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Abstract

This thesis consists of two parts:
In the first part we introduce a version of the Ahronov-Bohm
magnetic field for a Grushin sub-elliptic operator and then show that
its quadratic form satisfies an improved Hardy inequality.
In the second part we obtain Lieb-Thirring inequalities for 3D
Schrödinger type operators where instead of the usual Laplacian we
have the Heisenberg Laplacian.
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Chapter 1

Introduction

1.1 Brief historical background of classical

mechanics

Mechanics in its classical form was already studied in ancient Greece
and was explored through the middle ages and modern age. It was
however Sir Isaac Newton that was the first one to develop mechanics
as it is known today.
Classical mechanics aims to determine the position of a particle at
any given time x(t). Knowing x(t) enables us to find out different

dynamical variables of the particle, like the velocity v =
dx

dt
, its

momentum p = mv and the kinetic energy T =
p2

2m
. Newton

formulated the laws of motion, that connect between a potential V (x)
acting on the particle and its motion accordingly:

F = ma =
dp

dt
=
dV (x)

dx
,

where p = m
dx

dt
.

In order to determine x(t), one has to solve the Newton equation

m
d2x

dt2
=
dV (x)

dx

with the appropriate initial conditions.
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In 1788 Joseph Louis Lagrange reformulated classical mechanics into
what is known as Lagrangian mechanics. In 1833 William Rowan
Hamilton developed the Lagrangian mechanics into Hamiltonian
mechanics. According to this method, one considers the Hamiltonian,
defined by

H =
p2

2m
+ V (x). (1.1)

The Hamiltonian equals the sum of the kinetic and potential energies
of the system, in the form

H = T + V. (1.2)

The Hamiltonian mechanics gives insight into quantum mechanics. In
this case we are looking for the wave function ψ(x, t) of a particle,
which is the solution of theSchrödinger equation.

1.2 The Schrödinger operator

Schrödinger replaced p in (1.1) by i~∇ to construct a momentum
operator, where ∇ is the gradient operator, i corresponds to the
imaginary unit and ~ is the (reduced) Planck constant with
dimensions energy×time. As T is defined by

T =
(i~∇)2

2m
= − ~2

2m
∆,

the expression in (1.2) becomes

H = − ~2

2m
∆ + V (x). (1.3)

Here H is the Hamiltonian for a non-relativistic charged particle
moving in an electric field.
The time-dependent Schrödinger equation corresponding to it is given
by

i~
∂Ψ

∂t
= − ~2

2m

∆Ψ

∂x2
+ V (x)Ψ(x, t) ≡ HΨ(x, t),

where the unknown Ψ describes the wave function, which is a
function from a space that maps the possible states of the system into
the complex numbers.

4



A classical problem in the research of the quantum mechanical
Hamiltonian is the study of bound states of a given potential V and
their energies, that is, the number of negative eigenvalues of the
Schrödinger operator H = −∆ + V on L2(Rd), d ≥ 1,
λ1 ≤ λ2 ≤ ... < 0 denoting the negative eigenvalues of the
Hamiltonian (if there are any) under appropriate conditions on V .
Here the Lieb-Thirring inequalities play a crucial role (see section 3.2).

1.3 Magnetic Schrödinger operator

The Hamiltonian for a nonrelativistic charged particle in an
electromagnetic field is given by

H =
(i~∇− A(x))2

2m
+ V (x).

The operator − ~2

2m
∆ in (1.3) is replaced here by

(i~∇−A(x))2

2m
;

V : Rd → R describes the electric (or scalar) potential and
A : Rd → Rd is the magnetic (or vector) potential.
The Schrödinger equation is now

i~
∂Ψ

∂t
=

(i~∇− A(x))2

2m
Ψ(x, t) + V (x)Ψ(x, t) ≡ HΨ(x, t). (1.4)

The vector potential A = (A1, A2, ..., Ad) is a source for the magnetic
field B = curlA, where curlA is the d× d skew-symmetric matrix with
entries Bjk = ∂jAk − ∂kAj. A could be also understood as a
differential 1-form, and then B could be seen as the 2-form, given by
B = dA, or alternatively

A =
d∑

j=1

Ajdx
j , B = dA =

∑

j<k

Bjkdx
j ∧ dxk.

If d = 3, then curlA has the usual representation as a vector in R3. If
curlÃ = B = curlA, then it can be shown that A(x) = Ã(x) + ∇ϕ(x)
for some ϕ.
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Let Ψ̃ = eiϕΨ. An explicit computation shows that Ψ satisfies (1.4) if
and only if Ψ̃ satisfies (1.4), with A replaced by Ã. This is called
gauge invariance and says that the important physical quantity is B
and not A. This remains true if R

d is replaced by a simply connected
domain Ω. For non-simply connected domains this is in general false
(see the discussion of the Aharonov-Bohm effect in section 1.9).

1.4 Hardy’s inequality

The Hardy inequality in the Euclidien space has an important role in
the study of linear and nonlinear partial differential equations. It was
first stated in the 1920’s by G. H. Hardy in an attempt to find a
simpler proof for Hilbert’s inequality for double series.
The Hardy inequality enables us to obtain lower bounds on the
spectrum of elliptic operators satisfying Dirichlet boundary
conditions.

1.4.1 The classical Hardy inequality

If d ≥ 3, then for any function u such that u ∈ Rd

∫

Rd

|∇u(x)|2dx ≥
(
d− 2

2

)2 ∫

Rd

|u(x)|2
|x|2 dx. (1.5)

Proof. Let u be a complex function, α ∈ R. Then

0 ≤
∫ ∣
∣
∣
∣
∇u+ α

∇|x|
|x| u

∣
∣
∣
∣

2

=

∫

|∇u|2 + α

∫

∇u · ∇|x|
|x| ū+ α

∫ ∇|x|
|x| u · ∇ū+ α2

∫ ∣
∣
∣
∣

∇|x|
|x|

∣
∣
∣
∣

2

|u|2

=

∫

|∇u|2 + α

∫

(∇u · x

|x|2 )ū+ α

∫

u
|x|
|x|2 · ∇ū+ α2

∫ |u|2
|x|2

=

∫

|∇u|2 + α

∫

∇(|u|2) · x

|x|2 + α2

∫ |u|2
|x|2 .
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Since
∫

∇(|u|2) · x

|x|2 = −
∫

(∇ · x

|x|2 )|u|2 = −(d− 2)

∫ |u|2
|x|2 ,

0 ≤
∫

|∇u|2 − (d− 2)α

∫
u2

|x|2 + α2

∫
u2

|x|2 ,

or ∫

|∇u|2 ≥
(
(d− 2)α− α2

)
∫

u2

|x|2 ∀α.

Taking the maximum with respect to α gives

∫

|∇u|2 ≥
(
d− 2

2

)2 ∫
u2

|x|2 .

During the years new versions of the Hardy inequality were given.
They differ from one another depending on the relation between the
parameters, on the weight functions and on the class to which the
functions belong.
It is well known that the constant (d− 2)2/4 in (1.5) is sharp but not
achieved. The literature concerning different versions of Hardy’s
inequalities and their applications is extensive. In this paper we
mention the classical paper of M. Sh. Birman [B], the article by B.
Davies [D] and the book of V. Maz’ya [M].
Among many applications of the inequality (1.5) we would like to
mention the Heisenberg uncertainty principle.

1.4.2 The Heisenberg uncertainty principle

In its classical form the uncertainty principle was developed by
Heisenberg in connection with the study of quantum mechanics.
According to this principle the position and momentum of a particle
could not be defined exactly simultaneously, but only with some
uncertainty.

On the Euclidien space Rd the uncertainty inequality states that
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(∫

Rd

|x|2|u(x)|2dx
)(∫

Rd

|∇u(x)|2dx
)

≥
(
d− 2

2

)2(∫

Rd

|u(x)|2dx
)2

.

(1.6)
To show this, we start with the Hardy inequality

∫

Rd

|∇u(x)|2dx ≥
(
d− 2

2

)2 ∫

Rd

u(x)2

|x|2 dx. (1.7)

Schwarz’s inequality applied to (1.7) yields

(
d− 2

2

)∫

Rd

|u(x)|2 1

|x| |x|dx

≤
(
d− 2

2

)(∫

Rd

|u(x)|2|x|2dx
)1/2( |u(x)|2

|x|2 dx

)1/2

≤
(∫

Rd

|u(x)|2|x|2dx
)1/2(∫

Rd

|∇u(x)|2dx
)1/2

.

This gives (1.6). By applying Parseval formula for the Fourier
transform û of the function u in the second integral of the left hand
side the inequality (1.6) takes a particularly symmetrical form

(2π)d

(∫

Rd

|x|2u(x)|2dx
)(∫

Rd

|ξ|2|û(ξ)|2dξ
)

≥
(
d− 2

2

)2(∫

Rd

|u(x)|2dx
)2

,

where the Fourier transform of the function u is defined by

û(ξ) = (2π)−d/2

∫

e−ixξu(x)dx.

This inequality expresses the Heisenberg uncertainty principle which
states that a non-trivial L2-function and its Fourier transform cannot
simultaneously be very small near the origin.
Hardy’s inequalities were also studied for some sub-elliptic operators,
see for example papers [G], [GL], [A1], [A2], [DGN], [NCH], [Ko]. The
Heisenberg group H is the prime example of non-commutative
harmonic analysis.
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1.5 The Heisenberg group

The Heisenberg group and its Lie algebra have first attained their
official names in the 1970’s, although they were already studied long
before that.
The Heisenberg Lie algebra attained its name due to its structure of
equations, which is the Heisenberg canonical commutation relations
in quantum mechanics. Yet these relations are the quantized version
of the Poisson bracket relations for canonical coordinates in
Hamiltonian mechanics.
The Heisenberg group is of great importance in many fields in
mathematics, such as representation theory, partial differential
equations, harmonic analysis and quantum mechanics. It is due to its
crucial contribution in a variety of areas that the Heisenberg group
can be constructed in two fundamental but different settings. The
first one plays an important role in understanding of several problems
in complex function theory of the unit ball.
In quantum mechanics the Heisenberg group can be realized as a
group of unitary operators generated by the exponentials of the
position and momentum operators. The relation between the pair of

operators: x and (2πi)−1 d

dx
, which can be understood as the

generators of the pseudo-differential operators, is dominated by the
commutation relations which are so characteristic of the Heisenberg
group. As the state of a given particle at a given time t is determined
by its position vector q ∈ R3 and its momentum vector p ∈ R3,
Heisenberg’s crucial idea that lead to quantum mechanics was to take
the components of these vectors to be an operator on the Hilbert
space H, satisfying the commutation relation

[Qi, Qj ] = 0, [Pi, Pj] = 0, [Pi, Qj] = −i~δi,j

for i, j = 1, 2, 3, where Qj = xj and Pj = (2πi)−1 ∂

∂xj
.

The Heisenberg group consists of the set

C × R = {[z, t] : z ∈ C, t ∈ R}
with the multiplication law

[z, t] · [u, s] = [z + u, t+ s+ 2Im(z · ū)]. (1.8)
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1.6 The Heisenberg Laplacian

We shall mention briefly the essential attributes of the Laplacian: It
is invariant under translations and rotations and is homogeneous of
degree two.
Define as H the sub-Laplacian on the Heisenberg group.
Instead of usual dilations x → rx, we have on the Heisenberg group
that δr(z, t) = (rz, r2z) (δr is an automorphism of the Heisenberg
group).
The left translation Lg on the Heisenberg group, g ∈ Rd is defined by

Lgf(h) = f(g−1h), h ∈ H
d,

and the rotation Rσ is defined by

Rσf(z, t) = f(σz, t), σ ∈ Ud,

where Ud represents the upper half space.
An operator P on Hd is said to be left invariant if it commutes with
Lg, rotation invariant if it commutes with Rσ and homogeneous of
degree α if P (f(δrg)) = rαPf(δrg).

1.7 The Heisenberg Laplacian

The sub-Laplacian is homogeneous of degree two, with unique left
invariance and rotation invariance up to a constant multiple.
Let us realize H as R3 with coordinates (x, y, t) and the
(non-commutative) multiplication
(x, y, t) ◦ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ − 2(xy′ − yx′)). The vector
fields

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t

are left-invariant and the sub-Laplacian on H is given by

H = −X2 − Y 2 = −
(
∂

∂x
+ 2y

∂

∂t

)2

−
(
∂

∂y
− 2x

∂

∂t

)2

. (1.9)

The quadratic form of the operator H is defined on functions u from
the Sobolev class H1(R3)
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h[u] =

∫

R3

(
|Xu|2 + |Y u|2

)
dzdt. (1.10)

Let z = (x, y), |z| =
√

x2 + y2, and let us consider the so-called
Kaplan distance function [Ka] from (z, t) to the origin

(|z|4 + t2)1/4.

The function d is positively homogeneous of degree 2 with respect to
the dilations

d(λz, λ2t) = λd(z, t), λ > 0

and has a singularity at zero.
The sub-Laplacian fails to be elliptic, but it still satisfies the
conditions of subellipticity.
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1.8 The Grushin plane and Grushin operator

1.8.1 Grushin plane

In 1970 V. V. Grushin [Gr] studied a class of operators which were
non-elliptic, but still satisfied the requirements of hypoellipticity
according to Hörmander’s conditions. The first example of such
operators is the Grushin operator.

Hörmander’s condition

Let X and Y be two vector fields in an open set Ω of Rd. The Lie
bracket, denoted by [X, Y ] is defined by

[X, Y ]f = X[Y f ] − Y [Xf ]

(note that [X, Y ] is a new vector field).

We say that the Hörmander condition [H] is satisfied at x0, if there
exists r(x0) ≥ 1 such that the vector space generated by the iterated
brackets [X,Xk]

α at x0 with |α| ≤ r(x0) − 1 is Rd.

When r(x0) = 1, the operator is said to be elliptic. A typical
non-trivial example is the Heisenberg group, where
d = 3, r = 2, X = ∂x + 2y∂t, Y = ∂y − 2x∂t and [X, Y ] = ∂t.
Another example is the Grushin operator in dimension 2. In our case
r(0) = 2.

1.8.2 The Grushin operator in dimension 3

The Grushin operator in the Heisenberg representation is

G = −∆z − 4|z|2∂2
t . (1.11)

It gives another example of a sub-elliptic operator. Its quadratic form
equals

g[u] =

∫

R3

(|∇zu|2 + 4|z|2|∂tu|2)dzdt. (1.12)
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For the forms (1.10) and (1.12) the following sharp Hardy inequalities
were discussed in detail in [G] and [GL]:

h[u] =

∫

R3

(
|Xu|2 + |Y u|2

)
dzdt ≥

∫

R3

|z|2
d4

|u|2dzdt, (1.13)

and

g[u] =

∫

R3

(|∇zu|2 + 4|z|2|∂tu|2)dzdt ≥
∫

R3

|z|2
d4

|u|2dzdt. (1.14)

Inequalities (1.13) and (1.14) are related. The operator H defined in
(1.9) could be rewritten in the form

Hu = −∆zu− 4|z|2∂2
t u− 4∂tTu = Gu− 4∂tTu, (1.15)

where T = y∂x − x∂y is the rotation operator. In particular, if
u(z, t) = u(|z|, t), then Tu = 0, and on this subclass of functions the
inequalities (1.11) and (1.12) coincide.

1.9 The Aharonov-Bohm potential

In 1959 Yakir Aharonov and David Bohm observed the phenomenon,
where a charged particle is affected by electromagnetic fields, despite
being confined to regions where both the magnetic field and the
electric field are zero (such effects may arise in both electric and
magnetic fields, but the latter is easier to study). An important
consequence of this effect is that understanding of the classical
electromagnetic field acting locally on a particle is not enough in
order to predict the quantum mechanical behaviour of a particle.
Assume d = 3. By A we denote the Aharonov-Bohm vector potential,
given by

A(x) :=

(

− x2

x2
1 + x2

2

,
x1

x2
1 + x2

2

, 0

)

(1.16)

and defined in

Ω = {x = (x1, x2, x3) : x2
1 + x2

2 > 0}.
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Note that curl A = 0 outside the x3-axis and
∫

γ

A = 2π, (1.17)

where γ is a properly oriented closed curve which encloses the x3 axis
(this is in contrast to the case, where Ω is simply connected, and then∫

γ

A = 0 for any smooth A and any closed curve γ ⊂ Ω by Stokes’

theorem). The integral (1.17) represents the magnetic flux, which
describes the magnetic potential on a charged quantum mechanical
particle, moving in a region where the magnetic field is 0. This case
could be realized as the particle being confined to the outside of an
infinitely long solenoid extending along the x3-axis with a radius that
tends to zero.
According to (1.16), A = ∇θ, where θ = θ(x) is the polar angle of
(x1, x2).
We note that θ is well defined only locally (globally, it is well defined
up to an integer multiple of 2π). So unlike the situation in section
1.3, although curlA = 0, A is the gradient of a function which is well
defined, but only locally. The reason for this is the fact that Ω is not
simply connected.
One can also consider the Aharonov-Bohm potential as a vector field
in R2:

A(x) =

(

− x2

x2
1 + x2

2

,
x1

x2
1 + x2

2

)

.

We will do this below.

1.10 Hardy’s inequality in two dimensions with

Aharonov-Bohm vector potential

The classical Hardy inequality (1.5) becomes trivial for the
two-dimensional case. In an article by Laptev and Weidl [LW] the
authors have noticed that for some magnetic forms in two dimensions
the Hardy inequality holds its classical form. More precisely, consider
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the Aharonov-Bohm magnetic potential

βA = β

( −y
x2 + y2

,
x

x2 + y2

)

, β ∈ R

and the quadratic form

I =

∫

R2

|(∇ + iβA)u|2dxdy

=

∫

R2

∣
∣
∣
∣

(

∂x − βi
y

x2 + y2

)

u

∣
∣
∣
∣

2

dxdy

+

∫

R2

∣
∣
∣
∣

(

∂y + βi
x

x2 + y2

)

u

∣
∣
∣
∣

2

dxdy. (1.18)

By introducing polar coordinates we get

r =
√

x2 + y2;
x

r
= cosϕ,

y

r
= sinϕ

and

∂ϕ

∂x
= − y

r2
,

∂ϕ

∂y
=

x

r2
, ∂x = cosϕ

∂

∂r
− y

r2

∂

∂ϕ
, ∂y = sinϕ

∂

∂r
+
x

r2

∂

∂ϕ
.

Hence (1.18) becomes

I =

∫ ∣
∣
∣
∣

(

cosϕ
∂

∂r
− y

r2

∂

∂ϕ
− iβ

sinϕ

r

)

u

∣
∣
∣
∣

2

rdrdϕ

+

∫ ∣
∣
∣
∣

(

sinϕ
∂

∂r
+
x

r2

∂

∂ϕ
+ iβ

cosϕ

r

)

u

∣
∣
∣
∣

2

rdrdϕ

=

∫ (

cos2 ϕ|u′r|2 +
(sinϕ)2

r2
|(∂ϕu+ iβu)|2

)

rdrdϕ

+

∫ (

sin2 ϕ|u′r|2 +
(cosϕ)2

r2
|(∂ϕu+ iβu)|2

)

rdrdϕ

=

∫ (

|u′r|2 +
1

r2
|(∂ϕu+ iβu)|2

)

rdrdϕ. (1.19)

Expanding u into Fourier series with respect to ϕ

u =

∞∑

k=−∞
uk(r)

eikϕ

√
2π

15



enables us to rewrite (1.19) as

∫ (

|u′r|2 +
1

r2
|(∂ϕu+ iβu)|2

)

rdrdϕ

≥
∫

1

r2

∣
∣
∣
∣

∑

(ik + iβ)uk(r)
eikϕ

√
2π

∣
∣
∣
∣

2

rdrdϕ

≥
∫

1

r2

∑

|ik + iβ|2|uk(r)|2rdr

≥ min
k

|k + β|2
∫

1

r2

∑

|uk(r)|2rdr

≥ min
k

|k + β|2
∫ ∫

1

r2

∣
∣
∣
∣

∑

uk(r)
eikϕ

√
2π

∣
∣
∣
∣

2

rdrdϕ

= min
k

|k + β|2
∫ ∫

1

r2
|u(r, ϕ)|2rdrdϕ

= min
k

|k + β|2
∫

1

x2 + y2
|u(x, y)|2dxdy.

Hence
∫

R2

|(∇ + iβA)u|2dxdy ≥ min
k

|k + β|2
∫

R2

|u|2
x2 + y2

dxdy.

Here the form in the left hand side is considered on the function class
H1(R2), obtained by the completion of the class C∞

0 (R2 \ 0) with
respect to the metric defined by the form

∫

R2

(|∇u|2 + |x|−2|u|2) dx

and β can naturally be interpreted as the magnetic flux through a
disc with the center at the origin.
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Chapter 2

Hardy inequality for a

magnetic Grushin operator

In this section we introduce a suitable notion of an Aharonov-Bohm
type vector field for the Grushin operator defined in (1.12) and obtain
an improvement of the Hardy inequality in (1.14).
Let us first define a Grushin type vector field

∇G = (∂x, ∂y, 2x∂t, 2y∂t);

Clearly
G = −|∇G|2.

We introduce now an Aharonov-Bohm type magnetic potential

A =

(

−∂ydH

dH

,
∂xdH

dH

,−2y
∂tdH

dH

, 2x
∂tdH

dH

)

,

where dH is the Kaplan distance

dH = ((x2 + y2)2 + t2)1/4.

The magnetic Grushin operator with the magnetic potential A and
with the ”flux” β could then be defined as

GA = −(∇G + iβA)2. (2.1)

Our main result of this section is the following theorem.
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Theorem 1. Assume that −1/2 ≤ β ≤ 1/2. Then for the quadratic
form of the magnetic Grushin operator (2.1) we have the following
Hardy inequality

∫

R3

(|(∇G0
+ iβA)u|2)dzdt ≥ (1 + β2)

∫

R3

|z|2
d4

|u|2dzdt. (2.2)

We shall prove it in section 2.2.

2.1 Simple proofs of Hardy’s inequality for

Heisenberg and Grushin operators

Before proving (2.2), we present here simple proofs of the inequalities
(1.13) and (1.14).

Proposition 1. For any function u for which h[u] <∞ the following
inequality holds true:

∫

R3

(
|Xu|2 + |Y u|2

)
dzdt ≥

∫

R3

|z|2
d4

|u|2dzdt. (2.3)

Proof. It is enough to prove (2.3) for functions u ∈ C∞
0 (R3\0). Let us

consider the following non-negative expression

I =

∫

R3

∣
∣
∣
∣

(

X + α
XdH

dH

)

u

∣
∣
∣
∣

2

dzdt+

∫

R3

∣
∣
∣
∣

(

Y + α
Y dH

dH

)

u

∣
∣
∣
∣

2

dzdt,

where α ∈ R.
Clearly

d(z, t)−1Xd(z, t) =
x|z|2 + yt

d4(z, t)
, d(z, t)−1Y d(z, t) =

y|z|2 − xt

d4(z, t)
.

We look at

0 ≤ I =

∫

R3

(

X + α
XdH

dH

)

u

(

X + α
XdH

dH

)

ū

+

(

Y + α
Y dH

dH

)

u

(

Y + α
Y dH

dH

)

ūdxdydt.
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I =

∫

R3

(
|Xu|2 + |Y u|2

)
dxdydt

+

∫

R3

Xuα
XdH

dH
ū dxdydt+

∫

R3

α
XdH

dH
uXū dxdydt

+

∫

R3

Y uα
Y dH

dH

ū dxdydt+

∫

R3

α
Y dH

dH

Y ū dxdydt

+ α2

∫

R3

∣
∣
∣
∣

XdH

dH
u

∣
∣
∣
∣

2

dxdydt+ α2

∫

R3

∣
∣
∣
∣

Y dH

dH
u

∣
∣
∣
∣

2

dxdydt. (2.4)

Since

∫

R3

Xuα
XdH

dH
ū dxdydt+

∫

R3

α
XdH

dH
uXū dxdydt

+

∫

R3

Y uα
Y dH

dH
ū dxdydt+

∫

R3

α
Y dH

dH
Y ū dxdydt

= −α
∫

R3

[

u

(

X

(
XdH

dH

))

ū+ u
XdH

dH

Xū

]

dxdydt+α

∫

R3

XdH

dH

uXū dxdydt

+α

∫

R3

[

u

(

Y

(
Y dH

dH

))

ū+ u
Y dH

dH
Y ū

]

dxdydt+α

∫

R3

Y dH

dH
uY ū dxdydt

= −α
∫

R3

X

(
XdH

dH

)

|u|2 dxdydt− α

∫

R3

Y

(
Y dH

dH

)

|u|2 dxdydt,

(2.4) becomes

I =

∫

R3

(|Xu|2 + |Y u|2) dzdt− α

∫

R3

(

X
XdH

dH
+ Y

Y dH

dH

)

|u|2 dzdt

+ α2

∫

R3

((XdH

dH

)2

+
(Y dH

dH

)2)

|u|2 dzdt ≥ 0.
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Splitting the computation into three parts gives

∫

R3

(∣
∣
∣
∣

XdH

dH

u

∣
∣
∣
∣

2

+

∣
∣
∣
∣

Y dH

dH

u

∣
∣
∣
∣

2
)

dxdydt

=

∫

R3

((
((x2 + y2)x+ yt)2 + ((x2 + y2)y − xt)2

((x2 + y2)2 + t2)2

)

|u|2
)

dxdydt

=

∫

R3

((
((x2 + y2)2(x2 + y2) + t2(x2 + y2)

((x2 + y2)2 + t2)2

)

|u|2
)

dxdydt

=

∫

R3

(
(x2 + y2)((x2 + y2)2 + t2)

((x2 + y2)2 + t2)2
|u|2
)

dxdydt

=

∫

R3

(
x2 + y2

(x2 + y2)2 + t2
|u|2
)

dxdydt;

− α

∫

R3

(

X
XdH

dH

+ Y
Y dH

dH

)

|u|2 dzdt

= −α
∫ (

(∂x + 2y∂t)

(
(x2 + y2)x+ yt

(x2 + y2)2 + t2

)

|u|2
)

dxdydt

− α

∫ (

(∂y − 2x∂t)

(
(x2 + y2)y − xt

(x2 + y2)2 + t2

)

|u|2
)

dxdydt

where

− ∂x

(
(x2 + y2)x+ yt

(x2 + y2)2 + t2

)

− ∂y

(
(x2 + y2)y − xt

(x2 + y2)2 + t2

)

= −t
2(x2 + 3y2 + y2 + 3x2)

((x2 + y2)2 + t2)2
= − t2(4x2 + 4y2)

((x2 + y2)2 + t2)2
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and

− 2y∂t

(
(x2 + y2)x+ yt

(x2 + y2)2 + t2

)

+ 2x∂t

(
(x2 + y2)y − xt

(x2 + y2)2 + t2

)

=
−2y((x2 + y2) + yt2) − 2tx(x2 + y2) − 2t2y

((x2 + y2)2 + t2)2

+
2x(−x(x2 + y2) − xt2) − 2ty(x2 + y2) + 2t2x)

((x2 + y2)2 + t2)2

=
−2y2(x2 + y2) − 2x2(x2 + y2) − 2y2t2 − 2x2t2 + 4t2y2 + 4t2x2

((x2 + y2)2 + t2)2

=
−2(x2 + y2)(x2 + y2)2 + 2t2(x2 + y2)

((x2 + y2)2 + t2)2
.

It holds then that

− α

∫

(∂x + 2y∂t)

(
(x2 + y2)x+ yt

(x2 + y2)2 + t2

)

+ (∂y − 2x∂t)

(
(x2 + y2)y − xt

(x2 + y2)2 + t2

)

|u|2dxdydt

= −α
∫

2(x2 + y2)(x2 + y2)2 + 2t2(x2 + y2) + 4t2(x2 + y2)

((x2 + y2)2 + t2)2
|u|2dxdydt

= −2α

∫
x2 + y2

(x2 + y2)2 + t2
|u|2dxdydt.

In conclusion

0 ≤
∫ [(

X + α
XdH

dh

)

u

(

X + α
XdH

dh

)

ū

+

(

Y + α
Y dH

dh

)

u

(

Y + α
Y dH

dh

)

ū

]

dxdydt

=

∫ (

|Xu|2 + |Y u|2 + α2 x2 + y2

(x2 + y2)2 + t2
|u|2 − 2α

x2 + y2

(x2 + y2)2 + t2
|u|2
)

dxdydt,
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and by choosing α = 1 we get that

∫ (

|Xu|2 + |Y u|2 − x2 + y2

(x2 + y2)2 + t2
|u|2
)

dxdydt

=

∫ (

|Xu|2 + |Y u|2 − |z|2
d4

|u|2
)

dxdydt ≥ 0.

Hence, for (1.10), the sharp Hardy inequality is

h[u] =

∫

R3

(
|Xu|2 + |Y u|2

)
dzdt ≥

∫

R3

|z|2
d4

|u|2dzdt.

Proposition 2. For any function u such that g[u] <∞ we have

∫

R3

(|∇zu|2 + 4|z|2|∂tu|2)dzdt ≥
∫

R3

|z|2
d4

|u(z, t)|2dzdt. (2.5)

Proof. By introducing polar coordinates x = r cosϕ, y = r sinϕ,
r = |z| we obtain

∫

R3

(|∇zu|2 + 4|z|2|∂tu|2) dzdt =

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

(|∂ru|2 + r−2|∂ϕu|2 + 4r2|∂tu|2) r dr dϕ dt

≥
∫ ∞

−∞

∫ 2π

0

∫ ∞

0

(|∂ru|2 + 4r2|∂tu|2) r dr dϕ dt.

So the proof is may be reduced to the inequality

0 ≤
∫ ∞

−∞

∫ ∞

0

(|∂ru|2 + 4r2|∂tu|2) r drdt ≥
∫ ∞

−∞

∫ ∞

0

r2

r4 + t2
|u|2 r drdt.

Let d = d(r, t) = (r4 + t2)1/4 and α ∈ R. Then a simple computation
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and integration by parts gives

∫ ∞

−∞

∫ ∞

0

(∣
∣
∣

(

∂r + α
∂rd

d

)

u|2 + 4r2
∣
∣
∣

(

∂t + α
∂td

d

)

u
∣
∣
∣

2)

r drdt

=

∫ ∞

−∞

∫ ∞

0

(|∂ru|2 + 4r2|∂tu|2) r drdt

−
∫ ∞

−∞

∫ ∞

0

(

6α
r2

d4
− 4α

r6 + r2t2

d8
− α2 r

6 + r2t2

d8

)

|u|2r drdt

=

∫ ∞

−∞

∫ ∞

0

(|∂ru|2+4r2|∂tu|2)r drdt−
∫ ∞

−∞

∫ ∞

0

(2α−α2)
r2

d4
|u|2r drdt.

We now complete the proof by taking α = 1.
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2.2 Proof of Theorem 1

Let us now consider

∫

R3

(|∇G + iβA)u|2 dzdt

=

∫

R3

(∣
∣
∣
∣

(

∂x − iβ
∂ydH

dH

)

u

∣
∣
∣
∣

2

+

∣
∣
∣
∣

(

∂y + iβ
∂xdH

dH

)

u

∣
∣
∣
∣

2
)

dxdydt

+

∫

R3

(∣
∣
∣
∣

(

2x∂t − 2iβy
∂tdH

dH

)

u

∣
∣
∣
∣

2

+

∣
∣
∣
∣

(

2y∂t + 2iβx
∂tdH

dH

)

u

∣
∣
∣
∣

2
)

dxdydt.

We introduce polar coordinates for the z-plane:

r =
√

x2 + y2;
x

r
= cosϕ,

y

r
= sinϕ

so that

∂ϕ

∂x
= − y

r2
,

∂ϕ

∂y
=

x

r2
, ∂x = cosϕ

∂

∂r
− y

r2

∂

∂ϕ
, ∂y = sinϕ

∂

∂r
− x

r2

∂

∂ϕ
.

As before, the distance function is defined by d = (r4 + t2)1/4.
We also have that

∂ydH

dH

=
r3 sinϕ

r4 + t2
,

∂xdH

dH

=
r3 cosϕ

r4 + t2

and

2y
∂tdH

dH
=

yt

r4 + t2
, 2x

∂tdH

dH
=

xt

r4 + t2
.

We shall consider then
∫

R3

(|∇G + iβA)u|2 dzdt = I1 + I2,

where

I1 =

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

(∣
∣
∣
∣

(

cosϕ∂r −
sinϕ

r
∂ϕ − iβ

r3 sinϕ

r4 + t2

)

u

∣
∣
∣
∣

2

+

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

∣
∣
∣
∣

(

sinϕ∂r +
cosϕ

r
∂ϕ + iβ

r3 cosϕ

r4 + t2

)∣
∣
∣
∣

2
)

rdrdϕdt (2.6)
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and

I2 =

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

(∣
∣
∣
∣

(

2r cosϕ∂t − iβ sinϕ
rt

r4 + t2

)

u

∣
∣
∣
∣

2
)

rdrdϕdt

+

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

(∣
∣
∣
∣

(

2r sinϕ∂t + iβ cosϕ
rt

r4 + t2

)

u

∣
∣
∣
∣

2
)

rdrdϕdt.

(2.7)

Computation of (2.6) gives

I1 =

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

(∣
∣
∣
∣

(

cosϕ∂r −
sinϕ

r

(

∂ϕ + iβ
r4

r4 + t2

))

u

∣
∣
∣
∣

2

+

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

(∣
∣
∣
∣

(

sinϕ∂r +
cosϕ

r

(

∂ϕ + iβ
r4

r4 + t2

))

u

∣
∣
∣
∣

2

=

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

(

|∂ru|2 +
1

r2

∣
∣
∣
∣
∂ϕu+ iβ

r4

r4 + t2
u

∣
∣
∣
∣

2
)

rdrdϕdt.

Let us represent u via Fourier series

u(r, ϕ, t) =
∞∑

k=−∞
uk(r, t)

eikϕ

√
2π

and thus

∂ϕu(r, ϕ, t) =

∞∑

k=−∞
ikuk(r, t)

eikϕ

√
2π
.

Then, since −1/2 ≤ β ≤ 1/2, we find that

1

r2

∫ 2π

0

∣
∣
∣∂ϕu+ iβ

r4

r4 + t2
u
∣
∣
∣

2

dϕ =
2π

r2

∑

k

(

k + β
r4

r4 + t2

)2

|uk|2

≥ 2π

r2
min

k

(

k + β
r4

r4 + t2

)2∑

k

|uk|2

=
1

r2
min

k

(

k + β
r4

r4 + t2

)2
∫ 2π

0

|u|2 dϕ

= β2 r6

(r4 + t2)2

∫ 2π

0

|u|2 dϕ,
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because the minimum is reached when k = 0. Hence

I1 ≥ β2 r6

(r4 + t2)2

∫ 2π

0

|u|2dϕ.

Computing (2.7) gives that

I2 =

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

(

4r2|∂tu|2 + β2 r2t2

(r4 + t2)2
|u|2
)

rdrdϕdt.

Putting I1 and I2 together gives

∫

R3

(
|(∇G + iβA)u|2

)
dzdt

≥
∫ ∞

−∞

∫ 2π

0

∫ ∞

0

(
|∂ru|2 + 4r2|∂tu|2

)
rdrdϕdt

+ β2

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

r2(r4 + t2)

(r4 + t2)2
|u|2rdrdϕdt

which yields then

∫

R3

(
|(∇G + iβA)u|2

)
dzdt

≥
∫ ∞

−∞

∫ 2π

0

∫ ∞

0

(
|∂ru|2 + 4r2|∂tu|2

)
rdrdϕdt

+ β2

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

r2

r4 + t2
|u|2rdrdϕdt.

Applying Proposition 2 to the first integral of the right hand side
gives that

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

(
|∂ru|2 + 4r2|∂tu|2

)
rdrdϕdt ≥

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

r2|u|2
r4 + t2

rdrdϕdt,

which leads to the final conclusion
∫

R3

(
|(∇G0

+ iβA)u|2
)
dzdt ≥ (1 + β2)

∫

R3

|z|2
z4 + t2

dzdt,

and that completes the proof.
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Chapter 3

Lieb-Thirring inequalities for

a class of sub-elliptic

operators

The Lieb-Thirring inequalities are eminent in the study of the
stability of matter in quantum mechanics. Define m and ~ as in
section 1.1. Let V be a smooth bounded non-positive potential on R

d.
Then, by denoting the finite sequence of all negative eigenvalues of
the Schrödinger operator (1.3) by

λ1(v) < λ2(V ) ≤ λ3(V ) ≤ ... ≤ λN(V ) < 0,

one may for any N find a bound for the sum of eigenvalues
N∑

i=1

|λi(V )|γ in terms of ||V ||Lγ+d/2.

The inequality

N∑

i=1

|λi(V )|γ ≤ C(γ, d)

∫

Rd

|V |γ+d/2dx

is the celebrated Lieb-Thirring inequality. C(γ, d) is the smallest
constant possible independent of V .
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3.1 The Birman-Schwinger operator and the

Birman-Schwinger principle

In 1961 M. Sh. Birman [B] and J. Schwinger [Sch] presented
independently a method for controlling the number of negative
eigenvalues of Schrödinger operators, such that the problem could be
rewritten as a compact operator. This operator is called the
Birman-Schwinger operator. In its classical form the principle states
that given a strictly positive operator H0 and a non-negative compact
operator V on the Hilbert space H, the number of negative
eigenvalues of the operator H = H0 − V coincides with the number of
eigenvalues greater than one of the Birman-Schwinger operator
V 1/2H−1

0 V 1/2. The Birman-Schwinger principle is an important device
in the process of proving many different inequalities.

3.1.1 The Birman-Schwinger operator

Let H0 = −∆. Consider the operator H = H0 − V , and look at the
eigenvalue problem

(H0 − V )u = −λu (3.1)

with λ > 0 and V ≥ 0. V is the multiplication operator, denoting the
multiplication by a function V (x).
By rewriting (3.1) as

(−δ + λ)u = V u =
√
V
√
V u,

we come to the Birman-Schwinger operator

Kλ = V 1/2(−∆ + λ)−1V 1/2

with an integral kernel V 1/2(x)(−∆ + λ)−1(x, y)V 1/2(y) (if λ not in
the spectrum). (−∆ + λ)(x, y) is the kernel of Green’s function of

(−∆ + λ). By writing
√
V
√
V u = g, we also get that

u = ((−δ + λ)−1g.

The operator is well defined, since for every fixed g ∈ H−1(Rd) there
exists a unique u ∈ H1(Rd), such that

∫

∇u · ∇f + λ

∫

uf =

∫

gf
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holds for every f ∈ H1(Rd), this is due to the Riesz representation
theorem. Furthermore, the functions g and u are linearly related
functions. Moreover,

||u||2H1(Rd) ∼
∫

Rd

((−δ + λ)u · udx =

∫

Rd

gu dx ≤ ||g||H−1(Rd)||u||H1(Rd),

where ||u||H1(Rd) ≤ C(λ)||g||H−1(Rd).

This shows that g 7→ u is a bounded operator from H−1(Rd) to
H1(Rd).
In one dimension the kernel of this operator is given by

(−∆ + λ)−1(x, y) =
1

2
√
λ
e−

√
λ|x−y|,

(H0 = −∆), and in three dimensions by

(−∆ + λ)−1(x, y) =
1

4π

e−
√

λ|x−y|

|x− y| .

3.1.2 The Birman-Schwinger principle

We assume a potential V is of class Ld/2 + L∞ and vanishes at
infinity. Hence, the Birman-Schwinger operator is bounded on
L2(Rd). One can also see from the Sobolev inequality

∫

V (x)|ψ(x)|2dx ≤ α

∫

|∇ψ(x)|2dx+ β||ψ||22,

where α and β are constants, that V 1/2 is bounded from H1(Rd) to
L2(Rd) as a multiplication operator, i.e.

∫

V |ψ(x)|2dx ≤
(∫

V d/2dx

)2/d(∫

|ψ| 2d
d−2

) d−2

d

≤
(∫

|∇ψ|2
)(∫

V d/2dx

)2/d

.

Lemma 1. (The Birman-Schwinger principle) Consider the
self-adjoint operator −∆ − V (x), where V (x) is relatively bounded
with respect to −∆ with bound less than 1.
A number −λ < 0 is an eigenvalue of −∆ − V (x) if and only if 1 is
an eigenvalue of the bounded positive operator

Kλ := V 1/2(−∆ + λ)−1V 1/2.
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It is important to note, that the eigenvalues of Kλ are monotonically
decreasing continuous functions of λ and go towards zero as λ goes to
infinity. Therefore, if we are able to locate an eigenvalue that is
greater than 1, we can be sure that there is an eigenvalue that equals
to 1 for some larger value of λ. Hence the original problem that deals
with an inequality has been reduced to a problem about the
asymptotics of Kλ as λ tends to zero.

Proof. Consider φ to be the solution of the Schrödinger equation, that
is, for all f ∈ H1(Rd) it holds that

∫

∇φ · ∇f + λ

∫

φf =

∫

V φf.

As we asserted before, the operator V 1/2 is bounded from H1(Rd) to
L2(Rd), and therefore V φ ∈ H−1(Rd) and thus

φ = (−∆ + λ)−1V φ

and
V 1/2φ = V 1/2(−∆ + λ)−1V 1/2V 1/2φ.

This shows that the eigenvalue of the Birman-Schwinger operator
Kλ(V ) is 1, with the corresponding eigenfunction V 1/2φ.
On the other hand, if

φ = (−∆ + λ)−1V 1/2ψ,

where ψ satisfies
ψ = V 1/2(−∆ + λ)−1V 1/2ψ,

we see the φ ∈ H1(Rd), that is φ satisfies
∫

∇φ∇f + λ

∫

φf =

∫

V 1/2ψf ∀f ∈ H1(Rd)

for all f ∈ H1(Rd). But V 1/2ψ ∈ H−1(Rd), and moreover from the
eigenvalue relation we see that

V 1/2ψ = V φ.
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3.2 Classical Lieb-Thirring inequalities

The Lieb-Thirring inequalities give a sharp upper bound for the
Lp-norm of a function, which is the pointwise sum of the squares of a
finite orthonormal sequence of functions that are elements of a
suitable Sobolev space.
It was originally proven for functions on the whole d-dimensional
Euclidean space, where the proof later was extended to bounded
domains and to suborthogonal sequences of functions.
Consider the Schrödinger operator H = −∆ + V in L2(Rd),

V± =
V± + |V |

2
. When the potential V is non-negative there are no

non-negative eigenvalues. When V consists of both a positive and a
negative parts, i.e. V = V+ + V−, then by the variational principle the
eigenvalues of −∆ + V can be bounded from below by the eigenvalues
of −∆ − V−. In this case, the Lieb-Thirring bound comes into use.
Although both parts affect the negative eigenvalues, the Lieb-Thirring
bound ignores the positive part of the vector potential: Only V− has
significance in the estimate of the negative eigenvalues of −∆ − V−.
For this operator the negative eigenvalues satisfy the Lieb-Thirring
inequalities of the form

∑

j≥1

|λj(−∆ − V )|γ ≤ C(γ, d)

∫

V−(x)γ+ d
2dx (3.2)

for a fixed γ > 0 and a finite constant C(γ, d);
∑

j≥1

λγ
j is the

Riesz-means of negative eigenvalues.
When γ = 1, the Riesz-mean gives the sum of absolute values of
negative eigenvalues. When γ = 0 the Riesz-mean gives the number
of negative eigenvalues.

It is known that the inequality (3.2) holds for γ =
1

2
, d = 1 [W] and

γ >
1

2
, d = 1 [LTh], such that γ ≥ 1

2
if d = 1, γ > 0, d ≥ 2 [LTh], and

for γ = 0, d ≥ 3 [C], [L], [Roz].
We shall give the proof of Lieb-Thirring inequalities, which was given
in the paper [LTh].
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3.2.1 Lieb-Thirring inequality

The Lieb-Thirring inequlity says, that If d = 1, γ > 1/2 and
d ≥ 2, γ > 0, then (3.2) holds.

3.2.2 Proof of the Lieb-Thirring inequality

In order to start the proof we need a useful inequality [Sim]:

Lemma 2. Consider the operators A,B ≥ 0. Then for any real
number m ≥ 2 it holds that

‖AB‖m ≤
∥
∥Am/2Bm/2

∥
∥

2/m

2
=
∥
∥Am/2BmAm/2

∥
∥

1/m

2
. (3.3)

Proof. Set C = Am/2, D = Bm/2, and consider f(θ) = ||CθDθ||2θ

where 0 < θ ≤ 1 and f(0) = 1. Then f is continuous and (3.3)
indicates that

f

(

θ0 =
2

p

)

≤ f(1)θ0f(0)1−θ0. (3.4)

In order to show that (3.4) golds, we need to show that log f is
convex. Therefore we will prove that

f

(
θ1 + θ2

2

)

≤ f(θ1)
1/2f(θ2)

1/2 (3.5)

holds.

Let θ1 ≤ θ ≤ θ2 and θ =
1

2
(θ1 + θ2). Then

f(θ)2 = ||CθD2θCθ||1/θ. (3.6)

≤ ||Cθ1Dθ1Dθ2Cθ2||1/θ (3.7)

≤ ||Cθ1Dθ1 ||2/θ1
||Dθ2Cθ2 ||2/θ2

(3.8)

= f(θ1)f(θ2). (3.9)

The first inequality in (3.7) is due to the Golden-Thompson
inequality [Gol], [Tho]; the inequality in (3.8) follows from Hölder’s
inequality; (3.9) follows from the fact that the operators are
self-adjoint on the Hilbert space, i.e. ||T ∗||p = ||T ||p.
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Using the Birman-Schwinger principle we give a bound on the number
of bound states that are less than −λ, λ > 0. We shall denote by µk

are eigenvalues of Kλ. Start with a small λ, so that some of the
eigenvalues of Kλ are big. These values decrease as µ grows, and
every time one of them hits the value 1 the (negative) value of µ is an
eigenvalue of the Schrödinger equation. If µ reaches λ, the number of
these intersections equals the number of eigenvalues of Kλ(V ) that
are greater or equal to 1.
Consider

H0 + V + λ = H0 + αλ+ (V + (1 − α)λ), (3.10)

where α, 0 < α < 1, is a constant. The new eigenvalue counting
functions attained after the process will depend on α.
According to the variational principle the eigenvalue of H0 + V + λ
can be bounded from below by

H0 + αλ− (V + (1 − α)λ)−.

Let Kλ be the Birman Schwinger operator

Kλ =
√

(V + (1 − α)λ)−(H0 + αλ)−1
√

(V + (1 − α)λ)−. (3.11)

We see that v =
√

(V − (1 − α)λ)+u = Kλv, which indicates that
whenever −λ is a negative eigenvalue of H , then 1 is an eigenvalue of
Kλ. Moreover, when v ∈ L2, there is a one-to-one correspondence
between the negative eigenvalues −λ and the eigenvalue 1 of Kλ,
hence the corresponding eigenspaces have the same dimension.
Let Nλ represents the number of eigenvalues of the Schrödinger
problem that are less than −λ. This number is given by the number
of eigenvalues which are greater or equal to 1 of the
Birman-Schwinger operator Kλ(V ).
Note that N(λ) is a step function that cannot be differentiated, but
as a distribution it is the sum of a δ-function, and by integrating it,
one attains the function’s value at the point:

∫

f(x)
︸︷︷︸

λγ

δ(x− a)dx = f(a),
∂

∂λ
Nλ =

∑

δ(−λ + λj).

We have therefore
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∑

j

|λj|γ =

∫ ∞

0

λγ
∑

δ(λj + λ)dλ =

∫ ∞

0

λγdN(λ) = γ

∫ ∞

0

λγ−1Nλdλ,

(3.12)
where

λj =

∫ ∞

0

λδ(−λ + λj)dλ.

We consider the following (estimating Nλ was also discussed in
[RozSol]:
Let µj be the eigenvalues of the operator Kλ. Then

Nλ = #{j : λj < −λ} = #{‘j : µj ≥ 1}
and therefore

Tr
√

(V + (1 − α)λ)−(H0 + αλ)−1
√

(V + (1 − α)λ)−

≥ #{j : µ ≥ 1} = #{j : λj < −λ}. (3.13)

and the fact that the most obvious upper bound would be Tr(Kλ),
the following Lemma holds:

Lemma 3. Using the Birman-Schwinger principle it holds that for
every λ ≥ 0, m ≥ 1 and α ∈ [0, 1] it holds that

Nλ ≤ Kλ. (3.14)

Proof. (−∆ + αλ)−m is an integral operator of the kernel

1

(2π)d

∫

ei(x−y)ξ 1

(|ξ|2 + αλ)m
dξ.

We have

Nλ ≤ Tr(Kλ) ≤ Tr(Km
λ )

≤ Tr

(
√

(V + (1 − α)λ)−
1

H0 + αλ

√

(V + (1 − α)λ)−

)m

≤ Tr
(√

(V + (1 − α)λ)−

)m

(H0 + αλ)−m
(√

(V + (1 − α)λ)−

)m

=

∫ ∫

(V (x) + (1 − α)λ)m
− · 1

(|ξ|2 + αλ)m
dxdξ, x, ξ ∈ R

d.
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Using (3.12) we may write

∑

j

|λj |γ ≤ γ

∫ ∞

0

∫

Rd

∫

Rd

λγ−1 (V (x) + (1 − α)λ)m
−

(|ξ|2 + αλ)m
dxdξdλ

= γ

∫ ∞

0

∫

Rd

∫

Rd

λγ−1 (−V(x) + (1 − α)λ)m
−

(|ξ|2 + αλ)m
dxdξdλ

= γ

∫ ∞

0

∫

Rd

∫

Rd

λγ−1
V m
− (x)(−1 + 1−α

V−(x)
λ)m

−

(|ξ|2 + αλ)m
dxdξdλ. (3.15)

Change of variables
1 − α

V−(x)
λ = µ,

allows us to continue and rewrite (3.15) as

γ

∫ ∞

0

∫

Rd

∫

Rd

λγ−1
V m
− (x)(−1 + 1−α

V−(x)
λ)m

−

(|ξ|2 + αλ)m
dxdξdλ

= γ

∫

Rd

∫

Rd

∫ 1

0

(
V(x)

1 − α

)γ−1

µγ−1V−(x)m (−1 + µ)m
−

(|ξ|2 + αV−(x)
1−α

µ)m

(
V−(x)

1 − α

)

dµdξdx

= γ

∫

Rd

∫

Rd

∫ 1

0

(
V−(x)

1 − α

)γ

V−(x)m µγ−1(1 − µ)m
+

(
αV−(x)

1−α

)m ( |ξ|2(1−α)
αV−(x)

+ µ
)mdµdξdx.

Another change of variables

ξ

(
1 − α

αV−(x)

)1/2

= η,

leads us to

γ

∫

Rd

∫

Rd

∫ 1

0

(
V−(x)

1 − α

)γ

V−(x)m µγ−1(1 − µ)m
+

(
αV−(x)

1−α

)m ( |ξ|2(1−α)
αV−(x)

+ µ
)mdµdξdx

= γ

∫

Rd

∫

Rd

∫ 1

0

V−(x)γ

(1 − α)γ

αm

(1 − α)m

µγ−1(1 − µ)m
+

(|η|2 + µ)m

(
αV−(x)

1 − α

)d/2

dµdηdx.
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Hence (3.12) can be estimated in the following way:

∑

j

|λj |γ ≤ γ

∫ 1

0

∫

Rd

∫

Rd

V−(x)γ+d/2 αm+d/2

(1 − α)γ+m+d/2

µγ−1(1 − µ)m
+

|ξ|2 + µ)m
dµdηdx

=

∫

Rd

V−(x)γ+d/2dx · C(γ, d,m, α),

where

C(γ, d,m, α) =
αm+d/2

(1 − α)γ+m+d/2

∫

Rd

∫ 1

0

µγ−1(1 − µ)m
+

|ξ|2 + µ)m
dµdη.

C(γ, d,m, α) is finite if
d

2
< m <

d

2
+ 1.

Minimizing C(γ, d,m, α) with respect to m and α as it is done in
[LTh], we find that

C(γ, d,m, α) = γ(4π)−d/2α−m+d/2(1−α)m−γ−d/2 Γ(γ −m+ d/2)Γ(m− n/2)

Γ(γ + 1 + d/2)
m.
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Chapter 4

Lieb-Thirring inequalities for

the Heisenberg Laplacian

In this chapter we consider the eigenvalue problem

−X2 − Y 2 + V u = λu.

The main result of this chapter is the following thereom:

Theorem 2. Let {λk}∞k=1 denote the negative eigenvalues of the
operator
H = H0 − V . For any γ > 0 if V ∈ L2+γ(R3), then

∑

j

|λk|γ ≤ C(γ)

∫

V−(x)γ+2dx, γ > 0.

4.1 Main result

4.1.1 Spectral decompositions

Spectral decomposition is the factorization of a matrix into a
canonical form, whereby the matrix is represented in terms of its
eigenvalues and eigenfunctions.
It is convenient to introduce Fourier Transform

Fu(x1, x2, ξ3) =

∫ ∞

−∞
u(x1, x2, x3)e

−ix3ξ3dx3.

Then
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H0 = F−1
[
(i∂x1

+ x2ξ3)
2 + (i∂x2

− x1ξ3)
2
]
F

= F−1
−i∂x3

→ξ3
H0F−i∂x3

→ξ3 = (i∂x1
+ x2ξ3)

2 + (i∂x2
− x1ξ3)

2

= F−1
∞∑

k=0

|ξ3|(2k + 1)P
(|ξ3|)
k F ,

(4.1)

see [RW].
Therefore H0 has a spectrum |ξ3|(2k + 1), k = 0, 1, ......
Pk are integral operators in (L2(R2)), z = (x1, x2), z

′ = (x′1, x
′
2) that

are orthogonal properties. It is also well known, see for example [Fra

Lp] that P
|ξ3|
k are integral operators with integral kernel

P
|ξ3|
k (z, z′) =

B

2π
e−iB(z×z′)/2−B|z−z′|2/4Lk−1

(
B|z − z′|2/2

)
, B → |ξ3|.

(4.2)
Here Lk−1 represemt the Laguerre polynomial of degree k − 1,
normalized by Lk−1(0) = 1.
The kernel of the operator F−1H−m

0 F is equal to

∑ 1

(|ξ3|(2k + 1))mP
|ξ3|
k (z, z′).

4.1.2 Proof of theorem 2

According to Lemma 2 , if A,B are self adjoint and A,B ≥ 0, then

[

Tr
(
A1/2BA1/2

)m
]1/m

≤
(
TrAm/2BmAm/2

)1/m
= Tr (BmAm)1/m .

Applying this to the Birman-Schwinger Kernel yields

Tr(Km
λ ) ≤ Tr (V + (1 − α)λ)m

− (H0 + αλ)−m =

=

∫ ∞

−∞

∫ ∞

−∞
(V + (1 − α)λ)m

−
∑ 1

(|ξ3|(2k + 1) + αλ)mPk(z, z, |ξ3|)dzdx3

=

∞∑

k=0

∫ ∞

−∞

∫ ∞

−∞

(V + (1 − α)λ)m
−

(|ξ3|(2k + 1) + αλ)mPk(z, z, |ξ3|)dzdx3.
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Since P (z, z, |ξ3|) =
ξ3
2π

, using (4.2), we have that

I =
∞∑

k=0

∫ ∞

−∞

∫ ∞

−∞

(V + (1 − α)λ)m
−

(|ξ3|m(2k + 1) + αλ)m

|ξ3|
2π

dξ3dx3.

By applying (3.12), using homogeneity with respect to λ and |ξ3| and
introducing change of variables we obtain

∞∑

j=0

|λj |γ ≤ γ

∫

R2

∫

R2

∫ ∞

0

λγ−1
∞∑

k=0

(V − (1 − α)λ)m
+

(|ξ3|(2k + 1) + αλ)m

|ξ3|
2π

dλdξdx3dx2dx1

= 2γ

∫

R2

∫

R2

∫ ∞

0

V γ+2
∞∑

k=0

tγ−1 (1 − (1 − α)t)m
+

(|η|(2k + 1) + αt)m

η

2π
dηdtdx3,

(4.3)

and hence (4.3) becomes

∞∑

j=0

|λj|γ ≤
∫ ∞

0

V γ+2
− dx

γ

(2 −m)(1 −m)

π

8

∫ ∞

0

α2−mt1−m+γ(1 − (1 − α)t)m
+dt.

(4.4)

Set (1 − α)t = u, such that t =
u

1 − α
.

The second integral on the right hand side of (4.4) becomes

∫ 1

0

α2−m

(
1

(1 − α)

)1−m+γ

u1−m+γ(1 − u)m
+

du

(1 − α)

=
α2−m

(1 − α)2−m+γ

∫ 1

0

u1−m+γ(1 − u)m
+du.

Recalling that m > 2 and in order to be able to integrate (4.4) with
respect to t avoiding singularity requires 1 −m+ γ > −1.
This shows that γ > 0.
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Minimizing α for some fixed m gives

d

dα

(
α2−m(1 − α)−2−γ+m

)

= (2 −m)α1−m(1 − α)−2−γ+m − α2−m(−2 − γ +m)(1 − α)−3−γ+m

= α1−m(1 − α)−3−γ+m ((2 −m)(1 − α) − α(−2 − γ +m))

= (2 −m)(1 − α) − α(−2 − γ +m)

= 2 −m+ αγ = 0.

and hence α =
m− 2

γ
.

Fixing γ and plotting m as a function of γ yields the following:

γ = 1 :

2.0 2.2 2.4 2.6 2.8 3.0
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10

15
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γ = 2 :
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γ = 4 :
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γ = 6 :
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