individual resides
in a household of category n having r members vaccinated is a

i
(n)v
n,r
. For n−r∏s∏n,

such a household has s susceptible individuals if n−s of the vaccinations are success-
ful, which happens with probability C (r, n−s)en−s (1−e)r−n+s, where e= (e1 , . . . , eJ ), 1 is
a vector of J ones, C (r, n−s)=X

lµJ
r
l
C
n
l
−s
l

with r
l
C
n
l
−s
l

denoting the usual binomial
coefficient and, for two vectors x, y of length J, xy=X

lµJ
xy
ll
. Furthermore, given that s

individuals in the household are susceptible, the probability that a global contact with a
class-i individual in that household is with a susceptible, and thus triggers a local household
epidemic, is s

i
/n
i
. Hence, for i, jµJ,

m
ij
(v)= ∑

nµN
a
i
(n) ∑
n

r=0
v
n,r
∑
n

s=n−r
C(r, n−s)en−s (1−e)r−n+s

s
i

n
i
∑
lµJ
m
s,i,l

(LL )m
l
lG
lj
, (2·3)

where for example Wn
r=0
=Wn1r

1
=0
. . . WnJr

J
=0
.

Let M(v)= (m
ij
(v)) and RAoN

*
(v) be the maximal eigenvalue of M(v). Then RAoN

*
(v) is a

threshold parameter for the epidemic after vaccination with an all-or-nothing vaccine, in
the sense that a global epidemic can occur only if RAoN

*
(v)>1. Consequently, a vaccination

scheme v having RAoN* (v)∏1 is protective for the whole community.
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In general, there is no closed-form expression for RAoN* (v). However, if the global
infection rates take the proportionate mixing form (Hethcote & Van Ark, 1987; Becker &
Marschner, 1990) lG

ij
=aG
i
bG
j
(i, jµJ ), then the matrix M(v) has rank one, so RAoN* (v) is

given by its trace, i.e.

RAoN
*

(v)= ∑
iµJ

∑
nµN
a
i
(n) ∑
n

r=0
v
n,r
∑
n

s=n−r
C(r, n−s)en−s (1−e)r−n+s

s
i

n
i
∑
iµJ
m
s,i,l

(LL )m
l
aG
l
bG
i
.

Consider now the case of leaky vaccines and suppose that, for all jµJ, all the infection
rates to vaccinated class-j individuals are reduced by a factor e

j
. Hence, for i, jµJ, the

rate at which a class-i infective has global, respectively local, contact with a vaccinated
class-j individual is lG

ij
(1−e

j
)/N
j
, respectively lL

ij
(1−e

j
). Note that the average vaccine

efficacy is the same as in the all-or-nothing case.
After a vaccination scheme, there may be 2J types of individual in the population,

i.e. vaccinated and unvaccinated individuals for each of the J original classes. Let
m
n−r,r,u:i,l (LL, e), respectively mn−r,r,v:i,l (LL, e), denote the expected number of infected
class-l individuals, counting both vaccinated and unvaccinated individuals, in a category-n
household having r vaccinated, and hence n−r unvaccinated, individuals, initiated by
an infectious unvaccinated, respectively vaccinated, class-i individual, neglecting further
outside infections.
As for all-or-nothing vaccines, for i, jµJ, let m

ij
(v) be the expected number of global

contacts with class-j individuals that emanate from a single-household epidemic that is
initiated by a randomly chosen class-i individual being contacted globally. If such a
globally contacted class-i individual happens to be vaccinated, the chance that he or
she will actually become infected is (1−e

i
), whereas this chance is 1 if the individual is

unvaccinated. Thus, in a household having r
i
vaccinated and n

i
−r
i
unvaccinated class-i

individuals, such a contact will result in infection of an unvaccinated individual with
probability (n

i
−r
i
)/n
i
and in infection of a vaccinated individual with probability

r
i
(1−e

i
)/n
i
. Consequently

m
ij
(v)= ∑

nµN
a
i
(n) ∑
n

r=0
v
n,r
∑
kµJ
qni−r

i
n
i
m
n−r,r,u:i,k (LL, e)+

r
i
(1−e

i
)

n
i
m
n−r,r,v:i,k (LL, e)r mklGkj ,

(2·4)

and RLe
*

(v), the threshold parameter after vaccination with a leaky vaccine, is the maximal
eigenvalue of the matrix M(v)= (m

ij
(v)). As before, an explicit expression for RLe

*
(v) is

available when LG takes the proportionate mixing form.
As noted above, the main aim of any vaccination scheme is to bring the threshold

parameter below one, i.e. to ensure that R* (v)∏1. The threshold parameter following the
vaccination scheme v is referred to generically as R* (v); R* (v) is RAoN

*
(v) if the vaccine is

all-or-nothing and RLe
*

(v) if it is leaky. Therefore, for a given community and a given
vaccine response, the vaccination scheme v is said to be preventive, written vµP, if the
induced threshold parameter satisfies R* (v)∏1.
If the vaccine response, or efficacy, e is not large enough, it could happen that no
vaccination scheme is preventive; that is R* (v)>1 even when the whole population is
vaccinated. On the other hand, if the vaccine response is large enough there will be many
different vaccination schemes v satisfying R* (v)∏1. It is then important to determine
which such scheme is the best in the sense that it requires the fewest vaccinations.
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Accordingly, if

S(v)=
W

nµN
Wn
r=0
drdv
n,r
a
n

W

nµN
dnda
n

(2·5)

denotes the proportion of the population that are vaccinated, i.e. the overall vaccination
coverage, under the scheme v, then any scheme, vopt say, satisfying S (vopt )∏S (v) for all
vµP is optimal. The definition of vopt could be generalised to incorporate costs associated
with the practical implementation of a vaccination scheme, for example by including an
additional cost per household of having individuals vaccinated (Ball & Lyne, 2002).
It is a nontrivial problem to derive vopt , particularly since, in general, R* (v) does
not admit a closed-form expression. However, if the global infection rates take the pro-
portionate mixing form then R* (v) and S (v) are both linear functions of v, so determining
the allocation of vaccines which (a) minimises R* (v) subject to an upper bound on S (v)
or (b) minimises S (v) subject to R* (v)∏1 is in each case a linear programming problem;
compare Becker & Starczak (1997). Note that there are further, linear constraints on v
implicit in the above formulations, specifically that, for nµN, v

n,r
�0 (0∏r∏n) and

Wn
r=0

v
n,r
=1.

3. E

3·1. Estimation of local and global infection parameters

In order to estimate the threshold parameter R* (v) associated with any given vaccination
scheme, and to design vaccination strategies that prevent global epidemics with minimal
vaccination coverage, it is necessary to have estimates of the local and global infection
parameters. These parameters are assumed to be unknown and are to be estimated from
data on one previous outbreak in the population. The distributions of T (i)

I
(iµJ ) are

assumed known from previous epidemiological studies.
Suppose that the final outcome of the previous outbreak is observed in a sample of

households. Label the m households in the population 1, . . . , m. For i=1, . . . , m, let
t
i
= (t
i1
, . . . , t

iJ
), where t

ij
is the number of class-j susceptibles ultimately infected in house-

hold i, let n (i ) be the category of household i and let d
i
be 1 or 0 according as household i

is observed or unobserved. For nµN and 0∏t∏n, let p
n
(t|LL, p) be the probability that

the epidemic E
n
(LL, p), described in § 2·2, has final outcome t. For nµN0 , a triangular

system of linear equations governing p
n
(t|LL, p) (0∏ t∏n) is given in the Appendix.

Let t
D
={t
i
: d
i
=1} denote the observed data. There does not exist a feasible method

for computing the likelihood of (LL, LG ) given t
D
. However, suppose that the previous

outbreak resulted in a global epidemic, so that R*>1. Then (2·1) and (2·2) implicitly
determine p as a function of (LL, LG ), so write p=p(LL, LG ). For large m, the argument
of § 2·2 shows that the marginal probability of observing the outcome t

i
in household i is

p
n(i)
{t
i
|LL, p(LL, LG )}. The outcomes t

i
(i=1, . . . , m) are not mutually independent.

However, the central limit theorem of Ball & Lyne (2001) implies that their covariances
are of order 1/m for large m, so, as in Lyne & Ball (1999), consider estimating (LL, LG ) by
maximising the pseudolikelihood

L (LL, LG |t
D
)=a
m

i=1
[p
n(i)

{t
i
|LL, p(LL, LG )}]d

i
, (3·1)

obtained by assuming that the outcomes in different households are independent.
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The pseudolikelihood (3·1) can be maximised by first maximising it as a function of
(LL, p), to yield the estimator (LC L, p@ ), then obtaining an estimator, z@ say, of z by substituting
(LC L, p@ ) in the right-hand side of (2·2), and finally solving (2·1), with (p, z) replaced by (p@ , z@),
for LG. For single-type epidemics (J=1), the resulting estimator of (LL, LG ), which are
both scalars, corresponds to that described in § 5.1 of Ball et al. (1997) although the
pseudolikelihood interpretation was not present in that paper. However, for J>1, the
final step in the above procedure involves solving J linear equations in the J2 unknown
quantities lG

ij
(i, jµJ ), so LG is not identifiable from the observed data using this

approach and the threshold parameters before and after vaccination, R* and R* (v), cannot
be estimated consistently. It is possible that the local infection rates LL may also be
unidentifiable, for example if for some i, jµJ there is no household in the sample that
contains individuals of classes i and j, but this can be avoided by choosing the sample of
households suitably. Note that if there is no household in the population that contains
individuals of classes i and j then the parameters lL

ij
and lL

ji
are redundant.

3·2. Estimation of R
*
, RAoN
*
(v) and RLe

*
(v)

In § 3·1 final-size data, from a sample of households of one epidemic outbreak, were
used to derive estimators of the matrix LL and the vectors p and z. Estimation of the
epidemiologically more important parameters R* and R* (v) is considered now, under the
assumption that the population structure is sufficiently rich and the sample is chosen
suitably for LL to be identifiable. The vaccination effect e and the type, all-or-nothing
or leaky, of the vaccine are assumed known, as are the distributions of T (i)

I
(iµJ ). If

the latter are unknown, then parameters of these distributions can be estimated if some
parametric family is assumed, although note that with estimation from final-outcome data
the scale of these distributions is confounded with the infection rates.
The method permits estimation of R* and R* (v) for some future epidemic in a com-
munity with different household structure, provided it is considered reasonable to extra-
polate parameter estimates from the sample to the future population. Let aAn denote the
proportion of households in the future population that have category n, for nµNB with
the obvious definition of NB , and, for iµJ and nµNB , let aA i (n) be the probability that a
class-i individual chosen at random in the future population resides in a household of
category n. For the remainder of § 3 and for § 4, it is assumed that estimation of R*
and R* (v) is for a population with household structure given by aAn (nµNB ). Furthermore,
when referring to formulae in § 2 for the mean matricesM andM (v), we assume implicitly
that a

i
(n) has been replaced by aA i (n).

Note that R*=R* (v0 ), where v0 denotes the null vaccination scheme given by v
n,r
=1

if r=0 and v
n,r
=0 otherwise (nµN ). Thus it is sufficient to consider estimation of R* (v),

which, from (2·3) and (2·4), is given by the maximal eigenvalue of M(v)= (m
ij
(v)), where

m
ij
(v)= ∑

lµJ
b
il
(v, LL, e)m

l
lG
lj
,

with

b
il
(v, LL, e)= ∑

nµÑ
aA i (n) ∑

n

r=0
v
n,r
∑
n

s=n−r
C(r, n−s)en−s (1−e)r−n+s

s
i

n
i
m
s,i,l

(LL ) (3·2)
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if the vaccine is all-or-nothing, and

b
il
(v, LL, e)= ∑

nµÑ
aA i (n) ∑

n

r=0
v
n,rqni−r

i
n
i
m
n−r,r,u:i,l (LL, e)+

r
i
(1−e

i
)

n
i
m
n−r,r,v:i,l (LL, e)r

(3·3)

if the vaccine is leaky.
In the expression for m

ij
(v) the quantities aA i (n) and ml=E(T (l)

I
) are known, and

m
s,i,l
(LL ), m

n−r,r,u:i,l (LL , e) and mn−r,r,v:i,l (LL , e) are estimated consistently by ms,i,l (L
C L ),

m
n−r,r,u:i,l (L

C L , e) and m
n−r,r,v:i,l (L

C L , e), respectively. However, for J>1, the matrix LG, and
hence R* (v), cannot be estimated consistently. Nevertheless, LG is known to satisfy the
constraints given by (2·1), where p and z can be estimated consistently. Thus the Perron–
Frobenius theorem is used to obtain bounds on R* (v), which are functions of (p, z) and
thus can be estimated consistently. Similar methods were used for a multitype epidemic
model without household structure by Britton (2001).
By the Perron–Frobenius theorem (Jagers, 1975, p. 92) it follows that there is a unique,

up to normalisation, strictly positive vector (x1 , . . . , xJ ) satisfying

R
*
(v)x
j
= ∑
iµJ

x
i
m
ij
(v) ( jµJ).

Then

R
*
(v)x
j
= ∑
i,kµJ

x
i
m
k
b
ik
(v, LL, e)lG

kj
= ∑
kµJ

1

c
k
z
k
c
k
z
k
m
k
lG
kj
∑
iµJ

x
i
b
ik
(v, LL, e).

Define the final sum by r
k
=W
iµJ

x
i
b
ik
(v, LL, e). Furthermore, let A=max

k
{r
k
/(c
k
z
k
)} and

assume that the maximum is attained for k=k0 . Then

R
*
(v)x
j
=c
j
∑
kµJ

r
k
c
k
z
k
c
k
z
k
m
k
lG
kj

/c
j
∏Ac

j
∑
kµJ
c
k
z
k
m
k
lG
kj

/c
j
=Ac

j
(−log p

j
) ( jµJ),

where the final equality follows from (2·1). Hence, if we recall the definition of r
k
,

R
*
(v)r
k

c
k
z
k
=

1

c
k
z
k
∑
iµJ

R
*
(v)x
i
b
ik
(v, LL, e)∏AR(k)

*
(v),

where

R(k)
*

(v)=
1

c
k
z
k
∑
iµJ
c
i
(−log p

i
)b
ik
(v, LL, e) (kµJ). (3·4)

Setting k=k0 yields R* (v)∏R(k
0
)
*

(v)∏max
k
R(k)
*

(v). Identical arguments yield a similar
lower bound for R* (v), so that

min
k

R(k)
*

(v)∏R
*
(v)∏max

k
R(k)
*

(v). (3·5)

Just as in the multitype case without household structure treated in Britton (2001),
these bounds are sharp, in that there exists LG satisfying (2·1), such that the correspond-
ing maximal eigenvalue equals the right-hand side of (3·5), and similarly for the lower
bound. To see this, suppose the maximum on the right-hand side of (3·5) is obtained
for k=k1 . For each j, define lG

k
1
j
= (−log p

j
)c
j
/(c
k
1

z
k
1

m
k
1

) and lG
kj
=0 for all other k. First,
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note that this choice for lG
ij
satisfies (2·1). Secondly, observe that this choice for lG

ij
is

proportionate mixing and consequently it is easily verified that the maximal eigenvalue
of the corresponding matrix M is the upper bound for R* (v). A similar argument shows
that the lower bound can also be attained. Furthermore, linear interpolation between the
two extreme choices for LG shows that R* (v) can take any value in the interval given
by (3·5).

3·3. Estimation of the optimal vaccination scheme

Let Rmax
*

(v)=max
k
R(k)
*

(v). Then, from (3·5), any vaccination scheme v with
Rmax
*

(v)∏1 is preventive, irrespective of the underlying parameter LG consistent with the
data, whilst for any vaccination scheme v with Rmax

*
(v)>1 there exists LG, consistent with

the data, so that R* (v)>1. Thus it is appropriate to consider minimisation of the vaccine
coverage S(v) subject to the constraints R(k)

*
(v)∏1 (kµJ ). Note that this is a linear

programming problem since, by (2·5), (3·2), (3·3) and (3·4), the objective function S(v)
and the constraints R(k)

*
(v)∏1 (kµJ ) are all linear functions of the optimising variables v;

a paper by the authors discussing the form of associated optimal vaccination schemes
is currently under review. Let v* denote a solution to this minimisation problem and
let c
v
=S(v*) be the corresponding vaccination coverage. Thus, if we assume optimal

allocation of vaccines, c
v
is the secure vaccination coverage required to be sure of

preventing a future global outbreak. Note that R(k)
*

(v) is estimated by replacing the
unknown parameters in the right-hand side of (3·4) by their estimates, yielding RC (k)

*
(v) say;

(LL , p) determines z by (2·2). Thus, Rmax
*

(v) is estimated by RC max
*

(v)=max
k
RC (k)
*

(v) and c
v

is estimated by solving the above linear programming problem, with R(k)
*

(v) replaced by
RC (k)
*

(v) (kµJ ), yielding v@* and c@
v
=S(v@*).

4. U

Let h= (vec (LL ), p)= (h1 , . . . , hJ(J+1) ), where vec (LL ) is the row vector representation
of LL, and let h@ be the maximum pseudolikelihood estimator of h. The central limit theorem
of Ball & Lyne (2001), extended to the situation when not all households are observed,
can be used to obtain, given the occurrence of a global epidemic, a central limit theorem
for the pseudoscore function associated with (3·1), and weak laws of large numbers for
the second derivatives of the corresponding pseudo-loglikelihood function and for locally
uniform bounds on the third derivatives, as the population and sample sizes tend to
infinity in an appropriate fashion. The argument of Cramér (1946, pp. 500–4), can then
be used to show that h@ is a consistent estimator of h and

mD (h@−h)�N{0, S (LL, LG )}, (4·1)

in distribution, as m�2.
Note that the variance matrix S (LL, LG ) depends on LG rather than on p. The matrix
S (LL, LG ) also depends on a

n
, b
n
(nµN ), where, for nµN, b

n
denotes the proportion of

households of category n in the population that are in the observed sample. This latter
dependence is suppressed for ease of notation. Calculation of S (LL, LG ) will be described
in a future paper by Ball and Lyne and is not described here as it is lengthy and involved.
Sufficient conditions for the limit (4·1) to hold will also be given in that paper. These
include the important practical case when the proportions a

n
, b
n
(nµN ) are held fixed as

the number of households m�2.
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Recall that Rmax
*

(v)=max
k
R(k)
*

(v, LL, p), where R(k)
*

(v, LL, p) (kµJ ) are given by (3·4),
and their dependence on the unknown parameters LL and p is shown explicitly. Let k1
denote the k which maximises R(k)

*
(v, LL, p) (kµJ ), and suppose, for ease of exposition,

that k1 is unique. Then Rmax
*

(v) is estimated consistently by RC max
*

(v)=R(k@
1
)
*

(v, LC L, p@ ),
where k@1maximises RC (k)* (v) (kµJ ). Furthermore, let d(v, LL , p) be the J(J+1)-dimensional
column vector whose ith element is the partial derivative of R(k

1
)
*

(v, LL, p) with respect
to h
i
. Then an application of the delta method (Andersen et al., 1993, pp. 109–10) shows

that

mD{RC max
*

(v)−Rmax
*

(v)}�N{0, s2 (v, LL, LG )}, (4·2)

in distribution, as m�2, where, with T denoting transpose,

s2 (v, LL, LG )=d(v, LL, p)TS (LL, LG )d(v, LL, p).

In order to use (4·2) to obtain a confidence interval for Rmax
*

(v), an estimator of LG is
required. Now R* (v) is maximised when class-k1 individuals are responsible for all global
infections, so LG is estimated by setting l@G

ij
=0 if iNk1 and

l@G
k
1
j
= (−log p@

j
)c
j
/(c
k
1

z@
k
1

m
k
1

) ( jµJ), (4·3)

where z@k
1

is obtained by setting (LL , p)= (LC L , p@ ) in (2·2). A one-sided 1−a confidence
interval for Rmax

*
(v) is then given by (0, RC max

*
(v)+m−Dz

a
s(v, LC L, LC G )), where z

a
is the

(1−a)-quantile of the standard normal distribution. The asymptotic variance s2 (v, LL, LG )
may be larger for other choices of LG consistent with (LL , p), but such choices will have
R
*
(v)<Rmax

*
(v). Thus the above confidence interval is asymptotically conservative.

We turn now to estimation of the secure vaccination coverage c
v
under the optimal

vaccination strategy, outlined in § 3·3. For cµ(0, 1), let vopt (c, h) denote an optimal vacci-
nation scheme, given that a proportion c of the population are to be vaccinated, where
dependence on the unknown parameters h= (vec (LL ), p) is shown explicitly; that is
vopt (c, h) minimises Rmax

*
(v) subject to S(v)∏c. Let R(c, h)=Rmax

*
{vopt (c, h)}. Then, for

fixed h, R(c, h) is a continuous, decreasing, piecewise linear function of c; moreover, it is
strictly decreasing for cµ[0, c

q
(h)], where c

q
(h)=min {c : R(c, h)=R(1, h)}. Note that c

q
(h)

may be strictly less than 1, if, for example, some classes of individuals are insensitive to
the vaccine. Thus, in the practically relevant situation when R(0, h)>1>R(1, h), the
secure vaccination coverage c

v
=c
v
(h) is obtained by solving R(c, h)=1. In practice, h is

unknown and c
v
is estimated by c@

v
=c
v
(h@ ).

Let d
c
(LL , p) be the J(J+1)-dimensional column vector whose ith element is ∂c

v
(h)/∂h

i
and let

s2
c
(LL, LG )=d

c
(LL, p)TS (LL, LG )d

c
(LL, p).

Then, by the delta method,

mD (c@
v
−c
v
)�N{0, s2

c
(LL, LG )},

in distribution, as m�2.
A one-sided 1−a confidence interval for c

v
is then given by (0, c@

v
+m−Dz

a
s
c
(LC L, LC G )),

with LC G being given by (4·3). The lack of an explicit expression for R(c, h) means that,
unless J=1 (Britton & Becker, 2000), the derivatives ∂c

v
(h)/∂h

i
need to be evaluated

numerically, which is straightforward since c
v
(h) arises from the solution of a linear

programming problem.



356 F. G. B, T. B  O. D. L

The above confidence interval for Rmax
*

(v) assumes that the vaccination scheme v is
fixed, whereas, in practice, for a given coverage c, a confidence interval may be required
for R(c, h), the post-vaccination threshold parameter upper bound, assuming that the
vaccines are allocated optimally. To obtain such an interval using the delta method, the
partial derivatives ∂R(c, h)/∂h

i
(i=1, . . . , J(J+1)) are required. It is difficult to obtain

these directly, even numerically, since the optimisation problem underlying R(c, h) is a
linear programming problem only when J=1. When J>1, the objective function
Rmax
*

(v)=max
k
R(k)
*

(v) is nonlinear in v. For fixed rµ(0, h), let c(r)
v
=c(r)
v

(h) satisfy
R(c(r)
v

, h)=r. Then, by the implicit function theorem,

∂c(r)
v

(h)

∂h
i
=−

∂R(c(r)
v

, h)

∂h
i
N∂R(c(r)

v
, h)

∂c
(i=1, . . . , J(J+1)). (4·4)

Now c(r)
v
arises from the solution of the linear programming problem ‘minimise S(v) sub-

ject to R(k)
*
∏r (kµJ )’, enabling ∂c(r)

v
(h)/∂h

i
and ∂c(r)

v
(h)/∂r to be calculated numerically.

Also, ∂R(c(r)
v

, h)/∂c=1/{∂c(r)
v

(h)/∂r}, so ∂R(c, h)/∂h
i
can be found by letting r=R(c, h) and

using (4·4).
It has been assumed in the above that k1 , which maximises R(k)

*
(v, LL, p) (kµJ ), is

unique. If that is not the case then RC max
*

(v) is still a consistent estimator of Rmax
*

(v) but the
above confidence interval for Rmax

*
(v)may no longer have the required asymptotic coverage

probability. For kµJ, let LC G
k
denote the estimator of LG obtained by assuming that class-k

individuals are responsible for all global infections, and let

RC U
*
(v, a)=max

k
{R(k)
*

(v, LC L, p@ )+m−Dz
a
s(v, LC L, LC G

k
)}.

Then (0, RC U
*
(v, a)) is a 1−a confidence interval for Rmax

*
(v) that is asymptotically con-

servative. Moreover, when k1 is unique, the probability that this confidence interval
coincides with the earlier one tends to 1 as m�2. Thus, it is recommended that the
interval (0, RC U

*
(v, a)) be used in practice. A similar comment applies to the confidence

intervals for c
v
and R(c, h). Indeed, the numerical examples in § 5 indicate that in these

latter two cases k1 is usually not unique.

5. N 

The techniques developed in this paper are illustrated by application to data on
influenza epidemics in Tecumseh, Michigan (Monto et al., 1985), kindly made available
by Ira M. Longini. These data are from a continuous epidemiological survey from 1976
to 1981, representing a 10% cross-sectional sample of households that were followed
prospectively. There were two main epidemics, in 1977–78 and 1980–81, infecting 130 and
128 out of the 685 and 795 individuals monitored, respectively. The data from the 1977–78
outbreak are considered here, since by the 1980–81 outbreak additional recruitment of
families with infants into the survey meant that the observed sample was not representative
of the underlying population structure. Individuals in the survey underwent a haemag-
glutination test before and after each epidemic season. The pre-season results were used to
classify individuals into those possessing low (highly susceptible), higher ( less susceptible)
and very high (immune) levels of antibodies, and the post-season results were used to
determine whether a susceptible individual had been infected. Several other covariates
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were also recorded, including age, so individuals can be classified as adults (�18 years)
or children (<18 years). The data are too numerous to present in detail. For the 1977–78
epidemic, there were 289 households in the survey, of which 77 were of size 1, 106 of size
2, 47 of size 3, 44 of size 4, 12 of size 5, 2 of size 6 and 1 of size 7, where the size of a
household is the number of susceptibles in it at the start of the epidemic season, counting
both low- and high-titre individuals, but neglecting immunes. These households contained
a total of 685 individuals, 308 low-titre adults, 136 low-titre children, 184 high-titre
adults and 57 high-titre children, of whom 48, 56, 17 and 9 were infected, respectively. In
the following examples, the observed households are assumed to form an exact 10%
sample from the population and, following Addy et al. (1991), the infectious period of all
individuals is assumed to follow a gamma distribution with mean 4·1 days and shape
parameter 2.
Consider first the case when age is ignored, so there are two classes of susceptible

individuals and the category of a household is determined by the number of low-titre
(class 1) and high-titre (class 2) individuals it contains. The following estimates are
obtained:

LC L=A0·0536 0·0291

0·0000 0·0052B , p@= (0·8172 0·9196), z@= (0·2339 0·1015).

Define R(k)
*
(LC L, p@ )=R(k)

*
(v
0
, LC L, p@ ), where v0 is the null vaccination scheme defined in § 3·2.

Then R(1)
*

(LC L, p@ )=1·0868 and R(2)
*

(LC L, p@ )=1·1801, so RC max
*

(v
0
)=1·1801 and RC U

*
(v
0
, 0·05)=

1·2832, leading to a 95% confidence interval of (0, 1·2832) for Rmax
*

(v
0
). The current killed

influenza vaccine has an efficacy of about 0·7, irrespective of prior immunity, according
to a personal communication from Ira M. Longini. If we assume an all-or-nothing vaccine
with e= (0·7 0·7), the secure vaccination coverage c

v
is estimated to be 0·0877 with a

95% confidence interval of (0, 0·2424). For the leaky case, c@
v
=0·0897 with 95% con-

fidence interval (0, 0·2441), so slightly more vaccine is required than in the all-or-nothing
case. The leaky case is illustrated in Fig. 1(a), in which R(k)

*
(v
c
, LC L, p@ ) (k=1, 2) and

RC U
*
(v
c
, 0·05) are plotted against vaccine coverage c, where v

c
=vopt (c, h@ ); see § 4. Figure 1(a)

also shows the estimate of the secure vaccination coverage c@
v
and the upper limit of its

associated 95% confidence interval. The figures are drawn by solving the linear pro-
gramming problem ‘minimise S(v) subject to R(k)

*
(v, LC L, p@ )∏r (kµJ )’, having solution

v*(r) say, for a grid of values of r, and then plotting R(k)
*

{v*(r), LC L, p@} (kµJ ) and
RC U
*
{v*(r), 0·05} against S{v*(r)}, using linear interpolation. Note that, since R(c, h@ ) is con-

tinuous and decreasing in c, R[S{v*(r)}, h@]=r. Thus, if S{v*(r)}=c then R(c, h@ )=r,
implying that Rmax

*
(v
c
, h@ )=r, so v

c
may be taken to be v*(r) as Rmax

*
{v*(r), h@}=r. The

confidence intervals indicated by the dashed line in Fig. 1(a) are calculated under the
assumption that the vaccination scheme v

c
is known. For comparison, the confidence

interval for R(c, h) when c=c@
v
is also shown, it being numerically prohibitive to calcu-

late the latter confidence interval for all values of c. Note that, except for c close to zero
or one, the optimal strategy results in R(1)

*
(v
c
, LC L, p@ )=R(2)

*
(v
c
, LC L, p@ ). The vaccination

scheme that results in R(1)
*

(v
c
, LC L, p@ )=R(2)

*
(v
c
, LC L, p@ )=1 concentrates most vaccination

on low-titre individuals residing in large households.
It is of interest to consider the vaccination problem if all of the population were in

fact low antibody level, since if a vaccination scheme is now implemented there will be
no significant immunity due to disease, using the estimates for LC L, p@ and z@ obtained above.
The bounds R(k)

*
(LC L, p@ ) can then be calculated as 1·2810 and 0 for k=1, 2, respectively,
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Fig. 1. (a) Reduction of threshold parameter, as a function of vaccination coverage c, for two-type model
with a leaky vaccine of efficacy e= (0·7 0·7). (b) Reduction of threshold parameter through optimal
vaccination for four-type model, with an all-or-nothing vaccine of efficacy e= (0·9, 0·9, 0·9, 0·9). The solid
lines, which coincide for most values of c, are R(k)

*
(v
c
, LC L , p@ ), where k=1, 2 in (a) and k=1, 2, 3, 4 in

(b), and the dashed line is RC U
*
(v
c
, 0·05), where v

c
denotes the best vaccination strategy for coverage level c;

see text for further details. The left and right vertical lines mark c@
v
and the upper limit of its associated

95% confidence interval, respectively. The horizontal bar marks RC U
*
(v@opt, 0·05) for the estimated optimal

vaccination scheme associated with this coverage, i.e. the upper limit of the 95% confidence interval for
R(c, h@ ) when c=c@

v
; recall that R(c@

v
, h@ )=1.

and the upper limit of the 95% confidence interval for Rmax
*

(v
0
) is RC U

*
(v
0
, 0·05)=1·4430.

If we assume an all-or-nothing [leaky] vaccine with e1=0·7, the secure vaccination cover-
age c

v
is estimated to be 0·1631 [0·1673] with a 95% confidence interval of (0, 0·2491)

[(0, 0·2544)]. Note that the assumption that the population is all low-titre has increased
appreciably the estimate of c

v
for both kinds of vaccine. However, the upper limits of

the associated confidence intervals have increased only marginally, which at first sight
seems surprising. Note, as can be seen in Fig. 1(a) for the leaky case, that, when c=c@

v
,

R(1)
*

(v
c
, LC L, p@ )=R(2)

*
(v
c
, LC L, p@ ), so that, if we recall the discussion at the end of § 4,

the upper end of the confidence interval for c
v
is given by c@

v
+m−Dz0·05maxk sc (L

C L, LC G
k
).

Now s
c
(LC L, LC G

1
)<s
c
(LC L, LC G

2
), as is intuitively plausible since far fewer high-titre individuals

than low-titre individuals were infected by the epidemic, so k=2 is used when calculating
the confidence interval for c

v
, under the assumption that the population structure remains

constant, and m−Ds
c
(LC L, LC G

2
)=0·0941 for the all-or-nothing vaccine, and 0·0939 for the

leaky. However, when the population is assumed to be all low-titre, only k=1 is relevant
and, although m−Ds

c
(LC L, LC G

1
) has increased from 0·0295 to 0·0522 for the all-or-nothing

vaccine, or from 0·0294 to 0·0529 for the leaky vaccine, the upper limit of the confidence
interval has increased only slightly.
Consider now the case when individuals are also classified as adults or children.

This gives four classes of individuals and estimates of LC L, p@ and z@ can be obtained.
Figure 1(b) shows the reduction of threshold parameter with an all-or-nothing vaccine
with e= (0·9, 0·9, 0·9, 0·9), chosen as it illustrates the following points more clearly than
e= (0·7, 0·7, 0·7, 0·7). Note that the upper limit of the 95% confidence interval for c

v
is

0·1958, which is somewhat smaller than the coverage required for RC U
*
(v
c
, 0·05) to be

below 1, namely 0·3495. Also note that RC U
*
(v
c
) is not monotonic.

If all the individuals in a future population were in fact low-titre and the vaccine
was all-or-nothing with e= (0·7, 0·7, 0·7, 0·7), the required coverage is 0·2567, with 95%
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confidence interval (0, 0·3356), and is achieved entirely through vaccinating children. A
leaky vaccine of the same efficacy would require coverage 0·2881, with 95% confidence
interval (0, 0·3995). Note that the four-type model used here to predict on low-titre
individuals estimates that rather more vaccine is required than in the two-type models
above.

6. D

The data needed to perform the analysis of this paper require information at the
household level, where individuals are also categorised into different types according to
knowledge of some individual covariates, such as age, sex and previous history of disease
and/or vaccination. In large outbreaks such information is rarely available for the whole
community as it more or less requires visits to each household separately. Still, such
information can, and it is recommended should, be collected for a sample of house-
holds, and this is all that is required for the present analysis. In case the sample is not
representative in terms of the household structure of the population, information about
the community distribution of various household categories is also needed, but this can
often be obtained from census data. In order to derive preventive vaccination schemes the
type and efficacy of the vaccine must also be known. Methods for estimating efficacy of
vaccines is a topic in its own right; see for example the review by Halloran et al. (1999).
The model used in the paper allows for heterogeneities associated with observable, and

hence classifiable, individual characteristics and also for departures from homogeneous
mixing caused by the presence of households. Of course, there are other heterogeneities
present in any community. For example, individuals may differ in a way which cannot
be known by epidemiologists collecting the data. Furthermore, there are other social
structures which surely affect the spread of disease, such as schools and workplaces, which
clearly act as clusters. Nevertheless, it is believed that households, in combination with
having different types of individuals, capture the most important departures from homo-
geneity. Needless to say, it is impossible to capture all heterogeneities in a community in
a mathematical model.
As noted already in § 1, consistent estimation of threshold parameters and associ-

ated optimal vaccination schemes is not feasible because the global infectivity rates are
unidentifiable from final outcome data. In applications some knowledge of these para-
meters may be available, expressed either in deterministic terms or in the form of prior
distributions. Such prior knowledge should narrow the lower and upper bounds of the
estimates, thus giving less conservative estimates. In the Bayesian framework, the com-
plexity of the model suggests that such inferences will most likely be performed using
Markov chain Monte Carlo methods; see O’Neill et al. (2000) for an application of these
methods in a simpler epidemic setting.
Finally, although linear programming provides a means of computing optimal

vaccination allocations, it is useful to have an explicit characterisation of the resulting
solution and thereby gain insight into the form of optimal vaccination schemes. In the
single class case (J=1) with all-or-nothing vaccines, Ball & Lyne (2002) show that,
provided a certain convexity conjecture holds, successive vaccinations within the same
household yield diminishing reductions in the threshold parameter R* , leading to simple
characterisations for the form of optimal vaccination allocations. In particular, if the
vaccine is perfect, the optimal vaccination scheme is the so-called equalising strategy of
Ball et al. (1997), in which vaccines are allocated sequentially, always to a household
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that contains the greatest number of unvaccinated individuals. The form of the optimal
vaccination scheme in the multitype case is investigated in a paper by the authors that is
currently under review, where it is shown that the multitype case does not admit such a
simple characterisation and that the leaky vaccine leads to less reduction in the spread of
disease than the corresponding all-or-nothing vaccine.
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A

Properties of single household epidemics

We present algorithms for calculating m
n,i,j
(LL ), m

n,i
(LL , p) and p

n
(t|LL , p). For n= (n1 , . . . , nJ )

and a= (a1 , . . . , aJ ), let En,a (LL , p) denote the multitype single-household epidemic model studied
by Addy et al. (1991), in which initially there are a

i
infectives and n

i
susceptibles of class i (iµJ),

and, during the course of the epidemic, initially susceptible individuals avoid infection from out-
side the household independently and with probability p

i
for a class-i individual. The infectious

periods of different infectives are independent, with that of a class-i infective following a random
variable T (i)

I
, having an arbitrary but specified distribution with moment generating function

w
i
(h)=E{exp (−hT (i)

I
)} (h�0). Throughout its infectious period, a given class-i infective contacts

a given class-j susceptible at the points of a homogenous Poisson process with rate lL
ij
. For iµJ,

let SB
i
denote the number of initial class-i susceptibles that are uninfected at the end of the

epidemic and let m
n,a,i
(LL , p)=E(SB

i
). A recursive expression for m

n,a,i
(LL , p) is presented, from which

expressions for m
n,i,j
(LL ) and m

n,i
(LL , p) are easily obtained. To be specific, if, for iµJ, a(i) denotes

the J-dimensional vector whose ith element is one and all of whose other elements are zero, then

m
n,i,j

(LL )=n
j
−m
n−a(i),a(i),j

(LL, 1) (i, jµJ), m
n,i

(LL, p)=n
i
−m
n,0,i

(LL, p) (iµJ).

An expression for the joint probability generating function of S= (S1 , . . . , SJ ) for the epidemic
E
n,a
(LL, 1) is given, in different notation, by Theorem 3.5 of Ball (1986). Appropriate differentiation

of that expression shows that, for iµJ,

m
n,a,i

(LL, 1)= ∑
n

s=0
C(n, s)a(i)

s
w{h(s)}a+n−s, (A·1)

where a(i)
s
(s�0) are determined by

∑
n

s=0
C(n, s)a(i)

s
w{h(s)}n−s=n

i
(n�0).

Here, for rµN0n{0}, h(r)= (h1 (r), . . . , hJ (r)), where h
j
(r)=W

kµJ
r
k
lL
jk
, and

w(h)= (w1 (h1 ), . . . , wJ (hJ )) (hµRJ ).

The distribution of the ultimate spread of the epidemic E
n,a
(LL , p) can be obtained by conditioning

on the numbers of initial susceptibles of the J classes that avoid infection from outside the house-
hold, Y= (Y1 , . . . , YJ ) say, and considering the epidemic E

Y,n+a−Y
(LL, 1) in which there is no outside

infection. Hence, for iµJ,

m
n,a,i

(LL, p)= ∑
n

r=0
C(n, r)pr (1−p)n−rm

r,n+a−r,i
(LL, 1). (A·2)

Substituting (A·1) into (A·2) and reversing the order of summation yields

m
n,a,i

(LL, p)= ∑
n

s=0
C(n, s)a(i)

s
w{h(s)}a+n−sps (iµJ).
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Recall from § 3·1 that p
n
(t|LL, p) (0∏t∏n) is the total size distribution of the epidemic E

n,0
(LL , p).

It follows, using equation (4) of Addy et al. (1991), that

∑
s

t=0
C(n−t, s−t)p

n
(t|LL, p)/([w{h(n−s)}]tpn−s )=C(n, s) (0∏s∏n). (A·3)

The triangular system of linear equations (A·3) determines p
n
(t|LL , p) (0∏t∏n).
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