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Section 2: The Project proposal

Aspects of the asymptotic theory of linear ordinary differential equations

I. State-of-the-art and objectives

Investigation of asymptotics of the spectrum for all kinds of spectral problems is a major ingredi-
ent in numerous articles in pure and applied mathematics, mathematical and theoretical physics as
well as many other areas of natural sciences. At the same time results on the asymptotic behavior of
the corresponding sequences of eigenfunctions are incomparably fewer and scattered sporadically in
the literature starting with the pioneering Ph.D. thesis of J.D.Birkhoff from 1913. In several recent
papers I initiated a further development of this field and discovered its extremely rich connections
and plausible applications to several classical branches of mathematics.

Goal: The main purpose of this proposal is to pursue a systematic investigation of the asymptotic
distributions of the zero loci of solutions and eigenfunctions to linear ODEs with polynomial coef-
ficients depending on parameter(s).

Objectives:

for the second order linear differential equations:

1) generalize the famous Evgrafov-Fedoryuk-Sibuya’s WKB-theory for solutions of the Schrodinger
equation with a polynomial potential to the case of a rational potential and clarify the role of qua-
dratic differentials in this theory;

2) obtain upper bounds for the number of finite singular trajectories for rational quadratic dif-
ferentials in order to get the upper bound for the number of spectral families for the corresponding
Schrodinger equations;

3) accomplish the study of the (weak) asymptotics for arbitrary (weakly) converging sequences
of Jacobi polynomials;

for higher order linear differential equations:

4) accomplish the description of the asymptotic root distributions for the sequence of the eigen-
polynomials of an arbitrary exactly solvable operator and apply it to obtain further results in the
classical Bochner-Krall problem in orthogonal polynomials;

5) find connections of the latter results with the structure of Stokes lines for linear differential
equations of higher order;

6) obtain general asymptotic results for Heine-Stieltjes resp. Van Vleck polynomials in the gen-
eral Heine-Stieltjes spectral problem for linear differential equations of arbitrary order including a
description of the support of the asymptotic measures;

7) develop local and global theory of meromorphic differentials of order greater than 2 including
the appropriate notion of a Jenkins-Strebel differential on a compact Riemann surface;

8) characterize algebraic functions in CP! which can be represented almost everywhere as the
Cauchy transform of real/positive measures.

Below I briefly describe the state-of-the-art situation for the above subprojects.
Operators of second order:

1-2. Evgrafov-Fedoryuk-Sibuya WKB-theory and quadratic differentials. It is a well-known
fact in mathematics and quantum mechanics that for practically all linear differential operators their
spectrum and eigenfunctions can not be found explicitly. Still for a wide class of operators one
can obtain a rather detailed asymptotic information about the location of their spectrum and the
asymptotic distribution of the zeros of their eigenfunctions. This topic is closely related to the
classical Nevanlinna theory, the so-called oscillation theory in complex domain, and the WKB-
theory, see e.g., [EF], [Fel, [Hil], [Sib], [Wal], [Wa2] and a more recent [La].
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The classical WKB-method (Wentzel-Kramers-Brillouin) was developed on the physics level of
rigorousness in the 1920’s for the purpose of obtaining approximate solutions of linear second order
differential equations and, in particular, of the Schrodinger equation. Similar technique was even
earlier suggested by Liouville and Birkhoff. For example, in the simplest case of the Schrédinger
equation

(1) —y + AP(2)y =0

with a polynomial potential P(z) and spectal parameter \ the main idea of the WKB-method is to
compare an appropriate fundamental solution of (1) and its approximate solutions given by:

1 ei)‘fzzo P(t)dt
vV P(2)

One has to show that for large A in appropriate domains in C the functions (2) give the leading
term of a fundamental solution of (1) which helps, in particular, to get asymptotic information about
the spectrum. Although the idea is very basic nevertheless mathematically rigorous global in C
WKB-theory for (1) was developed only in the late 60’s by Y. Sibuya in USA and M. Evgrafov-
M. Fedoryuk in Russia. They studied non-standard spectral problems looking for the eigenfunc-
tions exponentially decreasing in a pair of non-neighboring Stokes sectors of P(z). Recall that
for P(2) = agz® + a12% ' 4 ... + ag, ag # 0 of degree d one defines its (open) Stokes sectors
S;,j =0,...,d + 1 as given by the condition:
argz — — — ——| <

Sj:{Z: d d+2| S d+2

where ¢g = argag. This set-up includes as a special case the standard boundary value problem for
anharmonic oscillators with a real potential and eigenfunctions belonging to L?(R). M. Fedoryuk
was apparently the first one to observe the role of the quadratic differential ¥ = P(z)dz? in this
context. He explained that the maximal domains in which that WKB-method works are the so-
called canonical domains in C obtained as certain unions of the subdomains into which C is cut by
the Stokes lines of W. (For the formal definition of the (global) Stokes line consult [Wal] or [Fe].
Detailed information about quadratic differentials can be found in [Str].)

As Irecently observed in [ShQ] there are much deeper connections between the original Schrodinger
equation and the corresponding differential ¥. In particular, each short geodesic of the canonical
singular metric on C induced by V. i.e. a geodesic connecting the roots of P(z) leads to an infinite
series of eigenvalues of the corresponding boundary value problem. Moreover, certain subset of the
Stokes line of W serves as the accumulation curve of the zeros of appropriately scaled eigenfunc-
tions, see [GES2].

In mathematical physics the case of polynomial potentials (i.e., anharmonic oscillators) is consid-
ered as an important mathematical model but hardly having any relevance in physics. On the other
hand, allowing potentials to be rational functions opens many more possibilities but also creates
substantial difficulties since solutions of such equations are no longer univalent functions. In case
of a rational potential R(z) a natural type of boundary-value problem to consider are the so-called
2-point problems when one looks for the values of the spectral parameter for which there exists a so-
lution regular at two given poles of R(z). No appropriate version of the global Evgrafov-Fedoryuk
theory for rational potentials exists at present although one can easy guess that the quadratic differ-
ential R(z)dz? plays an important role as well. Especially, the behavior of its geodesics which can
be incomparably more complicated than in the polynomial case is very essential in understanding
of the spectral properties of Schrodinger equations under consideration. In particular, the following
conjecture seems to be highly plausible.

2)
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Conjecture 1. Each short geodesic of a rational quadratic differential R(z)dz> (i.e. connecting two
singular points of R(z)) corresponds to an infinite sequence of eigenvalues for the 2-point boundary
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value problem of the Schrédinger equation —y" + AR(z)y = 0. This sequence of eigenvalues
approaches a certain ray in C whose slope is determined by the considered geodesics.

Recently A.Eremenko and A.Gabrielov [EG2] made an essential progress in the understanding
of the so-called spectral discriminant of Schrodinger equations with polynomial potentials. The
spectral discriminant is a real hypersurface in the space of polynomial potentials of a given degree
for which the corresponding Schrodinger equation has a solution decreasing in at least two distinct
Stokes sectors. One can hope to obtain at least partially similar information in the case of rational
potentials due to the fact that one can deform a rational potential into a polynomial one by moving
its poles to infinity.

The latter conjecture obviously motivates project 2. Notice that in [ShQ] I found sharp upper and
lower bounds for the number of short geodesics of P(z)dz? in the case of polynomial potentials
P(z). Namely, the following result holds.

Theorem 1. For any polynomial P(z) of degree d the number of short geodesics of the quadratic
differential P(z)dz* can take an arbitrary integer value in between d — 1 and (g)

On the other hand, at the moment I do not have even a reasonably motivated conjecture what
upper and lower bounds might appear in the case of rational R(z).

3. Asymptotics of sequences of Jacobi polynomials. The study of the (weak) asymptotics of
sequences (of the root-counting measures) of orthogonal polynomials goes back to the fundamental
treatise [Sz]. (Recall that for a polynomial of degree n its root-counting measure is a discrete
probability measure having mass 1/n at each of its roots.) Recently serious progress in the case of
sequences of Jacobi polynomials was obtained in e.g., [KuMF] and [KuMFO] using the technique
of the Riemann-Hilbert problem developed by P. Deift and his collaborators. A number of other
authors were studying similar problems for e.g., hypergeometric, Laguerre, Bessel polynomials.
Practically all these papers are dealing with the case of real but non-standard parameters for which
the corresponding polynomials are no longer orthogonal w.r.t. the standard weights. It is well-
known that the study of the (weak) asymptotics of sequences of classical orthogonal polynomials
is closely related to the study of the asymptotic behavior of solutions to the Gauss hypergeometric
equation and, more generally, Riemann second order equation depending on a spectral parameter
A in a non-standard way. More exactly, to obtain interesting asymptotic results one should instead
of the usual spectral problem consider the so-called homogeneous spectral problem where the term
with the first derivative is multiplied by A and the dependent variable is multiplied by A?. In such
approach there is no need to keep additional parameters real. Using potential theory one can also
observe that if the weak convergence takes place the accumulation set for the zeros of the considered
sequence of Jacobi (or similar) polynomials will coincide with some horizontal trajectories of a
quadratic differential of the form P(z)dz2/Q?(z) where P(z) and Q(z) are quadratic and coprime
polynomials. To my surprise is turned out that neither the homogenized spectral problem for the
classical hypergeometric Gauss equation nor the detailed study of the behavior of trajectories of the
latter family of (quite simple) quadratic differentials were ever carried out although this will solve
the problem of the (weak) asymptotics for sequences of Jacobi and hypergeometric polynomials in
complete generality.

Operators of higher order:

4. Exactly solvable operators and Bochner-Krall problem. Much reacher and less studied field
opens if one considers the asymptotics of the eigenfunctions for linear differential equations of order
exceeding 2. A model case of this situation is the case of arbitrary exactly solvable differential
operators. Recall that an operator T' = Z?:o Qi(z)% is called exactly solvable if all Q;(z) are
polynomials of degree at most 7 and there exists at least one 7o for which deg );, = 79. One can
easily show that any exactly solvable 71" has a unique eigenpolynomial in each sufficiently large

degree and one can pose the following natural question.

Problem 1. Describe the limiting set (measure) to which the sequence of zero loci (root-counting
measures) of this sequence of eigenpolynomials converges?
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FIGURE 1. Small dots shown the roots of the eigenpolynomial of degree 50 for the

6 . .
operator 1" = Qg (z)% where QQs(z) is a sextic whose roots are the larger dots.
(Numbers on the picture are the angles between the respective edges.)

For the class of the so-called non-degenerate operators characterized by deg Q. = k the re-
sults are fairly complete, see [BR]. An illustration of the limiting distribution of the roots of the
eigenpolynomials for a non-degenerate exactly solvable operator of order 6 is shown on Fig. 1. On
the other hand, at the present moment in the important degenerate case there are only conjectures
describing the root asymptotics, see [Ber].

Why should one care about Problem 1? To answer let us present a modern reformulation of the
classical Bochner-Krall problem from 1929, see [Bo].

Problem 2. Characterize the class of exactly solvable operators T" whose sequence of eigenpolyno-
mials are the sequences of orthogonal polynomials with respect to some real weight supported on
R?

Bochner himself knew that such 7" must be of even order and formally self-adjoint. But in spite
of numerous efforts the Bochner-Krall problem has only being solved for operators of order 2 and
4, see [EKLW]. Studying the root asymptotics of the sequence of these eigenpolynomials one can
easily rule out large classes of exactly solvable T'. This approach has been successfully applied in
the non-degenerate case, see [BRSh] and [KL], but the degenerate case which requires appropriate
rescaling of the eigenfunctions is still widely open. One should mention that in all known cases one
finds behind each limiting set (measure) an interesting rational differential whose order equals to
the order of the original operator.

Besides the study of the usual sequences of eigenpolynomials for exactly solvable operators one
can also consider the sequences of generalized eigenpolynomials which appear in the homogenized
spectral problem for such operators, cf. [BBSh]. Conjecturally they also possess very interesting
asymptotic root-counting measures discussed in [BBSh] and provide us with a rich family of ex-
amples. The study of the homogenized spectral problem for arbitrary exactly solvable operators
is a natural extension of a part of project 3 dealing with the particular case of the hypergeometric
equation.

5. Stokes lines of equations of higher order. The notion of a (global) Stokes line of a given
linear differential equation of order 2 with polynomial or entire coefficients in C is a classical object
of study and elaborated in e.g. [Fe] and [Wal]-[Wa2]. It is frequently discussed in physics and
technical literature in the situations when the Stokes phenomenon takes place, see e.g. [Be] and
[BM]. Its local version near the singularities exists for equations of all orders and even for systems
of linear differential equations. But the existence of a global Stokes line which is well behaved and
responsible for the global asymptotic behavior of the underlying equation is so far known only for
order 2. The major problem with equations of higher order is that their local Stokes lines determined
near the singularities (called the turning points in this area) might intersect at non-singular points
creating the so-called secondary turning points, see [BNR]. If one naively creates new Stokes
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lines from these secondary points then they will also intersect at the ternary turning points etc.
Generically, these derived turning points and their derived Stokes line will densely cover some
domains in C creating an untracktable situation. It is expected at least for generic linear ode that
only finitely many of these derived turning points and Stokes lines are essential for the asymptotic
behavior of the solutions to the original equation. A group of Japanese mathematicians from RIMS,
Kyoto under the leadership of Professor T.Kawai has made important contributions to this field, see
e.g. [AKT1]-[AKT2]. In particular, they have developed certain algorithms allowing to select the
essential secondary, ternary etc turning points as well as the corresponding Stokes lines. But general
existence and uniqueness results are unavailable at present except for very special cases.

There are general reasons to believe and special cases when this is rigorously proven that the
accumulation set for the zeros of generalize eigenvalues constitutes an important part of the global
Stokes line of the underlying linear differential equation. Interesting and rather unknown results on
the root distributions of eigenfunctions of such operators were obtained in the late 80’s by S. Bank,
see [Bal], [Ba2]. But these results were never interpreted from the point of view of the global Stokes
line.

Working on this subproject I hope to obtain detailed information about the structure of the global
Stokes line in the case of exactly solvable operators/equations which , on one hand, are too special
to be covered by the methods a’la Kawai, and, on the other hand, form a large and important for
applications class of equations.

6. Heine-Stieltjes theory. Another classical source of (generalized) polynomial eigenfunctions
is the theory of the Lamé equation, see e.g. [WW] and [BW]. In the case of the Lamé equa-
tion many prominent mathematicians including Heine, Klein, Stieltjes [He], [St] studied polyno-
mial solutions to linear ordinary differential equation as follows. Consider an arbitrary operator
T = Z?:o Qi(z)% with polynomial coefficients. The number r = maxg<;<x(deg Q;(z) — 1) is
called the Fuchs index of T' and the operator T  is called a higher Lamé operator if it satisfies the
conditions (i) 7 > 0 and (ii) degQx(z) = k + r. Given such an operator 7" consider the following
multiparameter spectral problem: for each positive integer n find a polynomial V' (z) of degree at
most 7 such that the equation

3) TS(z)+V(2)S(z) =0

has a polynomial solution S(z) of degree n. Polynomials V'(z) and S(z) are called a higher Van
Vleck and higher Heine-Stieltjes polynomial, respectively. One can show that under some genericity
assumptions on 7' for each n there exists exactly ("jr) pairs (V, S) solving problem (3). Since the
number of pairs (V, S) grows with n one needs to study certain natural subsequences of polynomial
solutions.

The next localization result recently proven in [Sh] guarantees that there exists an abundance of

converging subsequences of (appropriately normalized) Van Vleck polynomials.

Theorem 2. For any higher Lamé operator T and any € > 0 there exists a positive integer N, such
that the zeros of all its Van Vieck polynomials and Heine-Stieltjes polynomials of degree n > N,
belong to Convg,, . Here Conuvq, is the convex hull of all zeros of the leading coefficient Qj, and
Conva)k is its e-neighborhood in the usual Euclidean distance on C.

This localization result allows to find an abundance of converging subsequences of normalized
Van Vleck polynomials. In a recent joint paper [HoSh] we were able to describe the asymptotic root
distribution of the roots of Stieltjes polynomials whose sequence of normalized Van Vleck polyno-
mials converges to a given polynomial V' (z). At the same time the situation with the asymptotics of
Van Vleck polynomials is a complete mystery except for one special case treated in [ShT], [STT].
Preliminary results and certain ideas lead to the following conjecture.

Let Pol, denote the space of all monic polynomials of degree r. Take any higher Lamé operator
T and for a Van Vleck polynomial V' (z) of T denote by ‘7(z) its monic scalar multiple. For a given
positive integer n denote by {V}, ;(2)} the set of all Van Vleck polynomials V'(z) whose Stieltjes
polynomials have degree exactly n. (Notice that for sufficiently large n the set {V}, ;(z)} belongs to
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FIGURE 2. The union of zeros of all (%) Stieltjes polynomials of degree 25 for the
operator T = (22 +1)(z — 31 — 2)(z + 2I — 3)%.

Pol,,i.e. each Van Vleck has degree exactly r.) Transform the set {V}, ; ()} into a finite probability
measure 0, (7") in Pol, by assigning to each polynomial the finite mass equal to the inverse of the
cardinality of {V}, ;(2)}.

Conjecture 2. For any higher Lamé operator T one has that

e the sequence o,(T) converges weakly to a probability measure ¥(T') compactly supported
in Pol,.;
o the measure ¥.(T') depends only on the leading monomial Qy(2) i—i of T.

Preliminary numerical results in this direction show very surprising pictures of the asymptotic
root distributions for the Stieltjes polynomials, see Fig. 2. They seems to have a fractal-looking
structure which at moment is completely unexplained. And again behind each such limiting set
(measure) one finds an interesting rational differential whose order equals to the order of the original
equation.

7. Local and global theory of high order differentials. As I mentioned before the theory of
quadratic differentials is a well established area of mathematics with numerous applications, see
[Str]. On the other hand, although differentials of higher order sometimes appear in e.g., algebraic
geometry their general theory is practically non-existing. One of very rare exceptions is a old paper
[Str2].

In the study of the asymptotic root distributions for the generalized eigenpolynomials of exactly
solvable and higher Lamé operators one observes a systematic appearance of higher order differen-
tials in CP! possessing a number of additional properties, see [HoSh]. This fact along with some
additional motivation from algebraic geometry justifies the necessity to develop a general theory of
such differentials. At the moment I have succeeded in the local study of these differentials, i.e. in
obtaining local normal forms of such differentials near their poles or zeros (but not in complete gen-
erality). In principle, this can be straightforwardly carried out using the ideas of Strebel’s classical
treatise [Str].

On the other hand, a much more challenging and rewarding task is to develop an appropriate
notion of a Jenkins-Strebel differential, i.e. a differential for which almost all its horizontal tra-
jectories are closed. The necessity of introducing this concept again comes from other part of the
present project. Namely, high order differentials appearing in [HoSh] come with a similar structure
as Jenkins-Strebel differentials, i.e. with a system of closed curves covering almost all CP'. Each
curve consists of pieces of trajectories and it can switch from one trajectory to the other on sets
with peculiar additional properties. Observe that the straight-forward generalization of the above
definition of Jenkins-Strebel differentials to higher orders is impossible since (except for trivial de-
generate examples coming from quadratic differentials) there are no high order differentials with
almost all closed trajectories. In order to get a nontrivial theory one has to allow to switch from one
type of trajectories of such a differential to the another on certain switching sets. At the moment I
have a rather clear idea how the notion of a Jenkins-Strebel differential should be defined, but there
is still a number of technical difficulties to overcome.
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8. Global representability of algebraic functions as the Cauchy transform of real measures.
The study of local and global properties of the Cauchy transform and the Cauchy-Stieltjes integral
was initiated by A. Cauchy and T. Stieltjes in the middle of the 19th century. This development
is still continuing at present with dozens of well-known mathematicians contributing to this topic
over more than a century. Numerous papers and several books are partially or completely devoted
to this area, see e.g. [Bell], [CMR], [Du], [Ga], [GaMa], [Mu], [Za], [Wi]. This area is closely
connected with the (logarithmic) potential theory and, especially, its inverse problem and inverse
moment problem.

During the last 2 decades the notion of a motherbody of a solid domain or, more generally, of a
positive Borel measure was discussed in the geophysics and mathematics literature, see e.g. [Sjl,
[SaStSha], [Gu], [Zi]. This notion was pioneered in the 60’s by a Bulgarian geophysicist D. Zidarov
[Zi] and mathematically developed by B. Gustafsson in [Gu]. Although several interesting results
about this notion were obtained there seems still to be no consensus even about the definition of a
motherbody and no general existence and uniqueness results are known. The intuitive meaning of a
motherbody of a given domain/positive measure is the set/positive measure such that a) it creates the
same potential as the original domain/measure outside the support of the original domain/measure
and b) the support of a motherbody is as small as possible. The usual technique to obtain a moth-
erbody is to apply to the original domain/measure different forms of the so-called inverse balayage
introduced initially by H. Poincaré. But at present there are just isolated examples and no general
understanding for which domains one can find a motherbody whose support has smaller dimen-
sion than the dimension of the ambient space which is the most desirable situation. One can can
also substitute the original domain/positive measure by its potential near infinity, then take its com-
plete analytic continuation and ask when there exists a set/measure whose potential coincides with
a branch of the latter analytic continuation almost everywhere. This problem is quite closely related
to the original motherbody problem.

Although one might think that this topic has very little to do with the main theme of the overall
project it turns out that they are closely related in the case of C. Namely, in C one can associate
to a domain/measure both its logarithmic potential and its Cauchy transform (which is the complex
potential) and pose the following natural question.

Main problem. Given a germ f(2) = ag/z + Y 95 ai/z', ap € R of an algebraic (or, more
generally, analytic) function near oo is it possible to find a compactly supported in C real measure
whose Cauchy transform coincides with (a branch of) the analytic continuation of f(z) a.e. in C?
Additionally, for which f(z) it is possible to find a positive measure with the above properties?

Now if one considers a weakly converging sequence of generalized eigenpolynomials to an ex-
actly solvable or a higher Lamé operator then the sequence of their root-counting measures weakly
converges to a probability measure whose Cauchy transform satisfies the symbol equation of the
original operator. (The symbol of an operator T = Zf:o Qi(z)% with polynomial coefficients
is the bivariate polynomial Sp(z,u) = Zf:o Qi(z)u'.) In other words, normalized logarithmic
derivatives of the original sequence of polynomials usually converge after appropriate scaling and
renormalization to a branch of the algebraic function Sp(z,u) = 0. This circumstance provides us
with large families of examples of algebraic functions for which there is a positive solution to the
latter problem. It seems highly plausible that any algebraic function with a branch representable a.e.
in C as the Cauchy transform of a positive measure can be obtained in this way.

Impact of the project

In my opinion the major impact of the suggested project is threefold. The first aim is to clarify the
connection between the asymptotics of the (appropriately scaled) eigenfunctions for several classes
of linear differential operators and the corresponding differentials whose order equals the order of
the operators. (As a suggested intermediate step one should substantially develop the theory of such
differentials.)



AATLDE, Boris Shapiro, B2

The second aim it to obtain deeper results about the asymptotic root distributions of exactly
solvable operators and apply them to make a serious progress (and hopefully a final solution) of the
Bochner-Krall problem in orthogonal polynomials.

The third aim to solve the problem which algebraic functions have branches which be represented
almost everywhere as Cauchy transforms of real/positive measures which means a substantial ad-
vance in the classical potential theory.

I1. Methodology

In this sections I will briefly describe some partial results and possible approaches one can apply
to obtain progress in the above subprojects.

1-2. Evgrafov-Fedoryuk-Sibuya WKB-theory and quadratic differentials. We use the same

terminology as in the state-of-the-art section. Consider the classical Schrodinger equation
d?

4) —d—zg + M R(2)y =0,
where R(z) is a rational function and A is a large real parameter. To this equation one usually
associates its global Stokes line obtained as follows. A turning point of (4) is a zero or pole of R(z);
alocal Stokes line propagating from a given turning point zg is given by the equation & S(z, z9) = 0,
where S(z, z0) = f;o \/ R(t)dt. The union of all these local Stokes lines forms the global Stokes
line ST of (4). Already M. Fedoryuk noticed that S7" can be also interpreted as the set of all finite
singular trajectories (i.e. entering the turning points of R(z)) of the quadratic differential R(z)dz>.

If R(z) = P(z) is a polynomial of degree k then the asymptotic behavior of the global Stokes line
at oo is as follows. Its branches tend to the one of k+2 equally spaced with the angle ,f—jrrz rays (called
the Stokes rays) whose configuration only depends on the leading coefficient of P(z). (Stokes rays
are tangents to the different branches of the global Stokes line near the irregular singularity of
(4) at 00.) Fundamental results of Evgrafov-Fedoryuk-Sibuya [Fe, Sib] show that the asymptotic
expansion in A~! of fundamental solutions to (4) exists in each unbounded connected component
of CP! \ ST. For polynomial P(z) it is natural to define a certain class of solutions of (4) and its
eigenfunctions, see e.g. [Sib]. It is well-known that for any of the k£ + 2 (Stokes) sectors restricted
by two neighboring Stokes rays and for any fixed value of parameter \ there exists and unique (up
to a constant factor) solution of (6) which exponentially decreases in this sector. Such a solution
is called subdominant in the respective sector. For generic values of A each subdominant solution
increases exponentially in any other sector and it always increases in both neighboring sectors. But
if one chooses 2 non-neighboring sectors then for an infinite discrete set of values of A there exists
a solution subdominant in both sectors. These values of X are called spectral and the corresponding
solution is called the eigenfunction. The main achievement of Evgrafov-Fedoryuk-Sibuya’s theory
in the modern language is a theorem claiming that to each short geodesic of P(z)dz? corresponds
an infinite sequence of eigenvalues of the latter spectral problem which asymptotically are equally
spaced along a certain ray in C whose slope is defined by the geodesics.

Our main goal here is to obtain an analog of this theory for rational R(z). Although the situation
with rational R(z) in (4) is formally very similar to that of a polynomial potential P(z) there are
new essential difficulties. In particular, their spectral problem should be substituted by the 2-point
boundary value problem. The global behavior of Stokes lines can be rather involved. In particular,
they can be dense in some domains in C etc. The first case to consider is when the latter situation
does not occur. Then it is rather straightforward that the WKB-asymptotics holds in each open
connected component of the complement to the Stokes line in CP!. For some values of the argument
of A there will appear parts of the Stokes lines connecting simple poles of R(z). One expects
that close to this ray in the space of the spectral parameter one can find an infinite sequence of
eigenvalues such that there exists a (multivalued) solution of (4) having a branch analytic at the
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poles connected by the latter parts of the Stokes line. What happens if the Stokes line is dense in a
subdomain in C is not clear at the moment.

3. Asymptotics of sequences of Jacobi polynomials. Recall that the classical Jacobi polynomial

P,(La"g ) is given by

n
_ n+a\ (n—+ _
PP (z)=27%" < k) < N 5) (z—DF(z+ 1)k
k=0 N
The following (unpublished) proposition relates the asymptotic root-counting measure of a se-
quence of Jacobi polynomials to a certain quadratic differential.

Proposition 1. (i) If the sequence {ji,,} of the root-counting measures of a sequence {p,(z)} =
{P,(la"’ﬁ ”)(z)} of Jacobi polynomials weakly converges to a measure | which is compactly sup-
ported in C and has no point masses then the limits A = lim,,_, % and B = lim,,_, o %” exist;
(ii) In the above notation if B # 0 then the Cauchy transform C,, of the limiting measure satisfies
almost everywhere in C the algebraic equation

(5) (1-2*)C.—(A+B)z+A-B)C,+ A+ B+1=0.

(iii) If B # 0 then the support of | consists of finitely many horizontal trajectories of the quadratic
differential

© (z) = (A+B+2)*2*+2(A* - B%)z+ (A- B)’ —4(A+B+1)d22.
(1—2)?

The latter quadratic differential ¥ has two (simple) roots and three double poles (including co).
For any values of A and B it has a singular trajectory connecting its zeros which is always in
the support of the limiting root-counting measure. On the other hand, when it also have a closed
trajectory it might also belong to the support, see e.g., [KuMF]. The detailed study of the above
family of differentials will provide a complete information about the asymptotics of sequences of
Jacobi polynomials satisfying the assumptions of Proposition 1.

4. Exactly solvable operators and Bochner-Krall problem. Recall that a differential operator
with polynomial coefficients T' = Zle Qi(z)% is called exactly solvable (ES) if deg Q; < i and
there exists j such that deg (); = j. An exactly solvable T'is called non-degenerate if deg Q) = k
and degenerate otherwise.

As was already mentioned one can easily check that any ES-operator 7" has a unique polynomial
eigenfunction p? (z) of degree n for all sufficiently large n. The main problem of this project is
to describe the asymptotic root distribution of the sequence {pZ(z)}. In the non-degenerate case
substantial progress in this problem was obtained in [BR]. These results were then applied in [BRS]
and [KL] to obtain interesting results in the Bochner-Krall problem. The important remaining case
to consider is the case of degenerate ES-operators.

One can show that for an arbitrary degenerate ES-operator the maximal modulus 7,, among the
roots of pl (z) tends to oo when n — oco. Thus, in order to obtain a converging sequence of root-
counting measures one has to scale eigenpolynomials which motivates the problem about how fast
does the maximal modulus 7, grow. The following conjecture was formulated in [Ber].

Conjecture 3. Let T = Zle Qi(z)dd—; be a degenerate exactly-solvable operator of order k and

denote by ig the largest i for which deg QQ; = i. Then

where cr > 0 is a positive constant and

d ma. ( 1o >
= X I u————
i€lio+1,k] \ @ — deg Q;
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FIGURE 3. Three root-counting measures for the homogenized spectral problem
(23 —2I2* + (44 21)z) %+)\(z2+Iz+2)%+%2(z—2+1)%+)\3y =0.
(Larger dots on all pictures are the turning points of the original equation. Notice
that tripoid points above are the secondary turning points.)

As an immediate consequence of the latter conjecture we get that the following.

Corollary 1. If Conjecture 3 holds then the Cauchy transform C(z) of the asymptotic root measure
w of the scaled eigenpolynomial q,(2) = pn(nz) of an arbitrary exactly-solvable operator T as
above satisfies almost everywhere in C the following algebraic equation:

2000 (2) + ) ideg 2 E 9T (2) = 1.
i€A

Here A is the set consisting of all i for which the maximum d := max;c;, 1,k (%) is attained,

ie. A={i: Zle =d}.

The latter statement (if settled) gives a very detailed information on the asymptotic root distribu-
tion of the family of scaled eigenpolynomials for an arbitrary degenerate ES-operator. For applica-
tion to the Bochner-Krall problem the following intermediate question of independent interest can
be formulated.

Problem 3. Characterize all ES-operators whose polynomial eigenfunctions have only real roots.

5. Stokes lines for equations of higher order. In [AKT1] the authors developed a certain heuris-
tics how to determined which secondary, ternary etc turning points and resp. local Stokes lines are
important for the global asymptotics of generic linear differential equation with polynomial coeffi-
cients satisfying a number of additional restrictions. In [AKT?2] they tested their procedure in the
case of third order equations which allows explicit Mellin-Barnes intergal representation of their
solutions. In this case the asymptotic behavior of fundamental systems can be analyzed explicitly
and shows a good coincidence with the algorithm suggested in [AKT1].

In [BBSh] we initiated the study of the asymptotic root-counting measures of the homogenized
spectral problem for exactly solvable operators. The homogenized deformation of a given linear
differential operator (introduced already by J. Birkhoff) is exactly the set-up considered in [AKT1]-
[AKT2] in the study of the global Stokes lines. I am convinced that the supports of the limiting
root-counting measures from [BBSh] are essential parts of the global Stokes line of exactly solvable
equations, see example on Fig. 3. On the other hand, exactly solvable operators is an incomparably
broader test class of operators than those whose solutions can be found by explicit integrals a’la
Mellin-Barnes. Additional circumstance in favor of this class of operators is that the existence of the
underlying positive measures supported on (conjectural) parts of the global Stokes line apparently
means that its behavior is not as complicated as it in principle might be. One knows from the
experience with second order equations that the global Stokes line has a much simpler structure if
it contains fragments connecting pairs of turning points. At the moment there is still much work to
be done to understand the properties of supports for asymptotic root-counting measures appearing
in [BBSh].
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FIGURE 4. Measures Y(7') for the classical Lamé operator T' = Q(z)% +
1Q ()L, with Q(2) = 2(z — 1) (2 + 3 —i) (lef) and T = Q(2)L; with
Q(z)=(z=-5)(z=10)(z—4+1)(z—2+3I)(z — 3 —2I) (right).

6. Heine-Stieltjes theory. We will use notation from the-state-of-the-art section. Conjecture 2 was
proven in [STT] and [MFR] for the classical Lamé equation, i.e. for the second order equations
with the Fuchs index r equal to 1. In this case each Van Vleck polynomial V' (z) is linear and is
uniquely defined by its unique root. Moreover, there exists n + 1 such polynomials for a given
positive integer n. Their root distribution for n = 50 is shown on the left part of Fig. 4. The limiting
measure Y (7") is the union of three real semi-analytic curves connecting the root of Q)(z) with the
value of z corresponding to the Lavrentiev’s continuum.

For other higher Lamé operators a strategy to follow is to use the conformal welding technique
to prove Conjecture 2. In a very recent collaboration with Professor D. Marshall (U Washington)
we were able to prove the following (unpublished) result for higher Lamé operators with r» = 1.

Theorem 3. For any higher Lamé operator T’ with Fuchs index r = 1 Conjecture 2 holds. Moreover,
the support of ¥(T') is topologically a tree in C whose leaves (i.e. hanging vertices) are exactly the
roots of the leading coefficient Q(2).

This result is illustrated on the right picture of Fig. 4. The case of r > 1 is so far out of reach of our
methods but an appropriate modification of conformal welding looks promising. Another important
potential research direction for Heine-Stieltjes theory is to study the homogenized version of the
standard spectral problem considered above. It will undoubtedly show new interesting features in
the appearing sequences of generalized polynomial eigenfunctions.

7. Local and global theory of higher order differentials. By a meromorphic differential ¥ of
order k£ on a (compact) Riemann surface I' without boundary we mean a meromorphic section of
the k-th tensor power (Téf)@’k of the holomorphic cotangent bundle T:I". The zeros and poles of
W are called its singular points.

Following §6 of Ch.3 in [Str] one can get normal forms for a k-differential near its singular points.
Namely, for ¥ = f(2)(dz)" near the origin set f(z) = 2"(a, + an+12 + ...), where a,, # 0 and
n € Z. We can choose a single branch of the k-th root

(an + ant12z + )% =bo+ bz +boz® + ..., by #0.
Thus, 4/f(2) = 2% (by + b1z + bpz? + ...). The next lemma gives an example of the normal form.

Lemma 1. In case when there is no non-negative integer l such that 3 +1 = —1 then there exists a
local coordinate ( near the origin such that

W= (W) = (” : k>k<“<dc>’“.

Moreover ( is defined uniquely up to a factor exp(lnzii), l=0,1,....,n+k—1.

Concerning global properties of such differentials notice that main results of [BR] and [HoSh]
give a interesting hint which W should be called a Jenkins-Strebel differential of higher order. Our
suggestion is as follows.



Definition. We say that a k-differential ¥ given on a compact curve I" without boundary is Strebel
if there exists a continuous (potential) function u : I \ Sing(¥) — R such that
(i) w has a limit (finite or infinite) at each singular point p € Sing(¥);
(ii) u is piecewise harmonic and the 1-current C,, := %dz coincides with one of k branches of
W:ikllla.e. onl’
(iii) level curves of u are tangent to (one of the) line fields of ¥ a.e. onI'.

But one has to check a number of properties and, in particular, to prove that the above definition
does not enlarge the classical set of quadratic Strebel differentials. The following conjecture gives
interesting examples of high order Strebel differentials.

Conjecture 4. Any rational differential of the form % where Qi (2) is a arbitrary monic

polynomial of degree k is Strebel.

8. Global representability of algebraic functions as the Cauchy transform of real measures.
We will discuss some conditions of representability of a branch of an algebraic function in CP*
almost everywhere as the Cauchy transform of a real measure of total mass 1 compactly supported
in C. The obvious necessary condition for that is the existence of a branch at oo which behaves
asymptotically as % Such a branch will be called a probability branch. If there exists a real (resp.
probability) measure with the above property then we say that the algebraic function admits a real
(resp. probability) motherbody measure.

Lemma 2. The curve given by the equation P(C,z) = Z(i,j)eS(P) ;i jC'z9 = 0 has a probability
branch at oo if and only if 3, a; yr(py—; = 0 where M(P) = min; jycq(p) i — j. In particular,
there should be at least two distinct monomials in S(P) whose difference of indices equals M (P).

The following fundamental conjecture is motivated by our study of the Heine-Stieltjes problem.

Conjecture 5. An arbitrary irreducible polynom P(C, z) with a probability branch and M (P) = 0
admits a probability motherbody measure.

One can easily check that no real motherbody measure exists unless M (P) > 0. The case
M (P) = 0 is covered by the latter conjecture. What about M (P) > 0? More exactly, given a finite
set S of monomials satisfying the assumptions of Lemma 2 consider the linear space Polg of all
polynomials P(C, z) whose Newton polygon is contained in S. What is the (Hausdorff) dimension
of the subset M Polg C Polg of polynomials admitting a motherbody measure?

Our examples seem to confirm the following daring conjecture.

Conjecture 6. Under the assumption of the latter conjecture the (Hausdorff) codimension of M Polg
equals M (S).
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