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Tests to Detect Clustering of Infected
Individuals within Families

Tom Britton

Mathematical Statistics, Department of Mathematics,
Stockholm University, S-106 91 Stockholm, Sweden

SUMMARY

A new simple test to detect within-family clustering of infected individuals is proposed. The test
is derived as the score test for several different parametric models designed to allow an increased
within-family infectivity. The new test is compared with other tests proposed to detect the same
type of clustering caused by increased within-family infectivity. Applications of household disease
data and simulations are used to illustrate the theory.

1. Introduction

In epidemiology the transmission dynamics of specific infectious diseases is an important research
area. One particular concept in this field is the secondary attack rate (SAR). SAR quantifies
the extra probability of getting infected due to other infected individuals of the same “unit.” In
applications a unit might, for example, be a family, a household, or a village; we shall use the term
family. A high SAR would typically result in clustering of infected individuals within families.

There is a vast amount of literature on this subject. For example, Longini and Koopman (1982)
treat a parameterized model (the LK model) and describe how to obtain parameter estimates
from data. In Addy, Longini, and Haber (1991) the LK model is extended to a multitype popula-
tion. Fraser (1983) and Walter (1974) propose tests for the hypothesis of no extra within-family
infectivity, i.e., that SAR = 0. The tests are motivated by their simple structure and their intu-
itive interpretation. Schork (1994) proposes a different test of the same hypothesis based on the
parameter estimates of the LK model.

In the present paper we suggest a new simple test of the hypothesis that SAR = 0. The test is
similar to the tests of Fraser (1983) and Walter (1974). The test is obtained as the asymptotic score
test of the hypothesis of no extra within-family infectivity in a simple epidemic model. This means
that, for a large population and small deviation from the null hypothesis, the suggested test is the
most powerful test. In the Appendix we outline the proof giving the suggested test statistic. An
extension of the epidemic model treated in the present paper is analyzed in a recent paper by Ball,
Mollison, and Scalia-Tomba (1996). It turns out that the same test is the asymptotic score test for
this extended model. If the LK model is modified in a natural way, the corresponding local test is
also identical to the one presented here. The different epidemic models are described in Section 2
and the corresponding tests are presented in Section 3.

If the disease is known to spread through “close” person-to-person contact, the hypothesis would
of course most likely be rejected and the test would be uninformative. On the other hand, for several
infectious diseases, the mechanism by which the diseases spread is unknown. Other common ways of
spread are on a more “global” level, such as through a water source shared by the whole population
or by air. In the model we will study, the disease spreads only through person-to-person contact on
a global level under the null hypothesis—a global “external source” would need a different model.
However, in the test procedure, we will condition on the total number of infected individuals and,
given this number, each configuration has equal probability under the null hypothesis. We would
have the same conditional distribution if the disease were spread through a global external source
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such as a common water supply or by air. Thus, the test presented in this paper can be interpreted
as a test to find out whether the disease spreads through close person-to-person contact, as opposed
to any spreading mechanism on a global level.

The statistical data needed for the test are, besides family sizes, the final numbers of infected
individuals in each family. The times of infection (onset times) are assumed unobserved and hence
not used. Examples of such data are the influenza data collected in Tecumseh and Seattle (Longini
et al., 1982; Haber, Longini, and Cotsonis, 1988; Addy et al., 1991; Schork, 1994), the Asian
influenza data (Longini and Koopman, 1982), the spread of Trypanosoma cruzi among 40 Brazilian
households (Smith and Pike, 1976; Fraser, 1983), and a study of Lassa Fever in Sierra Leone (Fraser,
1983). .

In Section 4 we compare the tests of Section 3 on some examples of data. We also present some
simulations to compare power properties.

2. The Standard Epidemic Model for a Population of Families
2.1 Model Specification

The model we will study, which we denote the Standard Epidemic Model for a Population of
Families, is an extension of what is known as the General Epidemic Model. As the epidemic evolves,
individuals may pass through three stages: susceptible (meaning that the individual is susceptible
to infection), infective (if an individual is infected, he/she starts spreading the disease to other
individuals), and removed (after some time the infective individual stops spreading the disease
further and becomes immune). Models of this kind are called SIR-epidemic models (see Lefevre,
1990, for a nice exposition of such models).

The dynamics are as follows. An individual who gets mfected remains infective for an
exponentially distributed time. Without loss of generality, we assume the mean length is 1 time unit.
While infective, the individual makes contact at rate A with someone chosen at random from the
remaining N — 1 individuals (N denotes the population size). Independent of this contact process,
he/she makes contact at rate § with someone chosen randomly from his/her own family. Whenever
a contact is made with a susceptible individual, this individual becomes infected and infective;
otherwise, nothing happens. All contact processes, random selection numbers, and infectious periods
are defined as mutually independent.

In the Appendix, and more rigorously in Britton (1996), this model is analyzed using theory
for counting processes, where intensities play an important role. The above description implies the
following intensities (rates) with which individuals change state.

1. Susceptible—infective. Consider a given susceptible individual in a family of size f in a
population of size N. If there presently are I infective individuals in the whole population and
1 infective individuals in the same family as our susceptible individual, then this individual
becomes infected with intensity A /(N — 1) + 6i/(f — 1).

2. Infective—removed. An infective individual becomes removed with intensity 1, since the
infectious period is exponentially distributed with mean 1.

The epidemic stops the first time there are no infective individuals in the population because
then no one can get infected. When 6 = 0, there is no increased within-family infectivity and the
model reduces to the General Epidemic Model.

2.2 Relations to Other Models

Ball et al. (1996) treat an extension of the model described in the previous subsection, allowing
a general distribution for 7, the length of the infectious period, whereas here this time period is
assumed to follow the exponential distribution. The same asymptotic situation is also treated, so
results from Britton (1996) that will be used can just as well be derived from Ball et al. (1996).

The LK model (Longini and Koopman, 1982) is a different two-parameter model. The parameters
are B and @, where B is the probability of a susceptible individual escaping infection from outside
the family during the course of the epidemic and Q is the probability of escaping infection from an
infected individual in the same family during the time this individual is infective.

In the LK model the probability of getting infected by someone within the family depends on
how many family members get infected. On the other hand, the probability of getting infected from
outside the family, B, is independent of how many individuals outside the family become infected.
This assumption simplifies calculations; in particular, all families behave independently so the log
likelihood is a sum of independent terms. On the other hand, it might not be a realistic assumption
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for particular infectious diseases. Another assumption in the LK model is that the two events of an
infected individual infecting two different family members are independent events. If the length the
infectious period for a particular disease is considered random, these two events will most likely be
positively correlated. In the model of this paper, neither of these assumptions is true.

The LK model can be modified so that () depends on the family size f, that is @ = Q. For
example, in a family of size two, the probability of infecting your family mate might be larger than
if the family was larger, say of size six. In Section 3.3 we will treat the choice Q; =1—6/(f — 1),
where 6 should be interpreted as the average “infectivity mass” which is spread uniformly to the
f—1 family companions. We will see that this modification of the LK model resembles more closely
the present model, in particular it gives rise to the same score test of the hypothesis § = 0

Addy et al. (1991) generalize the LK model so that individuals may be different types and, by
letting the length of the infectious period 7 follow an arbitrary distribution, may possibly be type-
specific. Instead of Q, the intensity parameters {§; 1} are introduced, where §; ;; is the intensity
with which a susceptible i-type individual is infected by an infective k-type individual in the same
family. The different types might, for example, depend on age and/or sex. The parameter B has
the same interpretation in Addy et al. (1991) as in the LK model.

3. Testing for Clustering
3.1 The Standard Epidemic Model for a Population of Families

For the model described in Section 2.1, § = 0 clearly corresponds to the case SAR = 0, which
implies that there is no tendency for clustering of infected individuals within families. This is the
hypothesis for which we will construct a test.

In a fairly large population, the exact distribution of the final outcome of infected individuals
(initiated by a small proportion of infectives) is complicated, so a test based on the likelihood is
hard to derive. Using theory for Markov counting processes (cf. Ethier and Kurtz, 1986), asymptotic
properties of the model have been derived (Britton, 1996). In the Appendix we outline how this is
done and give an heuristic argument for the score statistic presented in (3.1).

Let Ny ; denote the number of families of size f that had exactly ¢ infected individuals
at the end of the epidemic, and denote the largest family size by fmaz. For a population
with a large number of families, it is shown that the distribution of the vector with elements
{N#:;0 <4 < f,1 < f < frmao} is approximately (i.e., asymptotically) multivariate normal with
mean vector and covariance matrix depending on A and 6.

Using the corresponding normal densities, this allows us to approximate the likelihood ratio,
which we denote L(8)/L(0), suppressing the dependence on A. For general §, the mean vector
and covariance matrix are only given implicitly and, beside this, the likelihood ratio is known
to depend on which particular § is considered. This implies that no uniformly most powerful
test of the hypothesis § = 0 exists. We proceed by constructing the score test, the test that
maximizes the power for small deviations from the null hypothesis (cf. Cox and Hinkley, 1974,
pp- 113). The motivation for this approach is that, for a large deviation from the null hypothesis,
the hypothesis will most likely be rejected anyway. The score test tells us to reject the hypothesis
whenever ' (0) = L'(0)/L(0) is large (I(8) is the log likelihood). The distribution of I'(0) depends
on the nuisance parameter \. We therefore condition on the total number of infected individuals,
R = E;m‘i"‘ Z{ otV f i, this being a sufficient statistic for A under the null hypothesis. Thus, we
may omit terms in I'(0) only depending on data through R, as well as terms independent of data.
Finally, we replace the unknown parameter p = p()), which is the asymptotic probability of being
infected, by the observed proportion infected, p = R/N. In the Appendix, where an outline of this
analysis is given, the resulting test statistic is seen to be

fmaa:

T= PN11+ZZZ(Z_1 i (3.1)

f=2 i=0

From the normal approximation mentioned above it can be shown that conditioned on p, T is
approximately normally distributed with mean p = p?N and variance o2 = 2p qzzlf mer (f/(f —

Dlng +p 3G(n1 — n?/N), where ny is the number of families of size f, N = Xy fnf is the total
population size, and § =1 —

We are approximating the dlstribution of a discrete statistic with the normal distribution. As
with the binomial distribution, this approximation can be improved with a continuity correction.
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A natural choice is to let the continuity correction be half the size of the smallest difference of two
possible T-values. If the different family sizes are f1,..., fr, it is easy to show that this gives the
continuity correction ¢ = 1/lem{f; — 1,..., fr — 1} if there are no single-individual families and
c¢=1/lem{f1 — 1,..., fr — 1,2k} otherwise, where lem denotes least common multiple and % is
defined from p: p = j/k such that j and k are relatively prime. For example, if the different family
sizes are 3, 4, and 5 we subtract one from each size and write this number as a product of primes:
3-1=24-1=3!5-1=22 and we conclude that lem{2,3,4} = 2% . 3! = 12.

Test procedure. Reject the null hypothesis of no extra within-family infectivity (i.e., SAR = 0) if
(T — ¢ — p)/o is significantly large compared to the standard normal distribution.

The first term of T in (3.1) might seem peculiar: Does a large number of infected individuals
in single-individual families indicate that there is evident within-family infectivity? Also, other
proposed tests for clustering (see Section 3.4) are of the same type as T' but leave out the first
term. However, its presence can be motivated; which is most easily done with a simple example.

Consider two different epidemics in identical, very small populations: one single-individual family,
one size-three family, and one family of size four. Each of the epidemics result in four infected
individuals, making u, o, and ¢ identical for the two epidemics. In the first epidemic, the single
individual and three individuals in the family of size four were infected, making 7" = 2.5. In the
second epidemic, one individual in the size-three family and three individuals in the family of size
four were infected, so T' = 2 for this epidemic. Is the second epidemic less likely to infect within
families at a higher rate, as indicated by the T-values? Yes, because in the second epidemic the
one infected individual in the family of size three failed to infect his/her family mates, whereas in
the first epidemic the single individual had no family member to infect. The test statistic leaving
out the first term (called T in Section 3.4) would not distinguish these cases.

As mentioned in the Introduction, the model in Ball et al. (1996) is an extension of the model
of this paper. It may be adjusted so that, during the infectious period, an infective attempts to
infect someone in the family at rate é irrespective of the family size. In a family of size f a given
susceptible is thus infected by a given infective at rate §/(f — 1). Just like the case for the model
of the present paper—and contrary to the LK model and the model of Addy et al. (1991)—there is
no exact closed form for the distribution of the final outcome for this model due to the dependence
between families. However, in Ball et al. (1996) the asymptotic distribution of the final outcome of
the epidemic is derived using the model of Addy et al. (1991) with a homogenous population but
arbitrary distribution of 7, the length of the infectious period. It is shown that, if the parameter B
(the probability of escaping infection from outside the family) in the model of Addy et al. (1991)
is replaced by the probability of escaping infection from the expected infectious force generated
by the whole population outside one’s family, then this gives the asymptotic distribution of the
final outcome in the model of Ball et al. (1996). If p denotes the asymptotic probability of ever
getting infected, E(7) is the mean length of an infectious period, and A is the rate an individual
tries to infect individuals outside the family, then the expected infectious force is ApE(7) and the
probability of escaping this force is e P E(T), so this is what should replace the parameter B.

Ball et al. (1996) also derive a recursive method to obtain g ;(6) (the asymptotic probability
for a family of size f of having 7 infected individuals) using Gontcharoff polynomials. From this it
can be verified that the score statistic of their model is equivalent to (3.1). Just as with the present
model, the results are based on approximations relying on a large number of families.

3.2 The LK Model

The probability that exactly ¢ individuals will get infected in a family of size f, denoted by py ;, is

derived recursively as follows. For a fixed subgroup of size 4 in the family, the probability that all

individuals in the subgroup and no one else in the family will get infected is pm'(BQ’)f ~*, because

the subgroup has to be completely infected without the “help” of the other family members, and the

remaining individuals all have to escape infection from outside the family and from the i infected

individuals. Because there are (’: ) distinct subgroups of size i, we have py ; = ({ ) pi’iBf —iQif -9,
If we substitute 1 — 6 for Q it can be shown that for small § we have

Pri= (’:) (1-B)'B/ "+ 6({) (1-B)'B/ ™ (z_ﬁz__‘__;)) —i(f - 1)) +o(6). (3.2

The parameter 6 is different than before, but 6 = 0 still corresponds to no within-family infectivity
(SAR = 0).

For the same reason as in Section 3.1, we test the hypothesis using the score statistic
(0/86) (B, 6)|s—o- As mentioned in Section 2.2, the LK model implies that families behave indepen-
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dently, so the log likelihood splits into a sum. From this and using (3.2), it is easy to verify that

fmaa:
o (i —
2o - z( - n) we

The expression above contains the unknown nuisance parameter B and, just like with A in the
previous subsection, the total number of infected individuals E}cm‘i’ Z{ 0Ny, is sufficient for B
(when 6 = 0). Thus, we shall condition on the observed value of this statistic. A test based on the
sum above is then equivalent to E{c’;‘i“ E{:o i(i — f(1 — B))Ny ;. Finally, we replace the unknown
parameter 1 — B, the probability of getting infected when Hy is true, by the observed proportion
infected $ to end up with the test statistic

f’m.aa: f

Tox =Y, Y ili— fB)Np (3.3)
f=1i=0

This statistic is also approximately normally distributed. Under the null hypothesis, the conditional
mean of Ty g is p = pGN. The conditional variance is o2 = p2G(1 + 4N +;53ij(N(3) — N(Zz)/N),
where N(;y =Xy f(f —1)---(f — i+ L)ny.

This test can, in some cases, show a surprising feature. For example, suppose there are only two
families, one of size two and the other of size six, that together have four infected individuals. This
fixes the moments above. If the smaller family had one infected individual and the larger family
had three infected individuals, we would have T, = 0. On the other hand, if both individuals in
the smaller family were infected and two individuals in the larger family were infected, T = 0 as
well. However, in the former case both families have 50% infected individuals, whereas in the latter
case the small family has 100% infected individuals and the large family has only 33% infected
individuals, indicating a clustering in the second case but not in the first. This example could be
an argument for why the probability of infecting a given individual of a family should be larger in
a small family than in a large family in the model, as is the case for the model of this paper and
the model of the next subsection, but not for the LK model. Of course, what is preferred depends
on the particular disease of interest. Fraser (1983) uses a similar example to motivate his test, as
opposed to the test in Walter (1974); see Section 3.4.

The test using T, x was derived as the score test for the hypothesis that § = 0. Another test
is, of course, the maximum likelihood ratio (MLR) test, 2(Z(B,3) - l(Bo,O)), where [ is the log
likelihood, B and & are the ML estimates, and EO is the ML estimate under the restriction that
6 = 0. Besides a constant, the log likelihood is Z;m“ Z o log(py,i) Ny, and py; is given by
(3.2). Numerically, it is possible to find the value of the test statlstlc after some programming and
computing. Under the null hypothesis, MLR is approximately distributed as a (1/2,1/2)-mixture of
X2 with one degree of freedom and a point mass at 0; the point mass at 0 comes from the fact that
the null hypothesis (§ = 0) is on the boundary of the parameter space. This is the test procedure
Schork (1994) proposes. In Section 4 we shall use this test (among others) on some examples.

3.3 The Modified LK Model

Now we modify and reparameterize the LK model as described in Section 2.2 to let @, the
probability of escaping infection from a given infected of the same family, depend on the family
size: Q = Qf = 1—6/(f — 1) for f > 2, where § is our new parameter. We get a result
corresponding to (3.2) using recursive methods similar to those leading to (3.2). However, now
the probability that all 7 individuals are infected in a size-i subgroup of a family depends on
the family size and is hence not equal to p;;, as was the case in the original LK model. In the
modified model, an infective in a family with f individuals infects a given susceptible in the same
family at rate 6/(f — 1). If we write py ;(6) to emphasize what 6 is used, it should be clear that
pfi(6) = ({)pm[é(i—1)/(f—10)](B[1—6/(f—1)]i)f_i because when 6 is multiplied by (:—1)/(f—1)
the infectivity rate in families with ¢ individuals is equal to the infectivity rate in families of size f
when § is the parameter. It can be shown that this implies

(- (7 _Rp\ipf—t f _ pyipf—i i(i—1) _ o
Pf,z(‘s)—(i)(l B)'B +6(i)(1 B)'B <____(1_B)(f_1) )+(5)
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for f > 2. For f = 1 we have p1o = B = 1 — pj,1 (there is no one to infect in a single-
individual family). We base our test on the score, which for the modified LK model equals

Sy B0 (6 - 1)/ - B)(f —1) = )Ny,

As earlier, Z;’"‘“‘ Zf _o iNy; is sufficient for B (when 6§ = 0). We therefore condition on the
observed value of this statlstlc which, subtracted by Ni 1, equals the negative term above. So if
we add Ef i Zf —o #Ny,;, multiply with 1 — B, and replace 1 — B by p, we obtain the test statistic

fmaa:

T =Ny + ZZ““I Ny,

f=2 i=0

i.e., the same test as in Section 3.1.

As with the original LK model, another test is the maximum likelihood ratio (MLR) test,
2(I(B, 8) — I(Bo,0)), which under the null hypothesis is approximately distributed as a (1/2,1/2)-
mixture of x> with one degree of freedom and a point mass at 0.

3.4 Other Tests

Walter (1974) and Fraser (1983) propose tests that are similar to (3.1). They differ from (3.1) by
leaving out the first term and having a different denominator in the sum. The test statistic in
Walter (1974) is

fmaa:

w=Y" Zz(z ~1)Ny,. (3.4)

f=2 i=0

The mean and variance to be used when calculating the level of significance is p = ﬁzN(z) and
2 = 2132('1"2N(2) + 4[736(N(2)»+ Ny — N(22)/N), using notation defined after (3.3). A natural
continuity correction is 1, since W is always an even integer.
Fraser (1983) introduces another test of the same type as (3.4). He motivates why (3.4) should
be modified with the arguments used against Ty g in Section 3.2. The test statistic is

fmaa:

F= ZZZ(’” ; (3.5)

f=2 i=0

Under the null hypothesis, the mean of F is 4 = 5°(N — n) and the variance is 0% = 25%G%(n —
Zr(ng/f)) + 4ﬁ3q(2f (ng/f) — n?/N), where n = Y¢ny is the number of families. A natural
continuity correction for F' is 1/lcm{f1,..., fr}, by the same arguments as for T

In Section 3.1 we discussed the possibility of leaving out the first term in (3.1), giving a test
similar to the ones above. This new test is

f’maa: f

Z Zz(z—l (3.6)

f=2 i=0

Under the null hypothesis, the mean of T} is 52(N — n1) and the variance is 2p%G Ef e [f/(f =
1)]ny. The natural continuity correction for 71 is 1/lem{f; —1,..., fr — 1}.

4. Exampleé of Infectious Disease Data

Now we shall use the tests of Section 3 on three sets of data taken from Longini and Koopman
(1982), Fraser (1983), and Longini et al. (1982). The tests that will be used are the ones based on
T, Trx, W, F, and T, given by (3.1), (3.3), (3.4), (3.5), and (3.6), respectively, and the MLR
tests for the original LK model, as well as for the modified version.

Example 1. This example concerns the outcome of the Asian influenza data of Sugiyama among
42 families of size 3 (see Longini and Koopman, 1982). Among the 42 families, 29 had no infected
individuals, 9 families had 1 infected individual, 2 families had 2 infected individuals, and, finally,
2 families had all 3 individuals infected.

When all families are of the same size, it is easily verified that the tests based on T, W, F, and
T1 are equivalent. The same is true for the two MLR tests, so there are only three different tests,
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the tests based on T and T x and MLR-LK, say. For this data we have T' = 8, u = 2.865, the
continuity correction ¢ = 1/2, and 62 = 2.07, giving the p-value 0.00063. If we use (3.3) on the
Asian influenza data we have T i = 26.40, p = 16.135, and o? = 8.265, implying that p = 0.00018.

By maximizing the likelihood numerically under the general hypothesis as well as under the null
hypothesis, it is found that the MLR statistic equals 7.82 for the original LK model. Compared
with a (1/2,1/2)-mixture of x? with one degree of freedom and a point mass at 0, this gives the
p-value 0.00264.

Ezample 2. In Table 1 we find the made-up data from Fraser (1983). There are 28 individuals in
14 families. All six tests are different and the resulting p-values are shown in Table 3, where it is
seen that they vary between 0.029 and 0.117.

Table 1
Example 2. Fraser (1983). Observed number of families.

Number of infected

Family size 0 1 2 3
1 2 2 — —
2 3 1 2 —
3 1 1 1 1

Ezxample 8. Our last example shows data concerning influenza B collected in Seattle (Longini et
al., 1982) (see Table 2). Fifty-six out of 259 individuals were reported infected; family sizes varied
between 1 and 5. In Table 3 we see that p-values range from 6 1075 for Tk to 3-107* for the
MLR statistic from the modified LK model.

In Table 3 we summarize the results from the three examples. It is seen that the different tests
give different results, which is quite natural. The difference in magnitude seems to be a factor
between 5 and 10. For the data in example 2 (Table 1), some tests would have rejected the null
hypothesis at the 5% level, whereas others would not.

Table 2
Example 3. Longini et al. (1982). Influenza B, 1975-1976,
in Seattle. Observed number of families.

Number of infected

Family size 0 1 2 3 4 5

1 9 1 — — — —

2 12 6 2 — —

3 18 6 3 1 — —

4 9 4 4 3 0 —

5 4 3 0 2 0 0

Table 3
Observed p-values for different tests based on data from examples 1-3
Data

Test Example 1 Example 2 Example 3
T 0.0006 0.0312 0.00011
MLR-mod LK 0.0026 0.0292 0.00029
Tk 0.0002 0.0357 0.00006
MLR-LK 0.0026 0.0395 0.00024
w 0.0006 0.1168 0.00022
F 0.0006 0.0681 0.00006

T1 0.0006 0.0595 0.00008
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To see which test has the best performance for a specific set of parameter values in a given finite
population when the Standard Epidemic Model for a Population of Families is the true model, we
have performed some simulations. The population was chosen to consist of 40 families, 10 families
each with size 1, 2, 3, and 4; hence, the total population was 100 individuals. The epidemic was
simulated under two different sets of parameter values, one when the null hypothesis was true
(6 = 0) and the other when it was not. Simulations with less than 10% (= 10 individuals) infected
were disregarded because approximations rely on a positive fraction being infected. In both cases,
1000 epidemics with at least 10% infected were simulated.

The specific choices of parameter values used with the null hypothesis were A = 1.5 and § = 0.
The other parameter set was A = 1.05 and § = 0.45. These choices are, of course, very arbitrary.
They were chosen as follows. In both cases A + § = 1.5. This was chosen so that, on the average,
about 50% would be infected. The relation A = 1.05 and § = 0.45 was chosen after some preliminary
simulations to make sure that the tests would reject the null hypothesis approximately 50% of the
time.

In Table 4 we have listed the proportion of Hy-simulations that would reject the null hypothesis at
some common significance levels. For a test not to be skew, these proportions should approximately
equal the corresponding significance level.

In Table 5 the corresponding proportions are listed, now for the simulations with A = 1.05 and
6 = 0.45, i.e., the null hypothesis is not true. The higher the proportions the more powerful is the
test. We see that 77 is most powerful among the studied tests for the 1000 simulations performed.
However, in Table 4 it is seen that T3 is skew since the observed proportion with small p-values is
larger than expected under the null hypothesis. The reason for this is most likely that the normal
approximation does not work perfectly when the population consists of only 100 individuals. (The
MLR test for the LK model and W seem to be somewhat skew to the other direction.) Among the
remaining tests, we see in Table 5 that T is most powerful, and from Table 4 it seems that the
level of significance agrees quite well with the observed frequencies. T' is more powerful than the
corresponding MLR-test, although the difference is not severe. Of course no general conclusions
can be drawn from these simulations, but they speak in favor of the new test 7.

Table 4
One thousand simulations under Hgy. Proportion of simulations
rejecting Hg for some common significance levels.

Level of significance

Test 0.1 0.05 0.01 0.005
T 0.097 0.051 0.013 0.006
MLR-mod LK 0.094 0.045 0.009 0.004
Trx 0.096 0.053 0.011 0.009
MLR-LK 0.084 0.041 0.006 0.003
w 0.071 0.041 0.010 0.005
F 0.092 0.051 0.013 0.008
T 0.118 0.077 0.029 0.021

Table 5

One thousand simulations under H 4. Proportion of simulations
rejecting H 4 for some common significance levels.

Level of significance

Test 0.1 0.05 0.01 0.005
T 0.737 0.641 0.426 0.347
MLR-mod LK 0.730 0.617 0.370 0.285
Tri 0.722 0.612 0.389 0.311
MLR-LK 0.713 0.573 0.329 0.247
w 0.617 0.468 0.278 0.247
F 0.714 0.603 0.391 0.313

Th 0.767 0.681 0.496 0.426
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5. Discussion

For some infectious diseases, individuals may not be equally likely to get infected. For example age
and/or sex might be an important explanatory factor for the disease. For the models treated in this
paper, this type of heterogeneity is not permitted, which is clearly a drawback. The different models
can be generalized to so-called multitype populations, allowing different types of individuals. A test
statistic and its approximate distribution could be obtained using arguments similar to those of the
present paper. Unfortunately, the structure of the statistic and its moments are no longer simple
and hence are not easily used to test for clustering within families. By numerically maximizing the
log likelihood in the model of Addy et al. (1991), an MLR test can be derived for the case of a
multitype population.

Commenges et al. (1994) derive the score test of the hypothesis of homogeneity between groups
(or equivalently families) when the alternative hypothesis is that random effects, in a logistic
regression model, of individuals belonging to the same group are positively correlated. The resulting
score statistic for their model is similar to the ones of Section 3. In particular, if all explanatory
variables are identical, their score statistic is 2;’;‘? 2{:0 (i — 2fp) Ny ;, which is much like Ty
defined in (3.3). Although similar, the technique used to derive their statistic is different because the
models are fundamentally different. In their model, all individuals behave independently conditional
on the random effects, whereas in the present model individuals behave in a genuinely correlated
fashion.
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RESUME

Un nouveau test simple pour détecter des classes intra-fratrie d’individus infectés est proposé. Le
test est développé comme un score-test pour différents modeéles paramétriques mis au point pour
tenir compte d’un accroissement du risque d’infection intra-fratrie. Le nouveau test est comparé a
d’autres tests proposés pour détecter le méme type classification induit par un tel accroissement du
risque d’infection. Des applications & des données de maladie de fratrie ainsi que des simulations
sont utilisées pour illustrer la théorie.
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APPENDIX

In this section we will derive the score statistic (3.1) heuristically. A detailed proof is given in
Britton (1996).

First we treat the case where all families are of equal size, f > 2, which implies that the population
size N is equal to nf. For each pair of integers (¢, 7) such that 0 < ¢ < i+r < f, we say that a family
is in state (i,7) at time ¢ if the family has i infective and r removed individuals. From state (i,7) a
family can “jump” to either of two other states: it can jump to state (i+1,7), meaning a susceptible
individual in the family was infected, or it can jump to state (s — 1,7+ 1) if an infective individual
was removed. Thus, we define two counting processes: M; . 1(t) is the number of families that have
jumped from state (¢,7) to (i +1,7), and M; , 2(t) is the number of (i,7) to (i —1,7+1) jumps. Let
M 7 (t) := My 7 1(t) + M1 r—1,2(t) — M; . 1(t) — M; » 2(t), the number of families in state (¢, 7),
and I(t) := M..1(t) — M.. 2(t) := i r M; 71(t) — Z; » M; r 2(t), the number of infectives. From
the model description of Section 2.1 it follows that the counting processes M; » 1(t) and M; , 2(¢)
have intensities

i 1(t) = My (t=)(f —i—r) (M(t=)/(nf — 1)+ 6/(f — 1))
Xi,r2(t) = M; - (t-)1, (A1)

respectively. The factor M; .(t—)(f — i — r) is the number of susceptible individuals in families in
state (i,7) just before t and M; ,(t—)i is the corresponding number of infectives. The remaining
parts in (A.1) are the rates with which each of these individuals get infected/removed, respectively
(see the end of Section 2.1).

Suppose we start with a small initial proportion of infectives, with the remaining part of the
population being susceptible (we could also assume that the epidemic is started with a fixed finite
number of infective individuals; then the results below are valid conditioned on outcome of a major
epidemic). Using theory for Markov processes (cf. Ethier and Kurtz, 1986), it can be shown that, as
the number of families 7 tends to infinity, v/n(n " M(-) — m(-)) = V(-), where V(:) is a Gaussian
Markov vector process. By the notation M(-) we mean the counting processes {M; , 1 (-)} vectorized
in some way. The vector of deterministic functions m(-), vectorized accordingly, is the solution to
the set of differential equations defined similarly to (A.1):

%) and 1ipo(t) = mi, (05, (A2)
where m; (t) = m;_1,1() + Mig1,r—1,2() — Mir1(t) — myr2(t), and n(t) = m..1(8)/f —
m..2(t)/f. So m;(t) should be interpreted as the asymptotic probability of a family being in
state (z,7) at t and n(t) should be interpreted as the asymptotic probability of being infective at ¢.
For the future, we also define the corresponding probability of being removed as p(t) :=m. . 2(t)/f.
Time derivatives will be denoted by a dot, as in (A.2), and derivatives with respect to § by a prime.

Let Ny ; denote the number of families with ¢ infected individuals at the end of the epidemic and
let N = (Ngo,..., Nf’f)T. At the end, all infected individuals will be removed, so Ny ; = Mg ;(c0)

with the earlier notation. Similarly, we let p(6) = (pf,0(6),. .. ,pfif(é))T, where py ;(6) denotes the
asymptotic probability of ending up with ¢ infected individuals, which for the same reason equals
mg,;(00). From the weak convergence result for M(-) mentioned above, the following CLT can be

shown: \/n(n~'N — p(6))£>N(0, Y(8)). The vector p(6) and the matrix ¥(6) also depend on the
parameter A, which is suppressed for convenience. The CLT gives the following approximation of
the log likelihood [(8) := log Ps(IN = n):

thi 1 (t) = mi (8 (f — i — 1) (An(t) +

1(6) % en(6) — 5 (n— np(6))" 57 (6) (m — np(8)),
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where ¢, (6) is independent of the data and X7 (6) is a generalized inverse of the singular matrix
3(6). Differentiating both sides with respect to 6§ and setting § = 0 gives us the approximation

V() % ch(0)+P'(0)"E(0) (a — np(0)) - 5- (n —np(0))" £ (0) (m— np(0)).

On the right-hand side, the first term is independent of the data and irrelevant for the construction
of a test statistic. The second term is of order \/n, whereas the third is of order 1, which implies
that it can be neglected. Further, in the second term only the part containing n is relevant
because the other is independent of the data. For positive §, the quantities p(6) and X(6) are
only known implicitly. However, when 6 = 0, it can be shown that ¥(0) = diag(p(0)) — p(0)p(0)T,
pf,i(0) = ({) p(0)}(1 — p(0))/ %, (For general 6, p(8) is the asymptotic probability of ever getting
infected.) This implies that £ (0) is the diagonal matrix with elements 1/p ;(0). The test of the
hypothesis § = 0 should hence be based on

_ p},:(0)
pmﬁzmm=z:“@Nﬂ (A.3)
im0 1t
To be able to compute (A.3) it remains to derive p' ;(0).

The functions {m; , ()} are continuously differentiable, increasing and bounded by 1, so we
may change the order of letting § — 0 and ¢ — oo. The same holds for m; (t). From now on we

indicate the dependence on 6 by a superior index. Define g( )( t) :=0and, for k =1,...,f, let
,(C&)(t) = ek} mi,r (t), the asymptotic probability of having k or more infected individuals
c . . ) 6 6
at t. This implies that py;(6) = gz( )( ) — H_l(oo), ) pfz(O) (6/86)g§ )(oo) gz(_i_)1
From the defining differential equations of m k(t) in (A.2) we get

)|6=0'

i = (f k1) (An(‘”(t) (5220 - o ®) + 5 12""553 1l ) (a4

The differential equations are intuitive: the function g( ) increases when susceptible individuals
in families with f — k + 1 susceptibles become infected. All such susceptibles are exposed to the
pressure )\n(‘s)(t), Susceptibles in families in state (i,k — 1 — i) are exposed to the extra pressure
i6/(f — 1) from family members.

We use two observations to derive p},i(O) from (A.4). The first observation is that we may
use mg ,g 1,;(t) and mg k) 1_;(t) interchangeably in (A.4) because it has § in front and we are
only interested in small §. The second observation is that, for 6 = 0, m(O) ) = [f1/@(f -

i— 'r)!)]n(o)(t)l Owra-n0@) - (O)(t))(f “=7) This is not hard to show. When 6§ = 0, the
differential system is simplified drastically, but it is also clear from symmetry. From these two
observatlons we obtain the approximation below of the dlﬁerential equation for n(‘s)(t) + p(é)(t) =

2£ 1 9% )(t)/f, the differential equation for p(®)(t) = (t)/f is obtained from (A.2),

i@+ 00 =10 (1-10 - p“)(t)) (A +6) +0(0),
pO0) =),
Combining these, we see that log(1 — n(® (¢) — p(® (£)) = —(A + 6)p{®) (t) + 0(6). Further, one can

show that 7)(5)(00) = 0, a fact that is intuitively clear because there will be no infective individuals
at the end. Thus, p(§) := p(‘s)(oo) satisfies

1—p(6) = e~ AFIPB) 4 5(5). (A.5)

Similarly, from (A.4), (A.5), and the two observations, we can get approx1mations for suitable
linear combinations of g,(f). It turns out that ¢§6) ) = 2:1 ( z_k) 95 )(t) are simple to work

with. This definition implies that g(é)( t) — gz(j_)l t) = };::0 (—1)’ k+1 (i—k)(ﬁgc(:)-l(t)’ and, because



Detecting Clustering within Families 109

pri(6) = gg&) (00)— gg_)l (00), this will allow us to calculate p}ii(O), the quantities needed to compute

(A.3). After some calculations, the result turns out to be

PN _p(0) ; ?'(0) 3 i(i —1)
Pri(0) =Pri(0) (f (p(‘” I —p(O)) * (p(oxl ) 2) T 1)p<0)> '

The expression p’(0) may be derived from (A.5), but this will not be necessary because only the
third term above will be used.

The above was for the case of equal family sizes. If the population has different family sizes,
the same technique can be applied. Let 7; denote the proportion of families that are of size f,
p =Xy fry (the average family size), v := 1 — 71/p. Then it can be shown that

il gy ZO Y (PO ).

p1,:(0) p(0) p(0)(1 —p(0
and for f > 2
Pri0) _ P(0) O i —1)
o0 = (70~ 205) + Gt =@ ~ )+ 7= ttor
Allowing different family sizes, (A.3) therefore becomes
/ fmaa
p'(0)TE7(O)N = (717(0)— z(0) ) > Zfo,z+N11
1 - p(0) o=
+( PO ___ gy ))ffZN ffzz(’_l)
Oa-p0) ") 20 T p0) & 2

The first sum is the size of the population (a known constant) and the sum in the third term is
the number of infected individuals which we condition upon. The test should hence be based on
the second and fourth terms, and if we multiply with p(0) and replace p(0) by p, the observed
proportion infected, this gives us (3.1).
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