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Epidemics in heterogeneous communities:
estimation of R, and secure vaccination coverage
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Summary. A stochastic multitype model for the spread of an infectious disease in a community of
heterogeneous individuals is analysed. In particular, estimates of R, (the basic reproduction
number) and the critical vaccination coverage are derived, where estimation is based on final size
data of an outbreak in the community. It is shown that these key parameters cannot be estimated
consistently from data; only upper and lower bounds can be estimated. Confidence regions for the
upper bounds are derived, thus giving conservative estimates of R, and the fractions necessary to
vaccinate.
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1. Introduction

The main practical motivation for the study of epidemic models lies in the insights that they
provide about the control of infectious diseases. These insights attain practical relevance only
when the model on which they are based captures the essential characteristics of disease
transmission in a real community and the available data enable estimation of the model
parameters. One feature that is known to play an important role in the propagation of
infectious diseases is that of heterogeneities between individuals. For example, transmission
rates for measles and rubella are found to depend substantially on the age of individuals
(Grenfell and Anderson, 1985) and the rate of transmission for influenza type A is much
higher within households than between (Addy et al., 1991), as would be expected for all
transmittable diseases.

In the present paper we treat estimation procedures of the basic reproduction number R,
where inference is based on final size data from one outbreak in the community. The
estimates are derived from stochastic models, thus allowing confidence bounds. The results
are then interpreted in terms of vaccination policies: what are the necessary criteria for a
vaccination policy to prevent future outbreaks, i.e. to be above the critical vaccination
coverage? Such a community state is known as herd immunity since then everyone in the
community is protected from future outbreaks, even those who are not vaccinated. The
problems stated above are analysed for a so-called multitype epidemic model in which
individuals are separated into different types with arbitrary transmission rates between each
pair of types, i.e. with no restrictions on the ‘who acquires infection from whom’ matrix
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(Anderson and May, 1991). The types may for example reflect age groups, gender or the
previous history of the disease and/or vaccination.

A special feature of the statistical inference is that the basic reproduction number R, and
the critical vaccination coverage v, cannot, in general, be estimated consistently. Instead
estimates of the lower and upper bound for R, are given, bounds which also induce lower
and upper bounds on v,, and so only vaccination strategies with higher coverage than the
upper bound will surely prevent future epidemics. The reason for this ambiguity is that the
model contains more parameters (transmission rates) than the dimension of the observed
data vector, thus not enabling an estimation of all the parameters (Anderson and May,
1984).

Greenhalgh and Dietz (1994) treated similar estimation problems for a deterministic model
of an open population, i.e. with births and deaths, in which heterogeneity is caused by age.
Sufficient data for estimation come from a cross-sectional survey from a population at
‘equilibrium’. They derived expressions for upper and lower bounds of R, similar to those of
the present paper, both under general transmission rates as well as for several submodels.
They also considered different vaccination strategies and their effect on the equilibrium, and
in particular whether the disease will become extinct. The present paper differs from
Greenhalgh and Dietz (1994) in several ways. Its main merit is that the model is stochastic,
thus giving confidence intervals for the estimates. Further we allow heterogeneities of other
sorts than age, e.g. caused by previous history of vaccination or disecase or gender. In
Greenhalgh and Dietz (1994) such heterogeneities are not treated, with the effect that the
problem of the optimal vaccination strategy is trivial: vaccinate only in the youngest age
group(s). A drawback with the present analysis, compared with Greenhalgh and Dietz (1994),
is the assumption of a closed population, with the effect that individuals cannot change type
over time as is natural with age cohorts observed over longer periods of time. Of course no
population is really closed. However, when considering a short epidemic outbreak, perhaps
lasting a few months, the community may be approximated as being closed. The methods of
the present paper are not suitable for long-term outbreaks or a simultaneous analysis of
several different outbreaks. The reason for not treating a stochastic epidemic model for an
open population is the complicated quasi-stationary behaviour of such models; see Nasell
(1999). The estimators for open populations are usually the same as in a closed population
but the standard errors are different. Farrington et al. (2001) also treat a deterministic model
for an open population allowing for various heterogeneities. By using available contact par-
ameters from other related disease outbreaks, assuming some relationship between the contact
rates for the diseases, they could estimate R, consistently. See Section 2 in Greenhalgh and
Dietz (1994) for an excellent survey of related work in the analysis of epidemics. A short note
treating problems similar to those of the present paper, but in a deterministic framework, has
appeared recently (Britton, 1998a).

In Section 2 we define the multitype epidemic model and present asymptotic results for it.
In Section 3 we derive estimates, including confidence bounds, of the fundamental parameter
R,. In Section 4 we use these results to construct vaccination programmes that prevent future
outbreaks. Section 5 illustrates the results with an example.

2. The model

2.1. Definition
The model that we now define is a stochastic susceptible—infected—removed epidemic model
for a closed multitype population (e.g. Ball and Clancy (1993)). Consider a closed population
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of size n consisting of k different types of individuals, labelled 1, . . ., k, and let n; denote
the number of i-individuals and 7; = n;/n the corresponding proportion. If an i-individual
becomes infected he or she becomes infectious, possibly after a latency period with arbitrary
distribution. During the infectious period an i-individual has ‘close contact’ with any given j-
individual at rate (3;;/n, where a close contact is defined as a contact which results in infection
if the other individual is susceptible; otherwise the contact has no effect. The matrix {3} of
contact intensities is assumed to be irreducible, thus omitting the possibility of a major
outbreak for some but not all types of individual. The infectious period I; has distribution F;
with mean y; and standard deviation o;. For future use we define \; = y,3;;, implying that
A;m; denotes the expected number of close contacts which an i-individual has with j-
individuals during the infectious period. When the infectious period is over, the individual
recovers and becomes immune, and we say that the individual is removed. The epidemic
evolves until there are no infectious individuals in the population. Then no-one can become
infected and the epidemic has entered its final state. All contact processes and infectious
periods are defined to be mutually independent.

As pointed out by Ball and Clancy (1993) the model can be generalized without affecting
the distribution of the final state. The final state depends only on the distribution of the ‘total
infection forces’ {n*'ﬂ,jl,-} for the different type combinations. Instead of assuming constant
contact rates over the infectious period we may allow for a time-varying infectivity, including
an initial latency period. This is modelled by a stochastic process {I,(¢); ¢t = 0}, where I,(¢) is
the infectivity ¢ time units after infection of an i-individual and it falls under the model
defined above simply by letting F; denote the distribution of fooo I(f)dt.

2.2. Asymptotic properties of the model

The asymptotic properties of the model above, for a large population, have been analysed
extensively by Ball and Clancy (1993). Starting with few initially infectious individuals in a
large, otherwise susceptible, population, the epidemic can either take off and give a large
outbreak or it may die out and infect very few, a general phenomenon for epidemic models.
During the initial stages the epidemic can be approximated by a multitype branching process
because infectious individuals infect new individuals virtually independently of each other
since the probability that they will contact the same individual is negligible. For the model of
the present paper the fundamental parameter R, the basic reproduction number, is defined
as the largest positive eigenvalue of the matrix (\;m;). Note that \;m; = (\;/m)n; is the
expected number of close contacts which an infectious i-individual has with j-individuals
during the infectious period. In the branching process (\;;) thus corresponds to the matrix
of mean offspring distribution. The approximating branching process is subcritical, critical or
supercritical depending on whether R, is smaller than, equal to or larger than 1. It hence
follows that, asymptotically, the probability of a large outbreak in a completely susceptible
population is positive if and only if R, > 1 (e.g. Ball and Clancy (1993)).

If a proportion 1 —s; of all j-individuals are initially immune, so the proportion s; are
susceptible, then the effecttve reproduction number R, is the largest positive eigenvalue of the
matrix (A;m;s;) and a major outbreak is possible if and only if R, > 1. A simple argument for
the last result is that we may neglect the immune individuals by introducing new notation:
n; = n;s;, the number of susceptible i-individuals, n’ = %, n}, the total number of susceptible
individuals, and 7; = n;/n’ = m;s;/s, the proportion of susceptible individuals that are of type
i (where s=X,s;m is the overall proportion susceptible). The contact parameter is
unchanged and equals 3;/n = 53;;/n’, so by introducing 3;; = s3; and similarly X;; = s\, it
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follows from the result above that the effective reproduction number R, is the largest positive
eigenvalue of the matrix (X;7)) = (A;m;s)).

When making inferences we shall always assume that a major outbreak has occurred and
that the initial number of infective individuals is small. The results are thus conditional on a
major outbreak — otherwise there is not enough information for consistent estimation—
which implicitly assumes that R, > 1 from the properties stated above.

Consider the model defined above in a population with type distribution {m;} and initial
proportions susceptible given by {s;}. Let p, denote the random proportion among the
initially susceptible i-individuals who become infected during the course of the epidemic.
Applying the results in Ball and Clancy (1993) then shows, assuming few initial infective
individuals and a major outbreak, that the vector {p;} converges in probability to {p;} as
n — oo, where {p;} is the unique positive solution to the system of equations

I —p= exp( - Zﬂ-isipi)‘z:/)> j=1,.. .,k (1)

Equations (1) have a natural interpretation: the proportion that escape infection equals the
probability of escaping infection from the aggregated total infection forces. A central limit
theorem in Ball and Clancy (1993) shows that the vector {/(n;5,)(p; — p;)} is asymptotically
Gaussian with mean vector 0 and variance matrix

1

— ST_ ’:571
where the matrices S and E have elements

Sij = 6 \/(7'(' ST J j)Alj(l )
i =p(l - pj)éij + \/(Wfsiﬂjs;‘)(l —p)(1 — Pj) Zk: Tk Sk Dk Mk /\kj(Uk/Hk)za

where ¢;; denotes the Kronecker delta function (6; =1 and 6;; = 0, i # ).

2.3. Modelling vaccination

Suppose that a vaccine is available having efficacy r; among j-individuals, j =1, . . ., k. It
could for example be that all infection rates A;, i=1, . . ., k, are reduced by a factor r; (the
so-called leaky effect), or that a proportion r; become completely immune and the rest are
unaffected by the vaccine (the all-or-nothing effect) The case r; = 1 for all j corresponds to a
perfect vaccine and r; = 0 for all j to a useless vaccine. See for example Halloran et al. (1992)
for more about vaccine efficacy.

The propagation of disease transmission in a partly vaccinated community also having
initially immune individuals can be described using the present model. Consider the same
population as before having proportions initially susceptible given by {s;} and suppose that a
proportion v; of all initially susceptible j-individuals are vaccinated with such a vaccine before
the epidemic season. The expected number of close contacts that an infectious i-individual

has with initially susceptible j-individuals is then reduced from \;m;s; to

Ayisi{(1 = v) + o1 — rp} = Nymsi(1 — v;r)).

This is true because a proportion v; among the j-individuals have reduced their susceptibility
by a factor r;. The effective reproductlon number after vaccination, R.,, is then the largest
eigenvalue of the matrix (\;m;s;(1 — v;7;)) and the vaccinations performed will surely prevent
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an outbreak in the population if R,, < 1. Vaccinating with the effect of surely preventing an
outbreak when the entire population is initially susceptible is of main interest, because this
vaccination programme will be preventive whatever proportion is immune and will remain so
if the disease-acquired immunity wanes with time. In what follows we shall thus focus on
studying vaccination programmes for which R, < 1, where R, is the largest eigenvalue of the
matrix (\;m,(1 — v;r;)). Vaccination programmes aiming at reducing R,, below 1, for some
other specified susceptibility levels {s;}, can be derived by using identical arguments.

3. Estimation of R,

In this section we derive estimates of R, for the multitype epidemic defined in the previous
section. Remember that R, is the largest eigenvalue of the matrix ()\;m;), i.e. for a completely
susceptible population. The parameters are assumed to be unknown and are estimated with
data from one epidemic outbreak (p,, .. ., p,) which may have occurred in a community
containing initially immune individuals. The proportions immune before the outbreak
{1 — s;}, the community structure {x;} and the community size n are assumed to be known. It
is important to take into account the presence of initially immune individuals when making
inference on the reproduction number from an epidemic outbreak. If this is neglected the
resulting estimates will underestimate the true parameters, with the effect that the suggested
vaccination coverage may not be preventive. This is very different from assuming that the
community to be vaccinated is completely susceptible, as assumed in the previous section.
In the latter case the suggested proportions to vaccinate are preventive even when the
assumption fails.

As mentioned in the previous section the vector (p;, . . ., p;) converges in probability to
(p1, . . ., pr) defined in equations (1) as n — oo. We hence start by treating the deterministic
limit before dealing with uncertainty.

3.1.  Deterministic limit

With given vectors {p;} and {s;} satisfying equations (1) but {};;} otherwise arbitrary, R is not
determined uniquely, as has been observed previously (e.g. Greenhalgh and Dietz (1994)
and Britton (1998b)). In fact R, can attain any value in an interval, as the following lemma
shows.

Lemma 1. Let {p;}, {s;} and {7;} be defined as above and let {7;} be any given vector with
positive elements. Then the largest positive eigenvalue of the matrix (\;m;7;), where {);}
min mle]’ Where

satisfies equations (1), lies in the closed interval [p™", p
Pmin = ml_in{—Ti log(1 — p;)/s:pi},
P = mglx{—ﬂ- log(1 — p;)/s:p;}-
All values in the interval can be attained.

Remark 1. If lemma 1 is applied with 7, =1, i =1, . . ., k, the largest eigenvalue specifies
R,. It hence follows that R, lies between

Rgﬂn — miin{_ log(l — pi)/SiPi}

and
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Rglax — m;aX{_ log(l —p,‘)/sipi}'

Proof. Denote the largest eigenvalue of the matrix (\;m;7;) by p. By the Perron-Frobenius
theorem it follows that there is a vector {x;} with positive components, unique up to
normalization, such that

L) = py = S xihymm =: RO) j=1 .k 2)

(e.g. Jagers (1975), pages 92-93). Define M = max,_;.(x;/m;s;p;), and suppose that the
maximum is attained for j = ji, i.e. x; /7; s, p;, = M. Then, by the definition of the left-hand
side in equation (2) we have L(j,) = pMT;, The right-hand side can be dominated as
follows:

. X;
R(]O) = Z T T YIpt)‘tjoﬂ-jo Jo MZW slpl i,Jo j0 jo M7T_](] jo lOg(l _pjo)},

i Nidili

Jo ]OP/O :

where the last equahty is equation (1). Since pMm; s, p;, = L(jo) = R(jp) this gives the upper
bound p < — 7, log(l — p;))/s;,p;, < max{—log(l —p,)/s;p;} = p™. An identical argument
shows that p > p™". Below are some observations showing that the end points of the interval
can be obtained (when 7; = 1). Finally, any point in the interval can for example be obtained
by a linear combination of the two extremes. O

In the restricted parameter space known as separable mixing (e.g. Hethcote and Van Ark
(1987)), i.e. A\ = ;3,, the parameters may be interpreted as infectivity and susceptibility
respectively. (Sometimes this is called proportional mixing, but most often proportional
mixing is used for the stronger assumption that )\; = a;c;.) Then the basic reproduction
number has the explicit expression

Ry = Z o, Bm; (3)

(e.g. Becker and Marschner (1990)). This can be used to verify the following observations.
(a) RG™, the ‘worst scenario’, is attained in the separable mixing case if 3; = —log(1 — p;),
i=1,... k,and a; = 0 for all i except for the type i, maximizing — log(1 — p,)/s:p;,

for which «a; = 1/m; s, p;,. This choice gives R§"™* when inserted in equation (3) and
condition (1) is also satisfied.

(b) Ry™, the ‘best scenario’, is attained in the separable mixing case if 3; = —log(1 — p,),
i=1,...,k o =1/ms,;p; for the type i; minimizing —log(l — p;)/s;p;, and a; =0
for all other is.

() Under the assumption of equal infectivity (\; = af3;) equations (1) determine the
parameters uniquely, af; = —log(l — p,)/X; m;8;p;, s0 Ry is completely specified and
equals X; 7,{—log(1 — p))}/Z; m;s;p;.

3.2. Stochastic model

In the previous subsection bounds on the basic reproduction number were derived for the
deterministic limit of the multitype epidemic. In a finite community the observed proportions
infected {p;} are random, so the corresponding quantities RJ** and RJ"™, where p; is replaced
by p;, are random estimates of these quantities. We now derive a one-sided confidence
interval for Ry™ which will be used in the next section when deriving how many need to be
vaccinated to obtain herd immunity with some given certainty.
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As noted in the previous subsection R, was maximized when one type caused all infections,
the type i, which maximizes —log(l — p;)/s;p;. (When all types have equal proportions
initially susceptible, e.g. s; = 1 for all i, this is the type with highest proportion infected p;.)
We therefore assume this to hold when constructing confidence bounds and thus overcome
the fact that all parameters are not identifiable. The variance of an estimated R, may of
course be larger for other parameter configurations, but these configurations all have a
limiting R, smaller than R{™, so then our confidence bound for Ry™ will still be
conservative. In Section 2.2 the asymptotic variance matrix of (\/(n;5,)(p; — p;)), denoted X,
was given. For the case when \; =0, i # iy, X, ;, is explicit and equals
N :Pi(,(l _Pi[,){l + (71'1'051'0 )‘ioi[,)z(l _Pio)(Uio/Mio)z}

o {1 - Ty Siy Aioio(l _Pio)}2
_p(1— Pio)[l’?o + {log(1 —Pio)}z(l - pio)(oio/:u'io)z]
[Pio +( _Pio) log(1 _Pio)]2

)y

)

The second equality follows from the assumption that \;; = 0, i # i, implying that 7, s; A\, ;,, =
—log(1 — p;,)/p; for condition (1) to hold. The asymptotic variance of p, is X,; /n;s; . If we

perform this substitution and replace p; by p; we obtain an explicit standard error

V(B (1= p)lpi, + {=log(l — p V(1 = pi oy /14,)'])
\/(ninsio){ﬁio + _131'“) log(1 _ﬁif,)} .

The quantity o, /u;, appearing in equation (5) denotes the coefficient of variation of the
length of the infectious period for type #,. This quantity must be known or else estimated
using prior information; final size data carry no information about any temporal quantities.
Our estimate Rj™ = —log(1 — p, )/s; P;, is increasing in j,. Replacing j, by an upper
confidence limit will thus produce an upper confidence limit for Ry™*. We summarize our
results in the following theorem.

se(p;,) = ®)

Theorem 1. Let iy be defined as the index maximizing —log(l — j5;)/s;p;, assumed to be
asymptotically unique. Then, for the multitype epidemic model,

Rgm = —log(l _ﬁio)/sioﬁiu = mgx{— log(1 — p;)/s:p:} (6)

is a consistent and asymptotically Gaussian estimator for Ry (defined in lemma 1). The
asymptotic variance of the estimator is

=P§) + {—log(1 —Pio)}2(1 _pio)(gio/:uio)z.

var(Rg™) (7
nios?opi)(l _pfo)
A 1 — «a upper confidence bound for Rj™ is given by
max{—log(1 — p)/s;pi }, ®)

where p;” = p; + z, se(p;). Here se(p,) is defined as in equation (5) only replacing i, by i, and
z, 1s the (1 — a)-quantile in the normal distribution.

Remark 2. If uniqueness is not assumed the estimator is still consistent. However, then the
variance is not correct as, in the limit, the index i, varies. The confidence bound given by
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expression (8) may be used as a confidence bound for R, for any set of underlying parameters
and is then conservative.

Proof. Consistency and asymptotic normality are a direct consequence of the asymptotic
results stated in Section 2.2, together with the assumption of asymptotic uniqueness of i,. The
variance formula is obtained by the delta method on Rj™ = £ D;,) viewed as a function of p, .
It follows that

var(R§™) = f'(p;,)* var(p,)

plus terms of smaller order. It follows from simple algebra that this equals equation (7). The
standard error for p; is a consistent estimate for the standard deviation since the observed
quantities converge to the limits defined by equations (1). The asymptotic normality then
implies that the upper confidence bound defined by expression (8) is correct.

4. Control

We now return to controlling the spread of disease by means of vaccination as discussed in
Section 2.3, only now the model parameters are assumed unknown and are estimated by
using methods presented in the previous section.

4.1. Deterministic limit

Suppose that a vaccination programme, for which the vaccine has known efficacy {r;}, is to be
carried out. The contact matrix ();) is known to satisfy condition (1). As mentioned
previously the necessary vaccination levels will be derived assuming a completely susceptible
community, this being a conservative assumption. If a proportion v; of the i-individuals are
vaccinated, i = 1, . . ., k, then the resulting reproduction number R, is given by the largest
eigenvalue of the matrix (\;7,(1 — v;7))); see Section 2.3. Applying lemma 1 with 7; = 1 — v;7;
then shows that R, is contained in the interval

[ min {(1 - n«u»m}, max {(1 et =p) }]

I<i<k S;Di I<i<k S;Di

Herd immunity is obtained if R, < 1. This is surely the case only when the upper end of the
interval does not exceed 1, or equivalently v; > r;'{1 4 s,p;/ log(1 — p,)}, for each i. The
optimal vaccination strategy for the multitype epidemic, meaning the vaccination programme
vaccinating the smallest number of individuals among all vaccination strategies that surely
prevent future outbreaks, is thus given by

1 SiDi .
L)l_r—[{l—m}, l—l,...,k. (9)

These proportions will surely prevent future outbreaks. Each estimate is conservative in that
the proportion is derived under the assumption that all infectivity comes from that specific
type. Unless the vaccine is perfect, i.e. r; = 1 for all 7, it may happen that v; > 1 for some j.
This implies that the community is not surely protected from future outbreaks even when
every such individual is vaccinated, i.e. the vaccine is not sufficiently effective to obtain herd
immunity.
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4.2. Uncertainty in estimates

The vaccination coverages for different types are estimated from equation (9) simply by
replacing the limits {p;} by the observed proportions infected {p;}. As mentioned above, v;,
and hence also its estimate 0;, was obtained assuming that i-individuals were responsible for
all infections. The uncertainty of the estimate should thus be obtained under this assumption.
Using arguments that are identical with those for the variance of p; presented in Section 3.2 it
follows that the asymptotic variance of p; assuming \; = 0, k # i, equals X;;/n;s; where X; is
defined as in equation (4) only replacing i, by i. Since b, is increasing in p; upper confidence
bounds for §; can be obtained by replacing the estimate p; by the upper confidence bound 5;
defined in theorem 1. We summarize the results in the following theorem.

Theorem 2. The estimates defined by

. 1 ;D .
b= { e } i= 1.k, (10)

are consistent and asymptotically Gaussian estimates of the critical vaccination coverage of
the multitype epidemic defined by equation (9). The asymptotic variance for »; is

2 P? +log(1 — Pf)2(1 - Pz’)(ffi//ii)2

var(p;) = s; (11)
V%nisipi(l - Pio){IOg a- Pi)}4
and a 1 — a upper confidence bound for v; is given by
1 BT
b =—ql———P L (12)
ri —log(1 —p/")

where p; is defined in theorem 1.

Proof. Consistency and asymptotic normality follow by using arguments that are similar to
those in the proof of theorem 1. The variance expression (11) is obtained by using the delta
method and the upper confidence bound (12) is derived simply by inserting an upper
confidence estimate p; for the unknown quantity p;. O

The vaccination coverages defined above are preventive when the community is completely
susceptible. Note that the epidemic outbreak on which inference is based could still have
contained initially immune individuals. If the community is not completely susceptible the
vaccination levels may be lower. In case the susceptible proportions are known and equal to
{s%} say, then the vaccination programme should vaccinate enough individuals such that R,,
does not exceed 1. Recall that R.,, the effective reproduction number after vaccination, was
defined as the largest eigenvalue of the matrix (\;m;s}(1 —v;r;)). Lemma 1 can be applied,
with a different choice of {7;}, to solve this problem using the same methods as above. In fact,
the community structure may also be altered from that of the epidemic outbreak, to {7} say.
We could thus estimate vaccination programmes for a community that is different from the
community on which the outbreak inference is based. However, these estimates will only be
valid if the contact parameters {);} are the same for the two communities.

5. An example

A simple example with two types of individual illustrates the methods in the paper. Suppose
that a community consists of 1000 individuals, 300 children and 700 adults. Before the
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epidemic individuals are tested for antibodies and it is found that 90% of the children and
60% of the adults were susceptible. An epidemic outbreak then occurs, resulting in 80% of
the susceptible children and 20% of the susceptible adults becoming infected. Further we
assume that the coefficient of variation of the length of the infectious period is the same for
both types and equals 3/7, e.g. 7 days on average and 3 days standard deviation.

With the terminology of the paper we have (children being type 1) n; = 300, s, = 0.9,
p1=0.8, n, =700, s, =0.6, p, =0.2 and o,/ = 05/, = 3/7. This implies that —log(1—
p1)/sipy = 2.235 and —log(l — p,)/s,p, = 1.859. From equation (6) it hence follows that
RE™ = 2.235 which is estimated for the worst case where children cause all infections. Using
equation (5) the standard errors for p, and p, are 0.044 and 0.198 respectively. A 95% upper
confidence bound for Ry™ equals 2.618, computed using expression (8).

Suppose now that a vaccine having 90% efficacy, the same for both types so r; =r, = 0.9,
is available. The necessary proportion to vaccinate to avoid future epidemics depends on the
proportion of individuals who are immune to the disease. For example, directly after the
epidemic the community is protected without any vaccination. However, as time passes the
disease-acquired immunity usually wanes and an increasing proportion must be vaccinated to
obtain herd immunity. The necessary proportions to vaccinate when the entire community is
susceptible, estimated from equation (10), are 0, = 0.614 and 0, = 0.514. Taking uncertainty
into account by giving 95% upper confidence bounds changes the estimates to 5] = 0.687
and 0; = 0.641 using equation (12). We conclude that at least 69% of the children and 64%
of the adults should be vaccinated to prevent future outbreaks. This level of vaccination will
keep the community protected even when the entire community is initially susceptible, but
also if some individuals are immune. The same levels also apply to any other community
having the same community and contact structure.

6. Discussion

In the present paper it is shown that fundamental parameters, such as R, and the critical
vaccination coverage, cannot be estimated consistently from final size data in a simple
multitype epidemic model. It is shown that a range of parameter configurations (having
different R,!) are consistent with data. The largest range of possible values of R, appears
when the proportion infected among different types varies greatly. In particular it cannot be
determined who causes further infections. However, by estimating ‘the worst case’ it is still
possible to derive vaccination programmes which surely prevent future outbreaks. The
suggested vaccination coverage consists of vaccinating the proportion of a type such that the
whole community is ‘safe’, herd immune, even if this type causes all further infections. The
paper is meant to serve as an example showing that consistent estimation is often not possible
even in simple epidemic models. If temporal data from an outbreak are available, a topic
which is not treated in the present paper, all the parameters are often, but not always,
identifiable (Britton, 1998b).

To derive expressions for the critical vaccination coverage is not only of academic interest.
Of course, health practitioners aim for complete vaccination coverage but this is hardly ever
possible to achieve. For this reason expressions for the critical vaccination coverage may
serve as the lowest acceptable coverage. The results of the present paper also show that it is
not enough to vaccinate only in the most susceptible subgroups unless prior information
about infectivity among subgroups is available: all groups must be partly vaccinated for the
community to have herd immunity surely.

The model is still some way from being realistic in that it does not allow mixing at different
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levels (see Ball er al. (1997)) which is natural when social structures are present. If both
individual heterogeneities and social structures such as households are acknowledged, then
estimation quickly becomes cumbersome (e.g. Addy et al. (1991) and Britton and Becker
(2000)). A thorough study for such models remains to be performed.

In real life the proportions of various types, the proportions immune and the proportions
infected during an epidemic are not fully known, only estimates thereof. This means that
only estimates of {m;, s;} and the random quantities {p;} are available. This will result in
more uncertainty when estimating R, and the vaccination coverage. If the uncertainty in
measurement error is quantified it is possible to derive how this affects the uncertainty in the
estimates by using the delta method. In the present paper measurement error has been
neglected and such an analysis remains to be performed.

A different approach that is worthy of exploration is to use Markov chain Monte Carlo
methods (see O’Neill ez al. (2000) for an application of Markov chain Monte Carlo methods
to epidemic models). The fact that R, is unidentifiable will also have consequences for such
an approach. However, if the relative infectivities of the different types are equipped with
informative prior distributions, this will induce a posterior distribution for R, indicating
which part of the range of possible values is most likely.
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