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were nonstationary at first positions for the ingroup at P
= 0.01 using the chi-square test in PAUP*. The chi-square
test in PAUP∗ appears to do a good job of identifying
the worst offenders and although crude, is effective for
a large data set when analyzing individual genes. We
certainly anticipate that as more refined tests of station-
arity are implemented (e.g., Foster, 2004), discrimination
of genes that deviate from the stationary condition will
improve. We note finally that although deviations from
stationarity were detected at third positions, we are not
suggesting that all misleading base compositional signal
is at third positions. Since these nucleotides are linked as
codons, we might expect that strong deviations at third
positions would influence first and second positions of
codons.

Broadly speaking, accurate phylogenetic trees can be
recovered from correctly aligned sequences when the in-
ference model is consistent with the process that gave
rise to the data. When processes are stationary over lin-
eages and time, relatively straightforward models can be
designed to yield accurate inferences, even from short se-
quences (Steel and Penny, 2000). When processes differ
across or within lineages, models must explicitly accom-
modate the nonstationarity involved. This is generally
not straightforward, and even if it could be done, would
require many more parameters and associated error
terms (but see Foster, 2004). As such, at a given data set
size, stationary sequences will prove to be more effective
for recovering phylogeny. Stationary sequences will be
less prone to the grouping of taxa with convergent base
compositions. Of course, when taxa share an atypical
base composition in a gene sequence because of shared
history, nonstationary sequences may outperform sta-
tionary sequences in recovering that branch when us-
ing models that assume stationarity. Such instances are
cases of obtaining the right answer for the wrong rea-
son (e.g. Swofford et al. 2001) and are a poor argument
for use. The criterion of stationarity should prove useful
in selecting genes for phylogenetic analysis from com-
pletely sequenced genomes, and to the extent that genes
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Rates of evolution often tend to vary between lin-
eages in a phylogenetic tree, implying that the molec-
ular clock assumption is not valid. In this article,
we are therefore concerned with estimation of diver-
gence times without assuming a constant molecular
clock, where inference is based on DNA (or amino
acid or protein) sequences from the species of interest.

that tend to remain stationary can be identified, will be
useful for de novo sequencing studies. In general, avoid-
ance of genes with strong deviations from base compo-
sitional equilibrium should prove to be a useful strategy
for efficient recovery of accurate phylogenetic estimates
with markedly fewer genes.
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“Time” could here either be relative time, i.e., all di-
vergence times are relative to the unknown age of the
root of the tree, or absolute time if some fossil dat-
ing(s) relating the relative times to absolute time are
available. Here we focus on relative times, but in either
case such a tree is ultrametric and will be denoted the
time-tree.
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By a molecular clock (denoted “clock” below) we mean
that the average (or mean) substitution rate at a given
site, and given the present nucleotide, is the same in
all parts of the phylogenetic tree, i.e., during the whole
evolution and for all species. On the other hand, the
average substitution rate is allowed to differ (system-
atically and/or randomly) between different sites and it
may also depend on the present state of the nucleotide
without interfering with the clock-assumption. With this
definition of a molecular clock the models of, e.g., Jukes
and Cantor (1969), Felsenstein and Churchill (1996), Yang
and Rannala (1997), and Rogers (2001), all obey the clock-
assumption. Tests of the clock-assumption have been
derived by several authors (e.g., Langley and Fitch, 1974;
Britten, 1986; Li, 1997; Muse, 2000; Britton et al., 2002),
and when applied to data, the clock-assumption is al-
most always rejected.

There are several general approaches for estimating
time-trees without assuming a clock (see also Sanderson,
2002). One approach involves pruning taxa that depart
from a tree-wide mutation rate (e.g., Takezaki et al., 1995).
The local molecular clock method divides the tree into
distinct parts assuming a constant rate in each part (e.g.,
Rambaut and Bromham, 1998). Sanderson (1997) adopts
a nonparametric approach that aims at minimizing a cer-
tain quadratic function of the rate changes between ad-
jacent edges, thus keeping rate changes small. In Sander-
son (2002), he explores a semiparametric approach in
which he penalizes a model likelihood according to how
much the rates change over the tree. By specifying mod-
els for species evolution, substitutions, and rate changes,
as well as priors for model parameters, a Bayesian frame-
work can be used and an approximation of the poste-
rior distribution of the time-tree and other parameters
of interest can be obtained using Markov chain Monte
Carlo methods (e.g., Thorne et al., 1998; Kishino et al.,
2001).

The main conclusion from the present article is that
the precision in the divergence times estimates cannot
become arbitrary high by collecting sufficiently long
DNA sequences for a fixed number of species. In other
words, without the clock assumption, no method, like-
lihood based, Bayesian, or other, for estimating the

FIGURE 1. The three types of trees. The time-tree, which is ultrametric, is a result of the speciation process. The b-tree has time multiplied by
the substitution rates in each lineage and is no longer ultrametric. The observed tree is a random perturbation of the b-tree where the number
of substitutions yi is a random outcome having bi as its mean.

time-tree can be consistent as the sequence lengths are
increased. To keep things simple we illustrate our find-
ings on a Jukes-Cantor type model of sequence evolution
(Jukes and Cantor, 1969) but where different edges in the
tree may have different substitution rates. A commonly
used edge- or branch-length unit for this model is the
“expected number of substitutions” along the branches.
A tree measured in this length unit is from now on de-
noted the b-tree. Felsenstein (1981), for example, does not
assume a clock but concentrates on estimating the b-tree,
which can be estimated consistently.

Model, Data, and Notation

Let the data X denote the k × n matrix of aligned
sequences of length n from k species. Let τ denote
a rooted binary tree topology of the k species and
label the 2k − 2 edges 1, . . . , 2k − 2. Further, let t(τ ) =
(t(τ )

1 , t(τ )
2 , . . . , t(τ )

2k−2) denote the vector of relative time
durations of the edges of the tree, let r(τ ) denote the corre-
sponding vector of relative substitution rates, and define
b(τ ) by b(τ ) = r(τ ) · t(τ ) = (r (τ )

1 t(τ )
1 , . . . , r (τ )

2k−2t(τ )
2k−2), the vec-

tor of expected number of substitutions. The vector t(τ )

of relative time durations is normalized by defining the
aggregated time from the root to the terminals/species
to equal 1. (There are several other constraints and, in
fact, only k − 2 “free” time durations. For example, the
two time durations from a final speciation to present time
must be identical.) The labeling of the edges depends on
the specific topology τ , which is shown explicitly. From
now on we will let the time-tree be specified by (τ, t(τ )),
the topology, and the time durations of the edges, and the
b-tree by (τ, b(τ )), the topology, and the expected number
of substitutions along the branches. Neither of these trees
are ever observed: even if we observed the substitutions
continuously over a set of sites, the number of substitu-
tions on the observed set of sites that occurred along the
different edges would make up a randomly perturbed
version of the b-tree. The different trees are illustrated
in Figure 1 where the last tree is denoted “Observed
tree.”

We illustrate our analysis with the same model for
evolution (i.e., time-tree) and variation of substitution
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rates over edges as in Thorne et al. (1998). For sequence
evolution on the time-tree, also given the substitution
rates, we use the Jukes-Cantor model in our illustration.
More specifically, the splitting times of the time-tree are
modeled by a Yule process that is evolved up until the
time just before the first splitting-time, resulting in one
more species than in the data set of interest. In Figure 1,
for example, each branch splits into two at constant rate
and independently between branches as time evolves,
i.e., as one moves downward in the time-tree. In this
particular tree, only one split occurred (the next occurred
just below the leaves). Given the time-tree, the substitu-
tion rates vary between edges, as in Thorne et al. (1998),
as follows. The substitution rate rd of a daughter edge
of length td with mother edge having rate rm and time
duration tm is an observation of a random variable Rd
with distribution ln(Rd ) ∼ N(ln(rm), ν(tm + td )/2), where
the parameter ν reflects the degree of correlation between
adjacent edges. For example, the logarithm of the rate
r3 in Figure 1 is drawn from a normal distribution with
mean log(r2) and variance ν(t2 + t3)/2. Daughter edges
have independent rates conditional on the mother rate.
Additional to this, the two rates for the edges stemming
from the root have to be defined. Assume that one of them
is exponentially distributed, with mean equal to some
plausible number (e.g., 0.01 substitutions per site per unit
time) and the other lognormal as for the remaining edges,
but now relating to the sister edge. Finally, given the
time-tree and the substitution rates of all edges, substi-
tutions are modeled using the Jukes-Cantor model along
each edge. This means that substitutions occur randomly,
independent, and identically distributed between sites,
with a constant mean rate that equals the substitution
rate of the edge, and each of the remaining nucleotides is
equally likely after the substitution. Because sites as well
as nucleotides are interchangeable under this model, it
is sufficient to keep track of the total number of substitu-
tions along each edge. Further, given the time duration
t of an edge and its per-site substitution rate r , the total
number of substitutions along the edge will be an out-
come of a Poisson random variable with mean nrt (n is
the sequence length).

This model for speciation, substitution-rate evolution,
and sequence evolution only has one parameter ν ≥ 0, a
measure of how correlated the substitution rates are: the
smaller ν the more correlated are the substitution rates.
The case ν = 0 is special: that all variances are 0 implying
that all rates will be identical and the clock-assumption
is fulfilled. Our results in the next section apply to more
general models of species evolution, evolution of sub-
stitution rates over edges, and evolution of nucleotide
sequences. The crucial assumption for our result to hold
true is that the same evolution of (relative) substitution
rates apply to the whole sequence meaning that a high
substitution rate at a given lineage is reflected in high
substitution rates over the whole genome in that lineage.
The absolute substitution rate is allowed to vary, ran-
domly and/or systematically, over the genome, but this
variation should be the same over the whole phyloge-
netic tree.

Probability Distribution and Likelihood

We want to make inference about the time-tree
implying that we should study the probability distribu-
tion of the species sequences X as a function of the rooted
tree topology, time durations, and model parameters.
This distribution can, at least in principle, be obtained
by integrating over all possible substitution rates r(τ ).
If f (·) denotes a generic probability distribution we
have

f (X | τ, t(τ ), ν) =
∫

f (X | τ, t(τ ), ν, r(τ )) f (r(τ ) | τ, t(τ ), ν)dr(τ )

=
∫

f (X | τ, r(τ ) · t(τ )) f (r(τ ) | τ, t(τ ), ν)dr(τ ).

(1)

In the last row of (1) ν has been removed and t(τ ) and
r(τ ) have been replaced by the product r(τ ) · t(τ ) in the
conditional argument for X. This can be done since,
by the definition of the model, the distribution of X, given
the topology τ , depends only on ν, r(τ ), and t(τ ) through
the product r(τ ) · t(τ ) = b(τ ), the expected number of sub-
stitutions along the different branches.

The two distributions appearing in Equation 1 can be
computed numerically implying that also f (X| τ, t(τ ), ν)
can, at least in principle. The factor f (r(τ )| τ, t(τ ), ν) splits
up into a product of log-normal densities, one factor for
each rate r (τ )

i , and f (X| τ, r(τ ) · t(τ )) can be computed by
summing over all possible internal node sequences, the
distribution being explicit once the internal sequences
(including the root) are also specified.

The likelihood function for the data is simply the
probability distribution but viewed as a function of the
parameters rather than of the data:

L X(τ, t(τ ), ν) = f (X | τ, t(τ ), ν)

=
∫

f (r(τ ) | τ, t(τ ), ν) f (X | τ, r(τ ) · t(τ ))dr(τ ).

(2)

This is the function to make (likelihood-based) inference
from. For example, the maximum likelihood estimates
(τ̂ , t̂(τ̂ ), ν̂) is the set of parameter values that maximize the
likelihood function, and these estimates can be obtained
by numerically maximizing Equation 2 with respect to
τ , t(τ ) and ν.

RESULTS

The main result of the present article is that rela-
tive divergence times cannot be estimated consistently
by increasing the analyzed sequence length n from
the k species of interest, when the clock-assumption is
not valid. More specifically, even if the adopted model
describes reality perfectly and the phylogeny τ as well
as ν are known (a best case scenario), one cannot esti-
mate the relative divergence times t(τ ) with arbitrary high
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precision by collecting sufficiently long DNA sequences
from the species of interest. This negative conclusion is
true whatever estimator is used, nonparametric, likeli-
hood based, Bayesian, or other. The result is also true
if fossil datings are available for one or several of the
internal nodes and divergence times are estimated using
absolute time, unless of course there are fossil datings for
all internal nodes when there is nothing to estimate.

The conclusion follows from the observation that
distribution of the data (X) only depend on the time
and rate vectors t(τ ) and r(τ ) through their product
vector b(τ ) = r(τ ) · t(τ ). As a consequence, only b(τ ) can
be estimated consistently, and not t(τ ) and r(τ ) sepa-
rately. We now explain this fact using Equation 2 by
studying what happens with the integral factors to
the right in Equation 2 for different r(τ ) as the se-
quences get longer (i.e., n increases) for the k species.
The first factor, f (r(τ )| τ, t(τ ), ν) is unaffected by n and
is continuous in r(τ ). The second factor, the probability
function f (X| τ, r(τ ) · t(τ )) viewed as a function of r(τ ),
becomes more and more peaked as n increases and the
maximum is obtained for r(τ ) such that r(τ ) · t(τ ) = b̂(τ )

where b̂(τ ) is the maximum likelihood estimator for
b(τ ). More explicitly, the maximum is obtained for
r(τ ) = b̂(τ )/t(τ ) = (b(τ )

1 /t(τ )
1 , . . . , b(τ )

2k−2/t(τ )
2k−2). As n increases

the contribution from such r(τ ) to the integral expression
making up the likelihood Equation 2 becomes more and
more dominating. It hence follows that

L X(τ, t(τ ), ν) ≈ cn fr(τ ) (b̂(τ )/t(τ ) | τ, t(τ ), ν) f (X | τ, b̂(τ )), (3)

for some constant cn, where we made it explicit that the
first function on the right hand side is the probability
density for r(τ ) evaluated in b̂(τ )/t(τ ). As a function of
t(τ ), the constant cn as well as f (X | τ, b̂(τ )) in Equation
3 are constant and hence irrelevant for inference on t(τ ).
The middle factor on the right hand side of Equation 3
clearly depends on t(τ ), but the maximal value, having
argument r̂(τ ) say, will not go to infinity as n does. From
the model for substitution rates, the density value for
other arguments r(τ ), or equivalently b̂(τ )/t(τ ), are compa-
rable in size and will not be negligible as n goes to infinity
(see Fig. 3 for an illustration from the simulation study).

A more intuitive explanation to why the divergence
times cannot be estimated consistently as the sequence
length increases is that each of the 2k − 2 substitution
rates is generated only once: the edge-specific substitu-
tion rate for every site along the edge. Consistency, on
the other hand, relies on the fact that more and more
random quantities are observed, and that the average
of these many random quantities becomes less and less
random due to the law of large numbers. For example,
the average number of substitutions among the different
sites, along an edge having substitution rate r and time
duration t will tend to the constant b = rt even though
each such, per-site, number of substitutions is an out-
come of a Poisson random variable (with mean b). Con-
sequently the parameter b(τ ) = r(τ ) · t(τ ) is possible to es-
timate consistently (see Fig. 4 for an illustration). This

means that the b-tree can be estimated consistently by
collecting longer and longer sequences. However, given
the b-tree, data contain no additional information about
the time-tree, and the b-tree does not allow the time-tree
to be estimated without uncertainty.

How the maximum likelihood (ML) estimator of a spe-
cific edge time-length in a phylogenetic tree relates to the
true time-length depends on the substitution rates of the
edge and the surrounding edges. Typically a low sub-
stitution rate of an edge implies that the ML estimate
of the time-length of this edge is smaller than its true
time-length (cf. next section). However, because a sub-
stitution rate can either be large or small, there is no sys-
tematic bias in the estimators for the divergence times.
This means that the divergence times can be estimated in
an approximately unbiased way albeit not consistently.

The conclusion that divergence times cannot be esti-
mated consistently holds true also if a Bayesian view-
point is adopted. In the Bayesian framework this would
be formulated by saying that the posterior distribution of
the divergence times does not converge to a point mass at
the true divergence times, as longer and longer sequences
are collected. In the Bayesian framework, a prior distri-
bution π (τ, t(τ ), ν) for the parameters has to be specified
additional to the evolutionary model. The knowledge
about the parameters, after the data X has been col-
lected, is then expressed in the posterior distribution
π (τ, t(τ ), ν| X). Using Bayes’ formula the posterior
distribution and prior distribution and likelihood are
related by

π (τ, t(τ ), ν | X) ∝ π (τ, t(τ ), ν)L X(τ, t(τ ), ν). (4)

Because the likelihood will not get infinitely peaked
around the true divergence times, neither will the poste-
rior distribution. A consequence of this is that the choice
of prior distribution will have a big impact irrespective
of how long sequences are collected. This is in contrast
to the usual situation where the choice of prior becomes
less important as more data is collected.

Simulation Study

We now illustrate our results using simulated data
from a rooted 3-taxon tree. A rooted 3-taxon tree was cho-
sen in order to keep numerical problems to a minimum.
The internal node was chosen to have equal time-length
(= 0.5) to the root as to the terminals (see Fig. 2). Substi-
tution edge-rates were generated once according to the
model of Thorne et al. (1998) with ν = 0.01 (however, be-
cause time is only given in relative terms, the substitution
rate r1 was set to equal 0.01 rather being generated from
the exponential distribution). All rates and their distri-
butions are given in Table 1 and the resulting b-tree is
shown in Figure 2.

We treat the simpler inference problem where the
actual number of substitutions in each site along each
edge is observed, which implies that also multiple sub-
stitutions are observed, and also that the rooted tree
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FIGURE 2. The time-tree and b-tree used in the simulation study. The substitution rates are taken from Table 1. For example, b2 = r2t2 =
0.0098 × 0.5 = 0.0049. The changes between the time-tree and the b-tree are exaggerated in the figure.

topology τ and the variance parameter ν = 0.01 in the
rate variation model are assumed known. Under these
assumptions, the number of substitutions from different
sites can be aggregated without loss of information, so
if we let y = (y1, . . . , y4) denote the total number of sub-
stitutions along the four different edges, the probability
distribution is given by

f (y | τ, r(τ ) · t(τ )) =
4∏

i=1

(nri ti )yi e−nri ti

yi
=

4∏
i=1

(nbi )yi e−nbi

yi
,(5)

a product of Poisson probabilities. The likelihood for this
type of data is given by

Ly(τ, t(τ ), ν) =
∫

f (r(τ ) | τ, t(τ ), ν) f (y | τ, r(τ ) · t(τ ))dr(τ ). (6)

Because τ and ν are assumed known and the time from
the root to the leaves is defined to equal 1, there is only
one remaining parameter: the time t2 from the root to the
internal node. This is true since t1 = 1 and t3 = 1 − t2 =
t4 (see Fig. 2). The likelihood in Equation 5 hence only
depends on the parameter t2 so we drop the 2-index and
write Ly(t).

“Data” was generated for three different sequence
lengths: n = 1000, n = 10,000, and n = 100,000. For each
n the data (y1, . . . , y4), the total number of substitutions
along each edge, was simply set to equal the correspond-
ing expected values, rounded to the nearest integer.
So for example edge 2, with time length t2 = 0.5 and
substitution rate r2 = 0.0098, will for n = 10,000 have
y2 = nb2 = nr2t2 = 49 observed substitutions (within the
10,000 sites) as input data.

For each of the three different sequence lengths, Ly(t)
was computed for t = 0.01, 0.02, . . . , 0.99. In each such

TABLE 1. Substitution rates used in simulation study. The ti s are
taken from the time-tree of Figure 2, and ν = 0.01.

Edge Rate distribution Obtained numerical value

1 R1 ∼ Exp(100) r1 = 0.0100
2 log(R2) ∼ N(log(r1), ν(t1 + t2)/2) r2 = 0.0098
3 log(R3) ∼ N(log(r2), ν(t2 + t3)/2) r3 = 0.0120
4 log(R4) ∼ N(log(r2), ν(t2 + t4)/2) r4 = 0.0108

grid point t the likelihood was computed numerically
by Monte Carlo simulation. This was done by generating
10,000 independent rate vectors r = (r1, . . . , r4) according
to the model and given the time-tree, and for each such
vector the probability function f (y1, . . . , y4| r · t) was
computed for the observed data (we associate t = t2 with
t = (1, t, 1 − t, 1 − t)). Taking the mean of these probabil-
ity functions gives a good approximation of

Ly(t) = f (y1, . . . , y4 | t) =
∫

f (y1, . . . , y4| r · t) f (r| t)dr.

In Figure 3, the likelihood plots are shown for the
sequence lenghts n = 1000, n = 10,000, and n = 100,000
(in all figures the y-index is dropped in the likelihood
functions). We have also plotted the likelihood function
for n = ∞ where we used Equation 3, which is an equal-
ity in the limit. Because the first three figures are obtained
using Monte Carlo simulations, they are plotted using
dashed lines as opposed to the exact likelihood of the
last plot. Simulations and figures were obtained using
Matlab version 6.

In Figure 3 it is seen that, as the sequence length n in-
creases, the likelihood gets more peaked to start off but
that this concentration then stops. Even for n = ∞ the
likelihood is not negligible for values of t in the range
(0.42, 0.52) say. This illustrates that the divergence time
t (= t2) cannot be estimated consistently. The maximum
likelihood estimate is t̂ ≈ 0.47 for all data sets (i.e., se-
quence lengths). Note that this value differs from the true
value t = 0.5. The reason for this difference is that, by
chance, the corresponding substitution rate r2 = 0.0098
was relatively small compared to the other substitu-
tion rates. This makes the corresponding branch length
b2 = r2t2 = 0.0049 relatively smaller (compare the edges
in the time-tree and the b-tree in Fig. 2). And, having a
small branch length b implies that the estimated t-value
will tend to be smaller than its true value.

As a comparison, we also show plots of the likelihood
Ly(b) for the corresponding branch length b = b2 for the
same data sets (see Fig. 4). If these plots are compared
with the plots of Ly(t) in Figure 3 it is seen that Ly(b)
concentrates at a higher rate as n increases, and also that,
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FIGURE 3. Likelihood plots of t for the simulation example, for different values of the sequence length n. The first three plots are obtained
using Monte Carlo simulations and the last plot is plotted with the limiting likelihood. It is seen that information about the relative time t
increases with n but the amount of information is limited making consistent estimation impossible.

in the limit as n tends to infinity, all mass concentrates at
the true value b2 = 0.0049. This illustrates that the branch
lengths b can be estimated consistently, whereas the rel-
ative times t cannot.

We stress that the substitution rates (r1, . . . , r4) are only
generated once from the model. If a new set of substitu-
tion rates were generated we would get a different b-tree.
The likelihood for t = t2 would then look somewhat dif-
ferent, but it would still have non-negligible likelihood
values for a range of t-values as the sequence length n
grew large. The likelihood for b = b2, on the other hand,
would just like before tend to a point mass, but now
around the new true value of b2 = r2t2 = 0.5r2.

DISCUSSION

This article shows that it is impossible to estimate
the relative divergence times of a phylogenetic tree con-
sistently, by taking longer and longer sequences for a
fixed set of species, without assuming a constant molec-
ular clock. The treated model contains several unrealistic
simplifications. First, the Jukes-Cantor type substitution

model is oversimplistic. However, the same qualitative
result would still hold if a more general substitution rate
model was used. Secondly, we assume the same substi-
tution rate for each site. Relaxing this assumption to let
the magnitude of the substitution rates vary over the
sequence in a systematic and/or random way would
not alter the result either. The crucial assumption for the
result to remain true is that the (relative) evolution of
the substitution rates over the tree is the same for differ-
ent sites. We focus on maximum likelihood estimation of
divergence times. However, it follows that no estimator
for the divergence times can be consistent by increasing
sequence length only. This holds also when adopting the
Bayesian framework in which the posterior distribution
reflects the uncertainty of the divergence times. Given
that the prior distribution is correct—and its impact is
non-negligible even when long sequences are collected—
the posterior distribution summarizes the information
about the divergence times correctly. However, the dis-
tribution does not converge to a point mass at the true
set of divergence times, as one would hope, when longer
sequences are collected.
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FIGURE 4. Likelihood plots of b for the simulation example, for different values of the sequence length n. The amount of information increases
to infinity with n making consistent estimation possible.

Although difficulties in estimating divergence times
when substitution rates vary over the tree have been
reported elsewhere (e.g., Sanderson, personal communi-
cation, and Thorne and Kishino, 2002) our result seems
not to have been shown previously. Two natural ques-
tions arise from this rather negative result: (1). Can esti-
mation still be worthwhile under the present situation?
and (2). Are there other models or limiting scenarios
when divergence times can be estimated consistently
even if the clock-assumption is not valid? Fortunately,
the answer is yes to both of these questions as we now
explain.

We start with the first question. For a specific problem
there is usually a fixed amount of data available on which
to base inference, and then the asymptotic scenario is
less important. In particular, data do contain information
about the divergence times, and uncertainty measures,
such as confidence intervals or Bayesian credibility in-
tervals, of the estimated divergence times can describe
this amount of information correctly. In other words, the
divergence times are not unidentifiable (see, for exam-
ple, Rannala, 2002, for a discussion on unidentifiable pa-
rameters in overparametrized models). The lack of con-

sistency means that the amount of information is limited
even as the sequence length increases (see Fig. 3), the rea-
son being that divergence times are partially confounded
with the substitution rates. The fact that data contain
information about the divergence times also implies that
the clock-assumption can be tested, and the power of this
test can be made arbitrarily high by collecting sufficiently
long sequences (see Langley and Fitch, 1974, and other
references mentioned in the introduction for tests on the
clock-assumption).

We now move to the second question concerning other
models and/or limiting situations enabling consistent
estimation without relying on the clock-assumption. Let
us first look at alternative models for which consistent
estimation is feasible. Recall that the reason for not ob-
taining consistency was that the (random) substitution
rates were only generated once for each edge in the tree.
If instead the variation of substitution rates over lineages
is believed to differ for different groups of sites, for exam-
ple, between genes, then this should make consistent es-
timation of the divergence times feasible. For example, if
the variation of substitution rates over edges for a specific
gene is modeled as in the present model, but assuming



2005 POINTS OF VIEW 507

that substitution rate variation between different genes
are completely independent, then it is possible to esti-
mate divergence times consistently by collecting DNA
sequences from more and more genes (cf. Thorne and
Kishino, 2002, who also consider uncertainty in fossil in-
formation). The same result should hold true even if there
is some correlation between substitution rates of differ-
ent genes, with the effect that a high substitution rate for
one gene of a specific lineage makes high substitution
rates for other genes on the same lineage somewhat more
likely. Modeling such correlation can be done in different
ways (see for example, Thorne and Kishino [2002]), and
how correlated substitution rates can be, while still al-
lowing consistent estimation, remains an open problem.

We now return to our original class of models for which
the (relative) rate variation over edges was the same for
all sites. Even under this class of models there is hope for
consistent estimation of the divergence times, but under
different asymptotic situations. In particular, if the num-
ber of fossil dates is increased this will improve precision
in divergence time estimates if used correctly. (How to
use several fossil datings, and to admit for uncertainty
in the dating, when estimating divergence times is in
itself important problems not treated in the present arti-
cle (see, for example, Sanderson [1997] and Thorne and
Kishino [2002]). However, this can on its own only lead
to consistent estimation if fossil dates are available for
all interior nodes of the tree, but then the inference prob-
lem is trivial. The more realistic and promising situa-
tion is where more and more fossil dates are collected,
but in a tree containing more and more taxa. In other
words, even if one is primarily interested in a given set
of taxa, it can be worthwhile to collect longer sequences
from these taxa but also from closely related taxa, espe-
cially if also the number of fossil dates increases. Exactly
what the criteria are to allow for consistent estimation,
and what are the optimal rates at which taxa, sequence
length, and fossil dates should grow at, remain open
and important questions. The underlying explanation
why this may lead to consistent estimation is that, when
the number of taxa increase, there will still not be com-
plete information about each substitution rate in the tree,
but the separate edge lengths will become shorter by
including more and more closely related species, so the
influence of each substitution rate will decrease, enabling
consistent estimation of a sequence of edges in the larger
tree, corresponding to one edge in the original tree of
interest.
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