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I n t r o d u c t i o n  
The main object in the study of  Riemannian geometry is (properties of) the 

Riemann tensor which, in turn, splits into the Weyl tensor, Ricci tensor and scalar 
curvature. The word "splits" above means that at every point of the Riemannian 
manifold  M n the space of  values of  the Riemann tensor constitutes an O(n)-module 
which is the sum of  three irreducible components (unless n = 4  when the Weyl 
tensor adit ionally splits into 2 components). 

More genearlly, let G be any group, not necessarily O(n). In what follows we 
recall  def ini t ion of  G-structure on a manifold and of (the space of) its s t ruc ture  
f u n c t i o n s  (SFs) which are obstruct ions to in tegrabi l i ty  or, in other words, to 
poss ibi l i ty  of  f lat tening the G-structure.  Riemannian tensor is an example of SF. 
Among the most known (or popular of recent) examples of  G-structures are: 

- an almost conformal structure, G = O(n)xR*, SF are called the Weyl tensors; 
- Penrose' twistor theory, G = SU(2)xSU(2)x~*,  S F - - t h e  Penrose tensor -- 

splits into 2 components whose sections are called "a-forms" and "[~-forms"; 
- an almost complex structure, G = G L ( n ; ¢ ) c G L ( 2 n ; l t ) ,  SF is called the 

Nijenhuis tensor; 
- an almost symplectic structure, G = Sp(2n), (no accepted name for SF). 
The first  two examples  are examples  of a "conformal" structure which 

preserves a tensor up to a scalar. In several versions of  a very lucid paper [G] 
Goncharov calculated (among other things) all SF for all structures with a simple 
group of  conformal transformations,  whose subgroup of  l inear t ransformations is 
the reductive part of  the stabil izer  of a point of the space and is the "G" which 
determines the G-structure on the manifold.  Remarkably ,  Goncharov 's  examples 
correspond prec ize ly  to the c lass ical  spaces,  i.e. i r reducible  compact  Hermit ian 
symmetric  spaces (CHSS). Goncharov did not, however,  write down the highest 
weights of  irreducible components of SFs; this is done in [LPS1] and some of these 
calculations are interpreted as leading to generalized Einstein equation. 

In this talk we advertize results (mostly due to E.Poletaeva) of calculating SF 
(and interpretat ion of  them) for classical  superspaces who are defined and partly 
listed in [S] and [L2] (see also [V], containing interesting papers on supergravity 
and where curved supergrassmannians are introduced). The problem was raised in 
[L2], cf. [L4], and the above examples are now superized in [P] and [LPS]. The 
passage to supermanifolds naturally hints to widen the usual approach to SFs in 
order to embrace at least the following cases: 

- 2 types of  infini te dimensional  general izat ions of  Riemannian geometry 
connected with: (1) string theories of  physics (these infinite dimensional examples 
have no analogues on manifolds because they require no less then t h r e e  odd 
coordinates  of  the superstr ing;  the l ist  of  corresponding hermit ian superspaces 
deduced from [S] is given in [L2]; dual pairs, etc. will be considered elsewhere) and 
(2) Kac-Moody ( supe r ) a lgeb ra s  (see Table 5); 

the G-structures  of  the N-extended Minkowski  superspace:  the tangent 
space to the Minkovski  superspace for N .  0 is  naturally endowed with a 2-step 
ni lpotent  Lie superalgebra  structure that highly resembles  the contact  structure 
on a manifold. We start studying such structures in earnest in [LPS2], compair our 
approach with that of the GIKOS group lead by V.I. Ogievetsky. More generally, we 
shall calculate SF for the G-structures of  the type corresponding to any "flag 
variety", not just Grassmannians, particular at that, see Table 1. 
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Elsewhere we will general ize the machinery of  Jordan algebras, so useful  in 
the study of  geometry of  CHSSs [Mc], to the cases we consider (this is Vinel 's  thesis). 

Can programmers  help? A good part of the calculations we need are very simple (to 
calculate cohomology is to solve systems of linear equations [F]). Still, though the number of 
papers on supergravity is counted by thousands (see reviews in our bibliography, of which 
[OS3], [WB], [We] are easy to understand) there is remarkably small progress in actual 
calculations (ef. mathematical papers [Sch], [RSh], [Me]). It is yet unclear what are all 
supergravities for N>I. The reason to that: the calculations are voluminous besides, these 
calculations also have to be "glued" in an answer and there are no rules for doing so, cf. [P4]. 
Thus the problem is a challenge for a computer scientist, our calculations, together with [LP1] 
and [P1-4], illustrate [LP2]. For our cohomology of our infinite dimensional Lie (super)algebras 
there are NO recipes at all (not even from Feigin-Fuchs nor Roger [FF]). 

In this text we deal with l inear  algebra: at a point .  The global  geometry,  
practically not  investigated, is nontrivial ,  cf. [M], [MV]. 
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P r e l i m i n a r i e s  
T e r m i n o l o g i c a l  conven t ions .  1 )A  9 - m o d u l e  V with highest weight ~ and even highest 
vector will be denoted by V~ or R(~). An irreducible module with highest weight Y, ain i, where ni 

is the i-th fundamental weight, will be denoted sometimes by its numerical labels R(Zai; a) the 
highest weight with respect to the center of 9 stands after semicolon, cf.[OV], Reference 
Chapter. 

2) Let ¢9 denote the trivial central "extent" (the result of the extention) of a Lie 
(super)algebra 9; let p stand for projectivization (as in pSI, pq) and $ for "trace"-less part (as 
in ~I, ~q, ~b). 

0.1.  S t r u c t u r e  f u n c t i o n s .  Let us retell  some of Goncharov ' s  results ([G]) and 
recall  de f in i t ions  ([St]). 

Let M be a manifold of dimension n over a field E ;  think K = ¢ (or R ) .  Let 
F(M) be the frame bundle over M, i.e. the canonical principal GL(n; K ) - b u n d l e .  Let 
G c G L ( n ;  E )  be a Lie group. A G-structure on M is reduction of the frame bundle to 
the pr incipal  G-bundle  corresponding to inclusion G c G L ( n ;  K) ,  i.e. a G-structure is  
the possibil i ty to select t ransi t ion functions so that their values belong to G. 

The simplest  G-structure is the flat G-structure defined as follows. Let V be 
K n with a fixed frame. Consider the bundle over V whose fiber over w V consists of 
all frames obtained from the fixed one under  the G-action,  V being identif ied with 
TvV. 

Obstruct ions  to ident i f ica t ion of  the k-th in f in i t es imal  ne ighbourhood  of  a 
point  mEM on a manifold M with G-structure and that of  a point of  the fiat manifold 
V with the above G-structure are called structure functions o f  order k. Such an 
identif icat ion,  is possible provided all structure functions of  lesser orders vanish. 

P r o p o s i t i o n .  ([St]). SFs of  order k are elements from the space of  (k ,2)- th  
Spencer cohomology. 

Recall definition of the Spencer cochain complex• Let S i denote the operator of the i-th 
symmetric power. Set 9-1 = TmM' 90 = 9 = Lie(G) and for i > 0 put: 

(9-1' 90)* = ®i _>-1 9i '  where 9i = {XEH°m(9-1,gi-1): X(v)(w,...) = X(w)(v,...) 

for any v,w E9.1} = $1(9 1)*®90 N S i • + 1(9.1)*®9.1. 
Suppose that 
the 90-module 9.1 is faithful. (0.1) 

Then, clearly, (9.1,  9 0 ) , c ~ e c t ( n )  = ~er ~ [ [x  1 ..... x n ]] , where n = dim 9-1" It is subject to an 

easy verification that the Lie algebra structure on veer(n) induces a Lie algebra structure on 
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(9.1,  90) , .  The Lie algebra (O. 1, 90) , ,  usually abbreviated to O,, will be called Cartan's prolong 

(the result of Cartan prolongation) of the pair (9.1,  90).  

Let E i be the operator of the i-th exterior power; set c k ' s o ,  = Ok_seES(9.I*);  usually we 

drop the subscript or at least indicate only 90. Define the differential ~s: ck's --> c k ' l ' s + l  

setting for any Vl . . . . .  Vs+l=V (as always, the slot with the hatted variable is ignored): 

(0s f ) (v l  . . . . .  Vs+l) = I;(-1)if(vl . . . . .  ^Vs+l_ i . . . . .  Vs+l)(Vs+l. i) 

As usual, Os0s+l = 0, the homology of this complex is called Spencer cohomology of (9-1, 90)*" 

0.2. Case of simple 0 .  over ¢ .  The following remarkable fact, though known to experts, is 

seldom formulated explicitely: 
Proposition. Let F~ = ¢, 9 * = (9.1 , 90)*  be simple. Then only the following cases are 

pos s ib l e :  
l )  92 "~ 0 and then 9* is either veer(n)  or its special subalgebra ¢¢vect(n) o f  divergence- 

free vector fields, or its subalgebra O(2n) of  hamiltonian fields; 

2 )92  = O, 91 ~ 0 then 9 * is the Lie algebra of  the complex Lie group of  automorphisms 

of  a CHSS (see above). 
Proposition explains the reason of imposing the restriction (0.1) if we wish 9 ,  to be 

simple. Otherwise, or on supermanifolds, where the analogue of Proposition does not imply 
similar restriction, we have to (and do) broaden the notion of Cartan prolong to be able to get 
rid of restriction (0.1). 

When 9 * is a simple finite-dimensional Lie algebra over ¢ computation of structure 

functions becomes an easy corollary of the Borel-Weyl-Bott-... (BWB) theorem, el. [G]. Indeed. 

by definition • k H k'2 = H2(O_I; O*) and by the BWB theorem H2(O.1 ; 9 , ) ,  as 0-module, has as O, 

many components as H2(9_1 ) which, thanks to commutativity of 9_ 1, is just E2(O.1); the highest 

weights of these modules, as explained in [O], are also deducible from the theorem. However, [G] 
pityfully lacks this deduction, see [LP1] and [LPS1] where it is given with interesting 
in te rpre ta t ions .  

Let us also immediately calculate SF corresponding to case 1) of Proposition: we did not 
find these calculations in the literature. Note that vanishing of SF for 9 ,  = o¢ct and f (see 0.5) 

follows from the projectivity of 9 .  as 00-modules and properties of cohomology of coinduced 

modules [F]. In what follows R(]~ain i) denotes the irreducible 00-module. The classical spaces 

are listed in Table 1 and some of them are bapthized for convenience of further references. 
Theorem.  1)(Serre [St]). In case 1) of  Proposition structure functions can only be of 

order 1. 

a)H2(O.1; 9 , )  = 0 for O* = ~ect(n) and $occl(m), m>2; 

b)H2(9_1; O*) = R(rc3)eR(~l) for  9 ,  = b(2n), n>l; 

H2(O.I; 0 , )  = R(nl)  for  9 ,  = 19(2). 

2)(Goncharov [G]). SFs o f  Q3 are of order 3 and constitute R (4n l ) .  SF for  Grassmannian 

Grin m + n  (when neither m nor n is 1, i.e. G-r is not a projective space) is the direct sum of  two 

components whose weights and orders are as follows: 
Let A = R ( 2 , 0  . . . . .  0 , - 1 ) ® R ( 1 , 0  .. . . .  0 , -1 , -1) ,  B =R(1, 1,0 .. . . .  0 , -1)®R(1,  0 . . . . .  0, -2). 

Then i f  mn * 4 both A and B are of order 1; 
i f  m =  2, n , 2 A is of  order 2 and B of order 1; 
i f  n= 2, m * 2 A is of order l a n d B  of order 2; 
i f  n = m = 2 both A and B are of  order 2. 

SF o f  G-structures o f  the rest of  the classical CHSSs are the following irreducible 9 0 - m o d u l e s  

whose order is 1 (recall that Q4 = Gr24): 
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CHSS l>n OGrm LGrm Qn, n>4 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

weight of SF E2(E2(V*))®V E2(S2(V*))®V E2(V*)®V 

E6/SO(10)xU(1 ) E7/E6xU( 1 ) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

E2(R(n5)*))®R(x 5) E2(R(nl)*))®R(rc 1) 

0.3. SF for reduced s t ruc tures .  In [G] Goncharov  considered conformal  
structures. SF for the corresponding generalizations of the Riemannian structure, 
i.e. when 90 is the semisimple part ^9 of 9 = Lie (G), seem to be more difficult to 

compute because in these cases (9-1,  90)* = 9 - o 9 0  and the BWB-theorem does not 

work. Fortunately, the following statement, a direct corollary of  definitions, holds. 
Proposition ([G], Th.4.7). For 90 = ^9 and 9 SF of  order 1 are the same and 

$2(91 ) 2 * SF of order 2 for 90 = ^9 are = S ( 9 - 1 ) "  (There are clearly no SF of order 3 for 

90 = ^9)" 
Example:  Riemannian geometry.  Let G = O(n). In this case 91 = 9-1  and in 

$ 2 ( 9 . 1  ) a 1-dimensional. subspace is distinguished; the sections through this 

subspace constitute a Riemannian metric g on M. (The habitual way to determine a 
metric on M is via a symmetric matrix, but actually this is just one scalar matrix- 
valued function.) The values of the Riemannian tensor at a point of M constitute an 

O(n)-module  H2(9 . l `  ; 9*) which c6ntains a trivial component whose arbitrary 

section will be denoted by R. What is important, this trivial component is realised 

by Proposition as a submodule in $2(9_1  ). Thus, we have two matrix-valued 

functions: g and R each being a section of the trivial 90-module .  What is more 

natural than to require their ratio to be a constant (rather than a function)? 
R = ~ g, where ~ • $~. (EEo) 

Recall that the Levi-Civita connection is the unique symmetric affine connection 
compatible with the metric. Let now t be the structure function (sum of its 
components belonging to the distinct irreducible O(n)-modules that constitute 

H 2 ( 9 - 1  ; 9*)) corresponding to the Levi-Civita connection; the process of  restoring t 

from g involves differentiations thus making (EEo) into a nonlinear pde. This pde 
is not Einstein Equation yet. Recall that in adition to the trivial component there is 

O(n)-component in $2(9_1 ), the Ricci tensor Ri. Eins te in  equat ions (in another 

vacuum and with cosmological term k) are the two conditions: (EEo) and 

Ri = 0. (EErie) 
A generalization of this example to G-structures associated with certain 

other CHSSs, flag varieties, and to supermanifolds is considered in [LPS1] and [LP3]. 
0.4. SF of f lag varieties.  Contac t  s t ructures .  In heading a) of  Proposition 0.2 
there are listed all simple Lie algebras of  (polynomial or formal) vector fields 
except those that preserve a contact structure. Recall that a contact  s tructure  is a 
maximally nonintegrable distribution of  codimension 1, cf. [A]. 

To consider contact Lie algebra we have to generalize the notion of  Cartan 
prolongation: the tangent space to a point of  a manifold with a contact structure 
possesses a natural structure of  the Heisenberg algebra. This is a 2-step nilpotent 
Lie algebra. Let us consider the general case corresponding to "flag varieties" -- 
quotients of  a simple complex Lie group modulo a parabolic subgroup. (The 
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necessity of  such a generalization was very urgent in the classification of simple 
Lie superalgebra, see [Shch] and [L2], where it first appeared, already superized.) 

Given an arbitrary (but Z-graded) nilpotent Lie algebra 9-  = ° 0 > i  _>-d 9i and 

a Lie subalgebra 90  c 0er  9_ which preserves Z-grading  of 9 - ,  define the i-th 

prolong of the pair (9-,  90)  for i > 0 to be: 

9i = (S*(9-)*® 90 NS*(9-)*® 9-)i' 
where the subscript singles out the component of  degree i.Similarly to the above, 
define 9 , ,  or rather, (9- ,  9 0 ) * '  as • i > -d 9i; then, by the same reasons as in 0.I, 

9* is a Lie algebra (subalgebra of f(dim 9-)  for d = 2 and dim 9.2 = I) and Hi(9_; 9*)  

is well-defined. Hi(9_;  9 * )  naturally splits into homogeneous components whose 

degree corresponds to what we will call the order.  (For the particular case of  Lie 
algebras of  depth 2 the obtained bigraded complex was independently and much 
earlier defined by Tanaka IT] and used in [BS] and [O]. No cohomology was 
explicitely calculated, however; see calculations in [LPS2] and [LP3].) 

The space H 2 ( 9 . ;  9*)  is the space of obstructions to flatness. In general case 

the minimal order of  SF is 2-d. For d > 1 we did not establish correspondence 
between the order of  SF and the number of  the infinitesimal neighbourhood of a 
point of  a supermanifold with the fiat G-structure. 

Examples .  I) G* is a simple Lie group, P its parabolic subgroup, G the Levi 
subgroup of P, 90 = Lie(G), 9_ is the complementary subalgebra to Lie(P) in Lie(G*). 

The corresponding SF, calculable from the BWB-theorem if 9* is f ini te-dimensional  

and simple describe for the first t ime the local geometry of flag varieties other 
than CHSSs, see [LP3] for details. Here is the simplest example. 

2) Let 9 = cSp(2n), 9 - I  = R0Zl; l), 9-2 = R(0) ; then 9 , =  f(2n+l) and 

C k' Sg,  = 9k_s®ES(9.1*) egk_s_l®ES-l(9_l*)eg_2*.  

T h e o r e m .  For 9 . =  f(2n+l) all SF vanish. 

This is a reformulation of  the Darboux theorem on a canonical 1-form, 
ac tua l ly .  
0.5. SF fo r  p ro j ec t ive  s t ruc tu res .  It is also interesting sometimes to calculate 

H 2 ( 9 _ ;  I~) for some 7~-graded subalgebras ~)c 9 , ,  such that b i  = 9i  for i __. 0. For 

example, if 9 = 9  l(n) and 9 .1  is its standard (identity) representation we have 9 * = 

o t c t ( n )  and, as we have seen, all SF vanish; but if t) = $l(n + 1) c o r o t ( n )  then the 
corresponding SF are nonzero and provide us with obstructions to integrability of  
what is called the projective connection. 

T h e o r e m .  1) Let 9* = ree l (n ) ,  b = $I(n + 1). Then SF of order 1 and 2 vanish, 

SF of order 3 are R(2,1, 0 . . . . .  0, -1) 
2)Let 9* = t(2n+l),  1~ = Sp(2n + 2). Then SF are R(~1+Tr2; 3) of order 3. 

0.6. Case of simple 9 -  over !~'. 

Example; Nijenhuis tensor. Let 90  = 9 I(n) c 9 I ( 2 n ; • ) ,  9-1 is the identity 

module. In this case 9* = o¢ct(n), however, in seeming contradiction with Theorem 

0.1.2, the SF are nonzero. There is no contradiction: now we consider not ~ - l i n e a r  
maps but R- l inea r  ones. 

T h e o r e m .  Nonvanishing SF are of order 1 and constitute the 90-module  

9_1® ¢E2it(9_1*), where g(cv) = ~-~t for c ~ ,  g~gT(n), wl7"and a 9r(n)-module V. 
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One of our mottos is: simple Z-graded Lie superagebras of finite growth 
( S Z G L S A F G s )  are as good as simple finite-dimensional Lie algebras; the results 
obtained for the latter should hold, in some form, for the former. So we calculate 

SF on s u p e r m a n i f o l d s :  Plan of  c a m p a i g n  
The necessary  background on Lie supera lgebras  and supermanifolds  is 

gathered in a condcnced form in [L5], see also [L1, L2]. The above definitions are 
generalized to Lie superalgebras via Sign Rule. 

On the strength of the above examples we must list Z-grad ings  of  SZGLSAFGs 
of finite depth (recall that a Z-graded  Lie (super)algebra of the form v -d_< i_<k 9 i is 

said to be of depth d and length k; here d, k >0), calculate project ive- l ike and 
reduced structures for the above and then go through the list of  real forms. 

Our theorems are cast in Tables. In Table 1 we set notations. Tables 2 and 3 
complement difficult tables of [S]. Table 4 lists all symmetric superspaces of depth 1 
of the form G/P with a simple f inite-dimensional G. Table 5 lists all hermitian 
supcrspaces corresponding to simple loop supergroups different from the obvious 
examples of  loops with values in a hermitian superspace. Notice that there are 3 
series of nonsuper examples. 

We compensate superfluity of  exposition by wast bibl iography with further 
results. Let us list some other points of interest in the study of SF on superspaces. 

- there is no complete reducibility of the space of SF as 9 0 - m o d u l e ;  

Serre's theorem reformulated for superalgebras shows that there are SFs of 
order > 1, see [LPS 1 ]; 

- faithfulness of 90-actions on 9-1 is violated in natural examples of: (a) 

supergrassmannians  of  subsuperspaces  in an (n ,n)-dimensional  superspace when 
the center ~ of 90 acts tr ivially;  retain the same definition of  Caftan prolongation; 

the prolong is then the semidirect sum (9_ 1, 9 0 / ~ ) ,  ~ S * ( 9 _ 1 "  ) with the natural 77- 

grading and Lie superalgebra structure; notice that the prolong is not subalgebra  
of v ¢ ¢ t ( d i m  9-1) ;  (b) the exterior differential d preserving structure. 

More prec ise ly ,  recal l  that for supermaifolds  the good counterpar t  of  
differential  forms on manifolds are not differential  but rather pseudodifferential 
and pseudointegrable forms. Pseudodifferential forms on a supermanifold X are 
functions on the supermanifold X' associated with the bundle x*X obtained from 
the cotangent one by f iber-wise change of parity.  Differential forms on X are 
f iber-wise polynomial functions on X'. In particular, if  X is a manifold there are no 
pseudodifferential  forms. The exterior differential on X is now considered as an odd 
vector field d on X'. Let x = (u 1 . . . . .  Up, ~1 . . . . .  ~q) be local coordinates on X, x i" = ~(xi) .  

Then d = ~ x i ' ~ / ~ x  i is the familiar coordinate expression of  d. The Lie superalgebra 

~[(d) c v¢c|(m+n/m+n), where (m/n) = dim X, -- the Lie superalgebra of vector 
fields preserving the field d on X' (see definition of the Nijenhuis operator P4 in 

[LKW]) -- is nei ther  simple nor transit ive and therefore did not draw much 
attention so far. Still, the corresponding G-structure ( ~ ( d ) =  ( 9 - 1 '  9 0 ) * '  where 90 = 

9I (k) t~I - l (gI (k) )  and where l I ( g I ( k ) )  is abelean and constitutes the kern.el of the 90-  

action on 9-1 = id, the standard (identity) representation of  9 I (k ) )  is interesting 

and natural. Let us call it the d-preserving structure. The f o l l o w i n g  theorem 
justif ies pseudocohomology introduced in [LKW]. 

T h e o r e m .  SFs of the d-preserving structure are O. 
An interesting counterpart of  the d-preserving structure is the odd version 

of the hamiltonian structure. In order to describe it recall that pseudointegrable 
forms on a supermanifold X are functions on the supermanifold 'X associated with 
the bundle xX obtained from the tangent one by f iber-wise change of  parity. 
F i be r -w i se  polynomial  functions on 'X are called polyvector  fields on X. (In 
particular,  if  X is a manifold there are no pseudointegrable forms.) The exterior 
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differential on X is now considered as an odd nondegeneratc (as a bilinear form) 
bivector field div on X'. Let x = (u 1 . . . . .  Up, ~1 . . . . .  ~q) be local coordinates on X, 'x i = 

~(O/0xi). Then div = X02/Oxi'Oxi is the coordinate expression of the Fourier transform 

of the exterior differential d with respect to primed variables; the operator is called 
"div" because it sends a polyvector field on X, i.e. a function on 'X to its divergence. 
The Lie superalgcbra a u | (d iv )  is isomorphic to the Lie superalgebra I¢(m+n) which 

is the simple subalgebra of o¢¢ t (n+mln+m)  that preserves a nondegcncrate odd 
different ia l  2-form to = Z d x i ' d x i ;  an interest ing algebra is the superalgebra 

$ |¢ (m+n)  which preserves both div and to; for both of these Lie superalgcbras and 
their deformations the corresponding SF are calculated in [PS] and [LPS1] . 
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Table 2. Dual  pairs of  homogeneous  symmetric  superspaces  

(p)~ Ir(ml2n)/o~ p (m,pl2n) 
(p)~ lr(2ml2n)/(p r)~ rl (m In) 
p ~ t r(nln)/p q r(n) 
p ~ I r(nln)/~ p ¢ r(n) 

( p)~ 1~ (m,pl2n,n)/o~ p (m,pl2n) 

( p)$ tt * (2ml2n)/(p r)~ rI (mln) 
op q (n)/p qr(n) 
~up¢(n)/~pcr(n) 

(p)~ u(m,pln,q)/ 
/(p)~ (u (r+s,rlt+v,v) • 
• u (m-r-s,p-rln-t-v,q-t) 

(p)$ u (m,p+s-rln,v+q)/ 
/(p)~ (u (r+s,rlt+v,v) • 
• u (m-r- s,p-rln-t-v,q-t) 

(p)~ U (2n,ml2n,2q)/o ~ p * (2m12n,2q) 
p~ u (m,pln,q)/p tt q (n,p) 
p~ u*(2nl2n)/p q*(2n) 
p ~ u * (2n12n)/~ u * (2n) 

(p)~ u * (2m12n)/o ~ p * (2m 12n,2q) 
u p ¢ (n)/p tt q (n,p) 

op q (n)/p q *(2n) 

u p ¢ (2n)/~ p ¢*(2n) 

o~ p (m,pl2n)/o ~ p (s+r,rl2q) • 
• o$ p (m-r-s,p- sl2n-2q) 

o~ p (m,p+s-rl2n)/o~ p (s+r,rl2q) • 
• o$ p (m-r-s,p-sl2n-2q) 

o~ p (m,pl2n)/u (m/2,p/21n,q) o~ p *(ml2n,2q)/u (m/2,p/21n,q) 

05 p * (2m12n,2q)/o$ p * (2p12s+2r,2r)• 
® o~ p*(2m-2pl2n-2r-2s,2q-2r) 

o$ p*(2ml2n,n)/o$ p ¢ (m In) 
p~ q r(2n)/p r~rq (n) 
p~ qr(2n)/0 p rq(n) 

o$ p * (2m12n,2 q+2 s-2r)/ 
/o~ p*(2pl2s+2r,2r) • 
• o~ p * (2m-2p12n-2r-2s,2q-2r) 
o~ p (2ml2n,n)/o~ p ~: (mln) 

p ~ q *(2n)/p r~ rq (n) 
P~ q *(2n)/O P rq (n) 

p~ tt q (m,p)/p~ (1~ q (r+s,r) • 
• tt q (m-r-s,p-r)) 

p~ tt q (m,p+s-r)/pff (tt q (r+s,r)e 
® u q (m-r-s,p-r)) 

p~ u q (m,p)/p u (r+s,rlm-r-s,p-r) 
p ¢ r(2n)/u p ¢ (n) 

p ¢ r(2n)/~ rP ¢ (n) 
~ t) (n,p)/III (k,m,p,n) 
Table 3. Seifdual  homogeneous 

p ~ u q (m,p+s-r)/p u (r+s,rlm-r-s,p-r) 
$ p e*(2n)/u p ¢ (n) 

p ¢*(2n)/~ rP ¢ (n) 
19 (n,p+l-k)/III (k,m,p,n) 

symmetr ic  superspaces  

(p)~u (2ml2n)/(p)$(u (2pl2q)eu (2m-2p12n-2q)); 
(9)$1r(ml2n)/(p)~(9tr(plq)e 91r(n-pln-q)) ; 

(p)~tt(2m, ml2n, n)/Pim~imI(mln); °pg(n) /p(°9(p)e°9(n-p)) ;  

o p 9 (n)/Pr~im I(pln-p); ~ it p ¢(n)/~(u p ¢ (p)e u p ¢ (n-p)); ~ ttp ¢ (n)/Pim~rt(pln-p) 

o~ p(2m, ml2n)/9 lr(mln); o~ p (2m12n, n)/u (mln); p$ 9r(n)/P~ (gr(P) e 9 r(n-p)) 

P~ 9r(n)/P 9 lr(pl-p); p~ 9*(2n)/P~(9*(2p)e 9*(2n-2p)); p~ u 9 (2m, m)/Pim~img(m); 

p~ttg(2m, m)/°Pim9(m); ~pcr(n)/~(per(n-p)epcr(p)); ~pcr(n)/~Ir(pln-p) 

~pe*(2n)/$(p¢*(2p)ep¢ (2n-2p)); ~p¢ (2n)/~t~ (2p12n-2p); ~19(2n, n)/I-[r(n) 
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