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Abstract. At the conference [3] Andreas Dress defined parity
split maps defined by triple point distance and asked for a charac-
terisation of such maps coming from binary phylogenetic X-trees.
This article gives an answer to that question. The characterisation
for X-trees can be easily described as follows: If all restrictions of
a split map to sets of five or fewer elements is a parity split map
for an X-tree, then so is the entire map.

To ensure that the parity split map comes from an X-tree which
is binary and phylogenetic, we add two more technical conditions
also based on studying at most five points at a time.

1. Introduction

Given a finite non-zero set X, recall that an X-tree T is a pair
(T, φ), where T = (V,E) is a tree, and φ : X −→ V a map such that
every vertex in V of degree ≤ 2 is an element in φ(X). An X-tree
T = (T, φ) is a binary phylogenetic X-tree, if in addition φ is injective,
φ(X) consists of the leaves in T , and each vertex in V \ φ(X) has
degree 3.

Note, that for any S = {x, y} ∈
(

X

2

)

(the two-subsets of X) there is
a unique path [x, y] with end points x and y, and that for any three-set
S = {x, y, z} ∈

(

V

3

)

there is a unique ‘triple point’ or ‘median’ 3xyz,
such that [x, y] ∩ [x, z] ∩ [y, z] = {3xyz}

1. Putting e.g. [x, x] = {x}, the
definition works also for some or all of x, y, and z equal. (E.g., 3xxz = x,
as is easily seen.) Finally, let S(X) =

{

{A,B} : A∪B = X∧A∩B = ∅
}

(the partitions of X into exactly two parts).
As usual, we get a metric, dist, on T (i.e., formally, on V ), and an

induced metric on X, by putting dist(x, y) = distT (x, y) equal to the
length of [x, y] (i.e., the numbers of edges therein).

Andreas Dress [3] made the following observation and put the follow-
ing question for binary phylogenetic X-trees (based on his joint work
with Mike Steel, to appear as [2, Remark 3]):

If we define ΠT :
(

X

2

)

−→ S(X) by demanding that the X elements z
and w are in the same part of ΠT (x, y) iff distT (x, 3xyz) ≡ distT (x, 3xyw)

Date: 24th May 2005.
1We cannot denote the median simply xyz, as some readers may be used to,

since then we would get ambiguities for edges like a3abc
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(mod 2), then ΠT determines T (up to isomorphism). Characterise the
resulting split maps Π∗ in intrinsic S(X) terms!

1.1. Results. It turns out that the parity splits are not in natural
manners inherited to binary phylogenetic X ′-trees for X ′ ⊂ X. The
reason is, that in forming the binary phylogenetic tree corresponding
to X ′, some edges in the original tree may be merged, changing path
length parities. It is however possible to give an easy to state char-
acterisation for possible parity split maps for X-trees, which we do in
Theorem 4.1. It is formulated as a four point condition and a five point
condition, which the restrictions of the split map to any set of four and
five points from X have to satisfy. To answer the original question
we add two extra conditions in Theorem 5.2 and Theorem 5.1, which
ensures that an X-tree is binary and phylogenetic, respectively. It is
noteworthy, that also for the classical problem of splits a more natural
condition is given for X-trees, and then special conditions are added
for binary and phylogenetic trees; cf. e.g. [4].

1.2. Extension to parity trees. It helps our reasoning and makes
some proofs easier to formulate if we enlarge the class of trees studied to
parity weighted binary phylogenetic X-trees. Loosely spoken, we add
parities, i.e., elements of Z2 (thought of as “even” and “odd”), to the
edges, and assign edge parity sums as path parities or ‘parity distances’;
see Section 2.2. (50% of the authors also consider this the most natural
setting of the problem.) Two such trees are considered equivalent, if
they form the same X-tree when all even edges are contracted. In this
setting we thus give a characterisation of equivalence classes.

As Andreas Dress has kindly pointed out to us, there seems also to
be a close relationship between our ‘parity metrics’ (or ‘Z2 metrics’) on
one hand, and the ‘symbolic datings’ as defined in [1] on the other. It
would be very interesting to see this explored in detail.

1.3. Outline of paper. We start by making the definitions rigorous in
Section 2, in particular formulating the Boolean algebra that is essential
for our proof. In Section 3, we analyse the situations for |X| ≤ 5 fully,
including proving the necessity of our conditions. In Section 4, we
state and prove the characterisation of parity split maps for X-trees,
and finally in Section 5 we give the extra conditions to give a tentative
solution of Dress’s original problem.

Remark 1.1. Andreas Dress’s original question – and our investiga-
tion – was not directly motivated by phylogenetic applications, but by
the intrinsic value in studying reconstructions of trees in more general
settings.

Notwithstanding, it is worth to note that parity distances indeed
are of notable interest in one instance of bioinformatics application,
namely, in linkage analysis. When analysing whether or not specific
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alleles at different loci in the same chromosome are more or less likely
to be joined or separated by meiotic recombination, what matters is
the parity of the number of crossovers occurring between the two loci.
In actual analysis, multiple loci situations are often considered, and
the situation is said to be fairly complex. The crossover probabilities
need neither be independent, nor equally distributed. (If you want to
find out more about this, you may read e.g. [5, Chapters 11 and 17];
and especially Sections 11.3 and 11.4. If not, you may feel assured by
the fact that no further reference to this will be made in this article;
so you may just forget it.)

2. Preliminaries

Let Z be the set of integers, and Z2 = GF(2) be the field with two
elements. (As you recall, thus formally Z2 = {{[0], [1]}, where [n]
denotes the residue class of n modulo 2; but as usual, we let 0 and 1
stand for the residue classes of even and odd numbers, respectively.)
We may also identify the elements in Z2 as parities: 0 = [0] = ‘even’,
1 = [1] = ‘odd’. Finally, we may think of them as truth values: 0 =
‘false’, 1 = ‘true’. In this case, as usual the algebraic operations +
and · are interpreted as the logical connectives ‘exclusive or’ and ‘and’,
respectively.

For any set A, a function λ : A × A −→ Z2 is a Z2 metric (on A),
if λ(a, b) + λ(b, c) = λ(a, c) for all a, b, c ∈ A. Recalling that ‘plus’ and
‘minus’ coincide on Z2, we find that then λ(a, b) +λ(b, c) +λ(a, c) = 0;
whence in particular λ(a, a) = λ(a, a) + λ(a, a) + λ(a, a) = 0, and
similarly λ(a, b) = λ(b, a).

|M | denotes the number of elements in a set M .
Throughout this article, X is always a non-empty, finite set, and all

trees are unrooted, undirected, and finite. We use a, b, c, . . . et cetera
for elements of X (or φ(X)), and α, β, . . . for vertices of the tree.

Mostly, we try to follow the terminology in [4], as regards X-trees.
However, informally, we abuse notation freely; speaking of T instead
of (T, φ) or instead of the vertex set of T , and speaking of a instead of
φ(a). (We may think of X as a set of labels for some of the vertices in
T .)

2.1. Split maps. Let S(X) =
{

{A,B} : A ∪ B = X ∧ A ∩ B = ∅
}

be the set of splits of X. A split
{

{a1, . . . , ar}, {b1, . . . , bs}
}

is often
denoted {a1, . . . , ar}|{b1, . . . , bs} or a1 · · ·ar|b1 · · · bs. A split map (for
X) is a map π from

(

X

2

)

(the set of 2-subsets of X) to S(X). Given a
split map π, [ab : c1 · · · cr|d1 · · · ds] is the statement that c1, . . . , cr and
d1, . . . , ds belong to different parts of the split π({a, b}); and we let
(ab : cd) be the Z2 representation of the truth value of the statement
[ab : c|d]; i.e., (ab : cd) = 1 if [ab : c|d] is true, but (ab : cd) = 0
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else. By convention, we put (aa : cd) = 0; this corresponds to defining
π({a}) = {X, ∅} for all a ∈ X.

A split map π is realisable if π = ΠT for some X-tree T , in which
case we call it a parity split map.

For any split map we obviously have some symmetry conditions, and
a ‘triplet condition’ depending on the fact that there are but two parts
in each split:

(1) (ab : cd) = (ab : dc) = (ba : cd)

(2) (ab : cd) + (ab : ce) + (ab : de) = 0

(The reader easily may check that these relations hold whether or not
some of a, . . . , e coincide.)

If π is a split map for X, and X ′ ⊂ X, then the restriction π|X′

of π to X ′ is defined in the natural manner. I.e., if a, b ∈ X ′ and
π(a, b) = {A,B}, then π|X′(a, b) = {A ∩X ′, B ∩X ′}.

2.2. Generalised X-trees with parity weights. Formally, let a
generalised X-tree T be a pair (T, φ), where T = (V,E) is a tree,
and φ : X −→ V is any map. T is called an X-tree, if moreover each
element in V is the triple point of three (different or not) elements in
φ(X); or equivalently if every vertex in V of degree ≤ 2 is an element in
φ(X). An X-tree T = (T, φ) is a binary phylogenetic X-tree, if in addi-
tion φ is injective, φ(X) consists of the leaves in T , and each vertex in
V \φ(X) has degree 3. A parity weight function ρ on the (generalised)
X-tree T = (V,E) is a map ρ : E −→ Z2. An X-tree together with a
parity weight function is called a parity weighted X-tree. An edge with
weight 0 (1) is called even (odd, respectively). For any α, β ∈ V , we
define the parity distance between α and β as the sums of the parities
of the edges on the path [α, β]; i.e., formally,

pdistT (α, β) =
∑

e∈E:e⊆[α,β]

ρ(e) .

Clearly, pdist = pdistT is a Z2 metric. Any X-tree may be considered
as a parity weighted X-tree with the trivial weight function, which is
constantly 1 (i.e., such that all edges are odd). In this case, ‘parity
distance’ indeed is the same as ‘the parity of the (ordinary) distance’:
pdistT (α, β) = [distT (α, β)]. If we do not explicitly denote an X-tree
as a parity weighted X-tree, we always assume it to be trivially parity
weighted.

We may generalise the definition of binary phylogenetic tree split
maps as follows. Given any parity weighted generalised X-tree T =
(V,E, ρ), define a split map ΠT :

(

X

2

)

−→ S(X) in the following man-

ner. For any {a, b} ∈
(

X

2

)

, pick one vertex, say a. Consider the split
{

{x ∈ X : pdistT (a, 3abx) = 0}, {x ∈ X : pdistT (a, 3abx)} = 1. Since
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pdistT is a Z2 metric, picking b instead of a yields the same split; and
we define ΠT (a, b) as this split. We call ΠT a (general) parity split map.

It is easy to see that the restriction of the metric to X may be
recovered from the parity split map by

pdistT (a, b) = (ab : ab)T .

A similar construction may be made for every split map. However, the
parity split maps for parity weighted X-trees thus yield Z2 metrics; but
not conversely. The precise connections are discussed in remarks 2.4
and 3.2.

Two generalised parity weighted X-trees T1 and T2 are equvivalent
if ΠT1

= ΠT2
, in which case we write T1 ∼ T2, or T1 ∼X T2 in case

of ambiguity. There are infinitely many elements in each equivalence
class; but (as Theorem 4.1 will show) there is exactly one of minimal
size, and that one is the unique element with trivial weight function.
Contracting all even edges of any parity weighted X-tree in this class
will yield this minimal element. The set of possible parity split maps
is thus the same for X-trees (i.e., X-trees with trivial parity weight
functions) as for generalised parity weighted X-trees.

For each generalised parity weighted X-tree T , there is at least one
parity weighted binary phylogenetic X-tree T ′ with T ∼ T ′. We may
construct T ′ from the minimal parity weighted X-tree in the equiva-
lence class of T , in the following manner. First, we add an even edge
between φ(x) and the rest of the tree, as long as there is some x ∈ X
with either |φ−1(φ(x))| ≥ 2 or deg φ(x) ≥ 2; which results in an X-tree
with X identifiable as its sets of leaves. Then, we split each vertex of
degree ≥ 4 into two vertices, with an even edge between them, until all
internal vertices have degree 3. In general, T ′ is not unique, however.

Note, that if T = (T, φ) is a generalised parity weighted X-tree and
X ′ ⊂ X, then T ′ = (T, φ|X′) is a generalised X ′-tree, and

(3) ΠT ′ = ΠT |X′ .

However, T ′ need not be binary, phylogenetic, minimal, or even non-
generalised, just because T is.

2.3. The four point condition. If T is a parity weighted binary
phylogenetic X-tree with parity distance pdist, and a, b, c, d ∈ X,
then c and d are in the same part of the split ΠT (a, b) if and only
if pdist(3abc, 3abd) = 0. In other words, and using our identification of
both parities and truth values with Z2 elements,

pdist(3abc, 3abd) = (ab : cd) .

Moreover, if 3abc and 3abd are different, then so are the remaining two
triple points formed from this quartet, and in fact then {3cda, 3cdb} =
{3abc, 3abd}. Hence, it quickly follows that

(4) (ab : cd) = (cd : ab), for all a, b, c, d ∈ X.
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Note that we also include the possibility of some of a, b, c, d being equal.
If e.g. a = b, then (ab : cd) = (cd : ab) = 0; and if a = c, then
(ab : cd) = (cd : ab) = pdist(a, 3abc).

This motivates the following definition:

Definition 2.1. A split map π over X is said to satisfy the four point
condition if (4) holds.

We have some immediate ‘algebraic’ consequences of (4). To begin
with, for any a, b, c, d ∈ X (different or not) and any X split map π,
by (1) and (2) we have (ab : cd) + (ac : bd) + (ad : bc) = (ab : cb) +
(ab : db) + (ac : bd) + (ad : bc) =

(

(ab : bc) + (ad : bc)
)

+
(

(ab : bd) +

(ac : bd)
)

= (bd : bc) + (bc : bd); whence, if π fulfils (4), then

(5) (ab : cd) + (ac : bd) + (ad : bc) = 0 .

In other words, either none or exactly two of these split predicates have
the value 1; yielding exactly four possibilities.

Let us classify these possibilities by their combinatorial sense. In
fact, if T is a binary phylogenetic X-tree and a, b, c, d are different
elements of X, there are at most two different triple points defined by
the 3-subsets of Y := {a, b, c, d}; and if there are different such points,
then the path between them splits Y into two 2-sets (in the classical
sense, i.e. not involving parity split). The combined predicate “The
path splits Y as ab|cd, and is of odd weight” is true if and only if
(ac : bd)(ad : bc) = 1, and thus is discernible from the induced parity
split map on Y . (Recall that in the truth values interpretation, this
product is a ‘logical and’.) However, if the path has even weight, we
cannot from this deduce how Y is split. If instead at least two of the
elements are equal, say c = d, we get similar but fewer case divisions:
then in fact 3abc = 3abd and 3acd = c = 3bcd, and the path [3abc, c] may
be odd or even; in the first case ensuredly splitting Y as ab|c. This
motivates the following definitions.

Definition 2.2. The quartet parity of (a, b, c, d) ∈ X4 (with respect to
the split map π) is Par(a,b,c,d) = Par(a,b,c,d)π =
Odd(ab— cd) + Odd(ac— bd) + Odd(ad— bc),
where Odd(ab— cd) = (ac : bd)(ad : bc), and correspondingly. See Fig-
ure 1. If π indeed satisfies the four point condition, then Par(a,b,c,d)
is preserved under each permutation of the quadruple.

As you see, the definitions are quite ‘algebraic’, but encode rather
concrete conditions in the case of an (ordinary) X-tree. In fact, for π
satisfying (4), the split predicate values may be retrieved by

(6) (ab : cd) = Odd(ab— cd) + Par(a,b,c,d) .

You should also note, that by (5) Par(a,b,c,d) is odd, if and only if
any two of the four vertices split the other two; or in other words that

(7) Par(a,b,c,d) = 1 + (1 + (ab : cd))(1 + (ac : bd))(1 + (ad : bc)) .
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Lemma 2.3. If Odd(ab— cd) = 1 with respect to a split map ΠT

realised by an X-tree T , then 3abc = 3abd, 3acd = 3bcd, pdist(3abc, 3acd) =
1, and 3abc preceeds 3acd on the unique path [a, c] from a to c.

Proof. Since (ac : bd) = (ad : bc) = 1, indeed 3abc and 3abd are at
odd distances from 3acd and 3bcd, and thus different from these; whence
indeed 3abc = 3abd and 3acd = 3bcd, since there are at most two different
triple points given by the quartet {a, b, c, d}. In particular, 3acd cannot
precede 3abc in [a, c]; for, if it did, then we would have 3bcd = 3dbc =
3abc. �

odd

a

b d

c

b

c

d

a

Par(a,b,c,d)=0Odd(ab−cd)=1

Figure 1. Examples when Odd(ab— cd) = 1 and
Odd(ab— cd) = Par(a,b,c,d) = 0 respectively.

Remark 2.4. The restriction of the four point condition to triplets,

(8) (ab : ac) = (ac : ab), for all a, b, c ∈ X,

the three point condition, is in fact sufficient to ensure that pdist(a, b) :=
(ab : ab) is a Z2 metric on X. For, if (8) holds, then by (2) and (1)
pdist(a, b)+pdist(b, c) =

(

(ab : ac)+(ab : bc)
)

+
(

(bc : ba)+(bc : ca)
)

=
(

(ba : bc)+(bc : ba)
)

+
(

(ac : ab)+(ac : cb)
)

= 0+(ac : ac) = pdist(a, c).
With somewhat more work, we find that in fact the four point con-

dition guarantees that λ is a Z2 metric on the set X3 of ‘formal triple
points’, where λ is defined by

λ
(

(a, b, c), (d, e, f)
)

:= (ab : cf) + (af : be) + (ef : ad) ;

and that if indeed π = ΠT for any parity weighted X-tree T , then
pdist(3abc, 3def) = λ

(

(a, b, c), (d, e, f)
)

. Thus, if several parity weighted
X-trees induce the same split maps, they also induce unambiguous
parity distances between corresponding pairs of triple points.

2.4. Analysis of joints. In this subsection, we have to distinguish
φ(a) from a (et cetera) explicitly.

One important special case of restrictions is when indeed T = (V,E)
is a parity weighted X-tree, and X ′ = X \ {x} 6= ∅ for some x ∈ X.
In this case, if φ(x) = φ(y) for some y ∈ X ′ or the degree of φ(x) is
at least 2, then put T ′ := T and ξ := φ(x). Else, φ(x) /∈ φ(X ′) and
is a leaf in T , whence there is a unique edge φ(x)α, say, in T . Then,
put T ′ = (V \ {φ(x)}, E \ {φ(x)α}) and ξ := α. In either case, T ′
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is a generalised parity weighted X ′-tree with a specified vertex ξ, and
we call ξ the joint or vertex of attachment of x to T ′. Intuitively the
problem of finding how to join x to a parity weighted X ′-tree by means
of the parity split map may be divided into the problem of inserting ξ,
the joint of x, properly, and the problem of attaching x to ξ.

Since T is an X-tree, each element in V is a triple point of three
(different or equal) elements in φ(X). Thus there are a, b ∈ X ′ and
c ∈ X (not necessarily different), such that ξ = 3φ(a)φ(b)φ(c), and that
if ξ 6= φ(x) then at most one of these may be φ(x) (since 3φ(x)φ(x)α =
φ(x)). Furthermore, it is easily seen that we can always assume c = x
and hence ξ = 3φ(a)φ(b)φ(x).

Next, consider the X parity split map π := ΠT , and its restriction
π′ := π|X′. π contains the information that π′ does, and the following
kinds of ‘extra information’:

(A) For each 2-set {d, e} ⊆ X ′, the information whether or not
[de : d|x];

(B) For each d ∈ X ′, the restriction of the split π(d, x) to X ′; and
(C) For each d ∈ X ′, the information whether or not [dx : a|x],

where a ∈ X ′ is as above.

Indeed, the information in π′ and (A) is enough to determine all the
π(d, e) such that d, e ∈ X ′; since π′ fixes each such split, except as
whether x is in one part or in the other, but this is decided by (A).
Similarly, the information in (C) completes the information in (B),
obtaining the π(d, x).

Lemma 2.5. (A) is entirely decided by (T ′, ξ); and consequently, so
is (B). Moreover (C) in fact contains but one bit of extra information,
namely the bit pdist(φ(x), ξ).

Proof. Note, that for d, e ∈ X ′, the path [φ(d), φ(e)] is entirely con-
tained in T ′, whence 3φ(d)φ(e)φ(x) = 3φ(d)φ(e)ξ, whence (de : dx) =
pdist(φ(d), 3φ(d)φ(e)φ(x)) = pdist(φ(d), 3φ(d)φ(e)ξ), which indeed is deter-
mined by (T ′, ξ).

Thus, for d, e, f ∈ X ′, (dx : ef) = (dx : de) + (dx : df) = (de : dx) +
(df : dx) is determined.

Finally, by (4) (dx : ax) = (ax : dx) for each d ∈ X ′; whence (C)
is determined by the split π(a, x), and more precisely by (B) for a,
together with the information whether or not b and x are in the same
part of the split π(a, x). However, (ax : bx) = pdist(ξ, φ(x)); and the
lemma is proved. �

3. Systems with at most five points

Let us briefly investigate the possible parity weighted binary phylo-
genetic X-trees T = (V,E), with parity weight function ρ, for small X.
(The |X| ≤ 2 cases are trivial.)
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If |X| = 3 and X = {a, b, c}, then (as is well known) V is the 4-
set {a, b, c, 3abc}; E is {a3abc, b3abc, c3abc}, and as we saw above, e.g.
ρ(a, 3abc) = pdist(a, 3abc) = (ab : ac). Thus, T may be fully recon-
structed from ΠT .

If |X| = 4 and X = {a, b, c, d}, then V is a 6-set; E consists of one
‘twig’ to each leaf, and of one ‘internal edge’; the parities of the twigs
are determined as in the 3-set case; and the parity of the internal edge
is Par(a,b,c,d). T is fully recoverable if and only if Par(a,b,c,d) = 1.
If the quartet parity is even, then T is one of three equivalent parity
weighted binary phylogenetic X-trees, depending on how the ‘central
point’ in the minimal X-tree in this equivalent class is split up into two
different triple points.

If |X| = 5, then we get two internal edges, and three principally
different ways of weighting them; cf. Figure 2 below.

c

a

b d

e

c

a

b d

e

c

a

b d

e

odd odd odd even

even even

(a) (b)

(c)

Figure 2. The three types of subtrees possible for five leaves.

A glance at the figure (or an obscure formal proof, which we omit)
makes it clear, that at least one of the five quartet parities of different
X elements must be even. After similary checking the few cases of
pentuples in X with some entries equal, and by means of (3), we find
that for any X and any generalised parity weighted binary phylogenetic
X-tree we have

(9) Par(a,b,c,d) Par(a,b,c,e) Par(a,b,d,e) Par(a,c,d,e) Par(b,c,d,e) = 0

(As an exercise, you may prove that in fact (9) follows from (4), in the
case where at least two of the elements a, b, c, d, e are equal.)

Definition 3.1. A split map π over X is said to satisfy the five point
condition if (9) holds (for any (a, b, c, d, e) ∈ X5).
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The reader might suspect that we will continue to define k-point
conditions for every k. Have no fear: the essence of Theorem 4.1 is
that the four and five point conditions suffice.

Remark 3.2. We have seen that the four point condition implies the
three point condition, which implies π inducing a metric. However,
the converse implications do not hold, and nor does the four point
condition imply the five point one; as the following examples show.

The parity map π for X = {a, b, c}, given by π(a, b) = π(a, c) =
{X, ∅}, but [bc : a|bc] (i.e., π(b, c) =

{

{a}, {b, c}
}

), makes (ab : ab) =
(ac : ac) = (bc : bc) = 0 and thus induces a parity metric; but (bc : ba) =
1 6= 0 = (ba : bc).

The parity map π for X = {a, b, c, d}, given by [ab : abd|c], [ac :
acd|b], [ad : abc|d], [bc : bcd|a], [bd : abc|d], and [cd : abc|d], fulfils the
three point condition; but not the general four point condition, since
(ab : cd) = 1 6= 0 = (cd : ab).

The parity map π for X = {a, b, c, d, e}, given by [ab : abe|cd], [ac :
ade|bc], [ad : bde|ac], [bc : ace|bd], [bd : bce|ad], [cd : cde|ab], [ae :
abc|de], [be : abd|ce], [ce : bcde|a], and [de : acde|b], fulfils the four
point condition; but not the five point condition, since all five quartet
parities are odd.

We now may sum up what we have proved until now as follows:

Lemma 3.3. Any realisable split map π for X fulfils the four point
and the five point conditions. Conversely, if π fulfils the four point
condition, and |X| ≤ 3, then π is realisable.

Next, we extend the ‘converse’ result of that lemma a bit, which will
form the base of our inductive proof of Theorem 4.1.

Lemma 3.4. Assume 4 ≤ |X| < ∞, x ∈ X, π a split map on X,
fulfilling (4), and that for each set of four distinct elements a, b, c, d ∈
X \ {x}, Par(a,b,c,d) = 0. Then π is realisable; and its minimal reali-
sation is unique and has at most 2 interior edges.

Proof. Put X ′ := X \ {x}, π′ := π|X′ , and n := |X ′| ≥ 3. (By Remark
2.4, pdistπ is a metric.)

Let s be an element not in X, and let T ′ be the star with vertex set
X ′∪{s} and edge set {ys : y ∈ X ′}). For any a ∈ X ′, pick two distinct
b, c ∈ X ′ \ {a}, and let ρ(as) := (ab : ac). This defines a parity weight
on the X ′-tree T ′; and we claim that its parity split map ΠT ′ = π′:

First of all, if d is a fourth element in X ′, then

(ac : ab) = (ab : ac) = ρ(as) ,

and

(ab : ad) = (ab : ac) + (ab : cd) = ρ(as) + Par(a,b,c,d) = ρ(as) ,
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by (4) and (2); i.e., ρ(as) is independent of the choices of b and c. Next,

(ab : ab)T ′ = pdistT ′(a, s)+pdistT ′(s, b) = (ab : ac)+(ab : bc) = (ab : ab)

indeed, by (1); and, for b 6= c,

(ab : ac)T ′ = pdistT ′(a, s) = (ab : ac) .

Finally, for a, b, c, and d all distinct,

(ab : cd)T ′ = 0 = (ab : cd) .

Thus inded the claim is proved.
Next, consider any minimal parity weighted X-tree T , such that

T ∗ := T |X′ ∼ T ′. Let ξ be the joint of x with T |X′. Then T ∗ is one of
the following:

(A) T ∗ is a star, with ξ = s (1 possibility);
(B) ξs ∈ ET ∗ ; and for precisely one of the a ∈ X ′, either ξ = a,

or ξa ∈ ET ∗ , depending on whether distT ′(a, s) is 1 or 0 (n
possibilities); and

(C) There is a partition X ′ = X1 ∪ X2, with both |Xi| ≥ 2, and a
split of s into two vertices s1 and s2, such that Xi is attached
to si, and that both ξsi ∈ ET ∗ (2n−1 − n− 1 possibilities).

In each of these cases, there are two possibilities for T , depending on
distT (x, ξ). Thus, there are 2n different such minimal parity weighted
X-trees T ; each of them with a different parity split map fulfilling (4)
and extending π′. In order to prove that indeed π is one of these parity
split maps, it is enough to prove that there are at most 2n split maps
that extend π′ and fulfil (4).

Fix an a ∈ X ′, and an order b1, . . . , bn−1 on the elements in X ′ \{a};
and put bn := x. Now, let ψ be any split map onX, such that ψ|X′ = π′.
Give ψ the signature

(

(abi : ax)
)n

i=1
. There are clearly not more than 2n

possible signatures; and we claim that ψ is completely determined by
its signature (and π′). For, for i ≤ n−1, ψ(a, bi)|X′ = π′(a, bi), and the
i’th entry of the signature determines which of the two parts of ψ(a, bi)
(namely, the part containing a, or the other part), that contains x.
This indeed fixes the split ψ(a, bi). Since (ax : abi) = (abi : ax) by
(4), and (ax : ax) is the last entry of the signature, it is determined
exactly which of the bi (i = 1, . . . , n) that are in the part of ψ(a, x)
that contains a; i,e, ψ(a, bn) = ψ(a, x) is fixed, too. Finally, for any
c, d, e ∈ X (different or not), (cd : ae)ψ = (ae : cd)ψ, which fixes ψ(c, d).
Thus the last claim, and consequently the lemma, is proved. �

Corollary 3.5. If a split map π :
(

X

2

)

−→ S(X) fulfils (4) and (9),
and |X| ≤ 5, then indeed X is realisable, and minimal realisations are
isomorphic.

Proof. For |X| ≤ 3, we are through by Lemma 3.3. For |X| = 4,
the extra condition in the lemma trivially is fulfilled for any x ∈ X,
since X \ {x} does not contain four different elements. Finally, for
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|X| = 5, by (9) we may write X = {a, b, c, d, e} in such a manner
that Par(a,b,c,d) = 0; whence taking x := e in the lemma, indeed
X \ {x} = {a, b, c, d} fulfils the extra condition of the lemma. �

Finally, we need a couple of more technical lemmata. Note that
both the formulations and the ‘algebraic’ proofs of the first two work,
even if Y = {a, b, c, d, e} actually has cardinality smaller than 5. If
you prefer ‘purer’ divide-and-conquer combinatorial proofs, then just
note that the split map restriction to Y is realisable, by Corollary 3.5;
and classify the possible realisations by means of Figure 2 (mutatis
mutandis, if Y is not a 5-set).

Lemma 3.6. If π is a split map on X that fulfils (4) and (9), and
a, b, c, d, e ∈ X, then either none, three or four of the five quartet pari-
ties, defined by taking four of a, b, c, d, e, are odd.

Proof. Either (xy : zu) = 0 for all distinct letters x, y, z, u ∈ Y , in
which case all five quartet parities are even; or e.g. (ab : cd) = 1. In
the latter case, Par(a,b,c,d) = 1; and by (2) exactly one of (ab : ce) and
(ab : de), and exactly one of (ae : cd) and (be : cd), are odd, yielding at
least two more odd quartet parities. All five cannot be odd because of
(9). �

Lemma 3.7. Assume a, b, c, d, e ∈ X and π a split map satisfying
the four and five point conditions (4) and (9). If Odd(ab— cd) =
Odd(bc— de) = 1, then Odd(ab— ce) = Odd(ac— de) = 1, too, but
Par(a,b,d,e) = 0.

Proof. By the assumptions, (ab : cd) = (bc : de) = 0, but (ac : bd) =
(ad : bc) = (bd : ce) = (be : cd) = 1. Thus, by (1) and (2) (cd : ae) =
(cd : ab)+(cd : be) = 0+1 = 1, and similarly (ae : bc) = 1; whence by (7)
Par(a,b,c,d) = Par(a,b,c,e) = Par(a,c,d,e) = Par(b,c,d,e) = 1; whence
by (9) Par(a,b,d,e) = 0, i.e., (ab : de) = (ad : be) = (ae : bd) = 0. Thus,
(ab : ce) = (ab : de) + (ab : cd) + (ab : de) = 0 + 0 = 0 and (ac : be) =
(ab : ce)+ (ae : bc) = 0+1 = 1 yields Odd(ab— ce) = Par(a,b,c,e) = 1;
and similarly, (bc : de) = 0 and Odd(bc— de) = (ad : ce) = 1. �

Lemma 3.8. If π is a split map on X that fulfils (4) and (9), x ∈
X, and Par(a,b,c,x) = 0 for all distinct a, b, c ∈ X ′ := X\{x}, then
Par(a,b,c,d) = 0 for all distinct a, b, c, d ∈ X ′.

Proof. Given distinct a, b, c, d ∈ X ′, at least four of the quartet parities
in {a, b, c, d, x} are zero, whence so is the fifth by Lemma 3.6. �

4. Proof of main result

This section is devoted to proving our main theorem, which is the
following.
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Theorem 4.1. A split map π over a set X is realisable, i.e. π = ΠT ,
for some parity weighted X-tree T , if and only if π satisfies the four
point condition (4) and the five point condition (9). Moreover, up to
isomorphisms there is exactly one such X-tree T with all edges of odd
parity.

It is clear from Section 3 that the conditions are necessary. In or-
der to prove the sufficiency and the uniqueness statements, we shall
use induction over |X|. In the proofs, we will almost entirely employ
only trivially weighted X-trees, i.e., with only odd edges. Proving the
existence and uniqueness for such trees proves the theorem.

For |X| ≤ 5, all claims in the theorem hold by Corollary 3.5. Let π
be a split map X, |X| ≥ 6, satisfying the four and five point conditions,
and make the natural assumptions of induction.

Take x ∈ X, by induction we know that there exists a unique (up
to isomorphism) Xx-tree Tx for which π|Xx

is the parity split map. We
now want to show that there is a unique way of ‘extending’ Tx, to an
X-tree T with π as parity split map.

By the discussion in Section 2.2, we must first determine the position
of the joint of x (possibly splitting one Tx vertex into three in the
process), and then determine whether x is mapped to the joint, or to a
new vertex adjacent to it. (The second part is almost trivial though.)

We first define a direction for some edges in Tx, and show that this is
well-defined in Lemma 4.3. The intuition is that the edges are pointing
towards the joint of x. Some edges may not have a direction.

Definition 4.2. Let DTx be Tx together with directions on some of
its edges, determined as follows: If Odd(ax— bc) = 1 then all edges on
the paths [b, 3abc] and [c, 3abc] in Tx will be directed towards 3abc.

Lemma 4.3. DTx is well defined, i.e., no edge can receive contradicting
directions.

Proof. Assume for contradiction that the edge e = {β0, β1} in T ′ is
given two directions; i.e., that there exists a, b, c ∈ X ′ such that e is
directed towards β0 by Odd(ax— bc) = 1, with e on the path from b
to 3abc, and there exists u, v, w ∈ X ′ such that e is directed towards β1

by Odd(ux— vw) = 1, with e on the path from v to 3uvw. Let C1 and
C2 be the two connected components of T ′\{e}, with a, c, v ∈ C1 and
b, u, w ∈ C2.

First, note that for any z ∈ C2 ∩ X we have Odd(ax— zc) = 1.
For, since pdist(β0, β1) = 1, there is exactly one β ∈ e, such that
pdist(3abc, β) = 1; and since β ∈ [3abc, z], there is a y ∈ X such
that β = 3ayb = 3ayz = 3cyb = 3cyz. In particular, Odd(ac— by) =
Odd(ac— yz) = 1; and Odd(xa— cb) = 1 by assumption. Thus, by
Lemma 3.7 twice, Odd(xa— cb) = Odd(ac— by) = 1 yields Odd(xa— cy) =
1 = Odd(ac— yz) yields Odd(xa— cz) = 1 indeed.
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In particular, Odd(ax— uc) = Odd(ax—wc) = 1; and the latter
gives Odd(cx— aw) = 0. However, and by interchanging the rôles of
(a, b, c) and (u, v, w), we find that Odd(ux— aw) = 1 = Odd(cu—xa),
again by means of Lemma 3.7 yielding Odd(cx— aw) = 1, and the
sought contradiction. �

Remark 4.4. In fact all edges on the same connected component C
as (e.g.) b on T\3abc will be directed towards 3abc in DTx.

Proof. The statement is trivially true if b = 3abc. Otherwise, let d ∈
Xx be any point such that dist(3abc, 3abd) = 1 and 3abd ∈ [3abc, b].
Then Odd(ax— bc) = Odd(ac— bd) = 1, which by Lemma 3.7 gives
Odd(ax— cd) = 1. Hence also all edges from d to 3acd are directed
that way. Now, every element e ∈ C such that 3abe 6= 3abd satisfies
3ade = 3abd, which similarly implies Odd(ax— ce) = 1. �

As the reader may have suspected, there is no guarantee for having
any directed edges inDTx. However, if no edge has received a direction,
then we have Par(a,b,c,x) = 0 for all distinct a, b, c ∈ Xx. In Lemma 3.8
we proved that this implies Par(a,b,c,d) = 0 for all distinct a, b, c, d ∈
Xx, whence indeed π is uniquely realisable by Lemma 3.4.

Thus, in the sequel we may assume that there is at least one directed
edge in DTx, whence by Remark 4.4 there is also a directed edge e =
{β, υ} pointing away from a leaf β in DTx. Assume the leaf β is labeled
Y ⊆ X.

Claim 4.5. π(x, y1) = π(x, y2), for y1, y2 ∈ Y .

Proof. First note that (xy1 : cd) + (xy2 : cd) = (y1y2 : cd) by (2). If
c, d ∈ Xx this is zero by π|Xx

= Π|Tx
and thus (xy1 : cd) = (xy2 : cd) as

wanted. Again by (2) we get (y1y2 : cx) = (y1y2 : dx) for all c, d ∈ Xx.
We must show it is zero.

By the direction of the edge e and by Remark 4.4, there exists
a, b ∈ Xx\Y such that Odd(ax— by) = 1 for all y ∈ Y . In particular,
(ax : by1) = (ax : by2) = 0. This gives (y1y2 : ax) = (ax : y1y2) = 0 as
needed. The claim is proved. �

We may thus assume that Y = {y}.
Recall that by definition the joint of the label y with the Xx-tree

Tx is the node υ. Let Xx,y denote X\{x, y} and let Txy denote the
Xx,y-tree with πXx,y

= ΠTxy
which we know exists and is unique (up to

isomorphism) by induction. There are two possibilities:

I υ has degree at least four in Tx or is labeled and is hence present
also in Txy, i.e., Txy is a subtree of Tx.

II υ is not labeled and has degree at most 3 in Tx. Hence υ is
not present in Txy and its two neighbours ϕ′ and ϕ′′ in Tx are
merged to a single node ϕ in Txy.
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We will call the process of adjusting an Xx-tree Tx to a subset the
adaptation of Tx to the subset. Note that since we sometimes have
to remove and identify vertices the adaptation will in general not be a
subtree.

By induction we know that we can extend Txy with x in a unique
way to a Xy-tree Ty. We now want to put back β, with label y to Ty
and form a X-tree T . Let ξ be the joint of x in Ty. In this case the
distance between x and ξ can be zero or one, i.e., x might be mapped
to ξ or to a leaf adjacent to ξ, but we do not need to distinguish these
cases below. By definition Txy is the adaptation of Ty to Xx,y, and we
have again two different possibilities.

a ξ has degree at least four in Ty or has labels (other than possibly
x), and ξ is hence present also in Txy, i.e., Txy is a subtree of
Ty.

b ξ has no other labels and has degree at most 3 in Ty. Hence ξ
is not present in Txy, and its two neighbours γ′ and γ′′ in Ty are
merged to a single node γ in Txy.

We will now for each of the four cases Ia, Ib, IIa and IIb (notation
as above) describe how to build the tree T . The tree T must first of all
be such that its adaptation to Xx is Tx and its adaptation to Xy is Ty.
In each case we will first describe the possible candidates T with this
property and then check that there is a unique (up to isomorphism)
among them with ΠT = π.

It is easily seen that for any such candidate T , ΠT (c, d) is completely
determined for all c, d ∈ Xx,y by the adaptations to Tx and Ty. In
fact, there is only one bit of information not determined. If for some
c, d ∈ Xx,y we know (cx : dy)T ., then for any u ∈ Xx, v ∈ Xx,y we
have by (2) that (ux : vy)T = (cx : vy)T + (cu : vy)Tx

= (cx : dy)T +
(cx : vd)Ty

+ (cu : vy)Tx
. For v = x we use similar expansions, and the

split map is thus fully determined.
If ξ (or γ) and υ (or ϕ) are sufficiently far apart in Txy the construc-

tion of T is easy, but if they are close more care has to be taken. Each
of the four main cases below will be further divided into two subcases
depending on this distance. The details will be similar, especially when
the distance is ‘large’, and we will write them out completely only for
case Ia.

Case Ia) Let [υ, ξ]Ty
= (υ = δ0, δ1, . . . , δk = ξ).

(i) If k ≥ 2 we extend Ty to T by joining y to υ as it is joined in
Txy. This is clearly the only candidate tree. We may then choose
a, b, c ∈ X\{x, y} such that 3byξ = δ0, 3ayξ = δ1 and 3cyξ = δ2 in T . We
then have Odd(ac— by)T = Odd(ac— by)π = 1 and Odd(ab— cx)T =
Odd(ab— cx)π = 1, which by Lemma 3.7 yields Odd(ax— by)T =
Odd(ax— by)π = 1 and hence (ux : vy)T = (ux : vy)π, for all u, v ∈
X\{x, y}. We thus have ΠT = π.
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(ii) If k = 1 there are exactly two ways of adding y depending on the
values of (ux : vy)π. Let Cυ and Cξ be the two connected components if
the edge {υ, ξ} is removed from Ty, with υ ∈ Cυ, ξ ∈ Cξ. The first way
to add y back in order to form the tree T , is the obvious one of letting
the joint of y be υ. This works if (bx : ay)π = 1, for b ∈ Cυ, a ∈ Cξ.
If on the other hand (bx : ay)π = 0, for b ∈ Cυ, a ∈ Cξ, we form the
X-tree T ′ by splitting υ into two nodes υ′, υ′′, and splitting ξ into ξ′, ξ′′.
They will form a path υ′, ξ′′, υ′′, ξ′, and υ′ (ξ′) will take the place of υ
(ξ) in Cυ (Cξ), whereas υ′′ will be the joint of y and ξ′′ the joint of x.
The trees T and T ′ will have the same split functions, except that y
will be placed in a different part of π(c, x), for all c ∈ Xx. See Figure 3.

d d

ξυ
CξCυ

y x

T

d d d d

CξCυ
υ′ ξ′′ υ′′ ξ′

x y

T ′

Figure 3. Construction of T and T ′ in Case Ia(ii)

Note that k = 0 is not a possibility. If υ = ξ, then x and y
must belong to the same part in all splits π(u, v), u, v ∈ Xx,y. Thus
(xy : uv) = 0 for all u, v ∈ Xx,y, which contradicts the fact that the
edge e was given a direction by Odd(ax— by) = 1.

Case Ib) We again let k be the distance between υ and ξ in Ty. When
k ≥ 2 we may argue as in Ia(i) to show that π = ΠT for a unique T .

If k = 1, this means that υ = γ′ (or γ′′). As in Case Ia(ii) we can
now construct two candidate X-trees T and T ′ with γ′ and γ′′ as the
joint of y. The split map for T and T ′ will differ only on the values of
(ux : vy)π and the adaptations of both T and T ′ is Tx and Ty. Hence
exactly one of π = ΠT and π = ΠT ′ will be true.

Case IIa) Here we will let k be the distance between υ and ξ in Tx.
Then this case is symmetric to case Ib).

Case IIb)
(i) Assume γ 6= ϕ in Txy. In this case, T will be constructed in the
obvious manner from Tx by splitting γ, as Ty is constructed from Txy.
That ΠT = π is shown as in Ia(i).
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(ii) Assume γ = ϕ in Txy. Here we need to examine the structure
of Tx and Ty carefully. Let C1 be the component containing γ′ and
C2 the component containing γ′′ in Ty\{ξ}. Similarly let C3, C4 be
the connected components containing ϕ′, ϕ′′ when removing υ from Tx.
First we shall show that that there cannot be a, b, c, d ∈ Xx,y such
that a ∈ C1 ∩ C3, b ∈ C1 ∩ C4, c ∈ C2 ∩ C3, d ∈ C2 ∩ C4. Assume for
contradiction that such a, b, c, d exist. Some of them could be labels of
γ in Txy, but the others must by necessity be in different components of
Txy\{γ}. In any case 3abx = γ′, 3cdx = γ′′ in Ty and 3acy = ϕ′, 3bdy = ϕ′′

in Tx. This means that we have the following values for π:
(ab : cx) = 0, (ac : bx) = 1, (ax : bc) = 1,
(ab : dx) = 0, (ad : bx) = 1, (ax : bd) = 1 and
(ab : cy) = 1, (ac : by) = 0, (ay : bc) = 1,
(ab : dy) = 1, (ad : by) = 1, (ay : bd) = 0.

This implies directly using (2), where ε = 0 or 1.
(ab : cx) = 0 (ac : bx) = 1 (ax : bc) = 1
(ab : cy) = 1 (ac : by) = 0 (ay : bc) = 1
(ab : xy) = 1 (ax : by) = ε (ay : bx) = 1 − ε
(ac : xy) = 1 (ax : cy) = 1 − ε (ay : cx) = ε
(bc : xy) = 0 (bx : cy) = ε (by : cx) = ε

By the five point condition at least one row in this table must be
all zeros and this must thus be the last row, so ε = 0. However, we
immediately get

(ab : dx) = 0 (ad : bx) = 1 (ax : bd) = 1
(ab : dy) = 1 (ad : by) = 1 (ay : bd) = 0
(ab : xy) = 1 (ax : by) = 0 (ay : bx) = 1
(ad : xy) = 0 (ax : dy) = 1 (ay : dx) = 1
(bd : xy) = 1 (bx : dy) = 0 (by : dx) = 1

,

where the last two rows follows from repeated use of (2). This con-
tradicts the five point condition (9).

Thus, without loss of generality we may assume that C2 and C4

contain no common labels from Xx,y. We may view C1 as a subtree of
Txy, if we rename γ′ as γ (keeping the labels of γ′ though). Similarly
C2, C3, C4 may viewed as subtrees. Let now T (i, j) be the subtree of
Txy restricted to Ci ∩Cj, where the labels of γ form the intersection of
the labels from Ci and Cj. It is clear that the only way to construct T
from Ty respecting π is with a path γ′′, ξ, γ′(= ϕ′), υ, ϕ′′ where x and y
are joined to ξ and υ respectively. The tree T (2, 3) is attached to the
path by identifying γ and γ′′. Similarly T (1, 3) is attached to γ′ and
T (1, 4) to ϕ′′. Thus, dist(υ, ξ) = 2, and we may use the same argument
as in Ia) to show that ΠT = π.

The last possibility would be that C1 and C4 have the same labels
and so have C2 and C3. This implies that x and y would belong to
the same part in all splits π(u, v), u, v ∈ Xx,y. Thus (xy : uv) =
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0, u, v ∈ Xx,y, which contradicts that the edge e was given a direction
by Odd(ax— by) = 1.

Thus indeed in each case we have constructed a unique T , except
as regards whether we should put φ(x) = ξ or we should add a new
leaf φ(x) with an edge φ(x)ξ. However, this is decided by the truth
value of pdist(x, ξ), which indeed is uniquely determined, as proved in
Lemma 2.5.

5. Characterisation of Binary phylogenetic X-trees

Theorem 4.1 gives exact conditions for when a split map π is equal
to ΠT for some X-tree T . Below we give two conditions which together
with the four and five point conditions give necessary and sufficient
conditions to determine which split maps come from binary phyloge-
netic X-trees. We challenge the reader to find other and perhaps better
answers to the question of Dress.

Theorem 5.1. Let (T, φ) be an X-tree with parity split map ΠT . Then
T is phylogenetic if and only if

(10) for all distinct a, b, c ∈ X, such that (ac : bc) = 0

there exists x ∈ X, such that Odd(ab— cx) = 1.

Proof. The conditions a, b, c ∈ X, a, b 6= c and (ac : bc) = 0 imply that
dist(c, 3abc) is even. If T is phylogenetic, then the distance cannot be
zero, whence there exists an x ∈ X with dist(3abc, 3acx) = 1. This
proves the ”only if” direction. For the converse, assume that T is not
phylogenetic. This means that there exists some c ∈ X that is not
mapped to a leaf, i.e., c ∈ [a, b] for some other elements a, b ∈ X. This
violates (10), which proves the theorem. �

Theorem 5.2. Let (T, φ) be a phylogenetic X-tree with parity split
map ΠT . Then T is binary if and only if

(11) for all distinct a, b, c, d ∈ X, such that Par(a,b,c,d) = 0

there exists x ∈ X, such that

Par(a,b,c,x) = Par(a,b,x,d) = Par(a,x,c,d) = Par(x,b,c,d) = 1.

Proof. First assume that T is binary. Par(a,b,c,d) = 0 for distinct
a, b, c, d ∈ X means that the distance between the triple points must
be even and at least two. Without loss of generality, we may assume
that 3abc = 3abd 6= 3acd = 3bcd. Thus there is some x ∈ X such that
3acx ∈ [3abc, 3acd] and with dist(3acx, 3abc) odd. We are now in case (a)
of Figure 2, and the “only if” direction of the theorem follows.

For the converse, assume that T is not binary. Since T is phylogenetic
there must be a vertex β of degree 4 or more. Then we can take
a, b, c, d ∈ X in different parts of T\β. Thus 3abc = 3abd = 3acd = 3bcd,
and no x can exist as in (11). �
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Corollary 5.3. A split map π over a set X satisfies π = ΠT for some
binary phylogenetic X-tree T , if and only if π satisfies the four point
condition (4), the five point condition (9), and (10) and (11). Moreover
this tree is unique among binary phylogenetic X-trees.
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