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SUMMARY

We demonstrate the close relationship between first-factor continuum regression and
standard ridge regression. The difference is that continuum regression inserts a scalar
compensation factor for that part of the shrinkage in ridge regression that has no connection
with tendencies towards collinearity. We interpret this to mean that first-factor continuum
regression is preferable in principle to ridge regression if we want protection against near
collinearity but do not admit shrinkage as a general principle. Furthermore, our experience
indicates that with first-factor continuum regression we can obtain predictors that are at
least as mean-squared error efficient as with ridge regression but with less sensitivity to the
choice of ridge constant. The scalar compensation factor is easily calculated by just an
additional simple linear regression with the ridge regression predictor as regressor.

Keywords: CROSS-VALIDATION; NEAR COLLINEARITY; PARTIAL LEAST SQUARES; SHRINKAGE
ESTIMATORS

1. INTRODUCTION

For multiple linear regression with non-orthogonal regressors there are several
alternatives to the ordinary least squares (OLS) method which are advantageous when
the regressors are near collinear. Examples are partial least squares (PLS), principal
components regression (PCR) and ridge regression (RR). An important step towards
the understanding of OLS, PLS and PCR and their interrelationships was the concept
of continuum regression (CR), proposed by Stone and Brooks (1990). In CR we
regard OLS, PLS and PCR as special cases corresponding to three different values of
a ‘parameter’, with OLS at one extreme and PCR at the other. Fearn (1990) in the
discussion of Stone and Brooks (1990) remarks on the similarity between first-factor
CR and standard RR but does not explain fully. In this paper we extend Fearn’s
discussion and answer his demand ‘the general question of when the two methods are
similar would bear further investigation’.

We shall make the observation that RR may be regarded as bringing in two
shrinkage effects: one to compensate for near collinearity in the regressors and the
other to reduce the mean-squared error (MSE) by replacing variance by squared bias
without any connection with collinearity or regression. First-factor CR with a param-
eter between OLS and PLS will be seen to correspond to the collinearity compensating
aspect of RR. This motivates a modification of conventional RR so that it will
correspond to the special case of CR. This modification will be preferable to
conventional RR for statisticians who do not like shrinkage estimators as a principle,
but it will also be seen in an example to have the advantage of less sensitivity to the
choice of ridge constant.

tAddress for correspondence: Institute of Actuarial Mathematics and Mathematical Statistics, Stockholm
University, S-106 91 Stockholm, Sweden.
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2. RELATIONSHIP BETWEEN CONTINUUM REGRESSION AND RIDGE
REGRESSION

We want to explain or predict a response variable y by a linear functiona+ b'xof a
p-dimensional regressor vector x (where the prime denotes transpose). We have n
observations (x;, ;) which enable us to construct estimates for the coefficients @ and
b. We assume that both y and x have been centred. This implies that all methods to be
discussed in this paper will use a=0, so the discussion can focus on the choice of
estimate for b.

OLS tells us to use

bOLS = S— IS,

where S = X'X and s = X'y are the usual sum of products matrix and vector
respectively. When S is nearly singular 5°™5 will have undesirable properties, being
extremely sensitive to small changes in s.

In standard RR (Hoerl and Kennard, 1970) we replace S by a better conditioned
matrix, S+ 4/ for a (typically small) positive coefficient 8, called the ridge constant,
i.e.

bRR() = (S+6I)7's.

We shall not discuss methods for the choice of value of 8, but rather regard b*}(6) as a
class of estimators. In standard RR it is normally also assumed that the x-components
are scaled so that S is of correlation form, but we do not require such an assumption
here.

In the method of CR (Stone and Brooks, 1990) a number of regressors are selected.
The first to be chosen is given by the coefficient vector ¢ = c(y) that maximizes the
function

T = (¢'s)*(c'Sc)r~! .1

for a given ‘CR parameter’ vy > 0 (= /(1 — ) in their alternative parameterization)
and for given length ||c|| of ¢, ¢’c=1 say. If the construction is terminated here, the
linear form c'x; is used as a regressor in a one-variable OLS. For y=0, the
maximization of T is equivalent to the maximization of the sample correlation
coefficient between y and c'x, with OLS as solution,

c(0) o< S~ 1s. 2.2)

For y = 1 the covariance between y and c'x is maximized, and this yields the first latent
factor of the PLS method. Asy — o we approach PCR, selecting as first regressor the
form c¢’x such that ¢’ Scis maximized (under unit length of ¢), i.e. cis the eigenvector of
S corresponding to the highest eigenvalue.

We shall later restrict our consideration to this first factor (first regressor) of CR,
but further regressors are selected by analogous maximization of 7 under the
constraints that the next c-vector to be chosen should be uncorrelated with all
previously chosen c-vectors. The variable y is then regressed on the forms ¢’x by OLS
multiple regression. As a stopping rule for the number w of CR regressors, and for the
choice of v, Stone and Brooks (1990) propose cross-validation, using a cross-
validatory index I, , < 1 (=1 if the regression fit is perfect). In some illustrative
examples I, , is shown plotted against v for various values of the number w. In several
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of these diagrams we see a form of the I, curve that is typical for RR, namely a rapid
increase in I, ; with v for small v, up to a peak, followed by a somewhat slower
decrease in I, ; with a further increase in .

Proposition. The vector bR(y) of regression coefficients from first-factor CR,
0 < v < 1, is proportional to a regression coefficients vector bRR(8) of standard RR,
and vice versa; more precisely

bR(y) = (1 + I—Z;) bRR@),

where the ridge constant 6 > 0 and the CR parameter 0 < v < 1 are monotonically
related through

o) = ey,

where é(y) is a weighted average of the eigenvalues of S, increasing with v,

_ bR SbR(y) _ bRNE)'SHRR()
R A VR OO

Proof. We start by demonstrating that the first stage of CR for 0 < y < 1 will
yield c(y)-vectors proportional to standard ridge estimators, and as a consequence we
shall then see that the resulting CR regression will be proportional to an RR.

The function 7 to be maximized was given in formula (2.1). We take its logarithm
and use the Lagrange multiplier method to cope with the unit length restrictionc’'c=1,
i.e. we differentiate

é(y)

2log(c’'s) — (1—+v)log(c'Sc) — A(c'c—1)
with respect to ¢ and obtain the equation system
s/c's — (1—v)Sc/c'Sc — Ac = 0.

Left multiplication by ¢’ shows that A=+. Solving for ¢ without bothering much
about the scalars c's and ¢'Sc we obtain the relationship

cox (S+80)7 s (2.3)
with 6 = ¢'Scy/(1 —v), i.e. cis proportional to a standard ridge estimator with ridge
constant 6. By writing
c'Sc v

e Toy @.4)

6=

we make its definition scale invariant in c.

Before we continue, let us temporarily follow Fearn (1990) and make expressions
(2.3) and (2.4) more explicit by introducing the canonical orthogonal transformation
to the eigenvectors of S. In this representation S is diagonal, with eigenvalues e, < e,
< ... < e, say. Formula (2.3) then reads

s; boLS

G ers  1+6/e @.3)
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(with a proportionality factor independent of i), and

v chz (5
1=7 e
For v = 0 we retain the 5°S of expression (2.2),

c;(0) = si/e;.

From equation (2.5) we see that, as v increases from 0 towards 1, the weights vector
c=c(y) will be successively redistributed towards the higher eigenvalues, and
consequently & = Lc?e;/Ec? is a strictly increasing function of y. The one-to-one
relationship between vy and 6 follows. In the limit as v — 1 we obtain the PLS first
latent factor, ¢; o s; (or ¢ o s in the original variables).

So far we have demonstrated that the first-stage CR regressor coefficients vector
c(vy) is proportional to an RR estimator b*®(5). It remains to derive the corresponding
CR estimator b“R(y). According to the principles of CR this is done by simple linear
regression of y on c'x, i.e. the vector of CR regression coefficients for x is

bR(y) = c(c's)/c'Sc. (2.6)

However, equation (2.6) is scale invariant in ¢, so we may choose c¢=b*}(§) and
conclude first that

c's/c'Sc = c'(S+6Dc/c'Sc =1 + v/(1—v),
by use of equation (2.4), and next as a consequence the desired formula
bR(y) = {1 + v/(1 —7)}D*RE). U
For the relationship between b“®(y) and b°"S we find

6=

1
bOLS

CR(.) — Y Y 5 -1
bR(y) <1+1_7) <I+1_7e('y)S >
In the canonical transformation this reads
cx bos
bit(y) = T5v@/e—1) 2.7

For v close to 0 we have
Z (si/e;)%e;
Ssi/e)

but as the example will show (see Fig. 2 later) € may increase significantly for only a
slight increase in v near y=0.

~
e =

3. EXAMPLE

We illustrate the behaviour of standard RR and first-factor CR by applying the
methods to the cement heat evolution data set used by Stone and Brooks (1990) to
illustrate CR, and previously used by Hald (1952) to illustrate multiple regression and
by Draper and Smith (1981), chapter 6, to demonstrate RR as a tool for handling near
collinearity (the condition number of the standardized S is 1379). The response
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variable y is the heat evolved from n = 13 cement samples of different compositions as
given by p=4 explanatory variables x,, . . ., x, (with a sum x; +. . . +x, of little
variation between cement samples; the cause of the near collinearity).

Following Draper and Smith (1981) and Stone and Brooks (1990) we apply the two
methods to variance-standardized explanatory variables. The so-called ridge trace is
given by Draper and Smith (their Figs 6.4 and 6.5), showing a rapid change in
estimated coefficients as 6 is increased from 0 to about 0.002. They do not use a cross-
validatory index, but a rule-of-thumb formula suggesting the value §=0.0131to be a
reasonable choice. Fig. 1 of Stone and Brooks (1990, 1992) gives the cross-validatory
index I for the one-factor CR as a function of a=v/(1 ++), with further specifica-
tions in their Table 1 for a =0, «=0.006 and «=0.5 (y=0, y~0.006 and = 1). Our
Fig. 1 shows the cross-validatory index (Z,,, in the notation of Stone and Brooks
(1990)) as a function of the RR parameter (ridge constant) § for each of the two
methods.

For both methods we observe that the index increases rapidly as & is moved away
from 0. For RR the optimum value is attained at a slightly smaller 6 than for one-
factor CR. The latter method has in fact a slightly higher optimal /-value than RR. Of
more significance is the behaviour when é is increased above its optimal value. For RR
the index curve is seen to go down much faster than for one-factor CR. The values for
6=o0 are /=0 and 7=0.959 respectively.

Fig. 2 shows how the weighted eigenvalue average &, that relates 6 with v, increases
with . The four eigenvalues of S are 2.236, 1.576, 0.187 and 0.002. We note a first
steep increase followed by a flattening towards the limit value 2.232 for y=1 (6 = oo,
one-factor PLS). As a function of é the curve looks quite similar to that in Fig. 2, since
Fig. 2 also indicates that in round figures 6 is about twice v (for small y; otherwise
twice v/(1 —7v)).

Remark. Generally a reasonable upper bound for the cross-validatory index
value is given by the ‘adjusted R2-value’. In our example this quantity is 0.974 for the
full model. Hence, we should not expect an /-value much higher than the maximum
seen in Fig. 1 for any method of estimation.

1
0.965 7

Index values

0.96

0955 """ T
0 0.05 0.1 0.15 0.2

Fig. 1. RR(:e:--er )and CR (: ) cross-validatory indices in the example: in round figures & is twice y
(see Fig. 2) and twice o = /(1 + v) here; more precisely the end point 6 = 0.2 corresponds to y = 0.086 and
a=0.079
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<€— Level 2.232 for y=1
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&
3
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Fig. 2. Weighted eigenvalue average €as a function of v, equal to the factor of proportionality between
dand v/(1—7%)

4. DISCUSSION

It is apparent that CR with one regressor differs from RR by only a scalar factor
that moderates the RR shrinkage effect. Consider the special case e; = constant (=é),
i.e. complete orthonormality in the x-space. The shrinkage of the RR estimator
relative to the OLS estimator is then given by the scalar factor {1+~v/(1-v)}"' =
1 — v, which is exactly compensated in the CR estimator, so 5®(y) = b°LS for all 4.
In passing, note that this case is not possible unless the x-variables are variance
standardized; this could be taken as an argument for standardization in combination
with CR. Another special case is when one of the eigenvectors of S contains all the
correlation with y, i.e. s;=0 for all except one index. Also in this case bR(y) = bOLS,
whereas bRR(8) is shrunk.

Multiplying an unbiased estimator by a scalar less than 1 will reduce the variance of
the estimator but instead introduce a bias. If the factor is sufficiently close to 1, the
MSE is reduced. It is a controversial statistical principle to refrain from unbiasedness
just to gain such a shrinkage effect in the MSE. In some situations, however, a
selective shrinkage undoubtedly can have quite a favourable effect on the estimator,
as typified by the ridge estimator in near-collinear regression. The interpretation of
the method of CR with one regressor that we have found is that it ignores the general
shrinkage of the RR method but retains the shrinkage effect that protects against near
collinearity. Thus, for those of us who would not shrink the OLS estimator in simple
linear regression, CR with one regressor (and y < 1) is the sensible procedure to use
rather than conventional RR. Moreover, as the cross-validation index curves of the
example show, standard RR need not be better in terms of MSE.

We have not seen this modified RR method discussed elsewhere. In particular, the
modification is not the same as in the so-called almost unbiased ridge estimator of
Singh et al. (1986).

From a more pragmatic point of view we should ask how the two (classes of)
estimators typically will behave in practice. We have seen one example earlier. The
same general picture appeared for Fearn’s (1983) data used in example 3 of Stone
and Brooks (1990). The optimal cross-validation index values were the same size
for both methods, but first-factor CR was much less sensitive than RR to over-
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estimation of the ridge parameter (y or §). In both examples the optimal ridge
parameter values were quite small, but this is typical for cases where RR is advocated.
Small values of é (or ) correspond to modification factors 1/(1 —+) close to 1, but,
although this does not necessarily imply that the CR and RR optimal choices must be
close in y-values and in estimated coefficients b, we believe this to be typical. In other
cases, pictures of other proportions may be obtained. For a different data set, with
index I maximized not far from 6 = 1 for RR, first-factor CR gave a slightly higher but
very flat index maximum between PLS (6 = o, y=1) and PCR (y = ).

Our conclusion from the theoretical and empirical investigations is that (first-
factor) CR is preferable to standard RR. More specifically, RR should not be used as
such, but rather used to yield (one-dimensional) regressors for OLS fitting.
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