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Abstract. We give explicit formulas for the Kazhdan-Lusztig P - and R-

polynomials for permutations coming from the variety F1,n−1 of incomplete
flags consisting of a line and a hyperplane.

1. Introduction

In [KL1] Kazhdan and Lusztig have associated with each Coxeter group
W a family of so-called P -polynomials indexed by pairs of elements x ≺ y
in W (here ≺ denotes the Bruhat partial order on W ). If W is the Coxeter
group of some (semi)simple group G, then Px,y(q) measures the singularity
of the Schubert variety Vy ⊂ G/B near the Schubert cell Cx ⊂ Vy. In
particular, Px,y(q) = 1 for all x ≺ y if and only if Vy is nonsingular. Explicit
calculation of P -polynomials for an arbitrary pair x ≺ y is a very hard
problem, even for the case W = Sn. One of the most advanced results in this
direction is a simple combinatorial algorithm for calculation of P -polynomials
for Grassmannian permutations (see [LS1]). Several other particular cases
are considered in [Br]. In the case W = Sn there exist several special criteria
of nonsingularity of Vy, see e.g. [LSe, LSa]. For example, according to [LSa],
the Schubert variety Vy ⊂ SLn/B is nonsingular if and only if y = (y1, ..., yn)
avoids the following two types of subsequences:

1) yk < yl < yi < yj , or
2) yl < yj < yk < yi,

for some 1 6 i < j < k < l 6 n. For evident reasons, a subsequence of
the first type is denoted by 3412, while that of the second type, by 4231.
Apparently, there exist two different basic types of singularities of Vy related
to the two permutations above. Very recently, an almost explicit description
of any Px,y, where y is a vexillary permutation, i.e. 4231-avoiding, was found,
[LS2].
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Besides, paper [LSa] contains the following interesting conjecture describ-
ing combinatorially the set of all singular pairs x ≺ y.

Given y = (y1, ..., yn) ∈ Sn, let Z be the set of all τ ′ ≺ y such that either
1 or 2 below holds.

1. There exist 1 6 i < j < k < l 6 n such that
(a) yk < yl < yi < yj ;
(b) let τ ′ = (b1, ..., bn), then there exist 1 6 i′ < j′ < k′ < l′ 6 n such

that bi′ = yk, bj′ = yi, bk′ = yl, bl′ = yj ;
(c) let τ (resp., y′) be the element obtained from y (resp., τ ′) by replacing

yi, yj , yk, yl by yk, yi, yl, yj (resp., bi′ , bj′ , bk′ , bl′ by bj′ , bl′ , bi′ , bk′), then τ ′ ≻ τ
and y′ ≺ y.

2. There exist 1 6 j < j < k < l 6 n such that
(a) yl < yj < yk < yi;
(b) let τ ′ = (b1, ..., bn), then there exist 1 6 i′ < j′ < k′ < l′ 6 n such

that bi′ = yj , bj′ = yl, bk′ = yi, bl′ = yk;
(c) let τ (resp., y′) be the element obtained from y (resp., τ ′) by replacing

yi, yj , yk, yl by yj , yl, yi, yk (resp., bi′ , bj′ , bk′ , bl′ by bk′ , bi′ , bl′ , bj′), then τ ′ ≻ τ
and y′ ≺ y.

Conjecture ([LSa]). Singular locus of Vy consists of all elements of Z
that are maximal in the Bruhat order.

Another family of polynomials defined in [KL1], so called R-polynomials,
often helps to calculate P -polynomials (see [KL1, De, Br]). When q is a
prime power, Rx,y(q) calculates the number of points in the intersection
Vx ∩ w0Vy over GFq, where w0 is the longest element in W . R-polynomials
also have a transparent geometrical interpretation over C (see [SSV1, Cu]).
Their explicit calculation is, in general, a simpler problem than that for
P -polynomials; nevertheless, one encounters here rather complicated combi-
natorial problems ([De, SSV2, Br]).

In this note we give simple explicit formulas for P - and R-polynomials for
two classes of permutations related to incomplete flags consisting of a line
and a hyperplane. Occuring permutations admit both types of forbidden
subsequences in the simplest form (either only 3412, or only 4231, but not
both of them simultaneously) and provide a nice illustration of the two basic
types of singularities of Schubert cells in SLn/B. Moreover, all singular pairs
x ≺ y are exactly the ones predicted by the above conjecture.

Let us denote by Fi1,...,ik
the variety of all incomplete flags of type Li1 ⊂

Li2 ⊂ · · · ⊂ Lik ⊆ C
n. For brevity, the variety F1,2,...,n of complete flags is

denoted by Fn. There exists a natural bundle Fn → Fi1,...,ik
that just drops

redundant subspaces. Evidently, the fiber of this bundle is diffeomorphic to
Fi1 × Fi2−i1 × · · · × Fn+1−ik

. Each complete flag f ∈ Fn defines a decompo-
sition of Fi1,...,ik

into Schubert cells. This decomposition is consistent with
the above bundle, i.e. the inverse image of a Schubert cell in Fi1,...,ik

is the
union of some Schubert cells in Fn. It is easy to see that the index set of
this union is an interval in the Bruhat order on Sn. Thus, with each Fi1,...,ik

we associate two sets of permutations, namely, the maximal and the minimal

elements of the corresponding intervals. These sets are denoted Mi1,...,ik
and

Mi1,...,ik
, respectively.

We consider the variety F1,n−1; each point of this variety is a flag consisting
of a line and a hyperplane. Below we provide explicit expressions for the
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polynomials Px,y(q) in the cases y ∈ M1,n−1, x arbitrary and y ∈ M1,n−1,
x arbitrary. Besides, we present explicit expressions for the polynomials
Rx,y(q) in the cases x, y ∈ M1,n−1 and x, y ∈ M1,n−1.

2. Results

It is easy to see that permutations in M1,n−1 are of the form (n− 1, n−
2, . . . , 1, . . . , n, . . . , 3, 2), while those in M1,n−1 of the form (2, 3, . . . , 1, . . . ,
n, . . . , n−2, n−1). Recall that Px,y(q) ≡ Px−1,y−1(q) (see [Dy]) and Rx,y(q) ≡
Rx−1,y−1(q). Therefore, it is possible to state all the results in terms of inverse
permutations, which seems to us more convenient.

Theorem 1. Let y = (i, n, n− 1, . . . , 1, j), x = (x1, . . . , xn). Then

(i) y is singular if and only if i > j (and thus y contains only forbidden

subsequences of type 3412);
(ii) a pair x ≺ y with y singular is singular if and only if x1 < j and

xn > i;
(iii) if a pair x ≺ y is singular, then Vy in some neighborhood of Cx is

diffeomorphic to K×A, where K is a cone of real dimension 4(i− j)+2 and

A is an affine space; thus,

Px,y(q) = 1 + qi−j .

Theorem 2. Let y = (i, 1, 2, . . . , n, j), x = (x1, . . . , xn). Then

(i) y is singular if and only if i > j+2 (and thus y contains only forbidden

subsequences of type 4231);
(ii) a pair x ≺ y is singular if and only if there exists a solution of the

following equation and two inequalities in z:

(1) z(z + 1) = 2

z
∑

p=1

xp, j + 1 6 z 6 i− 2.

(iii) if y is singular, then Vy admits a small resolution of singularities and

Px,y(q) = (1 + q)r,

where r is the number of solutions to (1).

Observe that in the cases described in Theorems 1 and 2 the conjecture
of Lakshmibai–Sandhya holds true.

Theorem 3. Let x = (i, n, n− 1, . . . , 1, j), y = (k, n, n− 1, . . . , 1, l). Then:
1. If k + j < n+ 1 or l + i > n+ 1, then Rx,y(q) ≡ 0.
2. Let l + i 6 n + 1 6 k + j. Denote by Ωj,k the segment [n + 1 − j, k],

and by Ωl,i the segment [l, n+ 1 − i].
(i) If Ωj,k ∩ Ωl,i = ∅, then

Rx,y(q) = (q − 1)(k+j)−(l+i).

(ii) If Ωj,k ∩Ωl,i 6= ∅ and one of Ωj,k and Ωl,i degenerates to a point, then

Rx,y(q) = (q − 1)(k+j)−(l+i)−1.
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(iii) If Ωj,k ∩ Ωl,i 6= ∅ and both Ωj,k and Ωl,i are nondegenerate, then

Rx,y(q) = (q − 1)a(q2 − q + 1)b, where

a = |k + i− n− 1| + |l + j − n− 1| − 1,

b =
1

2

(

(k + j) − (l + i) − |k + i− n− 1| − |l + j − n− 1|
)

− 1.

Observe that Theorem 3 allows to calculate R-polynomials for x = (i, 1, 2,
. . . , n, j), y = (k, 1, 2, . . . , n, l), since by [Hu, Ch.7] one has

Rx,y(q) ≡ R(n+1−k,n,n−1,...,1,n+1−l),(n+1−i,n,n−1,...,1,n+1−j)(q).

3. Proofs

Proof of Theorem 1. Claim (i) follows immediately from the Lakshmi-
bai–Sandhya criterion mentioned in the introduction.

To prove (ii) observe that the natural projection π : Fn → F1,n−1 has a
smooth fiber diffeomorphic to Fn−2. Let V be a Schubert cycle in F1,n−1,
and δ = π−1(V ). Then the stalk of the IH sheaf on δ at an arbitrary point
x is isomorphic to the stalk of the IH sheaf on V at the point π(x), since
π is a bundle with a smooth fiber. Therefore, by [KL2], in order to find P -
polynomials we have to calculate the local intersection homology for Schubert
cycles in F1,n−1.

The Schubert cycle Vy ⊂ F1,n−1 corresponding to the permutation y =
(i, n, n− 1, . . . , 1, j) is diffeomorphic to the Schubert cycle Vy−1 ; the latter is
a subset of CPn−1 × CPn−1 defined by the following equations:

(2)
p1 = p2 = · · · = pj−1 = 0, qi+1 = qi+2 = · · · = qn = 0,

pjqj + · · · + piqi = 0.

Therefore, Vy is diffeomorphic to K×A, where K is a cone of real dimen-
sion 4(i− j)+2 and A is an affine space. Evidently, the singular locus of this
variety is an affine subspace p1 = · · · = pi = 0, qj = · · · = qn = 0. Therefore,
if π(x) does not belong to this subspace, then Px,y(q) ≡ 1. However, x is
projected to the above subspace exactly if x1 < j and xn > i. This condition
gives the second claim of the theorem.

To complete the proof it remains to study the stalk of the IH sheaf at
the singular locus of Vy. Since the affine part of Vy may be dropped, this
is equivalent to the study of the stalk of the IH sheaf at the vertex of an
even-dimensional cone. It turns out that such a cone cone is a suspension of
the spherization of the tangent bundle to an odd-dimensional sphere.

Indeed, one can introduce new variables and rewrite the equation of the
cone in (2) in the form

z2
1 + · · · + z2

2(i−j)+1 = 0.

Real and imaginary parts considered separately yield the equations

(Re z1)
2 + · · · + (Re z2(i−j)+1)

2 − ((Im z1)
2 + · · · + (Im z2(i−j)+1)

2) = 0,

Re z1 · Im z1 + · · · + Re z2(i−j)+1 · Im z2(i−j)+1 = 0.
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These equations describe two orthogonal vectors (Re z1, . . . ,Re z2(i−j)+1)

and (Im z1, . . . , Im z2(i−j)+1) in R
2(i−j)+1 that have equal lengths; in other

words, it is a cone over the spherization of the tangent bundle to the sphere
S2(i−j)+1.

The intersection homology of this object can be computed easily using
formula (3.3) from [KL2], which says that if Y is smooth and X is a cone
over Y , than

IH l(X) =

{

H l(Y ), if l < dimX,

0, if l > dimX.

On the other hand,

H l(STS2(i−j)+1) =

{

Z, if l = 0, 2(i− j), 2(i− j) + 1, 4(i− j) − 1,

0, otherwise,

and the proof is completed. �

Proof of Theorem 2. Claim (i) follows immediately from the Lakshmi-
bai–Sandhya criterion mentioned in the introduction.

Let M = ∪γMγ be a stratified manifold with an open dense nonsingular
locus M0 and nonsingular strata Mγ , and Z be a smooth manifold. Following
[Ze, Mc], we say that Z →M is a small resolution of singularities if 1) fibers
Z → Mγ are locally trivial, and 2) the preimage Zx of any point x ∈ Mγ

satisfies the inequality

2 dimZx < codimMγ .

If a stratified manifold admits a small resolution of singularities, then the
stalk of its IH sheaf at any point is isomorphic to the ordinary homology of
the preimage of this point, see [Ze].

Let y = (i, 1, . . . , n, j)−1 ∈ M1,n−1, i > j+2, and Vy be the corresponding

Schubert variety (with respect to a fixed complete flag f = {f1 ⊂ f2 ⊂ · · · ⊂
fn−1}). Evidently, Vy is given by the following conditions:

Vy = {ϕ = {ϕ1 ⊂ ϕ2 ⊂ · · · ⊂ ϕn−1} ∈ Fn :

ϕ1 ⊂ f i, ϕ2 ⊃ f1, ϕ3 ⊃ f2, . . . , ϕj ⊃ f j−1,

dim(ϕj+1 ∩ f j+1) > j, . . . ,dim(ϕi−1 ∩ f i−1) > i− 2,

ϕi−1 ⊂ f i, . . . , ϕn−2 ⊂ fn−1}.

Let Π: Vy → Fn−j+1 be the natural quotient mapping,

Π: {ϕ1 ⊂ ϕ2 ⊂ · · · ⊂ ϕn−1} 7→ {ϕj/f j−1, ϕj+1/f j−1, . . . , ϕn−1/f j−1},

and Θ: Vy → Fi be the natural restriction mapping,

Θ: {ϕ1 ⊂ ϕ2 ⊂ · · · ⊂ ϕn−1} 7→ {ϕ1, ϕ2, . . . , ϕi−1}.

To describe the images of Π and Θ we need the following two operators
on permutations. The first of them, π : Sn → Sn−j+1, acts as follows: given
σ ∈ Sn, it removes all nonpositive entries from the sequence σ(1)−j+1, σ(2)−
j + 1, . . . , σ(n) − j + 1 and takes the inverse of the obtained permutation in
Sn−j+1. The second one, θ : Sn → Si, removes all the entries exceeding i
from the sequence σ(1), σ(2), . . . , σ(n) and takes the inverse of the obtained
permutation in Si.
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Lemma 1. (i) Π(Vy) = Vπ(y−1);
(ii) Θ(Vy) = Vθ(y−1);
(iii) both Π|Vy

and Θ|Vy
are locally trivial bundles with smooth fibers.

Proof. Almost evident. �

Lemma 1 implies

IH∗(Vy) = IH∗(Vπ(y−1)) = IH∗(Vθ(y−1)) = IH∗(Vθ(π(y−1))).

However, it is easy to see that θ(π(i, 1, . . . , n, j)) = (i− j + 1, 2, . . . , i− j, 1);
thus, in order to find IH∗(Vy) it suffices to consider only y’s of the form
(n, 2, . . . , n− 1, 1).

Let µ = {µ1, . . . , µk} be a set of integers satisfying 2 6 µ1 < µ2 < · · · <
µk 6 n − 2. We define Σµ = {ϕ ∈ Vy : ϕj = f j , j ∈ µ; ϕj 6= f j , j /∈ µ}. It
is easy to see that each Σµ (for a nonempty µ) is a nonsingular subset of Vy.

Lemma 2. The set Σ∅ = Vy \∪µ6=∅Σµ is an open dense nonsingular subset

of Vy.

Proof. Evidently, Σ∅ is an open dense subset of Vy. To prove nonsingularity,
we shall introduce smooth coordinates in a neighborhood U of an arbitrary
point ϕ0 ∈ Σ∅. Indeed, denote by χk(ϕ) the intersection ϕk+1 ∩ fk+1 for
k = 1, . . . , n − 3. For ϕ ∈ Σ∅ one readily gets dim ξk(ϕ) = k; thus, χ maps
Σ∅ to Fn−3. Moreover, it is easy to see that the image of U under χ is
an open (n − 3)-dimensional disk. So, all we need is to introduce smoothly
varying coordinates on the fibers of the bundle defined by χ.

By definition, one has ϕn−2
0 6= fn−2. Let l2 denote an affine two-dimensio-

nal plane in C
n transversally intersecting ϕn−2

0 at some point far enough from
fn−2, and let q(ϕ) denote the intersection point of l2 and ϕn−2. Evidently,
the pair (χn−3(ϕ), q(ϕ)) defines ϕn−2 in a unique way.

Next, let w1
l , l = 2, . . . , n − 3, denote an affine one-dimensional line in

ϕl+1
0 intersecting ϕl

0 transversally at some point far enough from f l. We

consider the projection Ψl : C
n → ϕl+1

0 along an arbitrary subspace ψn−l−1

transversal to ϕl+1
0 . Let rl(ϕ) be the intersection point of w1

l and Ψl(ϕ
l);

then the triple (ϕl+1, χl−1(ϕ), rl(ϕ)) defines ϕl in a unique way.
Finally, for ϕ2 and ϕn−2 fixed, one can choose in an obvious way coordi-

nates (κ1(ϕ), κ2(ϕ)) ∈ C
2 defining ϕ1 and ϕn−1 for ϕ ∈ U such that ϕ1 ⊂ ϕ2,

ϕn−1 ⊃ ϕn−2.
Therefore, the set (χ(ϕ), q(ϕ), r2(ϕ), . . . , rn−3(ϕ), κ1(ϕ), κ2(ϕ)) defines co-

ordinates in U , thus proving the smoothness of Σ∅ in a neighborhood of
ϕ0. �

Let now ϕ ∈ Σµ, µ 6= ∅; we say that a flag χ ∈ Fn−3 is compatible with
ϕ if the following condition holds:

χl = ϕl+1 ∩ f l+1, if l + 1 /∈ µ,

χl ⊂ f l+1, if l + 1 ∈ µ.

Let Z denote the set of all pairs (ϕ, χ) such that ϕ ∈ Vy and χ is compatible
with ϕ.



7

Lemma 3. (i) Z is nonsingular.

(ii) The projection (ϕ, χ) 7→ ϕ is a small resolution of singularities for Vy.

Proof. The proof of the first claim is similar to the proof of Lemma 2, and
is thus omitted.

To prove the second claim, observe that dimVy = 2n− 3, while

dimΣµ =

k+1
∑

l=1

max{2(µl − µl−1) − 3, 0}

(provided we stipulate µ0 = 0 and µk+1 = n). The latter formula can be
rewritten as follows. We say that integers p, q, 1 6 p 6 q 6 n− 1, belong to
the same connected component with respect to µ if p, q /∈ µ implies r /∈ µ for
any p 6 r 6 q. Let #µ denote the number of connected components with
respect to µ. Then one easily gets dimΣµ = 2(n − k − 1) − #µ. Now, the
dimension of the preimage of any element of Σµ is equal to k. Therefore,
the inequality in the definition of small resolutions is equivalent to #µ > 1.
However, by the definition of µ, one has 1 /∈ µ and n − 1 /∈ µ, which means
that each µ defines at least two connected components. �

To accomplish the proof of Theorem 2 it is enough to calculate the ordi-
nary homology of the preimage of any element ϕ ∈ Σµ. However, from the
homological point of view this preimage is equivalent to the direct product
of k copies of CP 1 ≈ S2. Hence, P (x, y) = (1 + q)k. Here k is the num-
ber of subspaces of ϕ coinciding with the corresponding subspaces of f , and
thus k is equal to the number of solutions of the following equation and two
inequalities in z:

z(z + 1) = 2

z
∑

p=1

xp, j + 1 6 z 6 i− 2. �

Proof of Theorem 3. The proof follows from the general combinato-
rial procedure of finding R-polynomials described in [SSV2]. For the sake of
self–completeness, we borrow from [SSV2] several notions related to permu-
tations.

A decreasing subsequence in an arbitrary permutation π = (i1, . . . , in) is
a subsequence s = (ij1 , ij2 , . . . , ijk

) such that 1 6 j1 < j2 < · · · < jk 6 k and
ij1 > ij2 > · · · > ijk

.
The reduced length of a decreasing subsequence is equal to the number of

its elements minus one. The domination of a decreasing subsequence is equal
to the number of elements ij ∈ π for which there exists an element il ∈ s
such that j < l and ij < il.

The cyclic shift of π with respect to a decreasing subsequence s = (ij1 , ij2 ,
. . . , ijk

) is the transformation sending ij1 onto ijk
, ij2 onto ij1 , . . . , ijk

onto
ijk−1

and preserving the rest of the elements. (If s is trivial, that is, consists
of just one element, then the transformation is identical.)

According to the procedure, to find Rx,y(q) we start from the following
three permutations: α = y−1 = (n − 1, n − 2, . . . , n, . . . , 1, . . . , 3, 2) (with 1
at position k and n at position l), β = x−1w0 = (2, 3, . . . , n, . . . , 1, . . . , n −
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2, n − 1) (with 1 at position n + 1 − i and n at position n + 1 − j), and
σ = w0 = (n, . . . , 1).

The procedure builds a tree, whose vertices are permutations. The root of
the tree is σ. The tree is built level by level. At the ith step of the procedure
we find decreasing subsequences starting at element α(i) and ending at po-
sition β(i) in each permutation on level i− 1. We next perform cyclic shifts
with respect to each of these decreasing subsequences and thus obtain the
set of the children for each permutation of level i−1. In each of the obtained
permutations we block the largest element of the corresponding decreasing
subsequence. (Blocking just means that this element cannot be included in a
decreasing subsequence on all subsequent steps of the algorithm, and that it is
not counted in the domination of such a subsequence.) Each edge of the tree
(joining a parent with its child) thus corresponds to a decreasing subsequence
in the parent permutation. Such an edge gets a weight (w1, w2), where w1

is the reduced length of the corresponding decreasing subsequence, and w2

is the domination of the decreasing subsequence. The weight (W1,W2) of a
vertex of the tree is the sum of the weights of edges on the unique path from
this vertex to the root. According to [SSV2], Rx,y(q) equals the sum of the
products (q − 1)W1qW2 over all vertices of the nth level (and, thus, equals 0
if the tree has less than n levels).

Now we can prove the theorem. First, let k + j < n + 1. Then all the
permutations on level k − 1 have 1 at position n. Thus, on step k there are
no decreasing subsequences starting at 1 and ending at any position different
from n, and hence the tree has only k − 1 levels.

Let now l+i > n+1. Then all the permutations on level n−i have n at the
first position. Thus, on step n+ 1 − i there are no decreasing subsequences
ending at the first position and starting at any element different from n;
hence, the tree has only n− i levels.

Let now Ωj,k ∩ Ωl,i = ∅. There are two possibilities: k < l and k > l.
Assume that k < l (the proof for the other case is similar). Then on the first
n−j steps of the procedure we always have only one decreasing subsequence,
namely, the trivial (one–element) one. So, the tree after n− j steps is just a
path, and the weight of each of its edges is (0, 0). Step n+ 1 − j suggests a
variety of decreasing subsequences starting at j−1 and ending at position n.
However, for each such subsequence not including element j−2 the resulting
permutation (on level n+1− j) does not have children, since the position of
j − 2 in any such permutation is n+ 3− j, while the end of the subsequence
starting at j− 2 at step n+2− j should be at position n+2− j. For similar
reasons, for each subsequence starting at j−1 and avoiding j−3, . . . , n+1−k
(at step n+ 1 − j), the resulting permutation does not have descendants at
level n + 3 − j, . . . , k − 1, respectively. On the other hand, if a decreasing
subsequence on step n+1−j starts at j−1 and includes any element distinct
from j−2, . . . , n+1−k and 1, then the resulting permutation does not have
descendants at level k. Therefore, the tree has only one vertex at level k, and
it corresponds to the decreasing subsequence (j − 1, j − 2, . . . , n − k + 1, 1)
at level n+ 1− j. Accordingly, the weight of this vertex is (k− n− 1 + j, 0).

On the steps k + 1, . . . , l − 1 we again have each time only the trivial
decreasing subsequence, and thus the weight of this part of the tree is (0, 0).
Each of the steps l, . . . , n− i gives rise to exactly one decreasing subsequence
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(of length 2); these are (n, n+1− l), (n+1− l, n− l), . . . , (i+2, i+1). Since
each edge of this part of the tree has weight (1, 0), the total weight of the
part is (n+1− l− i, 0). Finally, at all the steps n+1− i, . . . , n there is again
only the trivial decreasing subsequence. Thus, the tree has only one vertex
at level n, and its weight is (k + j − l − i, 0). This proves claim 2(i) of the
theorem.

Let now Ωj,k∩Ωl,i 6= ∅, and one of these segments be degenerate. Assume
without loss of generality that Ωj,k is nondegenerate. This means that n +
1−j < l = n+1−i < k. The proof in this case goes along the same lines that
in the previous case. The only difference is that the decreasing subsequence
that survives at step n+ 1− j is (j − 1, j − 2, . . . , n+ 2− k, 1), and thus the
weight of the unique vertex at level n is (k− n− 2 + j, 0). Since in this case
(k + j) − (l + i) − 1 = k + j − n− 2, we get claim 2(ii).

Finally, let us consider the case of nondegenerate intersecting segments.
There are four possibilities described by the inequalities n + 1 − j 6 l <
n+ 1 − i 6 k, n+ 1 − j 6 l < k 6 n+ 1 − i, l 6 n+ 1 − j < n+ 1 − i 6 k,
and l 6 n+ 1 − j < k 6 n+ 1 − i, respectively. Since the proof in all theses
cases goes along the same lines, we restrict ourselves to the first case. The
reasoning is similar to that for the case 2(i). Namely, we get that there is no
branching at levels 1, . . . , n−j, and that the elements j−1, j−2, . . . , n+1− l
should be included in a decreasing subsequence at step n+ 1− j in order to
survive up to l−1. The only decreasing subsequence at step l has length 2; it
starts at n (at position 1) and ends at position l. Now, if the element n−l was
included in a surviving decreasing subsequence at step n+ 1− j, then it will
appear at position 1 after step l, and thus, the only decreasing subsequence
at step l+1 is the two–element subsequence starting at position 1 and ending
at position l+1. However, if n− l was not included in a surviving decreasing
subsequence at step n + 1 − j, then the element at position 1 after step l
is smaller than n − l; thus, on step l + 1 this element will be dominated by
n− l (which will be the only element of the only decreasing subsequence at
this step). Therefore, n − l may be or may be not included in a surviving
decreasing subsequence at step n + 1 − j. In the first case its contribution
to the weight of any of its descendants at levels below l + 1 is (2, 0): (1, 0)
for participation in a “long” decreasing subsequence at step n + 1 − j and
(1, 0) more for participation in the “short” decreasing subsequence at step
l+1. In the second case, the contribution equals to (0, 1), for participation in
the trivial decreasing subsequence with domination number 1 at step l + 1.
The same statement holds also for the elements n − 1 − l, . . . , i + 1. All
the elements i, . . . , n+ 2− k should be necessarily included in any surviving
decreasing subsequence at step n+1−j (for the same reasons as the elements
j − 1, . . . , n+ 1− l). Finally, there is no branching at steps k+ 1, . . . , n, and
the elements n−k+1, . . . , 2 should not be included in a surviving decreasing
subsequence at step n+ 1 − j.

Therefore, the weight of a vertex of the tree at level n equals to (k + l +
j + i− 2n− 3 + 2m,n− l − i−m), where m is the number of the elements
among n− l, . . . , i+ 1 included in the corresponding decreasing subsequence
at step n+1− j. Thus, for any fixed m, 0 6 m 6 n− l− i, there are exactly
(

n−l−i
m

)

vertices at level n having the same weight. So, the R-polynomial in
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this case equals

(q − 1)k+l+j+i−2n−3
n−l−i
∑

m=0

(

n− l − i

m

)

(q − 1)2mqn−l−i−m

= (q − 1)k+l+j+i−2n−3(q2 − q + 1)n−l−i.

Finally, for n+ 1 − j 6 l 6 n+ 1 − i 6 k one has

|k + i− n− 1| + |l + j − n− 1| − 1 = k + l + j + i− 2n− 3,

1

2
((k + j) − (l + i) − |k + i− n− 1| + |l + j − n− 1|) − 1 = n− l − i,

and thus claim 2(iii) is proved. �

Problem 1. Calculate explicitly Px,y(q), where x ≺ y comes from the flag

variety Fi1,i2 for all i1 < i2.

Problem 2. Calculate explicitly Px,y(q), where y avoids forbidden sequences

of type 3412.
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