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Indecomposable representations of quivers are in 1-1 correspondence with positive 
weight vectors of Kac-Moody algebras. The collection of indecomposable representations 
of the quiver is tame if the quiver corresponds to a Kac-Moody algebra of polynomial 
growth. What corresponds to positive roots of Lie algebras of polynomial growth different 
from Kac-Moody algebras? The classification problem for tame representations of quivers 
associated to Lie superalgebras is a natural step towards the answer to this question. As 
an aside we announce a classification of simple graded Lie superalgebras of polynomial 
growth. 

To Ernest Borisovich Vinberg 

Introduction 

This is a short announcement, the details will be given elsewhere. 

Classical results ([i] and refs. therein). A problem. Lie superalgebras as a step 
towards its solution. 

(A) I. Gelfand and V. Ponomarev showed that  virtually all tame problems of 
finite dimensional linear algebra can be reduced to classification of quadruples of 
subspaces. This is one of numerous problems (ranging from perverse sheaves to 
quantum groups ([2]), to magneto-hydrodynamics ([3]), and so on, see [4]) tha t  
can be expressed in terms of representations of quivers, i.e. directed simple graphs 
(without edges-loops and multiple edges). 

I. Gelfand and V. Ponomarev further demonstrated that  unsolvable (wild) prob- 
lems contain the classification problem for a pair of commuting linear operators as 
a subproblem and observed that  wild problems can be classified, to an extent, in 
terms of representations of quivers. 

(B) showed that  only simply laced Dynkin diagrams (corresponding to Lie al- 
gebras s[(n), 0(2n) and ei) have finitely many indecomposable representations and 
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established a 1-1 correspondence between the set of indecomposable representa- 
tions of the Dynkin graphs and the set of positive roots of the corresponding Lie 
algebras. Nazarova obtained a result similar to that of Gabriel. 

(C) J. Bernstein, I. Gelfand and V. Ponomarev found a way to construct any 
indecomposable representation of the simply laced quiver of the Dynkin diagram 
type from the simplest representations, thus clarifying Gabriel's result. J. Bern- 
stein, I. Gelfand and V. Ponomarev also showed that classification of quadruples 
is connected with an extended Dynkin diagram but did not carry over their corre- 
spondence to such graphs. 

(D) Dlab and Ringel extended the BGP correspondence to any Kac-Moody 
algebra of polynomial growth by replacing each Dynkin diagram with a valued 
graph and Kac [5] extended the BGP correspondence to any Kac-Moody algebra 
with Dynkin diagram, even to diagrams with edges-loops. 

(E) Kac further showed [6] that tame problems of quiver representations are in 
1-1 correspondence with the quivers equal to Dynkin diagrams of afflne Kac-Moody 
algebras, i.e. the ones of polynomial growth. 

(F) The above BGP correspondence is executed by Cozeter functors. These 
functors can be defined even in the absence of quivers [7]. 

Result (F) makes the following problem natural: 

P r o b l e m  Several simple Lie algebras of polynomial growth have no Dynkin dia- 
gram (e.g., Lie algebras of vector fields, Lie algebras of matrices of complex size 
[8]}. Is there anything like Coxeter functor corresponding to such algebras.¢ 

Our result 

We will demonstrate how Lie superalgebras with Dynkin-Kac diagrams (these are 
graphs with vertices of three or four different types) constitute a natural interme- 
diate stage in the general construction of Coxeter functors for Kac-Moody algebras 
and superalgebras with an arbitrary Cartan matrix, not necessarily corresponding 
to a Dynkin diagram, and describe via BGP method their tame indecomposable 
representations. We deduce that the superization of the classification problem for 
quadruples of subspaces is wild. 

1 Quivers 

A directed graph Q, i.e., a family of vertices Q0 and ordered pairs (arrows) Q1 = 
{(i,j) : i , j  E Q0} is sometimes called a quiver. Not all orientations are allowed: 
people who used arrows for hunting hardly ever kept their quivers untidy; neither 
do modern mathematicians: they do not let arrows be stuck in the quiver pell-mell: 
each vertex should be either a sink or a source for all arrows it belongs to. (This 
requirement, natural, perhaps, for hunters seems to be mathematically ad hoc.) 
Certain feebleness of mathematicians occasioned by excessive studies manifested 
itself in allowing the mathematicians' arrows degenerate into loops. Orientations 

1222 Czech. J, Phys. 47 (1997) 



Quivers and Lie superalgebras 

of the whole graph that  bring about loops composed of neighboring arrows are, 
however, forbidden. 

A representation of the quiver is a collection of vector spaces V/, i E Q0, and their 
homomorphisms ~oij : V/ ) l~ for every (i, j)  E Q1. The sum of representations 
(U, ~o) and (V, ¢) of the same quiver Q is the collection (W, 0) with Wi = Ui ~ I~ 

a n d 0 = ( ~  j ¢,j0) "Arepresenta t i °n° fQiscal led indec°mp°sable i f i tcann° t  

be represented as a direct sum of nonzero representations. 
Having in mind the study of quivers' representations we can confine ourselves 

to the connected quivers. 

1.1 Gabriel 's  discovery. A trick of Dlab and Ringel. 

Gabriel found out two amazing facts: 
1. an indecomposable representation of a quiver does not depend on its orien- 

tation (we only consider admissible orientations). 
2. Quivers with only finitely many indecomposable representations are the ones 

called Dynkin diagrams of types A, D, E, corresponding to finite dimensional Lie 
algebras sI(n), 0(2n + 1) and ¢6, ez, as. There is a 1-1 correspondence between the 
set of indecomposable representations of an ADE quiver and the set of positive 
roots of the corresponding Lie algebra. 

By a trick Dlab and Ringel extended this correspondence to any Dynkin dia- 
gram. They suggested a sophisticated cheating: to replace multiple edges and arrows 
with a rig - -  a pair of number - -  over the corresponding edge and call the simply 
laced (but rigged) graph obtained a valued graph. 

At this stage we need precise formulations. 

1.2 Valued graphs ¢==~ Kac-Moody algebras 

A valued graph Q on the set Q0 of its vertices is a function d : Q0 × Q0 } Z+ such 
that  (we write dij instead of d(i,j)) (i) dij 7£ 0 .'. ~- dji 7 £ 0; (ii) if Q0 is infinite, 
then for every i there is only finitely many j ' s  such that  dij 7£ O. 

An edge connects vertices i and j if and only if dij 7£ 0; we rig the edge (i, j)  
with a pair of numbers as follows: dij over the i-th end of the edge and dij over its 
j - th  end. 

Since a valued graph is completely recovered from its matr ix D -- (dij), we will 
not distinguish in what follows between the matrix D and the quiver it determines. 

A Caftan matrix is a matrix A = (Aij) such that  
(i) Aij E - Z +  for i 7£ j and Aij ¢ 0 ¢=:* Aj~ 7£ 0; 
(ii) A ,  = 2 or, for a generalized Cartan matrix, Aii is an even integer < 2. 
Additionally, if A is an infinite matrix, then for every i there is only finitely 

many j ' s  such that  Aij 7£ O. The 1-1 correspondence between valued graphs and 
Caf tan  matrices is as follows: Aij = -dij; Aii = 2 -- 2dii. 
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1.3 Tame and wild representat ions  of  quivers  

For a quiver Q, the dimension of its representation (V, ~) is a collection (dim Vx, • • • 
. . .  ,d im V~), where n - - c a r d Q 0 .  

Kac showed [5, 6] that if the number of parameters p~ of the set of indecom- 
posable representations of dimension a = ( a l , , . . . ,  an)  is > 1, then the problem 
of classification of the indecomposable representatibns of the quiver is wild. Con- 
trarywise, if the number of parameters is < 1, it is tame. Kac gave an ingenuous 
proof of the fact that  the number of parameters #~ is equal to 

= 1 - 

where (., .) is the invariant bilinear form on the root system of the Lie algebra g(A). 

1.4 Coxeter  transformat ions .  A way to get  any root  f rom a s i m p l e  one .  

Let Q be a simply laced graph, EQ the linear space over Q, consisting of collections 
x = (x~ : a E Q0). For each/3 E Q0 let ez be the basis vectors of EQ. We say that  
x > 0 if x ~ 0 and xa _> 0 for all c~. Let B be the Car tan-Ti ts  quadrat ic  form on 
EQ given by the formula B(x) = Y~aeqo x~ - ~'~teq, x~(t)xt(t), where i(l) and t(l) 
are the initial and terminal points of the edge I. Let < . ,  • > be the bilinear form 
associated with B. For each/3 E Q0 denote by a~ the linear t ransformation of EQ 
given by the formulas 

x ~  if/3 = % 
(aZ(x))~ = - x ~  + z~(l) otherwise, 

I E Q 1  

where x~ (l) is the endpoint of l different form/3. Finally, let W be the semigroup 
generated by the reflections a~. A miracle happens: W is actually a group (called 
the Weyl group). Important  properties of W: it preserves the integer lattice in EQ 
and < .,. >. 

We say that x E EQ is a root if x -- we B for some/3 E Q0 and w E W. The 
basis vectors are called simple roots. Let a l ,  . . . ,  an be an enumerat ion of Q0. The 
element 

C - -  o ' a n  • . . .  " o ' a  1 

is called Coxeter transformation. Clearly, since C depends on the enumerat ion of 
Q0, there are n! Coxeter transformations, generally. 

Gabriel 's theorem classifies indecomposable representations of Dynkin graphs 
of ADE type in terms of one discrete invariant: the vector of dimension. For more 
general graphs we need continuous invariants and these are the eigenvalues of the 
Coxeter transformations. Regretably, a review of (rather numerous) results on Cox- 
eter transformations exists only in a pretty hidden form [4] and the results reviewed 
are also buried in the same depositions. 

1224 Czech. J. Phys. 47 (1997) 



Quivers and Lie superalgebras 

2 Lie superalgebras of  po lynomia l  growth 

The classics considered various tame problems of linear algebra expressible in 
terms of quiver representations and associated them with positive roots of certain 
Kac-Moody algebras. These Lie algebras are qualified as simple Lie algebras of 
polynomial growth but not all such algebras. We recall what is known about the 
Lie superalgebras of the same type. In Sect. 3 we recall the definition of the analog 
of Weyl group for Lie algebras and Lie superalgebras without Caftan matrix. 

2.1 Simple Z-graded Lie algebras of polynomial growth 

About 1966, V. Kac and B. Weisfeiler began the study of simple filtered Lie algebras 
of polynomial growth. Kac first considered the Z-graded Lie algebras associated with 
the filtered ones and classified simple Z-graded Lie algebras of polynomial growth 
under a technical assumption. It took more than 20 years to get rid of the as- 
sumption: see very technical papers by O. Mathieu, cf. [9] and refs. therein. Kac's 
list contains: finite dimensional Lie algebras and twisted loop algebras (these alge- 
bras possess Cartan matrices and, therefore, Weyl group). The remaining algebras 
from Kac's list are: Lie algebras of vector fields with polynomial of formal coeffi- 
cients (veer(m) = OerC[x] for z = (xl, ..., x,,,) and its subalgebras of divergence-free, 
Hamiltonian and contact fields) and the Witt algebra mitt = OerC[t -1 , t]. It seemed, 
they have no analog of the Weyl group. 

Recent attempt [10] to classify filtered Lie algebras of polynomial growth pro- 
vided us with a wealth of new algebras, some of them known (Oiff(n), the Lie 
algebra of differential operators in n indeterminates; gi(A), the algebra of matrices 
of complex size). Do they have an analog of Weyl group? Superization helps to 
answer, cf. [11]. 

2.2 Simple filtered Lie superalgebras of polynomial growth 

Simple Z-graded superalgebras are classified in several papers: [12] (finite dimen- 
sional ones); [13] and [14] (twisted loop algebras, without and with symmetrizable 
Cartan matrix, respectively); [15] (vectorial Lie superalgebras, i.e., homogeneous 
subalgebras of veer(rain)) and [16] ("stringy", the analogs of mitt). 

For the list of examples of simple filtered superalgebras see [10]. 

3 S y s t e m  of  s imple  roots .  F rom the  Weyl  g roup  to a sko rpense r .  

Superization naturally intermixes the classes considered in Subsect. 2.1: some 
vectorial superalgebras are finite dimensional; these are not the only simple finite di- 
mensional Lie superalgebras without any Cartan matrix, there is also a queer series; 
the outcome of twisting of the loop algebra with values in a superalgebra without 
Cartan matrix can be an algebra with a Cartan matrix, though nonsymmetrizable 
one; the outcome of twisting of the loop algebra with values in a superalgebra with 
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Cartan matr ix can be an algebra without any Cartan matrix;  the Car tan mat r ix  
of a finite dimensional Lie superalgebra can have complex entries and, therefore, 
have no Dynkin-Kac graph, etc. Therefore, in supersetting the question of what is 
an analog of Coxeter transformation in the absence of Dynkin-Kac graph or even 
Cartan matr ix  is most natural. 

Even if the Lie superalgebra has Cartan matrix,  there are at least four different 
types of simple roots; we depict the vertices of Dynkin-Kac diagram corresponding 
to n[(2), 0~p(l12), n[(l l l  ) by white, black and grey circles, respectively, cf. [12]; it is 
natural to denote the node corresponding to ~q(2) by a square circle, cf. [17]. 

For the Lie superalgebras composed of these building blocks, the notion of the 
representation of the quiver, which, usually, is a valued graph, is natural ly  defined: 
with each vertex we associate a superspace, the rest is routine, provided the vectors 
of dimension abide certain selection rules: the vectors of dimensions corresponding 
to simple roots of types ~[(2), 0~p(l12), ~l(l l l  ) and nq(2) are: 1, 011,011, and 111, 
respectively. 

I. Skornyakov, I. Penkov and V. Serganova introduced, first in presence of a 
symmetrizable Cartan matr ix A, the notion of odd reflections, see [18, 19]. Thus, 
with one Lie superalgebra of the form g(A) there were associated several compet ing 
analogs of the Weyl group, see [20]. (Actually, the Weyl group appears in various 
instances and superization of each of them brings about  several versions, each with 
its own weak and strong points.) 

In 1990 Vinberg said that to consider the fact that  one can multiply reflections 
in disconnected (on the Dynkin diagram) simple roots a miracle; he said that  he 
only saw neighboring systems of simple roots. But it is so tempt ing to consider the 
universal group formally generated by the reflections! 

It is also important  for applications to quivers' representations to be able to real- 
ize this universal group or its quotient linearly on weights, or at least, roots. Observe 
that  in addition to the constructions of I. Skornyakov, I. Penkov and V. Serganova, 
for whose purposes the reflections in odd roots need not generate a group, there is 
an alternative approach by Manin [18] whose analog of the Weyl group is always 
a group. We suggest to call the collection of reflections skorpenser (after I. Sko- 
rnyakov, I. Penkov and V. Serganova), if it is not a group. If the skorpenser is a 
group, it can be interpreted geometrically and identified. It turned out that  only in 
rare cases, say for g[(mln), almost all superizations of the Weyl group considered 
above are identical and linearly act on the space of weights. Usually, even if a su- 
perization of the Weyl group preserves the root lattice it does not preserve the set 
of roots; or, if it does preserve the set of roots, it does not act on weights at all, or, 
at least, it does not act in the space of weights linearly. 

Further studies brought Penkov and Serganova to a remarkable notion of an 
analog of the Weyl group for ANY Lie algebra, see [19], where this notion is con- 
sidered in super setting. This notion - -  skorpenser - -  was further developed in 
[21] to match the infinite dimensional case. Therefore, we can apply it to the Lie 
(super)algebras of vector fields and LUg(A) - -  the generalizations of 9(~). 
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We started with the task to find out all the cases when it is possible to define a 
linear action of skorpenser on the space generated by roots and found several new 
cases. 

4 S k o r p e n s e r  - an  ana log  o f  W e y l  g r o u p s  in  s u p e r  s e t t i n g  ([20]) 

Here are descriptions of the analogs of the Weyl group in presence of Car tan  
matr ix  A = (hi j). For the definition of such an analog in the absence of Car tan 
matr ix  see [19, 21]. 

4.1 T h e  universal  skorpenser  

Let i~ be a simple Lie superalgebra, 0 its maximal torus, B a base, nB the nilpotent  
subalgebra generated by root vectors corresponding to B. A subalgebra of the form 
bB -- lab (~ ~ is called a Bowl subalgebra. Let L(A, B) be the finite dimensional 
irreducible 9-module with b-highest weight A; let A = AB be the set of b-highest 
weights of all the finite dimensional irreducible g-modules and Fx the set of weights 
of L(A, B). 

Denote by Sa(7) for any a E R ,7  G Fx the a-string through 7, i.e., the set 

7 -  q a , . . . , 7 -  a , 7 , 7  + a , . . . , 7  + p a  

such that  7 - (q + 1)a ,7  + (P+  1)a g Fx. The number la = p +  q - 1 is called the 
length of the a-string. 

Set ra(7)  = 7 +  (p-q)a .  Since the weight r~(7) is defined for any 7 E Fx, there 
exists a map  ra : Fx ~-r Fx. This map will be called the reflection with respect to a. 

Let FR be the free group with generators fa for every a E R. Then for any 
A E A there is defined an Fn-action on Fx by the formula fa(7)  = ra(7) .  

Let IX,R be the normal subgroup of FR singled out by the formula 

I ,R = {f e FR : f(7) = for all 7 e 

The group UWR = FRIIR, where IR = AA~AIx,R, will be called the universal 
skorpenser of the root system R (or of g and we denote it by UWR or UW~). 

Denote by ra the image of fa  under the natural projection. By construction, 
UW~ acts on Fx for any A E A, in particular, it acts on R. 

L e m m a  a) r ~ =  1. 
b) r _ a = r a .  
c) The Weyl group W~o of the Lie algebra 96 is naturally embedded into UW~. 
d) Let w E W~.  Then rw(~) = wraw -1. 
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4.2 Th e  linear skorpenser 

Under the notations of the previous section, define the reflections r~ by the formulas 

--aj  

otj -- aijot i 

r a , ( a j )  = otj -- 2aijoti 
a j  -Jr a i  

otj 

for i = j ,  
for i ¢ j and a i i  = 2, 
for i ¢ j and a i i  = 1, 
for i ¢ j and aii = 0 , a j i  ~ O, 

for i ¢ j and a i i  = a j i  - -  O. 

Let L W n  be the group generated by such reflections when a runs over simple roots 
of all bases of g. We will call L W R  the l inear  s k o r p e n s e r  of R (or of ~). 

5 C o n c l u s i o n  

It turned out that for the dis t inguished  stringy Lie superalgebras of series [~L 
and [~M (for their definition see [16]) this skorpenser is a group that  linearly acts 
on the root space and the geometric picture is identical to that  for one of the Kac- 
Moody superalgebras with symmetrizable Cartan matr ix  provided we forget that  
the multiplicities of the roots are different. To compute  the Coxeter t ransforma- 
tion in the case of g(A) with a symmetrizable A, even with complex entries, and 
the above distinguished stringy superalgebras is routine but  tedious. It turns out 
that  even for finite dimensional Lie superalgebras the Coxeter t ransformat ion does 
not vanish identically. The complete description of the continuous invariants is in 
progress. 

Observe that  from classification of simple Lie superalgebras of polynomial  growth 
it is clear that  not all problems of linear algebra depicted by a quadruple of sub- 
spaces are tame: the corresponding Dynkin-Kac diagram can not have nodes of 
arbitrary colors or be square ones to describe the Lie superalgera of polynomial  
growth. 
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