
PROBLEMS

Chapter 2

Problem 1. Prove that λ0 = 0 is an eigenvalue for the standard Laplacian on any
compact finite graph. What is the multiplicity of this eigenvalue?

Problem 2. Calculate the spectrum of the standard Laplacian of the compact star
graph formed by three intervals of length 1.

Problem 3. Calculate the spectrum of the standard Laplacian on the 8-shape graph
shown in Fig. 2 assuming that

(a) the lengths of the loops are equal ℓ1 = ℓ2 = π
(b) the lengths ℓ1 and ℓ2 are arbitrary.

Problem 4. Consider any compact metric graph and the standard Laplacian on
it. What happens to the spectrum if one doubles the lengths of all edges?

Problem 5 (Kurasov-Stenberg). Prove that the scattering matrices for the Laplace
operators on the graphs Γ and Γ′ are equal. Calculate the scattering matrix for the
graph Γ. Calculate the spectra of the Laplacians on Γ and Γ′.

ℓ = 1

Figure 1. Compact star graph
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Figure 2. 8-shape graph
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Figure 3. Two topologically different graphs having the same
scattering matrix. (Arabic numbers indicate positions of the points
xj .)

Problem 6 (Gutkin-Smilansky).∗ The spectra of the Laplacians on the graphs pre-
sented in Fig. 4 are given by zeroes of the following two functions
(1)
ZI(k) = tan(2(a+ b)k)

+
2 tan ak + 2 tan bk + tan(2a+ b)k + tan(a+ 2b)k

1− (2 tan ak + tan bk) (tan bk + tan(2a+ b)k + tan(a+ 2b)k)
,

ZII(k) = tan 2ak

+
2 tan ak + 2 tan bk + tan(a+ 2b)k + tan(2a+ 3b)k

1− (tan ak + tan bk + tan(a+ 2b)k) (tan ak + tan bk + tan(2a+ 3b)k)
.

Show that the zeroes of the two functions ZI(k) and ZII(k) coincide.
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Figure 4. Gutkin-Smilansky isospectral graphs

Figure 5. Parzanchevski-Band graphs

Problem 7 (Parzanchevski-Band). Consider the Laplace operator defined on the
graphs depicted at Fig. 7. Dirichlet and Neumann conditions (indicated by letters D
and N) are introduced at different boundary vertices. Standard matching conditions
at all internal vertices. Prove that the operators are isospespectral assuming that
the figure reflects the lengths of the edges correctly.

Problem 8. Let Γ5 be a graph formed by 4 edges [x2j−1, x2j ], j = 1, 2, ..., 4. Let L
be the corresponding Laplace operator defined on the domain of functions satisfying
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the matching conditions:

(2)



1 5 −2 −1 0 0 0 −3
1 1 0 −1 0 0 0 −1
2 1 0 −1 0 −1 0 −1
1 1 0 −1 0 0 0 −1
2 2 0 0 0 −2 0 −2
0 1 −1 0 0 0 0 0
−1 0 0 1 0 0 0 0
2 1 −1 0 0 −2 0 0





u(x1)
u(x2)
u(x3)
u(x4)
u(x5)
u(x6)
u(x7)
u(x8)



=



−1 0 0 −1 0 −1 −1 0
1 0 0 1 1 1 0 0
0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0
1 3 3 1 1 1 0 3
0 1 1 0 0 0 0 1
−1 0 0 −1 0 −1 0 0
1 0 0 1 0 1 −1 0





u′(x1)
−u′(x2)
u′(x3)
−u′(x4)
u′(x5)
−u′(x6)
u′(x7)
−u′(x8)


.

The corresponding vertex scattering matrix is energy independent. Reconstruct the
metric graph taking into account that the matching conditions respect connectivity
of the graph.

Write the matching conditions using the other two standard parameterizations:

• via the vertex scattering matrix (canonical);
• via subspaces and Hermitian matrices (Kuchment).

Hint Use the fact that the matching conditions lead to an energy independent
vertex scattering matrix and therefore can be written using projectors , hence it is
enough to calculate the kernels of the matrices on the different sides of (3). The
corresponding kernels should be orthogonal and span C8.

Problem 9. Let Γ5 be a graph formed by 4 edges [x2j−1, x2j ], j = 1, 2, ..., 4. Let L
be the corresponding Laplace operator defined on the domain of functions satisfying
the matching conditions:

(3)



1 5 −2 −1 0 0 0 −3
1 1 0 −1 0 0 0 −1
2 1 0 −1 0 −1 0 −1
1 1 0 −1 0 0 0 −1
2 2 0 0 0 −2 0 −2
0 1 −1 0 0 0 0 0
−1 0 0 1 0 0 0 0
2 1 −1 0 0 −2 0 0





u(x1)
u(x2)
u(x3)
u(x4)
u(x5)
u(x6)
u(x7)
u(x8)



=



−1 0 0 −1 0 −1 −1 0
1 0 0 1 1 1 0 0
0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0
1 3 3 1 1 1 0 3
0 1 1 0 0 0 0 1
−1 0 0 −1 0 −1 0 0
1 0 0 1 0 1 −1 0





u′(x1)
−u′(x2)
u′(x3)
−u′(x4)
u′(x5)
−u′(x6)
u′(x7)
−u′(x8)


.
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The corresponding vertex scattering matrix is energy independent. Reconstruct the
metric graph taking into account that the matching conditions respect connectivity
of the graph.

Write the matching conditions using the other two standard parameterizations:

• via the vertex scattering matrix (canonical);
• via subspaces and Hermitian matrices (Kuchment).

Hint Use the fact that the matching conditions lead to an energy independent
vertex scattering matrix and therefore can be written using projectors , hence it is
enough to calculate the kernels of the matrices on the different sides of (3). The
corresponding kernels should be orthogonal and span C8.

Chapter 3

Problem 10. Consider the star graph formed by three semi-infinite edges [xj ,∞), j =
1, 2, 3. Assume that the matching conditions are standard. Write conditions

• using matrices A and B ,
• uisng the unitary matrix S .

Are these matching conditions properly connecting and non-resonant?

Problem 11. Consider the lasso graph depicted in Fig. 1 with magnetic Schrdinger
operator defined by the standard matching conditions at the vertex, i.e. the operator
Lst
0,a. Assume that the electric potential is zero q(x) = 0 everywhere on Γ, while

magnetic potential is zero on the semi-infinite edge. Let us denote by Φ the flux
of the magnetic field through the loop: Φ =

∫ x2

x1
a(x)dx. Let Ua be the unitary

transformation removing the magnetic potential on the loop. Consider the Laplacian

LΦ = UaL0,aU
−1
a .

a) How do matching conditions for LΦ depend on the magnetic flux Φ?
b) Calculate the scattering matrix for the operator LΦ.
c) Determine the scattering matrix for the original operator L0,a.

Chapter 4

Problem 12. Prove that detT (λ) ≡ 1 by using two functions f and g solving the
differential equation (??) for λ and λ, ℑλ ̸= 0.

Hint: use that T (λ) = T (λ) by construction

Problem 13. Use developed formalism to obtain a characteristic equation for the
standard magnetic Schrdinger equation on the 8-shape graph presented in Fig. 2.
Show, that the spectrum depends on the fluxes of the magnetic field through the
cycles Φj =

∫ x2j

x2j−1
a(x)dx, but not on the particular form of the magnetic potential.

In the case of the standard Laplacian check that the spectrum you obtain coincides
with the result of Problem ??.

Problem 14.

Problem 15. Using representation

(4) M(λ) =

 −k cot kℓ1
k

sin kℓ1
k

sin kℓ1
−k cot kℓ1

 .
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prove that M(λ) is a Nevanlinna function, i.e. it satisfies conditions (1)-(3) in the
definition of a Nevanlinna function.

Hint: Diagonalize M(λ) and prove that both eigenvalues have nonnegative imag-
inary part.

Problem 16. What is the relation between the edge M -function just introduced
and the edge scattering matrix Se?

Problem 17. Consider the ring graph. Calculate the spectrum of the standard
Laplacian using all three methods from this chapter. Compare the results with the
calculations carried our in Section ??. Do you get all eigenvalues with correct
multiplicities?

Problem 18. Consider the 8-shape graph given in Fig. 2. Calculate the spectrum
of the standard Laplacian using all three methods from current chapter.

Problem 19. Let Γ(ℓ1, ℓ2) be the graph formed by two edges of lengths ℓ1 and ℓ2
connected at their end points forming a loop of length ℓ1+ℓ2. Consider the standard
Laplacian Lst(Γ(ℓ1, ℓ2) and write characteristic equations on its spectrum using all
three methods described.

a) Show that for ℓ1 and ℓ2 rationally independent all three equations determine all
nonzero eigenvalues.

b) Prove that if ℓ1 and ℓ2 are rationally dependent, then there are exists non-zero
eigenvalues that are not described by the last method.

c) Which methods determine eigenvalue λ0 = 0 with correct multiplicity?

Problem 20. How does M -function depend on the magnetic potential? Derive an
explicit formula connecting the M -functions corresponding to the same electric but
different magnetic potentials. How to see from the third characteristic equation that
the spectrum of a magnetic Schrdinger operator depends only on the fluxes of the
magnetic field through the cycles.

Problem 21. Give another one explicit examples of a metric graph, such that
the standard Laplacian has eigenvalues not determined by the third characteristic
equation.


