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Abstract. Empirical evidence shows that childhood diseases persist in large communities
whereas in smaller communities the epidemic goes extinct (and is later reintroduced by im-
migration). The present paper treats a stochastic model describing the spread of an infectious
disease giving life-long immunity, in a community where individuals die and new individu-
als are born. The time to extinction of the disease starting in quasi-stationarity (conditional
on non-extinction) is exponentially distributed. As the population size grows the epidemic
process converges to a diffusion process. Properties of the limiting diffusion are used to
obtain an approximate expression for τ , the mean-parameter in the exponential distribution
of the time to extinction for the finite population. The expression is used to study how τ
depends on the community size but also on certain properties of the disease/community: the
basic reproduction number and the means and variances of the latency period, infectious
period and life-length. Effects of introducing a vaccination program are also discussed as is
the notion of the critical community size, defined as the size which distinguishes between
the two qualitatively different behaviours.

1. Introduction

For several diseases giving life-long immunity, so called childhood diseases, it has
been empirically observed that the disease fades out in small communities but may
persist in larger communities (e.g. Anderson & May, 1991, p 83 and Keeling &
Grenfell, 1997). It is a classical problem in the mathematical theory of infectious
diseases to find good models pointing out this phenomenon. An intuitive explana-
tion of the qualitative difference, already given by Bartlett (1956), goes as follows.

The basic reproduction number, R, can loosely be defined as the expected num-
ber of new cases generated by one infectious individual in a large susceptible pop-
ulation. The basic reproduction number is thought to reflect both the social activity
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among individuals and the infectiousness of the disease. If R > 1, as is assumed
in this paper, then we say that the population is above threshold. Introducing an
infective to a susceptible community above threshold may, as is well known, lead
to a large outbreak. We expect one of two scenarios.

1. If the community is not too large the epidemic will fade out after a relatively
short period of time. This happens because a large proportion becomes infected (and
cannot be reinfected) and not enough new susceptible individuals are born into the
population to keep the epidemic going. However, by births of new susceptibles and
deaths of immune individuals, the proportion of susceptibles will slowly grow as
time goes by, eventually taking the population above threshold again. Infectives
visiting the community may then again initiate a new large outbreak. In this way
the recurrent behaviour of the disease is achieved.

2. On the other hand, in a very large community the susceptible population
might be augmented fast enough for the epidemic to be maintained for a long time
without any introduction of new infectives to the community. This happens because
the population is brought above threshold during the final stages of a large outbreak
due to a high enough birth rate of new susceptibles.

The notion of critical community size, loosely defined as the population size
needed for the epidemic to persist over a given time horizon with a given probability,
tries to separate between the two situations above. As opposed to many other prob-
lems for infectious diseases, deterministic models are not of much use when aiming
to derive expressions for the time to extinction, because extinction is always caused
by random fluctuations from the expected (or deterministic) curve. Recently, the
stochastic model suggested by Bartlett (1956) has been modified slightly to what
is called the SIR epidemic process with demography (van Herwaarden & Gras-
man, 1995, and Nåsell, 1999). In Section 2 of the present paper we generalise this
model in several ways. Life-lengths and the duration of the infectious period are
now modelled by �-distributions. Further a latency period is introduced which is
also modelled by a �-distribution. In Section 3 we let the population size tend to
infinity and show that the epidemic process converges to a diffusion. The station-
ary distribution of the limiting diffusion is Gaussian and it is investigated how the
mean vector and covariance matrix depend on properties of the disease/commu-
nity. In Section 4 it is shown that in a finite population the time to extinction is
exponentially distributed if the process is started in quasi-stationarity (conditional
on non-extinction). An approximate expression for τ , the mean parameter of the
exponential distribution, is derived in Section 4.3 (equation 8) where we approxi-
mate the quasi-stationary distribution by the stationary distribution of the limiting
diffusion (cf. Nåsell, 1999, who uses the same ‘linearising’ approach for a different
model). In Section 4.4 it is shown how the introduction of a vaccination program
may be incorporated in the model simply by changing certain parameters (equation
9). The section ends with a discussion on how the critical community size depends
on the disease/community parameters. The qualitative result of the present paper
says that, in relevant parameter regions,

The expected time to extinction τ is increasing in: the community size and the av-
erage lengths of the infectious period, the latency period and the life-length, and



Stochastic epidemics in dynamic populations 561

decreasing in the proportion vaccinated. Further, if the community size is large
enough, then τ is increasing in: the basic reproduction number and the variances
of the life-length and the latency period; but not monotone in the variance of the
infectious period.

In Section 5 where τ is computed over relevant parameter regions, it is seen
that the most influential parameters, beside the community size, are the average
lengths of the infectious period and latency period, and to some extent the basic
reproduction number, the variance of the infectious period and the proportion vac-
cinated. The variances of the life-length and the latency period play a lesser role.
In Section 5 we also give some special cases and present simulations to see how
well the approximations apply.

2. Description of the model

We start with the population dynamics. Individuals are born into the population
according to a Poisson process of constant rate µN and live, independently of ev-
erything else, for a �(i, iµ)-distributed time. This means that 1/µ is the average
life-length, 1/(µ

√
i) is the standard deviation of the life-lengths, and 1/i is the

squared coefficient of variation. The population size for this model will fluctuate
around the ‘parameter’ N , a parameter which hence should be interpreted as the
(average) population size. The reason for choosing size-independent birth rates is to
avoid population extinction or explosion – disease extinction is the primary interest
of the present paper. In this population we now wish to model the spread of a non-
fatal infectious disease giving life-long immunity after recovery. For simplicity we
assume that all individuals are homogeneous and mix uniformly. Once an individ-
ual gets infected he/she is first latent for a �(j, jγ /r)-distributed time after which
she becomes infectious and remains so for a period having �(k, kγ )-distribution.
This means that the average infection period is 1/γ long, with a standard devia-
tion 1/(γ

√
k) and squared coefficient of variation 1/k. The expected length of the

latent period is r/γ (r is the relative length with respect to the infectious period),
its standard deviation is r/(γ

√
j) and squared coefficient of variation 1/j . During

the infectious period an individual has ‘close contact’ with any given individual
according to a Poisson process of constant rate β/N , so β is (approximately) the
contact rate with other individuals. A ‘close contact’ is defined as a contact result-
ing in infection if the other individual is susceptible. All contact processes, latent
periods, infectious periods, births and deaths are defined mutually independent.

The model defined above will be analysed using a Markovian compartment
model relying on the well-known fact that a �(n, ν)-distribution is identical to the
distribution of the sum of n independent Exp(ν) random variables (similar meth-
ods have been used to model epidemics for closed populations, e.g. Anderson &
Watson, 1980). Thus, let X�(t) denote the number of susceptible individuals in
‘age-stage’ � at time t , � = 1, . . . , i. For latent/infectious individuals one should in
principle keep track of both the age-stage and latent/infectious stage thus giving rise
to two indices. However, when the length of the latent and infectious periods are
very short in comparison to the life-length, i.e. (1+r)ε � 1 where ε := γ−1/µ−1,
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Fig. 1. Schematic picture of the model.

as is the case for childhood diseases, then the chance of dying while latent or infec-
tive is negligible (remember that we consider non-fatal diseases). From now on we
therefore modify the model, by not allowing for deaths while latent/infectious, in
order to obtain explicit results. Mathematically this means we only consider leading
terms in expansions in ε. It hence suffices to keep track of the latent/infectious stage
of infected individuals since they will (most likely) not die while latent/infectious.
Thus, let U�(t) and Ym(t) respectively denote the total number of individuals latent
in ‘latent stage’ � and infectious stage m at time t , � = 1, . . . , j , m = 1, . . . , k.
Further we let X(t) = ∑

� X�(t), U(t) = ∑
� U�(t), Y (t) = ∑

� Y�(t), respec-
tively denote the total numbers of susceptible, latent and infectious individuals.
The epidemic process is a Markovian vector jump process which is specified by
its jump intensities. In Figure 1 we illustrate the approximate model, neglecting
ageing while latent/infectious. The numbers by the arrows are the transition rates
(which coincide with the full model up to leading term in ε). For example, suscep-
tible individuals in stage � are infected at rate X�(t)Y (t)β/N since between each
infective–susceptible pair a contact occurs at rate β/N .

The number of recovered (and immune) individuals does not enter into the
transition rates, so we need not keep track of this quantity. Thus, the state at
time t of the epidemic process is specified by the (i + j + k)-dimensional vector
(X(t), U(t), Y(t)) = (X1(t), . . . , Xi(t), U1(t), . . . , Uj (t), Y1(t), . . . , Yk(t)). It
is worth noting that the set of disease-free states {(m1, . . . , mi, 0, . . . , 0),m� ≥ 0}
is an absorbing class. All other states are hence transient.

The parameters to be used in the sequel, and their interpretation, are as follows:
N= population size, µ−1= average life-length, i−1= the squared coefficient of vari-
ation of the life-length, ε = γ−1/µ−1= average length of the infectious period
relative to the average life-length (in applications a very small quantity), r= the
average length of the latency period relative to the infectious period, j−1 and k−1

which are the squared coefficients of variation of the latency period and infectious
period respectively, and finally R = β/γ which is the average number of contacts
an individual has with other individuals during his/her infectious period, a funda-
mental parameter for epidemics often called the basic reproduction number. In the
present paper it is assumed that R > 1, otherwise only few individuals will ever
be infected before the epidemic goes extinct. The value of R varies for different
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communities and diseases (see Anderson & May, 1991 p 70 for some numerical
values). Also ε and r (as well as j and k) depend on the disease. For measles a
typical value of R is 15 and the latency period and infectious period are approxi-
mately one week each, so if the life expectancy is µ−1 = 70 years this results in
ε ≈ 0.0003 and r = 1.

3. Large population results

3.1. Deterministic approximation

To find the exact distribution of the epidemic process is not manageable. Instead we
use the theory of diffusion approximation of population processes as for example
described in Ethier & Kurtz (1986), approximations relying on weak convergence
of stochastic processes. To this end we first study the corresponding deterministic
system, and in the second subsection the scaled, diffusion-like, process.

In order to find the endemic level of the model, we assume that N is large and
approximate the Markov process(

X(t)
N

,
U(t)

N
,

Y(t)
N

)
, t ≥ 0,

with the solution (x(t),u(t), y(t)), t ≥ 0, of the following deterministic system of
differential equations:

dx1

dt
= µ − βx1y − iµx1,

dx2

dt
= iµx1 − βx2y − iµx2,

...
dxi

dt
= iµxi−1 − βxiy − iµxi,

du1

dt
= βxy − j

γ

r
u1,

du2

dt
= j

γ

r
u1 − j

γ

r
u2,

...
duj

dt
= j

γ

r
uj−1 − j

γ

r
uj ,

dy1

dt
= j

γ

r
uj − kγy1,

dy2

dt
= kγy1 − kγy2,

...
dyk

dt
= kγyk−1 − kγyk,
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where x�, u� and y� are the asymptotic proportions of susceptible, latent and
infectious individuals, respectively, in stage �, and where x = ∑

x�, u = ∑
u�

and y = ∑
y�. The differential equations correspond to the jump intensities of

the model (see Figure 1) with everything divided by N since we now consider
population proportions.

The endemic level is obtained by equating these differential equations to zero.
To simplify notation we introduce p(i) := i/(i + R − 1) which should be inter-
preted as the probability of moving on to the next ‘age-stage’ rather than being
infected, i.e. following a down-arrow rather than a right-arrow from a susceptible
box in Figure 1. We obtain

x̂� = p(i)�−1 1 − p(i)

1 − p(i)i

1

R
,

û� = rµ

jγ

R − 1

R
= ε

r

j

R − 1

R
,

ŷ� = µ

kγ

R − 1

R
= ε

1

k

R − 1

R
,

which implies

x̂ = 1

R
,

û = εr
R − 1

R
,

ŷ = ε
R − 1

R
.

The last three equations are of main importance since the different stages in terms of
age, latency period and infectious period are only for modelling purposes to obtain
a Markov process. It is seen that the susceptible proportion x̂ is much larger than
the latent and infectious proportions – remember that for childhood diseases ε is
very small. Further, the endemic level is independent of the variances in life-length,
latency period and infectious period, i.e. it does not depend on i, j or k. The solution
(x,u, y) = (x̂, û, ŷ) is a stable solution to the set of differential equations, whereas
the other solution (x,u, y) = (i−11, 0, 0), corresponding to the disease-free
equilibrium, is unstable.

3.2. Diffusion approximation

We proceed by studying the centered and scaled process

(X̃N, ŨN, ỸN) = (X̃1, . . . , X̃i , Ũ1, . . . , Ũj , Ỹ1, . . . , Ỹk)

=
√
N

(
X1

N
− x̂1, . . . ,

Xi

N
− x̂i ,

U1

N
− û1, . . . ,

Uj

N
− ûj ,

Y1

N
− ŷ1, . . . ,

Yk

N
− ŷk

)
.
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Denote by Ft the σ -algebra (i.e. the information) generated by the process up to
time t . Working out the first and second order infinitesimal moments, such as for
example

1

h
E
[
X̃�(t + h) − X̃�(t)

∣∣Ft

]
and

1

h
E

[(
X̃�(t + h) − X̃�(t)

)2 ∣∣Ft

]
(1)

for smallh, using the transition rates given in Figure 1, and applying theory for diffu-
sion approximation (Ethier & Kurtz, 1986) suggests that the process (X̃N(t), ŨN(t),

ỸN(t)), t ≥ 0, may be approximated by a (i+j +k)-dimensional Ornstein-Uhlen-
beck process which is the limiting process as the population size tends to infinity.
The local drift and covariance matrices B and S of the limiting process, obtained
using (1) and likewise for the other components, are given in the Appendix. Ap-
plying results from diffusion theory (e.g. Karatzas & Shreve, 1991, p 357) shows
that the stationary distribution of this process is multivariate normal with mean 0
and covariance matrix % = (σij ), where % solves the matrix equation

B% + %BT = −S.

We make the result precise in the following proposition.

Proposition 3.1. Consider the model defined above and suppose that the initial
point of the process (X̃N(0), ŨN(0), ỸN(0)) converges in probability to some de-
terministic point (x0,u0, y0). Then

(X̃N, ŨN, ỸN) 
⇒ (X̃, Ũ, Ỹ) as N → ∞,

on any finite time interval, where (X̃, Ũ, Ỹ) is an Ornstein-Uhlenbeck process
with local drift matrix B and local covariance matrix S (given in the Appendix)
and with starting point (x0,u0, y0). The stationary distribution of this process is
multivariate normal with mean 0 and covariance matrix % defined above.

It is not tractable to try to find exact solutions of % for general i, j, k. An expres-
sion for %, valid for small ε (i.e. γ−1/µ−1 � 1), is derived in the Appendix. In
the next section we study the distribution of the time to extinction of the disease
in a finite population. To obtain explicit results we use the limiting normal dis-
tribution given above. Of particular interest there is the mean and variance of the
total number of latent and infectious individuals, i.e. the expectation and variance
of U + Y := ∑

� U� + ∑
� Y�, denoted µU+Y and σ 2

U+Y respectively. To get an
idea of the variation relative to the expected level of the diffusion we also give the
coefficient of variation, CVU+Y = σU+Y /µU+Y . These moments are, up to first
order, given by

µU+Y = N(û + ŷ) = Nε(1 + r)
R − 1

R
, (2)

σ 2
U+Y = N

i+j+k∑
�,m=i+1

σ�m

≈ N(1 + r)2

R

(
k+2
3k + r +

(
1 + 1

j

)
kr2

k+1 + (i/(i+R−1))i

1−(i/(i+R−1))i

(
1 + 2kr

k+1

)2
k+1
2k

) (3)
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CVU+Y =
√
R

√
Nε(R − 1)

(
k+2
3k + r +

(
1 + 1

j

)
kr2

k+1 + (i/(i+R−1))i

1−(i/(i+R−1))i

(
1 + 2kr

k+1

)2 k+1
2k

)1/2 .

(4)

The coefficient of variation indicates how ‘far away’ from absorbtion the epidemic
process is at equilibrium. A closer look at (4) shows that CVU+Y is decreasing in:
N, ε, R, r and increasing in i and j ; nothing general can be said about k except
when there is no latency period (r = 0), when it is increasing in k. Some special
cases of CVU+Y are given in Section 5.

4. Quasi-stationarity and the time to extinction

4.1. The quasi-stationary distribution

In the previous section it was shown that when the population size N is fairly
large then the epidemic process may be approximated by an Ornstein-Uhlenbeck
process with a specified multivariate normal distribution as its stationary distribu-
tion. This approximation can only be valid before the epidemic goes extinct, that
is, when there are no latent or infectious individuals present (i.e. U = Y = 0).
After this time there will be no more infections so the spread of disease completely
stops. In the present section we show that for any N the time to extinction starting
in quasi-stationarity (i.e. conditional on not having gone extinct) is exponentially
distributed. An exact expression for the parameter of the exponential distribution
is not available. In order to obtain an approximate expression we proceed by ap-
proximating the quasi-stationary distribution by the limiting Ornstein-Uhlenbeck
process (c.f. Nåsell, 1999).

We are interested in the distribution of the time to extinction, defined by

T = inf{t ≥ 0 : U(t) = 0,Y(t) = 0}.
This distribution depends on the initial state (X(0),U(0),Y(0)). Two situations
are of special interest: (X(0), U(0),Y(0)) = (i−1N1, 0, e1), i.e. a virgin popu-
lation to which one infectious individual is introduced, or that the initial distribu-
tion is at ‘equilibrium’. In the present paper we restrict our attention to the latter
case. A natural choice for equilibrium distribution is the so-called quasi-station-
ary distribution which we now define. Let px,u,y(t) be the probability that the
process is in state (x,u, y) at time t for some given initial distribution and let
p•,u,y(t) = ∑

x px,u,y(t) denote the marginal distribution of (U(t),Y(t)). Then
define qx,u,y(t) := px,u,y(t)/(1 − p•,0,0(t)) to be the probability that the process
is in state (x,u, y) at time t given that it has not yet become absorbed into the
disease-free class of states. The quasi-stationary distribution Q = {qx,u,y}, which
lives on the set of transient states, is then defined by

qx,u,y = lim
t→∞ qx,u,y(t).

This distribution is sometimes referred to as the quasi-limiting distribution. For
more about quasi-stationary or quasi-limiting distributions we refer the reader to
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Pollett & Roberts (1990). In words, the quasi-stationary distribution is the distribu-
tion after a long time, conditioned on not having gone extinct. In the next subsections
we study the time to extinction havingQ = {qx,u,y} as initial distribution. This time
duration is denoted TQ.

4.2. The exact distribution of TQ

Let TQ denote the time to extinction starting with the quasi-stationary distribution.
We have the following result which is an application of a general result for Markov
processes.

Proposition 4.1. TQ is exponentially distributed with rate parameter kγ q•,0,ek
= kγ

∑
x qx,0,ek .

Proof. Indeed, TQ is memoryless since

P(TQ > t + s | TQ > t, (X(0),U(0),Y(0)) ∼ Q)

= P(TQ > t + s | TQ > t, (X(t),U(t),Y(t)) ∼ Q)

= P(TQ > s |(X(0),U(0),Y(0)) ∼ Q),

by the Markov property, and the exponential character of TQ follows immediately.
The rate parameter of the exponential distribution is simply the sum of rates into
the disease-free class of states, weighted by the quasi-stationary distribution. It is
only possible to enter the disease-free class when there are no latent individuals and
exactly one infectious individual which is in the last infectious stage. The jump rate
from this state is kγ , independent of how many susceptibles there are. Therefore
the total jump rate is kγ q•,0,ek .

It remains to find an approximation of the expected time to extinction,

τ = E(TQ) = 1

γ kq•,0,ek
. (5)

4.3. An approximate formula for E(TQ)

Let us return to the formula given in (5). To estimate kq•,0,ek using the stationary
multivariate normal distribution of the limiting diffusion presents severe difficulties.
Instead we estimate q•,1 := ∑

� q•,e�,0 + ∑
� q•,0,e� , the quasi-stationary proba-

bility that there is exactly 1 individual who is either latent or infectious. Then we
derive an approximate relation between kq•,0,ek and q•,1. An available estimate for
q•,1 is to use the marginal normal distribution for U + Y of the limiting stationary
distribution derived in Section 3.2, an idea adopted from Nåsell (1999). Because we
have conditioned on not having gone extinct we truncate the distribution at the point
0.5 (conditional on non-extinction with continuity correction of the integer-valued
variable U + Y ) to obtain the approximation

q•,1 ≈ ϕ ((1 − µU+Y )/σU+Y )

σU+Y (1 − .((0.5 − µU+Y )/σU+Y ))
, (6)

where .(·) and ϕ(·) denote the standard normal distribution function and density
function, respectively.
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It remains to relate kq•,0,ek to q•,1 in order to evaluate (5). Thus we define
ρ := q•,0,ek /q•,1 and heuristically derive an approximation for ρ, the relative (quasi
stationary) probability that, given that there is exactly one latent or infectious
individual, this individual is in the infectious stage k.

Start the epidemic process according to the quasi-stationary distribution. Label
the visits at U +Y = 1 before extinction by 1, . . . ,M1 (M1 is random). Start a new
epidemic and label its visits at U + Y = 1 by M1 + 1, . . . ,M1 +M2, and so forth.
For each such visit i at U + Y = 1 let Vi denote the time spent in (U,Y) = (0, ek)
before leaving the state U + Y = 1, and Wi the total time spent in the state
U + Y = 1. Then the time spent in state (0, ek) relative to the total time spent in
U +Y = 1 among the first n visits is ρn = (V1 + . . .+Vn)/(W1 + . . .+Wn). Since
each such visit is obtained from an epidemic in quasi-stationarity it follows that
limn→∞ ρn = q•,0,ek /q•,1 = ρ almost surely. On the other hand, by the strong law
of large numbers, ρn converges almost surely toE(V )/E(W), so ρ = E(V )/E(W)

and it remains to calculate E(V ) and E(W).
We calculate these means conditioned on where the state U + Y = 1 was

entered from, and these conditional means are derived assuming that the propor-
tion susceptible is at the endemic level x̂ = 1/R and consequently X = N/R.
Then E(W |(0, e�)) = λ−1(1+ν+ . . .+νk−�) = λ−1(1−νk−�+1)/(1−ν), where
λ = kγ +β/R = (k+1)γ is the rate with which the individual leaves a given infec-
tious state and ν = kγ /(k+1)γ = k/(k+1) is the probability that this happens by
moving on to the next infectious state rather than a new infection which would take
the process out ofU+Y = 1. One way to interpret the expression forE(W |(0, e�))
is that it remains in any state for a time with mean λ−1, and the probability to
reach m infectious states ahead is νm. Similarly the other conditional moments
are shown to satisfy: E(W |(e�, 0)) = λ̃−1(1 − ν̃j−�+1)/(1 − ν)+ λ−1ν̃j−�+1(1 −
νk)/(1−ν),E(V |(0, e�)) = λ−1νk−� andE(V |(e�, 0)) = λ−1ν̃j−�+1νk−1, where
λ̃ = (j + r)γ /r and ν̃ = j/(j + r). A natural estimate for the probabilities de-
termining which state U + Y = 1 is entered to is to assume that the probability
that the individual is latent is r/(r + 1) and 1/(r + 1) for being infectious, since
this relation holds for the expected lengths of the two periods, and to assume
uniform distribution within the latent and infectious stages respectively. This im-
plies that P(e�, 0) = r/j (r + 1) and P(0, e�) = 1/k(r + 1). We then use that
E(V ) = ∑

� E(V |e�, 0)P (e�, 0) + E(V |0, e�)P (0, e�), and similarly for E(W).
After simplifying the formulas we conclude that kρ = kρ(r, j, k) = kE(V )/E(W)

can be approximated by

kρ(r, j, k) ≈
1 −

(
k

k+1

)k (
j

j+r

)j
r +

(
k

k+1

)k (
j

j+r

)j (7)

Simple algebra shows that kρ(r, j, k) is increasing in j and k but decreasing in r .
Inserting (6) and (7) into (5) gives the expression

τ ≈ σU+Y (1 − .((0.5 − µU+Y )/σU+Y ))

γ kρ(r, j, k)ϕ ((1 − µU+Y )/σU+Y )
≈ σU+Y. (µU+Y /σU+Y )

γ kρ(r, j, k)ϕ (µU+Y /σU+Y )
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whereµU+Y andσ 2
U+Y are given by (2) and (3) respectively. The last approximation

is valid because the endemic level µU+Y is much larger than 1 when considering
persistence. Introduce

f (R, r, i, j, k) = k + 2

3k
+ r +

(
1 + 1

j

)
kr2

k + 1

+ (i/(i + R − 1))i

1 − (i/(i + R − 1))i

(
1 + 2kr

k + 1

)2
k + 1

2k
,

appearing in σ 2
U+Y . Later we will use the observations that f is globally increasing

in r and decreasing in i, j, R, and also in k if r = 0. Then, after some further rear-
rangement and replacing µU+Y and σ 2

U+Y by the corresponding expression given
in equations (2) and (3), one obtains

τ ≈ µ−1
(1 + r)

√
Nε2.

((
Nε2 (R−1)2

R
f (R, r, i, j, k)

)1/2
)

kρ(r, j, k)
√
R f (R, r, i, j, k)ϕ

((
Nε2 (R−1)2

R
f (R, r, i, j, k)

)1/2
) .

(8)
This expression is the final approximation of τ = τ(µ−1, N, ε, R, r, i, j, k), the
expected time to extinction starting in quasi-stationarity. Because TQ follows the
exponential distribution, τ = E(TQ) in (8) determines the distribution. Expressions
for, and behaviour of, τ are of interest to epidemiologists (e.g. Keeling & Grenfell,
1997). In particular it is of interest to study the influence of different parameters on τ .

The first conclusion is that τ grows linearly in the expected life-lengthµ−1. This
is trivial since all other time parameters are expressed relative to the expected life-
length which hence is just the time unit. Another conclusion is that τ is increasing
in the population size N and ε, the duration of the infectious period relative to
the life-length. These are the only global monotonicities. However, if the common
argument of ϕ and . in (8) exceeds 1, or equivalently the coefficient of variation
CVU+Y defined in (4) is less than 1, then we can say more (this holds in large
enough populations and it is the situation where endemicity and quasi-stationa-
rity are most relevant). Using stated properties of ρ and f it then follows that τ
is decreasing in i and j and increasing in r . Further, for the same situation, τ is
increasing in R if R � 1 (for most childhood diseases R exceeds 10, cf Anderson
& May, 1991 p 70). The only parameter where no general conclusion holds is k,
the squared inverse of the coefficient of variation of the infectious period, except
if r = 0 when τ is decreasing in k.

We have concluded the following qualitative results. In a large enough popula-
tion and for relevant parameter values the expected time to extinction is increasing
in: the basic reproduction number, the average life-length and its variance, the ex-
pected length of the latency period and its variance and in the average length of the
infectious period. It is also increasing in the variance of the infectious period when
there is no or a short latency period. The magnitude of influence of the parameters is
studied briefly in the next section where τ is evaluated as a given parameter varies
over an interval while the remaining parameters are kept at fixed typical values.
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Remember that i, j and k are the squared inverse of the coefficients of variation
of the life-length, latency period and infectious period respectively, so the opposite
relations are valid for the coefficients of variation, or equivalently the variances.

4.4. Vaccination and the critical community size Nc

Suppose that a vaccine is available which prevents individuals from becoming in-
fected. For simplicity we only consider vaccines that give complete and life-long
immunity (see for example Halloran et al., 1992, for more realistic effects of vacci-
nation) . Suppose further that a vaccination program is initiated which continuously
vaccinates a proportion v of the newly born individuals. How does this affect TQ
and τ? It is not hard to show that the same model can be used for this situation,
only with new parameter values. The only jump-intensity that is affected in Figure
1 is the top arrow on the left: now new susceptible individuals enter the population
at rate µN(1 − v) since a proportion v is vaccinated. But then we have to write
N(1 − v) elsewhere in the figure to have balance, so then β becomes β(1 − v).
Thus, if we let N ′ = N(1 − v) and β ′ = β(1 − v) we have the model defined in
Section 2, only with N ′ and β ′ replacing N and β. Because R = β/γ this also
reduces R to R′ = R(1 − v), all other parameters are unaffected. This implies that
the same approximation of the epidemic process is valid. For example the stationary
distribution of the approximating diffusion is Gaussian with mean, variance and
coefficient of variation given by (2) – (4) whereN is replaced byN(1−v) andR by
R(1 − v). It also follows that TQ, the time to extinction starting in quasi-stationa-
rity, is exponentially distributed and τ = E(TQ) is obtained from (8) with the same
replacements:

τ ≈ µ−1

(1 + r)
√
Nε2.

((
Nε2 (R(1−v)−1)2

R
f (R(1 − v), r, i, j, k)

)1/2
)

kρ(r, j, k)
√
Rf (R(1−v), r, i, j, k)ϕ

((
Nε2 (R(1−v)−1)2

R
f (R(1−v), r, i, j, k)

)
1/2
) .
(9)

It follows that τ is decreasing in v and its influence is quite large, which is illustrated
in Section 5.

Next we define the critical community size Nc. The critical community size
Nc = Nc(t, p) with time horizon t and extinction probability p is the solution N

that satisfies
P(TQ > t) = 1 − p. (10)

In words,Nc is an upper bound on the community size for the epidemic to have a fair
chance of going extinct before a given time point. Since TQ is exponentially distrib-
uted, its mean τ specifies the distribution and hence alsoNc. In fact, it follows imme-
diately that Nc(t, p) is the solution N to the equation τ(µ−1, N, ε, R, r, i, j, k) =
t/(− ln(1 −p)). How Nc depends on the different parameters is not very transpar-
ent. The only simple relationship is that Nc is inversely proportional to ε2. This is
immediate since N and ε2 always appear together. This relation is demonstrated
by simulations in the next section. The dependence on other parameters is more
complicated. However, if in the definition of Nc(t, p), t is large enough and p is
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not too large, say t = µ−1 (one life-length) and p = 1/2, then the conclusions
for τ relying on large N may be interpreted in terms of Nc: if τ is increasing this
means a smaller community would result in the same τ , so the monotonic relations
for Nc are opposite of the ones stated for τ in the end of the previous subsection.
For example, we then have that Nc is decreasing in r . That is, with a longer latency
period endemicity will occur in smaller communities.

For any fixed parameter values and choice of time horizon t and extinction
probability p the critical community size Nc may of course be easily evaluated
using a mathematical software program. Similarly, the critical immunity coverage,
i.e. the proportion necessary to vaccinate in order to have extinction within some
time horizon likely is simple to calculate numerically.

5. Examples and simulations

First we study the stationary distribution of the limiting diffusion process specified
in Section 3. The single most important quantity when interested in excursions away
from the stationary endemic level is the coefficient of variation CVU+Y defined in
(4). The larger CVU+Y the larger excursions should be likely. Below we give this
quantity for some parameter choices of special interest, where we have extended
the formulas to cover the case where a proportion v of all new born individuals are
vaccinated.

No latent period r = 0. Our calculations are only valid for r > 0, but CVU+Y

has a well defined limit as r → 0:

CVU+Y ≈
√
R

√
Nε(R(1 − v) − 1)

(
k+2
3k + (i/(i+R(1−v)−1))i

1−(i/(i+R(1−v)−1))i
k+1
2k

)1/2
.

As mentioned in Section 3.2 CVU+Y is then increasing in k, i.e. decreasing in the
variances of the infectious period.

The ‘exponential’ case (i, j, k) = (1, 1, 1). This means that the life-length,
latent and infectious periods are modelled by exponential distributions.

CVU+Y ≈
√
R

√
Nε(R(1 − v) − 1)

(
1 + r + r2 + 1

R(1−v)−1 (1 + r)2
)1/2

.

The ‘constant’ case (i, j, k) = (∞,∞,∞). This means that the life-length, latent
and infectious periods are constant, the other extreme compared to the example
above.

CVU+Y ≈
√
R

√
Nε(R(1 − v) − 1)

(
1/3 + r + r2 + e−R(1−v)+1

1−e−R(1−v)+1 (1 + 2r)2/2
)1/2

.

If latter two examples are compared, forR = 15 and r = 0.5, it is seen thatCVU+Y

is 75% larger in the exponential case implying that the variation of the life-length,
latent and infectious periods do have influence on the behaviour of the epidemic.
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Now we compute τ , using the approximation given in (9), to study the mag-
nitude of influence of each parameter. Each parameter is varied separately over a
relevant interval, keeping the other parameters fixed at some typical value. This
has been done for a community of size 105 and a population with 106 individuals.
The results are reported in Table 1 where the time unit is years and the expected
life-length was set to 75 years. The typical values were chosen to be R = 15 (a
common estimate for measles, e.g. Anderson & May 1991, p 70), ε = 0.0003
(corresponding to 1 week infectious period), r = 0.5 (half as long latency period),
CVlife = 0.3, CVlat = 0.5 and CVinf = 0.5 (corresponding to standard deviations
of 20 years, 3 and 1.5 days respectively). The type value for vaccinations was cho-
sen to be no vaccinations (v = 0) but when varied it has been evaluated up to a 90
% vaccination coverage (v = 0.9). The reason for not evaluating τ for even larger
coverage is that as soon as R(1 − v) ≤ 1 the approximations break down. When
this happens a major outbreak is no longer possible and the epidemic will die out
immediately so the notion of quasi-stationarity becomes less important.

In Table 1 we observe that the expected time to extinction of the smaller pop-
ulation is only a few years (τ = 3.6 years for type values) why it would die out
reasonably quick. It is seen that the most influential parameters are ε and r and
to some extent R and v. In the larger community we see that τ is larger (τ = 32
years for the type values) i.e. more like an endemic situation. The parameters are in
general more influential; most influential are the same parameters as in the smaller
community together with CVinf . Another observation is that τ is now increasing in
R and CVlife contrary to the smaller community. An explanation for the somewhat
surprising observation that τ is decreasing in R for moderate N goes as follows:
even though µU+Y increases with R, seeming to make extinction less likely and
hence τ larger, the effect of increasing R also makes the standard deviation σU+Y

increase which has a greater influence when the endemic level µU+Y is not too
far from 0. If τ is computed for even larger communities it rapidly grows as does
the influence of each parameter. For example τ = 98000 years for the type values
in a community with N = 107 individuals, so there the disease would definitely
become endemic. Of course, the assumption of homogeneous mixing is less real-
istic in large communities. However, the presence of heterogeneities are believed

Table 1. Computation of τ , using (9), for different parameter choices with µ−1 = 75 years

Para- Type Parameter Mono- Mono- τ τ Rel. Rel.
meter value range tone tone range range change change

N = 105 N = 106 N = 105 N = 106 N = 105 N = 106

R 15 5–20 ↘ ↗ 3.2–5.4 22–41 0.6 1.8
ε 0.0003 0.00015–0.0006 ↗ ↗ 1.6–10.3 15–525 6.4 35
r 0.5 0–2 ↗ ↗ 2.4–11.6 11–2000 4.9 170

CVlife 0.3 0–1 ↘ ↗ 3.4–3.6 31–36 0.96 1.1
CVlat 0.5 0–1 ↗ ↗ 3.5–3.6 31–36 1.01 1.1
CVinf 0.5 0–1 ↗ ↗ 3.5–3.7 26–45 1.08 1.5
v 0 0–0.9 ↘ ↘ 1.7–3.6 5–32 0.46 0.17
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Fig. 2. ε2Nc plotted against 1/ε for different values of k. Simulated values (· · ·) and
theoretical approximation (—).

to increase the expected time to extinction τ thus making endemicity even more
likely (cf. Section 6).

Simulations have been performed in order to check the validity of the approx-
imate formula for τ . Instead of simulating τ we have simulated Nc also making it
possible to verify the observation that Nc is proportional to 1/ε2. For simplicity no
latency period was assumed and the life-length was modelled by the exponential
distribution (i.e. r = 0 and i = 1). Further, R = 12 and v = 0 (no vaccinations)
were used in the simulations which were performed for different values of ε and
k. The time horizon was chosen as t = µ−1 (one average life-length) and the
extinction probability was set to p = 1/2. For a given population size N , 3000
simulations were performed and N was accepted as the critical community size
if the observed proportion of fade-outs lied between 47 % and 53 %. The result
is shown in Figure 2 where, for a given k, ε2Nc is plotted for different lengths
of the infectious period (in order to avoid too long simulation times rather large
values of ε were used). The result shows that Nc seems inversely proportional to
ε2 as our approximation suggests, even though the horizontal level obtained using
(8) is somewhat off for k = 3 and 5. It is also seen that Nc is increasing in k,
i.e. decreasing in the variance of the infectious period. If on the other hand much
more likely and frequent fade-outs were studied the last conclusion is no longer
true. The opposite may even be the case as Keeling and Grenfell (1997) observed
in simulations modelling the spread of measles in England and Wales.

6. Discussion

The present paper tries to extend an epidemic model studied recently (van Her-
waarden & Grassman, 1995, Nåsell, 1999) to a more realistic setup allowing for a
latency period but also letting the variance of the infectious period, latency period
and life-length be close to arbitrary. The time to extinction starting in quasi-sta-
tionarity is shown be exponentially distributed. An approximate expression for the
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mean parameter is derived from the diffusion approximation of the epidemic pro-
cess, equation (8), or equation (9) when vaccinations are considered. It should be
stressed that this is only an approximation: when the process is close to the absorb-
ing barrier, i.e. when there are few infectives, it moves at a slower rate than the
approximating diffusion. Thus the approximation should only serve as a qualitative
guidance and not be relied on in detail.

The technique of the paper, to define the life and the latent and infectious peri-
ods using a series of successive exponentially distributed stages, can be extended
further. For example, the rates to jump between successive stages could vary, thus
allowing for a wider class of distributions than the �-distributions in the present
setup. Secondly, one could allow for an infection rate that varies between different
stages of infectivity. Presently this is only done in two steps: the latent stages, where
there is no infectivity, and the infectious stages, over which the infectivity stays
constant. The technical level will of course be higher under this extended model
and to obtain an explicit approximate expression for τ under that scenario appears
to be very complicated.

The approximate formula for τ works adequately, but certainly not perfectly, as
simulations in Section 5 show. However, perhaps more important for approaching
real-life epidemics than improving the approximation is to generalize the model.
For example, spatial, social and individual heterogeneities play an important role
in the spread of infectious diseases, and so do seasonal effects (see Anderson &
May, 1991, p 83). Sound knowledge and simulation results for models taking such
effects into account indicate that the expected time to extinction is longer in a het-
erogeneous community implying that the critical community size decreases (e.g.
Keeling & Grenfell, 1997, and references therein). For seasonal effects the converse
relation holds. Further, vaccination can be modelled more realistically by assuming
partial and waning immunity over time. It is our belief however that the qualitative
statements of the present paper, for the parameters studied, remain valid even in
such more realistic settings. A thorough study of this is yet to be carried out.
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discussions on persistence.

A. Appendix

To start, we give the local drift matrixB and the local covariance matrixS simply ob-
tained as the conditional moments of the scaled epidemic process (X̃(t), Ũ(t), Ỹ(t))
over small time increments, as in (1). Thereafter we derive the leading terms in the
covariance matrix,%, of the stationary distribution of the approximating Ohrnstein-
Uhlenbeck process with which (X̃(t), Ũ(t), Ỹ(t)) is approximated by, a matrix
defined as the unique solution to the matrix equation B% + %BT = −S.

For a general square matrix A of order i + j + k, write

A =
(
A11 A12 A13
A21 A22 A23
A31 A32 A33

)
,
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where rows and columns have been divided into blocks of size i, j and k, respec-
tively. As mentioned above the local drift matrix is obtained by computing the
conditional infinitesimal moments of the components of the scaled epidemic pro-
cess (e.g. equation 1) which should be expressed in terms of the various dX̃�(t),
dŨ�(t) and dỸ�(t). This turns out to be equivalent to differentiating the set of differ-
ential equations, given in Section 3.1, for the corresponding deterministic system
and evaluate this matrix of partial derivatives at the equilibrium point. The local
drift matrix B is thus given by

B11 =




−βŷ − iµ 0 0 · · ·
iµ −βŷ − iµ 0 · · ·
0 iµ −βŷ − iµ · · ·
...


 , B12 = 0,

B13 = −β




x̂1 x̂1 x̂1 · · ·
x̂2 x̂2 x̂2 · · ·
x̂3 x̂3 x̂3 · · ·
...


 ,

B21 = βŷ




1 1 1 · · ·
0 0 0 · · ·
0 0 0 · · ·
...


 , B22 = j

γ

r




−1 0 0 · · ·
1 −1 0 · · ·
0 1 −1 · · ·
...


 ,

B23 = βx̂




1 1 1 · · ·
0 0 0 · · ·
0 0 0 · · ·
...


 ,

B31 = 0, B32 = j
γ

r




0 · · · 0 0 1
0 · · · 0 0 0
0 · · · 0 0 0
...


 , B33 = kγ




−1 0 0 · · ·
1 −1 0 · · ·
0 1 −1 · · ·
...


 .

The (symmetric) local covariance matrix S, also defined through its submatrices, is
obtained by computing the conditional infinitesimal second moments of the scaled
epidemic process. For the diagonal elements (the variance terms) this is equivalent
to differentiating the system of differential equations of Section 3.1, each with re-
spect to the same coordinate once more, and making all terms of a derivative become
positive – an increase or decrease has the same (positive) effect on the variance.
Concerning the the covariance terms they will be 0 unless a jump between the two
states in question is possible. In the latter case the covariance will be transition rate
between the two states in the deterministic system, but with negative sign because
one of the components increases while the other decreases. For example, the trans-
tion rate between x1 and x2 is iµx1 (an individual in age state 1 jumps into the next
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age state). It follows that S has the following form:

S11 =



µ+βx̂1ŷ + iµx̂1 −iµx̂1 0 0 · · ·

−iµx̂1 βx̂2ŷ + iµ(x̂1 + x̂2) −iµx̂2 0 · · ·
0 −iµx̂2 βx̂3ŷ + iµ(x̂2 + x̂3)−iµx̂3 · · ·
...


 ,

S12 = βŷ




−x̂1 0 0 · · ·
−x̂2 0 0 · · ·
−x̂3 0 0 · · ·
...


 , S13 = 0,

S21 = ST12, S22 = j
γ

r




rβ
jγ
x̂ŷ + û1 −û1 0 0 · · ·
−û1 û1 + û2 −û2 0 · · ·

0 −û2 û2 + û3 −û3 · · ·
...


 ,

S23 = j
γ

r




...

0 0 0 · · ·
0 0 0 · · ·

−ûj 0 0 · · ·


 ,

S31 = ST13 = 0, S32 = ST23 S33 = kγ




j
kr
ûj + ŷ1 −ŷ1 0 0 · · ·
−ŷ1 ŷ1 + ŷ2 −ŷ2 0 · · ·

0 −ŷ2 ŷ2 + ŷ3 −ŷ3 · · ·
...


 .

Remembering that the parameter ε is in general a small number, we expand the
equation B% +%BT = −S in ε. To simplify notation we divide by the time scale
parameter µ. Write

µ−1B = B+/ε + B0,

µ−1S = S0,

% = %+/ε + %0 + ε%− + O(ε2).

Introducing the notation [A,B] = AB + BT AT , we get the following equations:

[B+, %+] = 0, (11)

[B+, %0] = −[B0, %+] (12)

[B+, %−] = −
(
S + [B0, %0]

)
. (13)

The matrix B+ is defined as follows:

B+
11 = 0, B+

12 = 0, B+
13 = 1 − p(i)

1 − p(i)i




−1 −1 −1 · · ·
−p −p −p · · ·
−p2 −p2 −p2 · · ·
...


 ,
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B+
21 = 0, B+

22 = j

r




−1 0 0 · · ·
1 −1 0 · · ·
0 1 −1 · · ·
...


 , B+

23 =




1 1 1 · · ·
0 0 0 · · ·
0 0 0 · · ·
...


 ,

B+
31 = 0, B+

32 = j

r




0 0 · · · 1
0 0 · · · 0
0 0 · · · 0
...


 , B+

33 = k




−1 0 0 · · ·
1 −1 0 · · ·
0 1 −1 · · ·
...


 .

Also, for B0 we have

B0
11 =




−(R − 1 + i) 0 0 · · ·
i −(R − 1 + i) 0 · · ·
0 i −(R − 1 + i) · · ·
...


 , B0

12 = 0, B0
13 = 0,

B0
21 = (R − 1)




1 1 1 · · ·
0 0 0 · · ·
0 0 0 · · ·
...


 , B0

22 = 0, B0
23 = 0,

B0
31 = 0, B0

32 = 0, B0
33 = 0.

The (symmetric) local covariance matrix is given by S = µS0, where

S0
11 = i(1 − p)

R(1 − pi)




R(1−pi)
i(1−p)

+ 1
p

−1 0 0 · · ·
−1 2 −p 0 · · ·
0 −p 2p −p2 · · ·
...


 ,

S0
12 = (R − 1)(1 − p)

R(1 − pi)




−1 0 0 · · ·
−p 0 0 · · ·
−p2 0 0 · · ·
...


 , S0

13 = 0,

S0
21 = (S0

12)
T , S0

22 = R − 1

R




2 −1 0 0 · · ·
−1 2 −1 0 · · ·
0 −1 2 −1 · · ·
...


 ,

S0
23 = R − 1

R




...

0 0 0 · · ·
0 0 0 · · ·

−1 0 0 · · ·


 ,
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S0
31 = (S0

13)
T , S0

32 = (S0
23)

T , S0
33 = R − 1

R




2 −1 0 0 · · ·
−1 2 −1 0 · · ·
0 −1 2 −1 · · ·
...


 .

Define %+ as follows:

%+
11 = σ+

11




1 p p2 · · ·
p p2 p3 · · ·
p2 p3 p4 · · ·
...


 ,

and %+ = 0 otherwise. Then %+ solves (11). We next solve (12). Define

ξ = 1 − pi

(1 + r)
((

k+1
2

)+ k2r
)
(1 − p)

σ+
11.

Then the solution matrix %0 is as follows:

%0
12(1,m) = −rξ

[
i

j

((
k + 1

2

)
+ k2r

)
+ k2rm(R − 1)

j2

]
;

1 ≤ m ≤ j,

%0
12(�,m) = p�−1(R − 1)rξ

[
1

j

((
k + 1

2

)
+ k2r

)
− k2rm

j2

]
;

2 ≤ � ≤ i, 1 ≤ m ≤ j,

%0
13(1,m) = −ξ

[
i

k

((
k + 1

2

)
+ k2r

)
+ (R − 1)(m + kr)

]
;

1 ≤ m ≤ k,

%0
13(�,m) = p�−1(R − 1)ξ

[
k + 1

2
− m

]
;

2 ≤ � ≤ i, 1 ≤ m ≤ k,

%0
22 = (R − 1)(1 − pi)

1 − p

(
kr

j

)2

ξ




1 1 1 · · ·
1 1 1 · · ·
1 1 1 · · ·
...


 ,

%0
23 = (R − 1)(1 − pi)

1 − p

kr

j
ξ




1 1 1 · · ·
1 1 1 · · ·
1 1 1 · · ·
...


 ,

%0
33 = (R − 1)(1 − pi)

1 − p
ξ




1 1 1 · · ·
1 1 1 · · ·
1 1 1 · · ·
...


 .
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(We are only interested in leading terms so %0
11 is irrelevant because %+

11 �= 0.)
To obtain these results was by far the most tedious part of the present work. They
were derived by first using symbol manipulating software to get solutions for some
special cases, then guessing the general formulas, and finally checking the formulas
by inserting them in the equations. Now note that

Var(U + Y ) ≈ N

i+j+k∑
�,m=i+1

σij = N
(R − 1)(1 − pi)2k2 (1 + r) σ+

11((
k+1

2

)+ k2r
)
(1 − p)2

+ O(εN),

thus it remains to find σ+
11. We do this, not by solving (13), but by finding a criterion

for (13) to be solvable. The matrix V given by

V22 = k2




1 1 1 · · ·
1 1 1 · · ·
1 1 1 · · ·
...


 , V23 = V T

32 =




...

· · · 3k 2k k

· · · 3k 2k k

· · · 3k 2k k


 ,

V33 =




...

· · · 9 6 3
· · · 6 4 2
· · · 3 2 1


 ,

and zeros otherwise solves the matrix equation

[(B+)T , V ] = 0. (14)

For arbitrary systems of linear equations we have that Ax = b and AT v = 0 im-
plies b · v = 0. If we regard (13) and (14) as such linear systems and apply this
observation, the relation

−
i+j+k∑
�,m=1

(
S0 + [B0, %0]

)
�m

v�m = 0

is obtained. This criterion boils down to the relation

σ+
11 =

((
k+1

2

)+ k2r
)

R(R−1)k2
(

1−pi

1−p

)2
(
k+2
3k + r +

(
1 + 1

j

)
kr2

k+1 + pi

1−pi

(
1 + 2kr

k+1

)2
k+1
2k

) ,

and the desired equation follows readily. Also this result is the product of clever
guess-work, followed by verification of the guessed formula.
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