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Introduction
The main object in the study of Riemannian geometry is (properties of) the
Riemann tensor which, in turn, splits into the Weyl tensor, Ricci tensor and scalar
curvature. The word "splits”" above means that at every point of the Riemannian

manifold M?® the space of values of the Riemann tensor constitutes an O(n)-module
which is the sum of three irreducible components (unless n =4 when the Weyl
tensor aditionally splits into 2 components).

More genearlly, let G be any group, not necessarily O(n). In what follows we
recall definition of G-structure on a manifold and of (the space of) its structure
functions (SFs) which are obstructions to integrability or, in other words, to
possibility of flattening the G-structure. Riemannian tensor is an example of SF.
Among the most known (or popular of recent) examples of G-structures are:

- an almost conformal structure, G = O(n)xR *, SF are called the Weyl tensors;

- Penrose' twistor theory, G = SUQ2)xSU(2)xC *, SF -- the Penrose tensor --
splits into 2 components whose sections are called "o-forms" and "B-forms";

- an almost complex structure, G = GL(n;C) € GL(2n;R), SF is called the
Nijenhuis tensor;

- an almost symplectic structure, G = Sp(2n), (no accepted name for SF).

The first two examples are examples of a "conformal" structure which
preserves a tensor up to a scalar. In several versions of a very lucid paper [G)]
Goncharov calculated (among other things) all SF for all structures with a simple
group of conformal transformations, whose subgroup of linear transformations is
the reductive part of the stabilizer of a point of the space and is the "G" which
determines the G-structure on the manifold. Remarkably,  Goncharov's examples
correspond precizely to the classical spaces, i.e. irreducible compact Hermitian
symmetric spaces (CHSS). Goncharov did not, however, write down the highest
weights of irreducible components of SFs; this is done in [LPS1] and some of these
calculations are interpreted as leading to generalized Einstein equation.

In this talk we advertize results (mostly due to E.Poletacva) of calculating SF
(and interpretation of them) for classical superspaces who are defined and partly
listed in [S] and [L2] (see also [V], containing interesting papers on supergravity
and where curved supergrassmannians are introduced). The problem was raised in
[L2], cf. [L4], and the above examples are now superized in [P] and [LPS]. The
passage to supermanifolds naturally hints to widen the usual approach to SFs in
order to embrace at least the following cases:

- 2 types of infinite dimensional generalizations of Riemannian geometry
connected with: (1) string theories of physics (these infinite dimensional examples
have no analogues on manifolds because they require no less then three odd
coordinates of the superstring; the list of corresponding hermitian superspaces
deduced from [S] is given in [L2]; dual pairs, etc. will be considered elsewhere) and
(2) Kac-Moody (super) algebras (see Table 5);

- the G-structures of the N-extended Minkowski superspace: the tangent
space to the Minkovski superspace for N=+0Ois naturally endowed with a 2-step
nilpotent Lie superalgebra structure that highly resembles the contact structure
on a manifold. We start studying such structures in earnest in [LPS2], compair our
approach with that of the GIKOS group lead by V.I. Ogievetsky. More generally, we
shall calculate SF for the G-structures of the type corresponding to any “flag
variety”, not just Grassmannians, particular at that, see Table 1.
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Elsewhere we will generalize the machinery of Jordan algebras, so useful in
the study of geometry of CHSSs [Mc], to the cases we consider (this is Vinel's thesis).

Can programmers help? A good part of the calculations we need are very simple (to
calculate cohomology is to solve systems of linear equations [F]). Still, though the number of
papers on supergravity is counted by thousands (see reviews in our bibliography, of which
[0S3], [WB], [We] are easy to understand) there is remarkably small progress in actual
calculations (cf. mathematical papers [Sch]l, [RSh], [Me]). It is yet unclear what are all
supergravities for N>1. The reason to that: the calculations are voluminous besides, these
calculations also have to be "glued" in an answer and there are no rules for doing so, cf. [P4].
Thus the problem is a challenge for a computer scientist, our calculations, together with [LP1]
and [P1-4], illustrate [LP2]. For our cohomology of our infinite dimensional Lie (super)algebras
there are NO recipes at all (not even from Feigin-Fuchs nor Roger [FF]).

In this text we deal with lincar algebra: at a point. The global geometry,
practically not investigated, is nontrivial, cf. [M], [MV].
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Preliminaries
Terminological conventions. 1) A g -module V with highest weight & and even highest

vector will be denoted by V§ or R(§). An irreducible module with highest we'ight Za;rn;, where m;

is the i-th fundamental weight, will be denoted sometimes by its numerical labels R(Zaj; a) the
highest weight with respect to the center of g stands after semicolon, cf.[OV], Reference
Chapter. ‘

2) Let ¢g denote the trivial central "extent” (the result of the extention) of a Lie
(super)algebra g; let p stand for projectivization (as in psl, pq) and s for "trace"-less part (as

in s, 5q, sh).
0.1. Structure functions. Let us retell some of Goncharov's results ([G]) and
recall definitions ([St]).

Let M be a manifold of dimension n over a field K; think K =€ (or R). Let
F(M) be the frame bundle over M, ie. the canonical principal GL(n; K)-bundle. Let
G<CGL(n; K) be a Lie group. A G-structure on M is reduction of the frame bundle to
the principal G-bundle corresponding to inclusion GC GL(n; K), i.e. a G-structure is
the possibility to select transition functions so that their values belong to G.

The simplest G-structure is the flat G-structure defined as follows. Let V be
K1 with a fixed frame. Consider the bundle over V whose fiber over veV consists of
all frames obtained from the fixed one under the G-action, V being identified with
TyV.

Obstructions to identification of the k-th infinitesimal neighbourhood of a
point meM on a manifold M with G-structure and that of a point of the flat manifold
V  with the above G-structure are called structure functions of order k. Such an
identification, is possible provided all structure functions of lesser orders vanish.

Proposition. ([St]). SFs of order k are elements from the space of (k,2)-th
Spencer cohomology.

Recall definition of the Spencer cochain complex. Let St denote the operator of the i-th
symmetric power. Set 9= TmM, 99=9 = Lie(G) and for i > O put;

(610 9% =®; 5.1 ¢ where g, = [XeHom(g_l,gi_l): XW)(w,...) = X(w)(v,...)
for any v,w €g_)) = S'g_)*eg ) ns'* g )reg .

Suppose that
the gn-module g _,; is faithful. 0.1)

Then, clearly, (g 1. 9g)uS0¢ct(m) = der K[[X,.., xn 1], where n = dim ¢_;- It is subject to an
easy verification that the Lie algebra structure on v¢c¢t(n) induces a Lie algebra structure on
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(g_l. 90)*. The Lie algebra (9_1, 90)*, usually abbreviated to g,, will be called Cartan’s prolong
(the result of Cartan prolongation) of the pair (9-1’ ¢ 0).

Let El be the operator of the i-th exterior power; set Ck,s9 = gk_s@Es(g 1*); usually we
N -

drop the subscript or at least indicate only ¢ o Define the differential  dg: cks > ck-1l,5+1
setting for any vy, .., vs+1€V (as always, the slot with the hatted variable is ignored):

(3SE)V1s s Vs#1) = DDV, ey AV s ¥y DV g )
As usual, d sas 1= 0, the homology of this complex is called Spencer cohomology of (9-1’ 90)*'
0.2. Case of simple ¢, over €. The following remarkable fact, though known to experts, is

seldom formulated explicitely:
Proposition. Let K=C¢C, g, = (¢ 90)* be simple. Then only the following cases are

possible:

1) 9, * 0 and then g, is either veck(n) or its special subalgebra svect(n) of divergence-
free vector fields, or its subalgebra bh(2n) of hamiltonian fields;

2 )92 =09 1 * 0 then ¢ . is the Lie algebra of the complex Lie group of automorphisms
of a CHSS (see above). }

Proposition explains the reason of imposing the restriction (0.1) if we wish g, to be

simple. Otherwise, or on supermanifolds, where the analogue of Proposition does not imply
similar restriction, we have to (and do) broaden the notion of Cartan prolong to be able to get
rid of restriction (0.1).

When g, is a simple finite-dimensional Lie algebra over € computation of structure

functions becomes an easy corollary of the Borel-Weyl-Bott-... (BWB) theorem, cf. [G]. Indeed,

by definition °k Hk’29 = Hz(g_l; ¢4) and by the BWB theorem Hz(g_l; ¢ %), as ¢-module, has as
*

many components as Hz(g_l) which, thanks to commutativity of 9.1 is just Ez(g_l); the highest

weights of these modules, as explained in [G], are also deducible from the theorem. However, [G]
pityfully lacks this deduction, see [LP1] and [LPS1] where it is given with interesting
interpretations.

Let us also immediately calculate SF corresponding to case 1) of Proposition: we did not
find these calculations in the literature. Note that vanishing of SF for g, = veet and T (see 0.5)

follows from the projectivity of ¢ as ¢ O-modules and properties of cohomology of coinduced
modules [F]. In what follows R(Zajrj) denotes the irreducible ¢ o-module. The classical spaces

are listed in Table 1 and some of them are bapthized for convenience of further references.
Theorem. 1)(Serre [St]). In case 1) of Proposition structure functions can only be of
order 1.

a)Hz(g_l; ¢4)=0 for g, =vect(n) and $vect(m), m>2;
BH%(9 1 ) = R(E3)eR(x) for g = h(2n), n>1;
H2(g_,: ¢4) = R(ny) for 44 =h(2).

2)(Goncharov [G]). SFs of Q3 are of order 3 and constitute R(41:1). SFE for Grassmannian

Gr,,#*" (when neither m nor n is 1, i.e. Gr is not a projective space) is the direct sum of two
components whose weights and orders are as follows:

Let A=R20, .., 0, -1)eR(1, 0, ..., 0, -1, -1), B =R(1, 1, 0, .., 0, -1)®R(1, 0, ..., 0, -2).
Then if mn #+ 4 both A and B are of order 1;

ifm= 2,n+ 2 Ais of order 2 and B of order 1;

ifn= 2,m+ 2 Ais of order 1 and B of order 2;

ifn=m= 2 both A and B are of order 2.
SF of G-structures of the rest of the classical CHSSs are the following irreducible go-modules

whose order is 1 (recall that Q 4 = Grz4):
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CHSS P?  OGry LGrp Qq » n>4

wigh of S - EAEAvepev  EASKVO)eV  EXVWeV
E/SO(10)xU(1) E7/EgxU(1)

O Beegmerag  BRG)MeRG)

0.3. SF for reduced structures. In [G] Goncharov considered conformal
structures. SF for the corresponding generalizations of the Riemannian structure,
ie. when g is the semisimple part ~g of ¢ = Lie (G), secem to be more difficult to

compute because in these cases (9 1, ¢glx =9_®9( and the BWB-theorem does not

work. Fortunately, the following statement, a direct corollary of definitions, holds.
Proposition ([G], Th.4.7). For 90="9 and ¢ SF of order 1 are the same and

SF of order 2 for g = g are Sz(gl) = 82(9_1*). (There are clearly no SF of order 3 for
90="9)

Example: Riemannian geometry. Let G = O(n). In this case ¢ = ¢ _;and in

Sz(g_l) a 1-dimensional subspace is distinguished; the sections through this

subspace constitute a Riemannian metric g on M. (The habitual way to determine a
metric on M is via a symmetric matrix, but actually this is just one scalar matrix-
valued function.) The values of the Riemannian tensor at a point of M constitute an

O(n)-module Hz(g_l; 9«) which contains a trivial component whose arbitrary
section will be denoted by R. What is important, this trivial component is realised
by Proposition as a submodule in Sz(g_l). Thus, we have two matrix-valued
functions: g and R each being a section of the trivial go-module. What is more

natural than to require their ratio to be a constant (rather than a function)?

R=XA g, where A eR. (EE,)
Recall that the Levi-Civita connection is the unique symmetric affine connection
compatible with the metric. Let now t be the structure function (sum of its
components belonging to the distinct irreducible O(n)-modules that constitute

Hz(g_l; ¢x)) corresponding to the Levi-Civita connection; the process of restoring t
from g involves differentiations thus making (EE,) into a nonlinecar pde. This pde
is not Einstein Equation yet. Recall that in adition to the trivial component there is
another  O(n)-component in Sz(g_l), the Ricci tensor Ri. Einstein equations (in

vacuum and with cosmological term 1) are the two conditions: (EEj) and
Ri =0. (EEy;ic)

A generalization of this example to G-structures associated with certain
other CHSSs, flag varicties, and to supermanifolds is considered in [LPS1] and [LP3].
0.4. SF of flag varieties. Contact structures. In heading a) of Proposition 0.2
there are listed all simple Lie algebras of (polynomial or formal) vector fields
except those that preserve a contact structure. Recall that a conmtact structure is a
maximally nonintegrable distribution of codimension 1, cf. [A].

To consider contact Lie algebra we have to generalize the notion of Cartan
prolongation: the tangent space to a point of a manifold with a contact structure
possesses a natural structure of the Heisenberg algebra. This is a 2-step nilpotent
Lie algebra. Let us consider the general case corresponding to "flag varieties" --
quotients of a simple complex Lie group modulo a parabolic subgroup. (The
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necessity of such a generalization was very urgent in the classification of simple
Lie superalgebra, see [Shch] and [L2)], where it first appeared, already superized.)

Given an arbitrary (but Z-graded) nilpotent Lie algebra g _= ®05i> 4% and
a Lie subalgebra ¢ < ber g_which preserves Z-grading of g _, define the i-th
prolong of the pair (g , g) for i > 0 to be:

* *
9; = (S (9)*eg94 NS (g)*eg);,
where the subscript singles out the component of degree i.Similarly to the above,
define ¢, or rather, (g _, 90)*, as @ ;. 4% then, by the same reasons as in 0.1,

9« is a Lic algebra (subalgebra of ¥(dim ¢ _) for d = 2 and dim 9 .,= 1) and Hi(g_; 9x)

is well-defined. Hi(g_; ¢ %) naturally splits into homogenecous components whose

degree corresponds to what we will call the order. (For the particular case of Lie
algebras of depth 2 the obtained bigraded complex was independently and much
earlier defined by Tanaka [T] and wused in [BS] and [O]. No cohomology was
explicitely calculated, however; see calculations in [LPS2] and [LP3].)

The space Hz(g_; 9 ) is the space of obstructions to flatness. In general case

the minimal order of SF is 2-d. For d > 1 we did not establish correspondence
between the order of SF and the number of the infinitesimal neighbourhood of a
point of a supermanifold with the flat G-structure.

Examples. 1) G* is a simple Lie group, P its parabolic subgroup, G the Levi
subgroup of P, 90 = Lie(G), ¢ _is the complementary subalgebra to Lie(P) in Lie(G*).
The corresponding SF, calculable from the BWB-theorem if g is finite-dimensional
and simple describe for the first time the local geometry of flag varieties other
than CHSSs, see [LP3] for details. Here is the simplest example.

2) Let ¢ = ¢sp(2n), 9¢_y =R(n1; 1), §_5 =R(0) ; then g,= ¥(2n+1) and

ck SQ* = gk-sQEs(g-l*) e;gk—s-l‘sEs-l(g-l*)‘B9-2*'

Theorem. For §,= ¥(2n+1) all SF vanish.

This is a reformulation of the Darboux theorem on a canonical 1-form,
actually. .
0.5. SF for projective structures. It is also interesting sometimes to calculate

Hz(g_; h) for some Z-graded subalgebras HC g4, such that h;=¢; fori<0. For
example, if ¢ =¢9l(n) and ¢ _; is its standard (identity) representation we have g, =
vect(n) and, as we have seen, all SF vanish; but if h =sl(n + I) Coect(n) then the

corresponding SF are nonzero and provide us with obstructions to integrability of
what is called the projective connection.

Theorem. 1) Let g, = vect(n), b =sl(n + 1). Then SF of order 1 and 2 vanish,
SF of order 3 are R(2,1, 0, ..., 0, -1)

2)Let g4 = 1(2n+1), b = sp(2n + 2). Then SF are R(7z1+7r2; 3) of order 3.
0.6. Case of simple ¢ . over R.

Example: Nijenhuis tensor. Let ¢ = gl(m) <9l(2n;R), 9 .q is the identity
module. In this case g4 = veci(n), however, in seeming contradiction with Theorem

0.1.2, the SF are nonzero. There is no contradiction: now we consider not C€-linear
maps but R -linear ones.

Theorem. Nonvanishing SF are of order 1 and constitute the ¢,-module

9_1®¢.E2R(9_]*), where g(cv) = TV for ceC, gegl(n), veVand a g I(n)-module V.
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One of our mottos is: simple Z-graded Lie superagebras of finite growth
(SZGLSAFGs) are as good as simple finite-dimensional Lie algebras; the results
obtained for the latter should hold, in some form, for the former. So we calculate

SF on supermanifolds: Plan of campaign
The necessary background on Lie superalgebras and supermanifolds is
gathered in a condenced form in [L5], see also [L1, L2]. The above definitions are
generalized to Lie superalgebras via Sign Rule.
On the strength of the above examples we must list Z-gradings of SZGLSAFGs
of finite depth (recall that a Z-graded Lic (super)algebra of the form © ., . 9;1is

said to be of depth d and length k; here d, k >0), calculate projective-like and
reduced structures for the above and then go through the list of real forms.

Our theorems are cast in Tables. In Table 1 we set notations. Tables 2 and 3
complement difficult tables of [S]. Table 4 lists all symmetric superspaces of depth 1
of the form G/P with a simple finite-dimensional G. Table 5 lists all hermitian
superspaces corresponding to simple loop supergroups different from the obvious
examples of loops with values in a hermitian superspace. Notice that there are 3
series of nonsuper examples.

We compensate superfluity of exposition by wast bibliography with further
results. Let us list some other points of interest in the study of SF on superspaces.

- there is no complete reducibility of the space of SF as §p-module;

- Serre's theorem reformulated for superalgebras shows that there are SFs of
order >1, see [LPS1];

- faithfulness of g -actions on ¢ _; is violated in natural examples of: (a)

supergrassmannians of subsuperspaces in an (n,n)-dimensional superspace when
the center z of 9 acts trivially; retain the same definition of Cartan prolongation;

the prolong is then the semidirect sum (9-1’ 90/2)* IxS*(g_l*) with the natural Z -

grading and Lie superalgebra structure; notice that the prolong is not subalgebra
of vect(dim g_l); (b) the exterior differential d preserving structure.

More precisely, recall that for supermaifolds the good counterpart of
differential forms on manifolds are not differential but rather pseudodifferential
and pseudointegrable forms. Pseudodifferential forms on a supermanifold X are
functions on the supermanifold X' associated with the bundle t*X obtained from
the cotangent one by fiber-wise change of parity. Differential forms on X are
fiber-wise polynomial functions on X'. In particular, if X is a manifold there are no
pseudodifferential forms. The exterior differential on X is now considered as an odd
vector field d on X'. Let x = (ul, vens “p’ &1, s §q) be local coordinates on X, xi’ = n(xi).

Then d = ):xi’a/axi is the familiar coordinate expression of d. The Lie superalgebra

€ (d) < vect(m+n/m+n), where (m/n) = dim X, -- the Lie superalgebra of vector
fields preserving the field d on X' (see definition of the Nijenhuis operator P 4 in

[LKW]) -- is neither simple nor transitive and therefore did not draw  much
attention so far. Still, the corresponding G-structure (G (d) = (g_l, 90)*, where 90 =

g l(k)xTI(gI(k)) and where TI(g[(k)) is abelean and constitutes the kemel of the 90"
action on 9.1 - id, the standard (identity) representation of g¢I(k)) is interesting

and natural. Let us call it the d-preserving structure. The following theorem
justifies pseudocohomology introduced in [LKW].

Theorem. SFs of the d-preserving structure are 0.

An interesting counterpart of the d-preserving structure is the odd version
of the hamiltonian structure. In order to describe it recall that pseudointegrable
forms on a supermanifold X are functions on the supermanifold 'X associated with
the bundle ©X obtained from the tangent one by fiber-wise change of parity.
Fiber-wise polynomial functions on 'X are called polyvector fields on X. (In
particular, if X is a manifold there are no pseudointegrable forms.) The exterior
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differential on X is now considered as an odd nondegenerate (as a bilinear form)
bivector field div on X'. Let x = (ul, “p’ &1, §q) be local coordinates on X, 'xi =

u(a/axi). Then div = za2/axi'axi is the coordinate expression of the Fourier transform

of the exterior differential d with respect to primed variables; the operator is called
"div" because it sends a polyvector field on X, i.e. a function on 'X to its divergence.
The Lie superalgebra aw#i(div) is isomorphic to the Lie superalgebra [e¢(m+n) which
is the simple subalgebra of ve¢c¢t(n+min+m) that preserves a nondegenerate odd
differential 2-form o = Zdx;"dx;; an interesting algebra is the superalgebra

sle(m+n) which preserves both div and o; for both of these Lie superalgebras and
their deformations the corresponding SF are calculated in [PS] and [LPSI1] .
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Table 2. Dual pairs of homogeneous symmetric superspaces

(p)sly(mI2n)/osp(m,pli2n)
(p)s1r(2mi2n)/(pr)srl(min)
pstr(nin)/pqr(n)
pslir(nin)/sper(n)

(p)su(m,pln,q)/
J(p)s(B(r+s,tit+v,v)®
® ¢ (m-r-s,p-rin-t-v,q-t)

(p)st(2n,ml2n,2q)/osp*(2mi2n,2q)
psu(m,pln,q)/ptq(n,p)
psu*(2ni2n)/pq*(2n)
pst*(2ni2n)/s8*(2n)

osp(m,pi2n)/osp(s+r,ri2g)e
® 0sp(m-r-s,p-si2n-2q)

osp(m,pl2n)/u(m/2,p/2In,q)

0sp*(2mi2n,2q)/0sp *(2pl2s+2r,2r)@
®05p*(2m-2pl2n-2r-25,2q-2r)

osp™(2ml2n,n)/05p ¢ (mln)
psqr(2n)/prsrq(n)
psqr(20)/0prq(n)

pssq(m,p)/ps(eq(r+s,r)e
& tq(m-r-s,p-1))

psuq(m,p)/pu(r+s,rlm-r-s,p-1)
sper(2n)/upe(n)
sper(2n)/srpe(n)

$h(n,p)/I (k,m,p,n)
Table 3.

Selfdual homogeneous

(p)st(m,p!2n,n)/osp(m,pl2n)
(p)st™*(2mI2n)/(pr)scl(min)
Opq(n)/pqr(n)
supe(n)/sper(n)

(p)su(m,p+s-rin,v+q)/
/(p)s(v(r+s,rlt+v,v)o®
® g (m-r-s,p-rin-t-v,q-t)

(p)su™*(2mI2n)/osp*(2ml2n,2q)
supe(m)/puq(n,p)
Opq(n)/pq*(2n)
supe(2n)/spe*(2n)

osp(m,p+s-ri2n)/osp(s+r,ri2q)@®
®o0sp(m-r-s,p-si2n-2q)

osp*(mi2n,2q)/v(m/2,p/2In,q)

0sp¥(2mi2n,2q+2s-2r)/
Josp*(2pl2s+2r,2r)@
®0sp*(2m-2pl2n-2r-25,2q-2r)
osp(2mi2n,n)/osp ¢ (min)
psq*(2n)/prsrq(n)
psq*(2n)/Oprq(n)

psuq(m,p+s-r)/ps(Bq(r+s,r)e
® g q(m-r-s,p-r))

psuq(m,p+s-r)/p v (r+s,rim-r-s,p-r)
spe*(2n)/spe(n)

Sp e*(2n)/§rp ¢(n)

sh(n,p+1-k)/II (k,m,p,n)

symmetric superspaces

(p)st” (2mi2n)/(p)s(e” (2pl2g)e v ¥ (2m-2pi2n-2q));
(p)sTe(mi2n)/(p)s(gVr(plq)® ¢ 1r(n-pin-q)) ;

(p)su(2m, mi2n, n)/pimsimJ(min);

%pem/pCy(p)e°g(n-p));

Opg(m)/prsimI(pin-p); supen)/s(spe(p)@upe(-p)); svpem)/pimsri(pin-p)
0sp(2m, mi2n)/gTr(min); osp (2mi2n, n)/u*(min); psgr(n)/ps(gr(p)®¢r(n-p))
psorm)/pg rphp); psg 2n)/ps(y (2p)eg (2n-2p)); pstg@m, m)/Pimsimg(m);
psug(m, m)Ppimg@m); sper(n)/s(per(n-p)eper(p)) sper(n)/sir(pln-p)

spe (2n)/s(pe(2p)epe” (2n-2p)); spe” (2m/su (2pi2n-2p); $h(2n, YL r(n)
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