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Multinomial expressions summation asymptotic approximations.

by
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Abstract The asymptotic behaviour with respect to n of sums of type

∑
i1,...,ir

r∏
j=1

v
ij

j

(
n

i1, . . . , ir

)
ρ−f(i1,...,ir)

is determined, where the wj are positive weights, and f(i1, . . . , ir) is the sum of some of the monomials ikim
(1 ≤ k < m ≤ r).

Summary.

In the study of probabilistic tournaments, questions arise about the asym= ptotic behaviour of the fol-
lowing type:

Consider a (simple and undirected) graph G = ([r], E) (for some positive integer r). Define a quadratic
form f(x1, . . . , xr) as the sum of the monomials xjxl (1 ≤ j < l ≤ r), such that {j, l} ∈ E, and for every
positive integer n form the multinomial coefficient sum

S(n) =
∑

i1,...,ir

(
n

i1, . . . , ir

)
1
2

−f(i1,...,ir)

(sum over non-negative integers i1, . . . , ir, such that the multinomial coefficients are defined). The answer
turns out to be that

S(n) ∼ C · α(G)n

where α(G) is the independence number of G, and C is the number of independent sets of size α(G) in G.

It turns out that it is easier to prove a generalisation of this, where each term also has a weight factor∏
j v

ij

j , where the vi are positive weights for the polynomial p. In this case, the independence number αG
should be replaced by the maximal weight of an independent set in G, and C by the number of independent
sets of maximal weight. This is formulated as the proposition infra, which also encompasses an estimate of
the error term.

Remarks. The investigation was motivated by combinatorial problems, and the proof methods are
elementary and purely combinatoric. However, i am indepted to Anders Martin-Lf and August Tsikh for
pointing out that the results seem be related to those studied by analytic means, e.g., by Laplace’s method.
The results e. g. may be interpreted in terms of the radius of convergence for the analytic function

∑
S(n)xn.

Ola Hössjer pointed out that the sum can be interpreted as an expected value, which gives the moment
generating function interpretation. E(rhoS), where S is weighted U -statistic, and that this also might lead
to some generalisations.

Notation. In this note, “natural number” is taken to mean “non-negative integer”, and consequently
N = {0, 1, 2, . . .}. The set of positive integers is denoted Z+, and likewise R+ is the set of positive real
numbers.
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Multinotation will be used in an unstrict manner, with multiitems denoted by lowercase boldface letters,
corresponding to slanted letters for their members; e.g., the same i may stand for either (i1, . . . , ir) or i1, . . . ,
ir, depending on the context, and vi then may stand for the product

∏
j v

ij

j . Likewise, the range of a sum
mostly will be indicated and partly implied by the context; the reader should have no difficulty in filling in
the details.

For any set S, its power set is P(S)
def
= {D : D ⊆ S}. Set difference, denoted \, operates on P(S);

A \B = {x ∈ A : x /∈ B}.

The support of any real-valued function f : S −→ R is the set

suppF = {x ∈ A : f(x) 6= 0} .

Interpreting an i ∈ Rr as a function from [r] to R, naturally we get supp i = {j : ij 6= 0}.

For any natural number n, [n] = {i ∈ N : 0 < i ≤ n}. All graphs considered are simple, undirected, and

finite. Thus, we may write such a graph G as a pair (V,E), where |V | def
= (cardinality of V ) <∞, and

E ⊆
(
V

2

)
def
= {e ∈ P(V ) : |e| = 2} .

An independent set S in G is a subset of V , such that E ∩
(
S
2

)
= ∅. An independent set which is maximal

under set inclusion is called a basis. The set of all bases of G is denoted B(G), and is a subset of P(V ). The
independence number of G is

α(G) = max
B∈B(G)

|B| .

Preliminaries. We shall investigate some sums involving multinomial coefficients (always assuming that
the lower indices, here i1, . . . , ir, are natural numbers whose sum is the top one, n)(

n

i

)
=

(
n

i1, . . . , ir

)
= n!

r∏
j=1

(ij !)−1 ,

and we start by reminding of some well-known properties of these. First, the multinomial theorem states
that for any constants v1, . . . , vr,

(1)
∑
i

(
n

i

)
vi =

∑
i1,...,ir

(
n

i1, . . . , ir

)
vi1
1 · · · vir

r = (v1 + . . .+ vr)n .

Moreover, directly from the definition, for r ≥ 2 we may express the multinomial coefficient as a product
of a simpler one and of a binomial coefficient: putting i = i′, ir (i.e., letting i′ = (i1, . . . , ir−1)),

(2)
(
n

i

)
=

(
n

ir

)(
n− ir

i′

)
.

A weighted graph (V,E, ψ) is a graph G = (V,E) together with a (vertex) weight function ψ : V −→ R+.
By abuse of notation, the weighted graph also is called G. The weight function extends naturally to P(V )
by

ψ(S) =
∑
v∈S

ψ(v) .

Let K(G) be the maximal weight of a basis, and N(G) be the number of times this quantity is reached, i.e.,

K(G) = max
B∈B(G)

ψ(B) , N(G) = |{B ∈ B(G) : ψ(B) = K(G)}| .
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For G = (V,E), a subset C of V is a vertex cover, if e ∩ C 6= ∅ for each edge e ∈ E. Equivalently, C is
a vertex cover if and only if its complement V \ C is independent. Let C(G) be the set of all vertex covers
which are minimal under set inclusion. Clearly,

C ∈ C(G) ⇐⇒ V \ C ∈ B(G) .

Main result. The formulation given here is the one I found easiest to prove directly. Actually, in the
original problem, there were no weights (or unit weights) on the vertices; I give this as a corollary. There
is also a slight extension, where essentially the uniform ρ is replaced by different ρ for different edges {i, j};
this is given as a remark, after the proof.

Lemma. Let G = ([r], E, ψ) be a weighted graph, with weights vj = ψ(j). Furthermore, let ρ be a fixed
number strictly between 0 and 1. Finally, for each natural number n, put

S(n) = SG,v,ρ(n) =
∑
i

(
n

i

)
ρf(i)vi ,

where the sum is taken over those i = (i1, . . . , ir) ∈ Nr for which the multinomial coefficient
(
n
i

)
is defined

and non-zero, and

f(i) = fG(i) =
∑

{vj ,vl}∈E

ijil .

Then S(n) ∼ N(G)K(G)n, i.e.,

lim
n→∞

S(n)
K(G)n

= N(G) .

More precisely, there is some c > 0, such that S(n)−NK(G)n = o
(
(K(G)− c)n

)
, i.e., such that

lim
n→∞

S(n)−N(G)K(G)n

(K(G)− c)n
= 0 .

Corollary. With G = ([r], E), ρ, and f as above,

∑
i

(
n

i

)
ρf(i) ∼ |{B ∈ B(G) : |B| = α(G)}| · α(G)n .

Proof outline. As seen in the statement, the precise value of ρ is unimportant. Indeed, the idea is to sum
the “ρ-free” terms separately and to prove the asymptotic behaviour for them; and then to prove that the
contribution of the other terms may be ignored. Thus, put K = K(G), N = N(G), and write

S(n) = T (n) + U(n) ,

where

T (n) =
∑

i:f(i)=0

(
n

i

) r∏
j=1

v
nj

j

i.e, “T (n) is S(n) for the case ρ = 0”. The refined claim is that

T (n) ∼ NKn ,(3)
T (n)−NKn = o

(
(K − c)n

)
, and(4)

U(n) = o
(
(K − c)n

)
,(5)
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for some suitable constant c > 0.

The idea of the proof is first to prove (3) and (4) in full generality directly. With these facts established,
clearly, the truth of the lemma for a particular weighted graph is equivalent to the claim (5) for that graph.
Moreover, each U(n) ≥ 0, whence upper estimates will be enough to establish the result for a particular
graph, in either the lemma or the (5) formulation. We proceed to do this by induction with respect to r,
working with the lemma in the induction step proof, but applying (5) in the inductive assumption.

For (3) and (4), note, that f(i) = 0 if and only if supp i is an independent set, i.e., the complement of the
support is a vertex cover, i.e., if and only if there is some C ∈ C(G), such that

vj ∈ C =⇒ ij = 0 .

By the multinomial theorem, the sum of the terms in T (n) taken over all i which are zero on a fixed C ∈ C
of cardinality r − t, whence without loss of generality we may assume C = {t+ 1, . . . , r}, is

∑
(i1,...,it)

(
n

i1, . . . , it

) t∏
j=1

v
ij

j = Wn ,

where W = v1 + . . . vr is the weight of the basis V \ C. The full sum T (n) by means of the principle of
inclusion-exclusion is expressible by 2|C| − 1 similar terms, whence the growth rate is determined by the c
terms corresponding to the B(G) elements of maximal weight r − s. Each one of these terms equals Kn; all
other terms will be of the form ±Ln with L < K, and thus will not contribute to the limit in (3). For (4),
taking any c such that K − c is strictly greater than the second largest weight of independent sets will do.

Thus, indeed, (3) and (4) hold in full generality.

We now prove the lemma and equivalently (5) by induction with respect to r.

For r = 1, E = ∅, B(G) = {[1]}, K = v1, N = 1, and indeed S(n) = T (n) = vn
1 = 1 ·Kn.

Now, assume that r ≥ 2, and that the lemma and (5) hold for each graph with a strictly smaller number
of vertices. Fix an arbitrary weighted graph G = ([r], E) with weights v, and a ρ. In order to prove the
lemma for this G and ρ, we distinguish two cases, depending on the minimal valency in G.

First, if there is an isolated vertex in G, without loss of generality the last vertex, r, then r is contained in
each basis of G. Put G′ = ([r − 1], E) with weights v′ = v1, . . . , vr−1; then N(G′) = N and K(G′) = K−vr,
for any i = i′, ir we have f ′(i′) = f(i) for f ′ = fG′ , and by the inductive assumption there is a c′ > 0, such
that

(6) S′(n′) = SG′,v′,ρ(n′) =
∑
i′

(
n′

i′

)
ρf ′(i′)(v′)i

′
∼ N(K − vr)n′

and

(7) S′(n′)−N(K − vr)n′
= o

(
(K − vr − c′)n′)

,

for n′ = i1 + . . . + ir−1. Now, by (2), each term in S(n) may be rewritten as a product of an ir-depending
and an ir-independent factor:

(
n
i

)
ρf(i)vi =

(
n
ir

)
vir

r ·
(
n−ir

i′

)
ρf ′(i′)(v′)i

′
, which sums up to

S(n) =
∑
ir

(
n

ir

)
vir

r S
′(n− ir) ;

and by (1), indeed ∑
ir

(
n

ir

)
vir

r N(K − vr)n−ir = NKn .
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It just remains to give an upper estimate of the growth of
∑

ir

(
n
ir

)
vir

r (S′(n − ir) −N(K − vr)n−ir ). Fix
any c with 0 < c < min(c′,K − vr); it is clearly sufficient to prove that for any ε > 0, there is an n0, such
that for any n > n0 we have

(8)
∑
ir

(
n

ir

)
vir

r (S′(n− ir)−N(K − vr)n−ir ) < ε(K − c)n .

Now, by (7), there is an n′0, such that

S′(n′)−N(K − vr)n′
<
ε

2
(K − vr − c′)n′

<
ε

2
(K − vr − c)n′

for n′ ≥ n′0. Hence, certainly, for n > n′0, and putting ν = n− ir,∑
ir

(
n

ir

)
vir

r (S′(n− ir)−N(K − vr)n−ir )

<

n−n′
0∑

ir=0

(
n

ir

)
vir

r
ε
2N(K − c− vr)n−ir ) +

n∑
ir=n−n′

0+1

(
n

ir

)
vir

r S
′(n− ir)

=
n∑

ir=0

(
n

ir

)
vir

r
ε
2N(K − c− vr)n−ir ) +

n′
0−1∑

ν=0

(
n

ν

)
v−ν

r S′(ν) · vn
r

= ε
2 (K − c)n + g(n)vn

r .

for a polynomial g of degree n′0 − 1. We thus have established “half of (8)”; for the other half, note that
vr = K − (K − vr) < K − c, whence indeed

g(n) < ε
2

(
K − c

vr

)n

for all n greater than some n′′0 . Putting n0 = max(n′0, n
′′
0) directly yields (8), and we are through with the

induction step in this case.

Finally, we should prove the lemma and (5) for G, in case G has no isolated vertices; i.e., if
⋃
E = [r]. In

other words, each ij appears as a factor in at least one of the terms in f(i). By choosing one such term for
each j, and noting that no term could be chosen more than twice, for any natural numbers m and n we get

(9) f(i) ≥ mn for all i with min
j

i ≥ 2m and
∑

j ij = n .

Employing that ρ < 1, we may apply this for some fixed m, such that ρm < K
(∑

j vj

)−1. With this choice,
we shall show that U(n) is bounded by a sum of 2mr+ 1 terms, such that each one of the resulting 2mr+ 1
sequences satisfies an (8) type of bound. By summing (and since U(n) is non-negative), indeed then (5)
follows.

Thus, note that each i either has min i ≥ 2m, or for at least one j has ij ∈ {0, . . . , 2m− 1}. Thus,

U(n) ≤W (n) +
r∑

j=1

2m−1∑
k=0

Wjk(n)

where

W (n) =
∑

min i≥2m

(
n

i

)
ρf(i)vi ,
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while, for each j and k,

Wjk(n) =
∑
ij=k

f(i)>0

(
n

i

)
ρf(i)vi .

By the assumption for m, indeed am(
∑

j vj) < K − c for some positive c, by (1) yielding

W (n) <
∑
i

(
n

i

)
ρmnvi =

(
ρm(v1 + . . . vr)

)n = o
(
(K − c)n

)
.

For the remaining series, without loss of generality, it is enough to consider the Wrk. Put G′ = ([r − 1], E′)
and f ′ = fG′ , where E′ = E ∩

(
[r−1]

2

)
. We consider a slightly modified vertex weighting v′ = (v′1, . . . , v

′
r−1),

defined as follows:

v′j =
{
ρkvj if {j, r} ∈ E;
vj else

.

Put K ′ = K(G,v′), N ′ = N(G,v′), and choose a c′ > 0, such that indeed S′(n)−N ′(K ′)n = o
(
(K ′− c′)n

)
,

with S′ as in (6). Finally, define T ′ and U ′ in analogy with T and U , such that S′(n) = T ′(n) + U ′(n).

Treat k = 0 separately:

— For k = 0, v′ is the restriction of v; we may have K ′ = K; but, even in this case,

Wr0(n) = U ′(n) = o
(
(K ′ − c′)n

)
is small enough.

— For k > 0, since any basis of maximal weight in G must contain either r or at least one neighbour j of
r, and since vr > 0 and vj > v′j , respectively, we get K ′ < K. Moreover, applying the definitions and (2),

Wrk(n) = vk
r

(
n

k

)
S′(n− k) .

Thus, choosing a c > 0 such that K − c > K ′, indeed

Wrk(n) = O
(
nr(K ′)n

)
= o

(
(K − c)n

)
.

Thus (5) is proven in this case too, whence the induction step and thus the entire lemma is proven.

Remark. The various factors vnj

j and ρninj may be treated in a more uniform manner, by noting that
they may be rewritten exp((ln vj)nj) and exp((ln ρ)ninj), respectively. This motivates the following slightly
extended formulation:

Let h(x1, . . . , xr) be an (in general inhomogenic) quadratic form, h(x) = b+
∑

i dixi +
∑

i<j eijxixj , with
no variable squares terms, and such that all the second degree coefficients eij are nonpositive. Define a
weighted graph G = ([r], E, ψ) by

E =
{
{i, j} : eij < 0

}
,

and
ψ(j) = edj .

Then, with N(G) and K(G) as before, the sum

S(n) =
∑
i

(
n

i

)
eh(i) ∼ ebN(G)K(G)n ,

and there is a c > 0 with S(n)− ebN(G)K(G)n = o
(
(K(G)− c)n

)
.

Actually, as an extension, this is rather virtual. The conclusions in the lemma do not depend on ρ; and
(apart from the negligible constant eb) the S(n) in the extension are squeezed between the lemma items with
ρ = exp(min eij), and those with ρ = exp(max eij : eij 6= 0).
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