with a sum over i implied, and where D,,(bi = (Op+
ng,-A#)W is the gauge covariant derivative of the field
¢’ with a U(1) charge @, and F,, = 0,4, — 0,A,.
Elimination of the auxiliary fields gives

o¢ -
where the holomorphic function W = W(¢") is the super-
potential and the constant & comes from a Fayet—
Iliopoulos term[3] that has been included. The scalar
potential is

V=Y IR0

: ow
:Z‘adf

If the U(1) symmetry is a global symmetry, rather than
a local local gauge symmetry, then the vector multiplet is
not included in L, and D =0. The U(1) invariance of
the superpotential W requires each term in W to have
a net charge of zero. A superpotential of the form

W= W+ ai¢' + bij(piqu + Czjk(ﬁi(ﬁj(f’k

allows for renormalizability, and since the constant W
is dynamically irrelevant, we can set it equal to zero.

Let us use the derivative notation X; = 9X/0¢",
X; =0X/0¢’, X; = 0X /0, X;; = 82X/'8¢’6¢7,X1X17 =
> XiX;, etc. for some function X(¢,¢), with a sum
over repeated indices unless otherwise stated. The vac-
uum expectation value (vev) (¢') = ¢’ is located at
the minimum of V where

2

2 <
+§[é+gZQz¢¢:|

i

Vi = Wy Wy + DD; = F*FF + DD,

vanishes. We also note that V > 0 so that a negative
cosmological constant does not appear. The vacuum
state is supersymmetric if V(¢) = 0, but supersymme-
try is
V(¢) > 0. From the last equation above, it is seen that
a nonzero vacuum expectation value ¢* # 0 can develop
from either the F-term or the D-term in V), resulting in
either F-type strings or D-type strings [4]. Abelian
F-type and D-type strings in global SUSY theories
are described and discussed in [4] and a global SUSY
model of a local superconducting Witten string [5],
which is an F-type string, is described in [6]. See, for
example, [7] for a discussion of non-Abelian global
supersymmetry strings and [8] for a discussion of
supergravity strings.

spontaneously broken by the vacuum if

Bibliography
[1] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and other Topo-
logical Defects, Cambridge University Press, 1994.
[2] J. Wess and J. Bagger, Supersymmetry and Supergravity, Second
Edition (Princeton University Press, 1992).
(3] P. Fayet, J. Illiopoulos, Phys. Lett. B 51 (1974) 461.

SUPERSYMPLECTIC MANIFOLD

[4] S. C. Davis, A. C. Davis, M. Trodden, Phys. Lett. B405 (1997)
257.

[6] E. Witten, Nucl. Phys. B 249 (1985) 557.

[6] J. R. Morris, Phys. Rev. D 53 (1996) 2078.

[7] S. C. Davis, A. C. Davis, M. Trodden, Phys. Rev. D57, (1998)
5184;

[8] J. R. Morris, Phys. Rev. D56 (1997) 2378.

John Morris

SUPERSYMPLECTIC MANIFOLD — A generalization of
the notion of symplectic manifolds with respect to the
definition of supersymplectic spaces. At this point one
has two ways: it’s known that there are two different
kinds of the spaces — odd and even supersymplectic
spaces. In the even case we have the following definition
[1]: a supermanifold equipped with a closed nondegene-
rated even two — form is called a supersymplectic mani-
fold.

Example. Every even “split” supersymplectic mani-
fold is isomorphic (up to a suitable notion of equi-
valence) to the following data

(Mavaa g, V),

where (M,w) is a usual symplectic manifold, E is a
smooth vector bundle over M, ¢ is a nondegenerated
metric on E and V is a connection on E, compatible
with the choosen metric [1].

The odd case is much more complicated, so at the
moment there are known just a couple of examples, look
like the case, related to the cotangent bundle.
Bibliography
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SUPERSYMPLECTIC STRUCTURE — The structure that
is given by the nondegenerate differential 2-form and
can be either even (on supermanifolds of dimension
2n|m) or odd (on supermanifolds of dimension n|n) with
canonical forms

Wy = Z dpidqi + ZEj(dgj)Z,

where ¢; = %1 over reals and ¢; = 1 over complex field;

Wy = Z df;dg;,
respectively.

The odd structure (A. Weil called it periplectic) is the
one which gives rise to famous antibracket [2]. The anti-
bracket has deformations parametrized by a singular
supervariety; in dimension 2|2 this deformation miracu-
lously coincides with a deformation of the even Potsson
bracket. On related peculiar quantizations see [1]. Ob-
serve that the “well known” statement that there exists
only one quantization of the Poisson bracket is only true
for polynomials or formal series as functions. For
example, for Laurent polynomials (i.e., on tori) and for
functions on the orbits of the coadjoint representation
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of stimple Lie algebra g there are several deformations;
the number of parameters in the last example is equal
to the rank of g and leads to generalizations of the Lie
algebras of “matrices of complex size”, cf. [5]. The
Posson superalgebra on the vector superspace can
be realized by vector fields D as

{D | Lp(ea) = 0},
o = dt — Z(pidqi — qidpz’) — ZSjOjd@j.

Similarly, the Buttin superalgebra (with Schouten
bracket, i.e., antibracket) is

{D| Lp(2) =0}, o=dt—> (0:dg; + :d0,).
The deformed Buttin superalgebra is
b,,(n) = {D € vect(njn+ 1) | LD(Zjéyrocg*b”) =0}.

Instead of a, b, one can consider one parameter

2a
=—— _epPl.
A n{a — b) €

The structure functions (obstructions to flattening the
corresponding G-structure) are computed in [3]. For
infinite dimensional analogs see [4].
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SUPERTIME — A supermanifold of values of a
dynamical parameter. On manifolds, Time is usually
different example is Kadomt-
sev—Petviashvili hierarchy in which an infinite dimen-
sional manifold is interpreted as Time.

On finite dimensional manifolds, Time is always
1-dimensional as follows from the rectifyability of vector
field theorem studied at early courses of differential
equations. Shander generalized the theorem on rectify-
ability of vector fields to nondegenerate fields on super-
manifolds and gave the following characterization of

1-dimensional, a
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such fields, in particular, the ones used in SUSY the-
ories: the nondegenerate (at a point) vector field X
P

can locally be reduced to the form Dy =&, where z is

an even coordinate, if X is even, to the ?grm D, = %,
where 0 is an odd coordinate, if X is odd and X? =0,
or to the form D=2+ 0Z if X is odd and X? # 0.
Shander explained that for dynamical systems on
supermanifolds supertime runs a (1|1)-dimensional
supermanifold with parameters ¢, 7. Shander gave
examples with Poisson bracket and antibracket, e.g.,
he showed that the most profound dynamics is given

not by Dy(f) = {f, H}, but by
D(f) ={/, H},

where the parity of the Hamiltonian, H, should be oppo-
site to that of the (anti)bracket {-,-}, indeed

Do) = 540, (B, HY

This explanation enables one to pick up odd parameters
missed under the conventional crude approach, but no
physical paper used this so far.
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SUPERTRACE — A linear functional on a Lie super-
algebra that vanishes on the superbracket and denoted
by str (or just tr). For the definition of the ‘“usual”
supertrace of the supermatriz, not necessarily in the
standard format, see [1,2]. There is also queerirace, qtr,
defined on a “queer” superanalog of the matrix algebra
q(n) by the same characteristic property but since q(n)
is a subalgebra in gl(n|n) we can compare str and qtr
and see that they are totally different functions; in parti-
cular, one is even and the other one is odd, [3]. Both
supertrace and queertrace have a contraction into
the Berezin integral — the supertrace on the Poisson—
Lie superalgebra po(0|n) whose parity is equal to that
of n.

These supertraces, being defined on finite dimen-
sional algebras, can be integrated to groups, so they
correspond to superdeterminants:

det(exp(X)) = e,

There are also superanalogs of trace on infinite dimen-
sional Lie superalgebras, they do not necessarily corre-
spond to superdeterminants. Examples: stringy super-
algebras t4(1]4) and t(1|5), cf. [4], special Buttin
superalgebras sb(n), and divergence free algebras
svect(1|n). The parity of these supertraces is equal to
that of the number of odd indeterminates.
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