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Abs t rac t .  The analog of the Riemann tensor of the phase spaces of the nonholo- 
nomic (with constrained velocities) dynamical systems on manifolds and superman- 
ifolds is proposed. These tensors are needed to perform H. Hertz's formulation of 
mechanics (without the notion of force) and to write supergravity equations on any 
N-extended Minkowski superspace. Our approach provides one also with a method 
to select coset superspaces of $£:(NI4 ) for the role of the N-extended Minkowski 
superspaces. For N -- 1, 2, 4, 8 certain most symmetric examples are considered. 
The method is applicable as well to M. Vasiliev's models with N > 8. 

I n t r o d u c t i o n  

The details of this paper will be given elsewhere. Here we briefly explain 
how to derive supergravity equations, SUGRA(N) - -  the analogues of Ein- 
stein's equations (EE) on an N-extended Minkowski superspace M (N) and 
what are our the criteria for distinguishing suitable Minkowski superspaces 
among other supermanifolds. As in twistor theory, we consider complex case, 
the physical reality to be recovered on a suitable real form of ~4 (N). Our re- 
quirements: SUGRA(N) should be (A) a differential equation of order < 2 on 
the components; (B) the component expantion of SUGRA(N) should contain 
the ordinary Einstein's equations. For simplicity we assume that  the super- 
group of motions of ~/[(N) is G = S/:(NI4) (though other possibilities can 
not be eliminated, cf. (Leites e.a. (1998), Manin (1997))), so we wonder: what 
is the stationary subgroup P for which ~4(N)  = S £ ( N I 4 ) / P ?  

As N grows, it becomes clear that  to justify the above requirements we 
have to diminish P ,  as GIKOS did, cf. (Galperin e.a. (1984)). Then for N > 3 
we see that  the underlying manifold of ~4 (N) is the direct product  of several 
copies of the Minkowski space M (times, perhaps, an auxiliary space of a yet 
unclear merit) and SUGRA splits into the usual Einstein equations on each 
copy of M glued together by odd superfields. In particular, for N = 4 there 
are two copies of M. 

For N = 8 there are three copies of M, one of them distinguished (say, 
"our world"), the other two - perfectly interchangeable (in the model con- 
sidered here; there are other possibililties) - mirrowing, say, "heaven" and 
"hell"). These extra copies of the Universe (they MUST appear in our ap- 
proach) embody an idea first, perhaps, voiced in (Sakharov (1986)). Another 
feature of nonhotonomic nature of Minkowski superspace is the prefered direc- 
tion of time, an observation we derive by directly looking at the rattleback; 
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the universality of this observation for nonholonomic systems follows from 
recent studies by A. Nordmark (1997). 

We start  with a presentation of Einstein's equations in a form convenient 
to us - -  as equations on conformally noninvariant components of the Rie- 
mann tensor represented as a section of the bundle whose fiber is certain Lie 
algebra cohomology. This is equivalent to the standard modern t reatment  of 
G-structures in differential geometry that  uses Spencer homology (Sternberg 
(1985)) but  allows a generalization embracing nonholonomic structures, such 
as SUGRA. Nonholonomic manifolds, i.e., manifolds with nonintegrable dis- 
tributions, see (Hertz (1956)), are encountered quite often. The applications 
range from the Cat's Problem to electro-mechanical devices. For a moving 
account of nonholonomic problems and their history see (Vershik and Ger- 
shkovich (1994)). 

One can apply (Sternberg (1985)) to any supermanifold with a G-structure 
(such at tempts  are numerous in the literature) but  the tensors obtained do 
not match the one physicists consider, cf. (Wess and Bagger (1983)). We also 
offer a general method to derive constraints - -  analogues of Wess-Zumino 
constaraints - -  for any N. We discover that  one of the conventional WZ- 
constraints for N = 1 is redundant: its cohomology class is zero. This demon- 
strates that  a computer-aided study (Grozman and Leites (1997)) is a must 
here: the amount of computations is too vast for a human not to make a slip. 

Though the notion of supermanifolds will soon celebrate their 25-th birth- 
day (see (Leites (1974)) for the first definition of supervariety), certain basics 
are, regrettably, insufficiently known yet. So we will recall them. 

1 S t r u c t u r e  F u n c t i o n s  f o r  N o n h o l o n o m i c  S t r u c t u r e s  

1.1 N o n h o l o n o m i c  ( S u p e r ) M a n i f o l d s  

Let M be a manifold with a distribution D. Let 

D = D~ C D2 C D3 C . . .  C Dd (1) 

be the sequence of strict inclusions, where Di(x) = Di-1 (x)+[D1 (x), Di-1 (x)] 
for every x E M and d is the least number for which the sequence (1.0) 
stabilizes, i.e., such that  Dd(X) U [Dl(x),Dd(x)] = Da(x). In case Dd = T M  
the manifold M is called completely nonholonomic. Let hi(X) = dim Di(x). 
The distribution D is called regular if all the dimensions ni are constant 
functions on M. Each pair: (M, D) with a nonintegrable D will be referred 
to as a nonholonomic manifold if d ¢ 1. We will only consider completely 
nonholonomic (super)manifolds with regular distributions. 

With the tangent bundle over a nonholonomic manifold (M, D) we can 
naturally associate a sheaf of nilpotent Lie algebras as follows. At point x E M 
set 
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n(x) = @ ni(x), where n-i(x)  = Di(x ) /Di - l (X) ,  Do = 0. (2) 
- d ~ i ~ - i  

Clearly, n(x) is a nilpotent Lie algebra. 
1.1.1. A fiat  (G,n(x) ) - s t ruc ture .  Let M = R '~ with a nilpotent Z- 

graded Lie algebra structure, call it n. Let G be a subgroup of homogeneous 
(preserving the grading (2)) automorphisms of n. Let us identify the tangent 
space at a point m E M with M by means of a translation from G. The 
preimages n - l ( m )  of n-1 under this identification determine a distribution 
on M. This distribution together with the G-action on the accompanying flag 
n(m) at each m E M will be called a fiat (G, n)-structure. 

1.2 General ized Cartan's  Pro longs  

Given a Z-graded nilpotent Lie algebra g_ = ® gi and a Lie subalgebra 
O>i~_--d 

go C der  g_ which preserves the Z-grading of g_, define the i-th prolong of 
(g- ,go)  for i > 0 to be (here S* = @S k and V* is the dual of V): 

= [(S'(g_)* ® go) n (S'(g_)* ® g_) ] .  (3) 

where the subscript in the rhs singles out the component of degree i and the 
intersection is well-defined thanks to the fact that  go C der  g_ C g*_ ® g- .  

Define the generalized Cartan's prolong: (g- ,g0) .  = ® gi. By the rou- 
i > - d  

tine arguments, (g_, go). is a Lie algebra. By the same arguments as for the 
G-structures, cf. (Sternberg (1985), Goncharov (1987)), the space 
H 2 (g-;  (g-,  go).) is the space of obstructions to flatness of the nonholonomic 
supermanifold (M, D) and the elements of H2(g- ;  (g- ,g0) . )  will be called 
(as for the case d = 1) structure functions. 

The space of structure functions naturally splits into homogeneous com- 
ponents whose degree is induced by the Z-grading of (g_, go).. Let 
CS(g-; (g- ,g0) . )  = ® c k ' s ( g - ;  (g- ,g0) . )  be this splitting on the cochain 

k 
level; the corresponding cohomology Hk'S(g-; (g- ,g0) . )  are precisely the 
analogues of the Spencer cohomology and coinside with them for g_ = g-1. 
Sign Rule carries superization. 

2 S t r u c t u r e  F u n c t i o n s  

o f  t h e  N - E x t e n d e d  M i n k o w s k i  S u p e r m a n i f o l d  

Recall that  the ground field is C. The G-structure of the Minkowski space 
can be viewed as either (a) (pseudo) Riemannian or, equivalently, (b) twistor 
structure. "Straightforward" superizations of these structures are distinct. 
They are considered in (a) (Leites e.a. (1998)) and (b) (Manin (1997)) or 
(Grozman and Leites (1997)), respectively. Generally, neither of these super- 
izations gives rise to what is accepted as supergravity. The reason is that  a 
Minkowski superspace is still another superization of the Minkowski space 
and is naturally endowed with a nonholonomic structure. 
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2.1 What  is an N - E x t e n d e d  C o m p l e x i f i e d  Minkowski  
Supermanifold 

Recall that  the "physical reasons" for the restrictions N <_ 4 for the Yang- 
Mills and N < 8 for the supergravity theories were put  to doubt in (Vasiliev 
(1995)). 

Recapitulat ions  (Leites (1983)). A supermatrix is a rectangular table 
with elements from a supercommutative superalgebra C with given sets of 
parities Prow and Pcot of its rows and columns. The size of a matr ix is Prow x 
Pcot. Usually, the parities are chosen so that  the even rows and columns 
come first followed by the odd ones; such matrices are said to be of the 
standard format. For the square matrices we will only consider the cases 
when Prow = Pcol and will denote this set of parities by Par. The parity of 
the matr ix  unit - -  the matrix with an element c 6 C in the (i, j ) - th  slot and 
O's elsewhere - -  is defined to be p(c) + Prow(i) + Pool(j). Hereafter in this 
paper C = C. 

Let g l  (Par) be the set of square matrices of size Par x Par; let p be 
the number of O's and q the number of l 's  in Par. It is immediately clear, 
tha t  for distinct Par's with the same p and q the Lie superalgebras g l  (Par) 
have nonisomorphic maximal nilpotent (say, upper triangular) subalgebras, 
though the algebras g l  (Par) themselves are isomorphic. It often suffices to 
consider the standard format only, and g l  (Par )  is abbreviated to gl(plq ). 
In supergravity we MUST consider nonstandard formats as well. Generally, 
we separate collections of even and odd positions in Par, say, gl(alblc ) or 
gl(alblcld), etc. 

Since Prow =Pcot, the Lie subsuperalgebra of upper triangular matri- 
ces in g l  (Par) is isomorphic to the Lie subsuperalgebra of lower triangular 
matrices and we will confine ourselves to one of them, denoted by n. The 
generators of n are the elements just above (below) the main diagonal; we 
will denote the even generators of n by white nodes and the odd genera- 
tors by "grey" nodes, the nodes corresponding to commuting generators are 
disconnected, otherwise they are joined by a segment. For instance, for the 
s tandard format, i.e., gl(plq), we have: 

0 - . . .  - q -  ® - 0 - . . .  - 0 ( 4 )  
Y 

p--1 nodes  q - 1  nodes  

Consider the Lie supergroup 8 £ ( N I 4  ) and its parabolic subsupergroup 
corresponding to the two marked odd simple roots in the following system of 
simple roots (this means t h a t / )  is generated by all the simple roots except 
the marked negative ones): 

+ + 
0 - - - ® - - - 0 - - . . . - - 0 - - - ® - - - 0  (5 )  

N - - 1  nodes  

The Lie group corresponding to the 0-th term of the Z-grading described 
by diagram (5) is G = SL(N) x SLL(2) x SLn(2) x C*, i.e., the degree of a 
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marked root is equal to I the other simple roots being of degree 0; here indices 
L and R distinguish the "left" copy of SL(2) from its "right" twin. In this 
case go = g = 0(4) @ gl(N) = SlL(2) • s12(2) @ gl(N), g_ = • gi 

- - i > i > - - 2  

with g-1 = (idL ® Id) @ (idR ® Id*), g-2 = idL ® id* R, where idj is the 
space of the standard (identity) representation of slj(2), j = L, R; and Id is 
the space of the identity representation of s l (N).  The corresponding matrix 
representaion of p = Lie(P) is of format 2]NI2. 

The N-extended Minkowski superspace JV[(N) is 8£(N]4 ) /P  endowed 
with the natural (G, g_)-structure. The conventional versions of the 
Minkowski superspace correspond to a certain real form of the (complex) 
superspace A4(N) with the reduced (G, g_)-structure, (G, g_)-structure for 
which G is semisimple. Clearly, 

J ~ ( g )  = P/C, where G = S L ( N )  x SLL(2) x SLR(2). (6) 

GIKOS guessed (and we can prove) that these .h4(N) never satisfy our re- 
quirements (A) and (B) on SUGRA for N > 1. GIKOS considered an enlarge- 
ment 7~(Y) of ~4(g)  defined 7~(N) = P /¢ ' ,  where G' = Q×SLL(2) ×SLR(2) 
and Q is a parabolic subgroup of SL(N) .  In other words, from P we pass 
to a smaller parabolic subsupergroup, P' ,  whose diagram has several middle 
roots marked as well. 

To satisfy (A) and (B), we have to test various P's. This is impossible 
without a computer. 

We can prove that diagram (4) can not satisfy requirements (A) and (B) 
regardless of the number of middle roots marked. In particular, it is well 
known to physicists that even for N = 1 the standard format does not satisfy 
(B). So in order to satisfy requirements (A) and (B) we consider nonstandard 
formats. 

For N = 8 the following two possibilities seem to be distinguished: 

+ + + + + 
O- ® - 0 -  0 - 0 -  0 - 0 -  0 - 0 -  ® - 0  Par = (001111111100) 

+ + + 
o -  o - o -  - o -  o - o -  - o -  o - o  Par  = (000011110000) 

Elsewhere we will discuss the assumptions of Haag-Lopuszanski-Sohnius' the- 
orem which lead to the Poincare supergroup and its "twistor enlargment", 
8/:(N]4). The stationary subgroups we consider here are the simplest ones: 
the Lie groups, subgroups of 0(4) x SL(N) .  Notice that even for the same 
stationary subgroup 0(4) x SL(N)  we can consider several realizations. 

The experience with the analogues of Einstein's equaitions on symmetric 
spaces (Leites e.a. (1998)) teaches us to consider the models of Minkowski 
superspace whose stationary subgroup is smaller: a product of several copies 
of SL(2): otherwise the equations will be of order > 2. 

With all these conventions, we consider the following examples of 
Minkowski superspaces which we will denote more puristically by A4(Par) 
rather than M(N) .  
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T h e o r e m .  In Table (below) there are listed all the orders and weights of 
all the structure functions for the indicated 2~4 (Par).  

The corresponding cocycles are listed in a detailed version. 
Clearly, there are more candidates for the role of .®(Par)  for the N 

we have considered; Grozman's package (described in (Grozman and Leites 
(1997))) allows one to perform corresponding calculations for any model. 

To interpret the supergravity in the same way as we have treated the 
Einstein Equations (Leites e.a. (1998)), define the supergravity equations as 
follows. On M ( N ) ,  the stationary subgroup (i.e., G) of the point preserves 
eL ® ER ® E1 ® . . .  @ ek, where Ei is the volume preserved by SLi(2),  the i-th 
copy of SL(2),  in the 2-dimensional identity representation and 2k = N.  

If there are several, say s, tensors of weight 0 - -  "scalar curvatures" 
- -  we can take for R their linear combination and the coefficients of this 
combination determine a parameter  which runs over the projective space 
Cps -1. 

E x a m p l e :  N = 1. The tensor R depends on a parameter,  the ratio a : 
b which runs over the projective line CP 1. Physicists call this parameter  
the Gates-Sigel parameter.  On g - l ,  there is the inner product  given by the 
bracket. Notice that  this product  is even for Par  = (00100) and odd for 
Par  -- (00001). (The tacit choice was Par  = (00100).) For Par  = (00100) 
the metric g on the Minkowski space M is the product  of spinorial metrics EL 
and ER on the the maximal isotropic (with respect to the pairing) subspaces 
of g-1.  

The equation on scalar curvatures takes the form 

aR1 (00) + bR2 (00) = Ag. (7) 

(The numbers (Wl,.- .) in Table are the components of the highest weight of 
the irreducible SLL(2)  x SLR(2) x SL1 x . . .-modules R ( w l , . . . ) .  Each SLi  
corresponds to a neighboring pair 11 in Par.) 

From the explicit form of the cocycles it is clear that  the component 
expansion of the above equation does not contain the usual equation on the 
scalar curvature for Par  = (00100), and only RI(00)  for Par  -- (00001) has 
the right expansion. 

Notice immediately, that for (7) to be well-defined, we must demand that  
all s tructure functions of orders > 2 vanish. These conditions are called the 
Wess-Zumino constraints. We have fewer of them than, say, in (Wess and 
Bagger (1983)): one of the constraints is "harmless", its cohomology class is 
zero (like torsion of the Levi-Civita conneciton). 

What  shall we take for analogs of Ricci flatness? As for N = 0, these 
should be the vanishing conditions on the part  of the Riemann tensor which 
does not belong to the conformal, i.e., the analog of Weyl, tensor. For N > 0 
there are several such components and we can equate to zero either or all 
of them. Different choices correspond to different supergravities (minimal, 
flexible, etc.). The equations are well-defined provided the constraints vanish. 
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If all structure functions of order 2 (and of lesser orders) vanish, the 
higher obstructions are well-defined and we can write an equation on them. 
For example, for Par = (00100) we can equate to zero one or both of the 
tensors: 

R(3 ,0 )=0 ,  R(0 ,3 )=0 .  (8) 

Observe that the "flatness" and the obstructions to flatness we intro- 
duced differ drastically from their conventional counterparts. E.g., each con- 
tact manifold or supermanifold is flat in our sence, but it is endowed with a 
connection (whose form is the contact form) with nonzero, moreover, nonde- 
generate curvature form. 

2.2 Table 

deg(SF)\Par (0000) 
[ ~  not defined 

1 

2 (2, 2), (0, 0) 
(4, 0), (0,4) 

(00100) (00001) 

(3, 1), (1, 3) 

(1, 0), (0, 1)(1, 1) 1 ~ 1 ,  (0, I ) x , ~ - T  

(1, 1), (0, 0) 2 (0, 0) 2, (2, 2), 

(1,0h,~ 
(3, 0), (0, 3) 3 not defined 

deg(SF)\Par (001100) (100001) (000011) 

not defined (0, 2), (2, 0) not defined 

[ ]  (222), (123), (321) (0, 1)1, (1,0)1 (222), (123)1, (301)1 

> 3  

(110)1, (011)1 

( 0 2 0 ) 2 ' ~  

~ ,  (2, 2) 2 ] 

(1, 1) 2, (1, 0)2, (0, 1) 2 

(2, 2), (0, 0) 3 

(1,0)1, (0, 1)1 

not defined 

[ (110)J, (031)1 

(011)1 

(000), (220), (002) 

~ ,  (020), (101)1 
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d e g ( S F ) \ P a r  (00111100) (00001111) 

~ - ]  (1021), (1023), (1201), (2112), (1122), (2211), (1001)1 

(3201), (1122)1, (2211)1 (1221)1, (2112)1, (3001)1, (1003)1 

0 

(0110), (0011)1[~ ]+1 , (1100)1 [~]+1 

(0000), (0220), (2000) 

(1111), (0101)1, (10010)1, 

(0002), (0020), (0200) 

(0011)[~] +1 , (1100) 2, ( 0110 )~  1 

(0000) 2, (0022), (2200), 

(0200), (0020) 

(0101)1, (1010)1 

>3 

deg( SF) \Par (111100001111) 

[-~ (lOOO01) 2, (100003), (3oooo1), (100201), (1o2o01) 

(100221), (122001), (101112), (211101), (210012), (111111) 

[:Y] (100122), (221001), (101211), (112101), (111012) 

(210111), (030001), (100030) 

-1 

0 

1 (000011) 4, (001100) 4, (110000) 4, (000110)41, (011000)41 

2 

> 3  

(000000) 3, (000020), (000022) 

(000200), (002200), (002000), (020000) 

(220000), (000101)1, (001010)1, (010100)1, (101000)1 

N o t a t i o n s  a n d  r e m a r k s .  Clearly, the cocycles from Table are invariant 
under the change of parities 1 ~ > 0 in Par. The cocycles which also cor- 
respond to the "conformal" case - -  on shell - -  are ~ - ~ ;  the cocycles of 

small orders are all conformally invariant, such ~ are boxed; the co- 
cycles which only exist in the conformal case, off shell - -  unheard of in the 

absence of super - -  are [ doubleboxed [ ; the suscript 1 singles out odd cocy- 
cles; the exponent denotes the multiplicity of the cocycle; the multiplicity of 
conformally invariant vectors is boxed. 
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The entry "not defined" in the Table refers to the "Riemannian" case, 
i.e., to the semisimple stationary subgroup. It so happened that  in these 
cases there are no conformal cohomologies. The dash - -  indicates that  either 
there are no structure functions in this order or (if the degree is > 2 and the 
case is the "Riemannian" one) they are not defined. In the cases considered 
(but not generally!) "Riemannian" and "on shell" are synonyms. 

References  

Fuks (Fuchs), D., (1986)Cohomology o] infinite dimensional Lie algebras, Consul- 
tants Bureau, NY 

Galperin, A., Ivanov, E., Kalitzin, S., Ogievetsky, V., Sokatchev, E. Unconstrained 
off-shell N -- 3 supersymmetric Yang-Mills theory. Classical Quantum Grav- 
ity 2 (1985), no. 2, 155-166. id., Corrigendum: "Unconstrained N = 2 matter, 
Yang-Mills and supergravity theories in harmonic superspace'. Classical Quan- 
tum Gravity 2 (1985), no. 1, 127. id., Unconstrained N = 2 matter, Yang-Mills 
and supergravity theories in harmonic superspace. Classical Quantum Gravity 1 
(1984), no. 5, 469-498. 

Goncharov, A., Infinitesimal structures related to hermitian symmetric spaces, 
Funct. Anal. Appl., 15, 3, 1981, 23-24 (Russian); for details see: id., Gener- 
alized conformal structures on manifolds. Selecta Math. Soviet. 6, 1987, no. 4, 
307-340 

Grozman, P., Leites, D., Mathematica~aided study of Lie algebras and their 
cohomology. From supergravity to ballbearings and magnetic hydrodynamics 
In: Kerfi~en V. (ed.) (1997)The second International Mathematica symposium, 
Rovaniemi, 185-192 

Hertz, H., (1956) The principles of mechanics in new relation, NY, Dover 
Leites, D. Spectra of graded commutative rings. Russian Math. Surveys, 30, 3, 

1974, 209-210 (in Russian) 
Leites, D. A. (1983) Supermanifold theory Karelia Branch of the USSR Acad. Sci., 

Petrozavodsk, (in Russian); an expanded version in: id., (ed.) Seminar on Su- 
permanifolds, ##1-34,  Reports of Dept. of Math. of Stockholm Univ., 1987-90, 
2100 pp.; Introduction to supermanifold theory, Russian Math. Surveys, 35, 1, 
1980, 3-53; Quantization. Supplement 3. In: Berezin, F., Shubin, M. Schr6dinger 
equation, Kluwer, Dordrecht, 1991 

Leites, D., Poletaeva, E., Serganova, V. On Einstein equations on manifolds and 
supermanifolds; Grozman, P., Leites, D., A new twist of Penrose' twistor theory 
(to appear) 

Martin, Yu., (1997)Gauge fields and complex geometry, 2nd ed., Springer 
Nordmark, A., Ess~n, H., Systems with preferred spin direction, Proc. Royal Soc., 

London (submitted) 
Onishchik, A. L., Vinberg, E. B., (1990) Seminar on algebraic groups and Lie 

groups, Springer, Berlin e.a. 
Sakharov, A. D., Evaporation of black mini-holes and high energy physics, ZhETPh 

Lett., 44, (6), 1986, 295-298 (in Russian) 
Sternberg, S., (1985) Lectures on differential geometry, Chelsey, 2nd edition 



From Supergravity to Ballbearings 67 

Vasiliev, M. A., Higher-spin gauge theories in four, three and two dimensions. The 
Sixth Moscow Quantum Gravity Seminar (1995), Internat. J. Modern Phys. D 
5 (1996), no. 6, 763-797; id., Higher-spin-matter gauge interactions in 2 + 1 
dimensions. Theory of elementary particles (Buckow, 1996), Nuclear Phys. B 
Proc. Suppl. 56B (1997), 241-252 

Vershik, A., Gershkovich, V., (1994) Encyclop. of Math. Sci., Dynamical systems- 
7, Springer 

Wess, J., Bagger, J., (1983)Supersymmetry and supergravity, Princeton Univ. Press 


