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ABSTRACT

In recent years, quadrature domains have been encountered in various connections
such as inverse problems of Newtonian gravitation, Hele-Shaw flows of viscous fluids and
etc. This thesis consists of some properties of two phase quadrature domains and two
numerical schemes to approach to one phase subharmonic quadrature domain.

Two phase quadrature domain has been introduced recently by Emamizadeh- Prajapat-
Shahgholian. Our goal in the first paper is to investigate general properties of the two-
phase quadrature domains. The concept, which is the generalization of the well-known
one-phase case, introduces substantial difficulties with interesting and even richer fea-
tures than its one-phase counterpart. We deal with the following free boundary problem.

For given positive constants λ± and two bounded and compactly supported measures
µ±, we investigate the uniqueness of the solution of the following free boundary problem:

{
∆u = (λ+χΩ+ − µ+) − (λ−χΩ− − µ−), in R

N (N ≥ 2),

u = 0, in R
N \ Ω,

where Ω = Ω+ ∪Ω−. It is further required that the supports of µ± should be inside Ω±.
Along the lines of various properties that we state and prove in Paper A, we also

present several conjectures and open problems that we believe should be true.

In the second paper we treat to the one phase subharmonic quadrature domains. It
is well known that Ω is a subharmonic quadrature domain with respect to a positive
Radon measure µ, if and only if Ω solves the following free boundary problem:





∆u = χ{u>0} − µ, in R
N ,

u ≥ 0, in R
N ,

u = 0, in R
N \ Ω.

(P)

Our target is to find an efficient and robust numerical algorithms to approach to the
solution of Problem (P). To do this we give two methods.

In the first method by applying the proprieties of given free boundary problem and
level set techniques, we derive a method that leads to a fast iterative solver. The iteration
procedure is adapted in order to work in the case when topology changes. The second
method is based on shape reconstruction to establish an efficient Quasi-Newton-method.
Various numerical experiments confirm the efficiency of the derived numerical methods.
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Passare whom gave me this chance to come to Sweden and continue my educations. I
would also like to appreciate Prof. Torsten Ekedahl and the director of the postgraduate
students, Prof. Yishao Zhou.

I would like to show my gratitude to many of my friends who support me, Martin
Strömqvist, Avetik Arakelyan and specially many thanks go to Ayaz Razmjooei and
Shiva Samieinia.

I would like also to thank the people in the Mathematics department at Stockholm
University whom were important to the successful realization of thesis, as well as ex-
pressing my apology that I could not mention personally one by one.

Last but not least, I wish to express my love and gratitude to my beloved family.
Words fail me to express my appreciation to my wife Sadna whose dedication, love and
persistent confidence in me, has taken the load off my shoulder. Finally my little honey,
Viana, thank you to endure me.





To my love:

Sadna





CONTENTS

1. Introduction to thesis

2. Paper A: Some properties of two-phase Quadrature Domains

3. Paper B: Numerical approximation of one phase quadrature domains





INTRODUCTION TO THESIS

MAHMOUDREZA BAZARGANZADEH

Contents

1. Notations and Preliminaries 1

2. Quadrature domains 2

2.1. One phase quadrature domains 3

2.2. Subharmonic quadrature domains 5

2.3. Two-phase quadrature domain 6

2.4. An application (Hele Shaw flow) 7

3. Level set method and shape optimization 10

3.1. Level set method 10

3.2. Shape optimization 11

References 14

1. Notations and Preliminaries

We shall use the following notations in this thesis.

R
N Euclidean space of dimension N,
µ an arbitrary measure,
Ω an open subset of R

N (generally connected),
|Ω| the volume of Ω,

Lp(Ω) the usual Lebesgue space with respect to the Lebesgue measure,
HLp(Ω) the subspace of Lp(Ω) that consists of functions harmonic in Ω,
SLp(Ω) the subspace of Lp(Ω) that consists of functions subharmonic in Ω,

χΩ the characteristic function of Ω,
Ck(Ω) the class of k − times continuously differentiable in Ω,

Uµ the Newtonian potential of the measureµ,
V the velocity field,
n the outward normal vector on the boundary of a level set,

J(Ω) the shape functional,
y(Ω) a solution of a boundary value problem defined in Ω.

1



2 Mahmoudreza Bazarganzadeh Introduction

We shall occasionally use the Sobolev space W m,p(Ω) of distributions
u in Ω such that ∂αu ∈ Lp(Ω) for all multi-indices α with |α| < m and

its subspace W m,p
0 (Ω) which is the C∞

0 (Ω) in W m,p(Ω), i.e, the infinitely
differentiable functions on R

N whose support is a compact set of Ω. For
p = 2, we use Hm(Ω), Hm

0 (Ω) instead of W m,2(Ω), W m,2
0 (Ω) respectively.

G always denotes the ”fundamental solution” for the Laplace operator in
R

N . In other words for x ∈ R
N \ {0},

G(x) =

{
1

N(N−2)ωN
|x|2−N , for N ≥ 3,

− 1
2π

ln |x|, for N = 2,

where ωN is the volume of unit sphere in R
N . It is known that if Ω is

open and bounded then for G(x − y) considered as a function of x ∈ Ω, the
following holds (see [11]),

G(x − y) ∈ HL1(Ω), ∀y ∈ Ωc,

−G(x − y) ∈ SL1(Ω), ∀y ∈ Ω,

±Gj = ± ∂G

∂xj
∈ SL1(Ω), ∀y ∈ Ωc, 1 ≤ j ≤ N.

Moreover, the linear combinations with positive coefficients of the functions

±Gj(x − y), G(x − y), x ∈ Ω, ∀y ∈ Ωc,

−G(x − y), ∀y ∈ R
N ,

are dense in SL1, and the linear combination with real coefficients of the
functions Gj(x − y) and G(x − y) for y ∈ Ωc are dense in HL1 (see [11]).

2. Quadrature domains

The English word ”quadrature” comes from the Latin word ”quadratura”.
It means ”making square shaped” and in general it meant ”to divide a
land into squares”! In mathematics ”quadrature” refer to constructive or
numerical methods for determining areas, and recently it is used as a term
for computing indefinite integrals in general.

Through this thesis the term ”quadrature” has a related meaning. For
example, a quadrature identity will typically be an exact formula for the
integral of harmonic or analytic functions. The domain of integration is
then a quadrature domain. We say a few words of the starting point of
quadrature domains theory.

H. S. Shapiro and his group began to extend and generalize the concept
of quadrature domains more than thirty years ago. Some basic reference for
their efforts are [12] and [29]. For recent contributory, see [32] and [15].
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The connection between the Laplacian growth, especially Hele Shaw flow,
and quadrature domains has been investigated by Richardson in [27]. Before
that these two theory were developing in parallel. For instance, around
1980, the construction of quadrature domains from the potential theoretical
point of view ([24] and [25]) and the theory of weak solution for Hele Shaw
problem ([13] and [6]) were studied simultaneously and independently. For
more information see [15].

2.1. One phase quadrature domains

In this section we give a formal definition of a quadrature domain. First
we introduce the Newtonian potential and some of its important properties.
The basic sources for theses results are [1], [3] and [16].

Let µ be a measure. By Uµ we mean the Newtonian potential of the
measure µ defined by

Uµ(x) := (G ∗ µ)(x) =

∫

RN

G(x − y)dµ(y), x ∈ R
N .

Thus, UχΩ (from now on UΩ for simplicity) is the Newtonian potential of
Ω considered as a body with density one.

Theorem 2.1. If µ is a Radon measure with compact support then Uµ and
∇Uµ are defined a.e and are in L1

loc. Moreover, if µ is positive then Uµ is
defined everywhere.

Remark 1. The measure µ is a called Radon measure if it is inner regular
and locally finite.

Theorem 2.2. Suppose that µ is a Radon measure with compact support
then one has

−∆Uµ = µ,

in the sense of distributions.

Corollary 2.3. If µ is a Radon measure with compact support then Uµ is
harmonic in the complement of supp(µ).

Theorem 2.4. If µ is a Radon measure with compact support then

|Uµ(x)| = O(|x|2−N ) → 0 as |x| → ∞ if N ≥ 3,

and

Uµ(x) = − 1

2π
ln |x|

∫
dµ + O(|x|−1) as |x| → ∞ if N = 2.

Generally, if −∆u = µ then we can not derive that u = Uµ, since one can
add any harmonic function to u. But if u behaves like a potential at infinity
we are able to conclude u = Uµ.
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Theorem 2.5. Suppose that µ is a Radon measure with compact support
and −∆u = µ. If u satisfies

u(x) → 0 as |x| → ∞ if N ≥ 3,

and

u(x) = − 1

2π
ln |x|

∫
dµ + O(|x|−1) as |x| → ∞ if N = 2,

then u = Uµ.

Now we define a harmonic quadrature domain.

Definition 2.6. Suppose that µ is a measure with compact support. By
a quadrature domain with respect to µ we mean an open connected set
Ω ⊂ R

N such that supp(µ) ⊂ Ω and

(1.1)

∫

Ω
hdx =

∫
hdµ,

holds for all h ∈ HL1(Ω). We will say Ω is a quadrature domain (QD) and
write Ω ∈ Q(µ,HL1).

In the simplest case, it is known that discs D(a; r) are the only quadrature
domains (see [7]) and the quadrature identity then reduces to the ordinary
mean value property for harmonic functions:

h(a)|D(a; r)| =

∫

D(a;r)
hdx.

Generally, if Ω is a bounded domain in R
N and

(1.2)

∫

Ω
hdx = |Ω|h(x0),

holds for all h ∈ HL1(Ω), where x0 is an arbitrary point, then Ω is a ball
centered at x0, see [7].

Thus a quadrature identity can be thought of as a generalized mean value
property. The quadrature identity (1.1) is equivalent to the following iden-
tities (see [11]),

(1.3)

{
UΩ = Uµ, in R

N \ Ω,

∇UΩ = ∇Uµ, in R
N \ Ω.

It has been explained in [14] and [23] that Ω ∈ Q(µ,HL1) is equivalent to
finding a pair (u,Ω) of solution of the following one-phase free boundary
problem:

(1.4)

{
∆u = χΩ − µ in R

N ,

u = ∇u = 0, in R
N\Ω,

where u = Uµ − UΩ is the so-called modified Schwarz potential (MSP) of
the pair (µ,Ω).
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Remark 2. By a ”free boundary problem” we mean a boundary value problem
in which we deal with solving a partial differential equations in a domain
such that a part of the boundary is unknown in advance. That part of the
boundary is called the free boundary. In order to solve a free boundary
problem we need the standard boundary condition and an additional one
which is imposed at the free boundary. One then can determine both the
free boundary and the solution of the differential equation. This kind of
boundary value problem arise for instance, in fluid dynamics, tumor growth,
chemical vapor deposition, image development in electro-photography and
financial mathematics. For more information we refer to [4], [9] and [17].

Note that from (1.4) one has ∆u = χΩ away from supp(µ). According
to the results on local regularity of solutions of elliptic PDEs, we obtain
u ∈ W 2,p

loc (Ω) for every 1 < p < ∞. Also ∇u ∈ W 1,p
loc (Ω). By Sobolev

embedding theorem the first derivatives are therefore Hölder continuous with
Hölder exponent α < 1.

2.2. Subharmonic quadrature domains

M. Sakai in [25] and [26] realized the importance of subharmonic quadrature
domains.

Definition 2.7. Let µ be a measure with compact support. By a subhar-
monic quadrature domain we mean an open connected set Ω ⊂ R

N such
that supp(µ) ⊂ Ω and

(1.5)

∫

Ω
hdx ≥

∫
hdµ,

holds for all h ∈ SL1(Ω). We write Ω ∈ Q(µ, SL1) if (1.5) holds.

For instance, suppose that µ = αδ where δ is the Dirac mass at origin
and α > 0. Then

Q(µ,HL1) = Q(µ, SL1) = {B(0; r)},
where r ≥ 0 is determined by |B(0; r)| = α, see [11].

Similar discussion shows that Ω ∈ Q(µ, SL1) if and only if Uµ ≥ UΩ in
R

N and Uµ = UΩ in R
N \ Ω. From PDE point of view, Ω ∈ Q(µ, SL1) is

equivalent to the solution of the following free boundary problem, (see [14])

(1.6)





∆u = χΩ − µ in R
N ,

u ≥ 0, in R
N ,

u = 0, in R
N \ Ω.

It is easy to give examples of quadrature domains that are not subhar-
monic quadrature domains, see [29].
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Example 2.8. Let µ = µα = α ρ where α > 0 and ρ is the mass uniformly
distributed on the sphere S = ∂B(0, 1). Define

Ωβ = {x ∈ R
2 : β < π|x|2 < β + α},

where β ≥ 0, Ω = Ω0 ∪ {0}. Then |Ωβ| = α. Sakai in [25] has proved that
for each 0 < α ≤ eπ there exists a unique β = βα with π −α < βα < π such
that ∫

Ωβα

Gdx =

∫
Gdµα.

For 0 < α ≤ π one can prove (see [11]),

Q(µα,HL1) = Q(µα, SL1) = {Ωβα
},

and for all α > π
Q(µα,HL1) = {Ω,Ωβα

},
Q(µα, SL1) = {Ωβα

}.

2.3. Two-phase quadrature domain

Two-phase quadrature domains has been introduced recently by Emamizadeh,
Prajapat and Shahgholian, [5]. They have studied the existence of two-
phase quadrature domains with some sign restrictions. Here we generalize
one-phase quadrature domain to the two-phase case.

Let Ω be an open and bounded subset of R
N . We define H̃(Ω) by

H̃(Ω) = {Uη : η is a signed Radon measure

with compact support and supp(η) ⊂ Ωc}.

It is not difficult to show

• If h ∈ H̃(Ω) then h ∈ L1
loc(R

N ).

• All functions in H̃(Ω) are harmonic in Ω.

• For x ∈ Ωc we have G(x − .) = U δx ∈ H̃(Ω).
• Suppose that h is harmonic on a bounded open set D such that

Ω ⊂⊂ D. There exists a measure ν with compact support such that
supp(ν) ⊂ D \ Ω and h = Uν .

These useful properties of H̃(Ω) lead us to have the following definition of
two-phase quadrature domain.

Definition 2.9. Let Ω± be two open, disjoint and connected subsets of R
N

and µ± be two positive Radon measures with compact supports. Moreover,
suppose that λ± are two positive constants. We say that Ω = Ω+ ∪ Ω−

is a two-phase quadrature domain, with respect to µ±, λ± and H̃(Ω), if
supp(µ±) ⊂ Ω±, and

(1.7)

∫

Ω+

λ+h −
∫

Ω−

λ−h =

∫
h (dµ+ − dµ−), ∀h ∈ H̃(Ω).
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We then write Ω± ∈ Q(µ±, H̃(Ω)) or Ω ∈ Q(µ, H̃(Ω)) where µ = µ+−µ−.

From the potential theory point of view, let us choose f = λ+χΩ+ −
λ−χΩ− , µ = µ+−µ−. Suppose that y ∈ Ωc then h(x) = hy(x) = G(x−y) ∈
H̃(Ω) and consequently (1.7) yields

Uf = Uµ in R
N \ Ω.

Also there is a strong connection between free boundary theory and two
phase quadrature domains that we have studied in the first paper. We have

showed that Ω ∈ H̃(Ω) is and only if (u,Ω) be a solution of the following
free boundary problem

(1.8)

{
∆u = (λ+χΩ+ − µ+) − (λ−χΩ− − µ−), in R

N ,

u = 0, in R
N \ Ω,

with supp(µ±) ⊂ Ω±. This free boundary problem is a two-phase version of
(1.4).

Similarly to the one phase case some natural questions arise . The prob-
lem of existence and uniqueness of two phase quadrature domains are more
complicated. As far as we know the only literature [5] and [10] deal with
the existence problem in two phase case.

In the first paper we investigate some general properties of two phase
harmonic and subharmonic quadrature domains. By considering some sign
assumptions on Ω± we prove uniqueness for (1.8).

2.4. An application (Hele Shaw flow)

The class of growth processes, in which the dynamics of a moving front (an
interface) between two distinct phases is driven by a harmonic scalar field
is known under the name ”Laplacian growth”. The most known examples
of Laplacian growth are, viscous fluids in the Hele-Shaw cell, filtration pro-
cesses in porous media, electrodeposition. For instance, see [2, 22]. In this
subsection we study Hele Shaw problem.

In the hydrodynamic interpretation, one imagines that the inner domain
is filled with a non-viscous fluid, say air, and the outer domain with a viscous
one, say oil. Air is supposed to be injected at the origin and there is an oil
drain at infinity. The pressure p, in the air domain is constant and set to zero
by convention. In the oil domain the pressure satisfies the Laplace equation
∆p = 0. If we neglect the surface tension, then the pressure vanishes on the
boundary curve and the model is equivalent to the Laplacian growth, [18].

Suppose that some incompressible fluid is confined between two parallel
plates and we inject more fluid to it with moderate velocity. Therefore, the
fluid between plates will occupy more space. We are interested in to study



8 Mahmoudreza Bazarganzadeh Introduction

the behavior of its free boundary. Richardson has formulated this problem
as follows, see [22].

Suppose that µ is a positive, finite and non zero measure with compact
support and supp(µ) ⊆ D where D is an open subset of R

N with C1-
boundary. Moreover, consider that the origin is in the supp(µ). Let pD

be the super harmonic function such that

(1.9)

{
−∆pD = µ in D,

pD = 0 on ∂D.

We are looking for a family of regions Dt for t ≥ 0, such that ∂Dt moves
with the velocity −∇pDt where pDt is the unique solution of (1.9).

2.4.1. The Weak solution of the Hele Shaw problem

Let D0 and µ be as above and I be an open interval. A map I ∋ t →
Dt ⊂ R

N is a weak solution of the free boundary problem if the function
ut ∈ H1(RN ) defined by

(1.10) χDt − χD0
= ∆ut + tµ,

satisfies:
ut ≥ 0,

< ut, 1 − χDt >= 0,

where < ·, · > is the duality between H1
0 and its dual space H−1. For more

details see [13].

Theorem 2.10. [13] Suppose that µ and D0 be as before and T > 0. Then
there exists a weak solution

[0, T ] ∋ t → Dt ⊂ R
N ,

for the problem which is unique and if ut be the function appearing above
then ut is also unique and

ut =

∫ t

0
pDτ dτ.

Moreover, Dt can be chosen to be

Dt = D0 ∪ {z : ut(z) > 0}.

In what follows we give simple examples of the Hele Shaw problem.

Example 2.11. Find p(x, t), T (t) such that




∂2p
∂x2 = 0, 0 < x < T (t), t > 0,

p(T (t), t) = 0, t ≥ 0,
∂p
∂x

(T (t), t) = −T ′, t > 0,

p(0, t) = A > 0, t ≥ 0,

T (0) = x0.
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Here T (t) is the free boundary and p is interpreted as the pressure. By
imposing the first condition one has

(1.11) p(x, t) = K1(t)x + K2(t).

According to the assumptions one can write K2(t) = A and K1(t) = − A
T (t) ,

and hence

p(x, t) = − A

T (t)
x + A = A

(
1 − x

T (t)

)
.

The fixed boundary condition gives us a simple ordinary differential equa-
tion, T ′(t)T (t) = A and by considering the last condition we have T (t) =√

2At + x2
0. It means that

p(x, t) = A

(
1 − x√

2At + x2
0

)
.

Hence Dt = [−T (t), T (t)] and by integrating p(x, t) with respect to t on the
interval [0, t], we can find the corresponding u(x, t), see [8].

Example 2.12. We continue our examples by considering the radially sym-
metric case of the Hele Shaw flow and generalize it. In this case our free
boundary is a sphere in R

N , N ≥ 2 and we consider that the boundary of
the initial domain has an equation like |x| = ro.

Find p(x, t) = p(|x|, t) and T (t) such that




−∆p(x, t) = 0, r0 < |x| < T (t), t > 0,

p(T (t), t) = 0, |x| = T (t), t > 0,
∂p
∂n

(T (t), t) = −T ′, |x| = T (t), t > 0,

p(x, t) = A, |x| = r0, t ≥ 0,

T (0) = x0.

The solution of the above problem can be calculated as follows.

We know that p is the fundamental solution of Laplacian operator in
r0 < |x| < T (t), i.e,

(1.12) p(x, t) =

{
− 1

2π
K1(t) ln |x| + K2(t), N = 2, r0 < |x| < T (t),
1

(N−2)|SN−1| .
K3(t)
|x|N−2 + K4(t), N ≥ 3, r0 < |x| < T (t),

where |SN−1| is the area of the unit sphere SN−1 ⊂ R
N . We consider two

cases.

• Case N = 2: By continuity condition we have

p(x, t) = − 1

2π
K1(t)(ln |x| − ln r0) + A.

By imposing the fixed boundary condition p(x, t) = A if |x| = r0

and the continuity conditions at the free boundary p(x, t) = 0 if
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|x| = T (t), and finally imposing the third condition, we obtain

A = T ′T ln
T

r0
.

Integrating of this ordinary differential equation over (0, t), one ob-
tains an algebraic equation

At =
T 2

2

(
ln

T

r0
− 1

2

)
+

x2
0

4
.

The solution of this equation is the free boundary, see [8].
• Case N > 2: We can compute the solution as follows:

Set 1
(N−2)|SN−1| = a, so by the first condition we have

p(x, t) = aK3(t)(|x|2−N − r2−N
0 ).

We impose the fixed and boundary conditions, and derive

A(2 − N) = T ′(t)T (t) − r2−N
0 T ′(t)TN−1(t).

Integrating over (0, t) and with respect to the last condition one gets
an algebraic equation which gives us the free boundary, see [8],

A(2 − N)t =
1

2
T 2 +

xN
0

NrN−2
0

− TN

NrN−2
0

− x2
0

2
.

3. Level set method and shape optimization

In this section we provide some ingredients related to the second paper.

3.1. Level set method

The main numerical technique to track the evolution of interface is the
level set method. The Osher-Sethian level set method tracks the motion of
an interface by embedding the interface as the zero level set of the signed
distance function which is defined by

dΩ(x) =

{
d(x,Ωc), if x ∈ Ω,

−d(x,Ω), if x ∈ Ωc,

where d(x,Ω) = infy∈Ω |x − y|. If Ω is a subset of the Euclidean space R
N

with a piecewise-smooth boundary, the signed distance function is differen-
tiable almost everywhere, and its gradient satisfies |∇dΩ| = 1. For general
information about the level set method see [20, 28, 21].

The key point of the level set approach is to represent domains and
their boundaries as level sets of a continuous function φ without consid-
ering boundary parametrization. For tracking the motion of an open set
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Ω(t), t ∈ R
+, one can define a function φt : R

N × R
+ → R such that

Ω(t) = {φ(x, t) < 0 : x ∈ R
N},

and the zero level set will be represented by

Γt = ∂Ω(t) = {φ(x, t) = 0 : x ∈ R
N}.

If the evolution of the shape is determined by a flow x(t) = α(t, x(0))
such that

dx

dt
(t) = V(x(t), t),

then the corresponding level set function φ is determined by the first-order
Hamilton-Jacobi equation

∂φ

∂t
+ V · ∇φ = 0 in R

N × R
+.

Now let F = V · n where n is the outward normal vector on Γ and

n =
∇φ

|∇φ| .

Therefore we are able to compute the level set functions by

(2.1)
∂φ

∂t
+ F |∇φ| = 0 in R

N × R
+.

Note that we have to extend the velocity field in the whole R
N and solve the

equation. In this thesis we restrict our attention to the case (2.1) where φ
is considered as the sign distance function. Therefore, the level set equation
(2.1) turns to be

∂φ

∂t
+ F = 0 in R

N × R
+.

Moreover, we solve a boundary value problem to get F in every iteration.

3.2. Shape optimization

Shape optimization is a indispensable tool in the design and construction
of industrial structures. For example, air craft and spacecraft have to sat-
isfy, at the same time, very strict criteria on mechanical performance while
weighing as little as possible. The shape optimization problem for such a
structure consists of finding a geometry of the structure which minimizes a
given functional and yet satisfies specific constraints (like thickness, strain
energy or displacement bounds). From mathematics point of view, in shape
sensitivity we analyze how the solution of a PDE changes when the domain
is changing with a velocity field. This subsection is mainly based on [31].

Through this thesis any shape functional is denoted by J(Ω), J : Ω →
J(Ω) ∈ R, where Ω is a domain of class Ck for k ≥ 1. Some examples of the
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domain functionals are:

J1(Ω) =

∫

Ω
dx, J2(Ω) =

∫

∂Ω
ds.

In many shape optimization problems the following situations occur.

A shape functional J(Ω) depends on the domain Ω via the solution, y(Ω),
to a boundary value problem defined in Ω. For instance, in our problem we
consider the following free boundary problem

(P)





∆u = χ{u>0} − µ, in R
N ,

u ≥ 0, in R
N ,

u = 0, in R
N \ Ω,

for given measure µ ≥ 0. It is well known that the minimizer of

(2.2) J(v,Ω) =

∫

Ω

1

2
|∇v|2 dx +

∫

Ω
(1 − µ)v+ dx,

for v ∈ H1
0 , is the solution of Problem (P) and vise versa, see [14].

Let x ∈ R
N , and V(t, x) be a velocity field (vector field) defined in a

domain say D, and V ∈ Ck(D; RN ),V|∂D = 0. Let t be artificial time.
Moreover, assume that Σ ⊆ D . We define a transformation

Tt(V)x = X(t, x), x ∈ Σ,

with a velocity field V by differential equations

∂X

∂t
(t, x) = V(t, x), X(0, x) = x.

We denote the image of Σ ⊂ Ω under Tt by Σt.

Definition 3.1. Let Σ be a measurable subset of D. For any vector field
V ∈ Ck(D; RN ) the Eulerian derivative of the domain functional J(Σ) at Σ
in the direction of the vector field V is defined as the limit

lim
t→0

J(Σt) − J(Σ)

t
:= dJ(Σ,V),

where

Σt = Tt(V)(Σ).

Example 3.2. Consider the functional J1(Σ) =
∫
Σ dx. Therefore

J1(Σt) =

∫

Σt

dx.

Transforming the integral to an integral over Σ leads to

J1(Σ) =

∫

Σ
γ(t) dx,
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where γ(t) = det(DTt) is the Jacobian of the transformation Tt(V). From
proposition 2.44 in [31] it follows that γ(0) = 1, γ′(0) = div V(0), thus

dJ1(Σ,V) = lim
t→0

J1(Σt) − J1(Σ)

t

=

∫

Σ
lim
t→0

γ(t) − γ(0)

t
dx

=

∫

Σ
γ′(0)dx

=

∫

Σ
div V(0) dx.

By applying the Gauss theorem one can see that

dJ1(Σ,V) =

∫

∂Σ
V(0) · n ds.

Definition 3.3. For a function y(Σ), Σ ∈ Ck, k ≥ 1, we define its material
derivative as a limit

ẏ(Σ;V)(x) := lim
t→0

y(Σt) ◦ Tt(V) − y(Σ)

t
.

Also the shape derivative of y(Σ) in the direction V is the element y′(Σ;V)
defined by

y′(Σ;V) := ẏ(Σ;V) −∇y(Σ) ·V(0).

The shape derivative represents the change of a function y with respect to
the geometry. The following example shows the relation of these two aspects.

Example 3.4. Let

J(Ω) =

∫

Ω
y(Ω) dx with y(Ω) : Ω → R,

and use the change of variables x = Tt(V)(X) the integral defined on Ωt is
transformed to the domain Ω, hence

J(Ωt) =

∫

Ωt

y(Ωt) dx =

∫

Ω
(y(Ωt) ◦ Tt(V))γ(t) dx,

where γ(t) = det(DTt) is the Jacobian of the transformation Tt(V). By
definition

dJ(Ω,V) =

∫

Ω
lim
t→0

(y(Ωt) ◦ Tt(V))γ(t) − (y(Ω) ◦ Tt(V))γ(0)

t
dx,
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and consequently,

dJ(Ω,V) =

∫

Ω

(
ẏ(Ω;V) + y(Ω)divV(0)

)
dx

=

∫

Ω

(
ẏ(Ω;V) −∇y(Ω) · V(0) + div(y(Ω)V(0))

)
dx

=

∫

Ω
y′(Ω,V) dx +

∫

∂Ω
y(Ω)V(0) · n ds.
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Paper A

SOME PROPERTIES OF TWO-PHASE QUADRATURE

DOMAINS

CENI BABAOGLU AND MAHMOUDREZA BAZARGANZADEH

Abstract. In this paper, we investigate general properties of the two-phase
quadrature domains, which recently has been introduced by Emamizadeh-
Prajapat-Shahgholian. The concept, which is the generalization of the well-
known one-phase case, introduces substantial difficulties with interesting and
even richer features than its one-phase counterpart.

For given positive constants λ± and two bounded and compactly supported
measures µ±, we investigate the uniqueness of the solution of the following free
boundary problem

(

∆u = (λ+χΩ+ − µ+) − (λ−χΩ− − µ−), in R
N (N ≥ 2),

u = 0, in R
N \ Ω,

where Ω = Ω+ ∪Ω−. It is further required that the supports of µ± should be
inside Ω±; this in general may fail and give rise to non-existence of solutions.

Along the lines of various properties that we state and prove here, we also
present several conjectures and open problems that we believe should be true.
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1. Introduction

The concept of quadrature domains is well known in modern potential theory
and concerns generalized form of (sub)mean-value property for (sub)harmonic
functions.

The main idea in this paper is to deal with a two-phase version of this
concept, introduced in [7]. Our main result concerns uniqueness for two-
phase quadrature domains when certain restrictions are made on the sign(s)
of the solution function.

This paper is organized as follows. Section 2 contains some background
in one-phase case and some fundamental concepts in potential theory. In
section 3 we then move to the two-phase case scenario and extract its PDEs
formulation and introduce quadrature inequalities and take some examples.
In section 4 we note some recently result on existence theory for two phase
free boundary problem and finally in the last section we study the uniqueness
and prove our main result just by considering some conditions. Also we make
some conjectures.

2. One-phase case

The definition of a quadrature domain is as follows.

Definition 2.1. Let µ be a Radon measure with compact support in R
N .

An open connected domain Ω ⊂ R
N , (N ≥ 2) is called quadrature domain

with respect to µ if

(2.1)

∫

Ω
hdx =

∫
hdµ, ∀h ∈ HL1(Ω), supp(µ) ⊂ Ω,

where HL1(Ω) is the space of harmonic functions in L1(Ω).

We denote by Q(µ,HL1) the class of all nonempty domains satisfying
(2.1) and we write Ω ∈ Q(µ,HL1).

A simple example of a quadrature domain (in one-phase case) correspond-
ing to the Dirac measure µ = δa is the appropriate ball B(a, r), (for instance,
let N = 2, a = 0, r = 1√

π
). The mean value theorem for harmonic functions

implies
∫

B(a,r)
hdx = h(a) =

∫
hdµ.

The quadrature identity (2.1) is equivalent to the following identities (see
[13]),

(2.2)

{
UχΩ = Uµ, in R

N \ Ω,

∇UχΩ = ∇Uµ, in R
N \ Ω,
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where Uµ denotes the Newtonian potential of the measure µ defined by

Uµ(x) := (G ∗ µ)(x) =

∫

RN

G(x − y)dµ(y), x ∈ R
N .

Here,

G(x) =

{
1

N(N−2)ωN
|x|2−N , for N ≥ 3,

− 1
2π

ln |x|, for N = 2,

denotes the fundamental solution to the Laplace operator and ωN is the
volume of unit sphere in R

N . Thus, UχΩ (from now on UΩ for simplicity) is
the Newtonian potential of Ω considered as a body with density one. The
second equality in (2.2) is a consequence of the first one except possibly at
certain points on ∂Ω. Also we can prove that −∆Uµ = µ in the sense of
distributions (see [5], [1]).

It has been explained in [13] and [16] that this problem is equivalent to
finding a pair (u,Ω) of the following one-phase free boundary problem:

(2.3)

{
∆u = χΩ − µ, in R

N ,

u = ∇u = 0, in R
N\Ω,

where u = Uµ − UΩ is the so-called modified Schwarz potential (MSP) of
the pair (µ,Ω).

We also can replace the following inequality in (2.1) for the class of sub-
harmonic functions SL1(Ω),

(2.4)

∫
hdµ ≤

∫

Ω
hdx, ∀h ∈ SL1(Ω),

and get a quadrature domain for subharmonic functions. In this case, we
call Ω a subharmonic quadrature domain with respect to µ and write Ω ∈
Q(µ, SL1). The authors in [11] and [13] have showed that (2.4) is equivalent
to

(2.5)

{
UΩ ≤ Uµ, in R

N ,

UΩ = Uµ, in R
N \ Ω,

which is equivalent to

(2.6)





∆u = χΩ − µ, in R
N ,

u ≥ 0, in R
N ,

u = 0, in R
N \ Ω,

where u = Uµ−UΩ. We note that in (2.6) it is not generally true that u > 0
in Ω (see [7]). For more details about quadrature domains, [6], [12] and [15]
are basic references.
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Moreover, if we also introduce the class Q(µ,AL1) by saying that Ω ∈
Q(µ,AL1) if and only if ∇UΩ = ∇Uµ in Ωc then

Q(µ, SL1) ⊆ Q(µ,HL1) ⊆ Q(µ,AL1).

For instance, if µ = δ0 then all these classes are equal to {B(0, r)}, see [11].
The existence and uniqueness theorems in one-phase quadrature domains
are established in [15] for class SL1.

3. Two-phase Case

In this section our objective is to define two phase quadrature domain and
investigate its PDE formulation.

3.1. Definition and basic properties

Let Ω is an open and bounded subset of R
N . We define H̃(Ω) by

H̃(Ω) = {Uη : η is a signed Radon measure

with compact support and supp(η) ⊂ Ωc}.
Next lemma leads us to have a definition of the two-phase quadrature domain
and quadrature identity.

Lemma 3.1. Let Ω and H̃(Ω) be as above.

(1) If h ∈ H̃(Ω) then h ∈ L1
loc(R

N ).

(2) All functions in H̃(Ω) are harmonic in Ω.

(3) For x ∈ Ωc we have G(x − .) = U δx ∈ H̃(Ω).
(4) Suppose that h is harmonic on a bounded open set D such that

Ω ⊂⊂ D. There exists a measure ν with compact support such that
supp(ν) ⊂ D \ Ω and h = Uν.

Proof. The items (1), (2) and (3) are immediately verified by the definition

of H̃(Ω). To prove the last one, suppose that h is a harmonic function on a
bounded open set D ⊂ R

N such that Ω ⊂⊂ D. Let ξ ∈ C∞
c (RN ) such that

supp(ξ) ⊂ D. Moreover, we choose ξ = 1 in a neighborhood closed enough
to Ω. For x ∈ Ω one obtains

h(x) = (hξ)(x) =

∫
δx(hξ)(y) dy

=

∫
−∆G(x − y)(hξ)(y) dy

=

∫
G(x − y)(−∆(hξ))(y)dy.

Now if one sets dν = (−∆hξ)(y)dy, then h = Uν . �
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Then we have the following definition.

Definition 3.2. Let Ω± be two open, disjoint and connected subsets of R
N

and µ± be two positive Radon measures with compact supports. Moreover,
suppose that λ± are two positive constants. We say that Ω = Ω+ ∪ Ω−

is a two-phase quadrature domain, with respect to µ±, λ± and H̃(Ω) if
supp(µ±) ⊆ Ω±, and

(3.1)

∫

Ω+

λ+h −
∫

Ω−

λ−h =

∫
h (dµ+ − dµ−), ∀h ∈ H̃(Ω).

We then write Ω± ∈ Q(µ±, H̃) or Ω ∈ Q(µ, H̃) where µ = µ+ − µ−.

To reach a potential theory interpretation of the two phase quadrature
domain let us choose h(x) = hy(x) = G(x − y) in (3.1), as a harmonic

function for y ∈ R
N \ Ω. Then, we have

(3.2) Uf = Uµ in R
N \ Ω,

where f = λ+χΩ+ − λ−χΩ− , and µ = µ+ − µ−.

We deal with the following question.

Main question: Whether we can claim that Ω is the unique domain
satisfies (3.1)?

It turns out that the uniqueness problems in this case are much more
involved than in the one-phase case.

A different formulation (or a different starting point) of our problem would
come from the well-known potential theoretic formulation of analyzing gravi-
equivalent bodies. Indeed, suppose there are non-empty bounded domains
D = D+ ∪ D− and Ω = Ω+ ∪ Ω−, where

D+ ∩ D− = Ω+ ∩ Ω− = ∅,
satisfying

(3.3)

∫

Ω+

λ+h −
∫

Ω−

λ−h =

∫

D+

λ+h −
∫

D−

λ−h, ∀h ∈ H̃(Ω ∪ D).

Then, we would like to see whether Ω± = D±, or alternatively what kind
of properties such domains would possess. The first property that can be
derived from the above integral identity is the following lemma where its
idea comes from [11].

Lemma 3.3. Suppose that Ω = Ω+∪Ω− and D = D+∪D−. If (3.3) holds,
then for a measure ν,

Ω,D ∈ Q(ν, H̃),

with supp(ν) ⊆ Ω ∩ D.

Observe that here, the support of the measure can not be expected stay
in the set Ω± ∩ D±, as will be seen from the argument in the proof.
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Proof. Define

UΩ = G ∗ (λ+χΩ+ − λ−χΩ−),

and UD correspondingly. Hence, we can define a new function U on R
N by

(3.4) U =





UΩ, in Ωc,

UD, in Dc,

“arbitrary”, in Ω ∩ D,

where “arbitrary” means a suitable function and as smooth as possible. The
definition of U on Ω ∩ D can be chosen such that −∆U ∈ L∞(RN ). Let
ν = −∆U , we have U = Uν (because U behaves like a potential at infinity)
and it follows that

UΩ = Uν , in Ωc,

UD = Uν , in Dc.

Then by (3.3), UΩ = UD in R
N\(Ω ∪ D). This proves the lemma with

respect to (3.2). �

Remark 1. Observe that supp(ν) ⊆ Ω ∩ D.

Corollary 3.4. For Ω = Ω+ ∪ Ω− and D = D+ ∪ D− admitting the quad-
rature identity (3.3) we have the intersection Ω ∩ D is non-void.

Proof. Suppose that Ω∩D = ∅ and consider the function U defined by (3.4)
in Lemma 3.3. Hence we find that U is harmonic in R

N , i.e,

(3.5) ∆U = 0, in R
N .

On the other hand for an arbitrary Radon measure µ one can describe the
behavior of potential Uµ as follows (see [14])

(3.6) |Uµ(x)| = O(|x|2−N ) → 0 as |x| → ∞ if N ≥ 3,

and

(3.7) Uµ(x) = − 1

2π
ln |x|

∫
dµ + O(|x|−1) as |x| → ∞ if N = 2.

Now with respect to theses properties, we deduce that in the case N ≥ 3,
U is bounded and has logarithmic growth for N = 2. By considering (3.5),
Liouville’s theorem states that U = c where c is a constant. To get a
contradiction suppose that BR is a ball such that Ω ⊂ BR. we know that
UΩ is a super solution in BR and U = UΩ = c in BR \ Ω. The strong
minimum principle gives us

UΩ = c, in BR,

and consequently ∆UΩ = 0 in BR which is a contradiction to ∆UΩ = −1 in
Ω. �

Remark 2. It remains an open question whether in the above corollary we
can conclude that both intersections Ω± ∩ D± are non-void.
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Remark 3. If one takes h = 1 in (3.3), then

λ+|Ω+| − λ−|Ω−| = λ+|D+| − λ−|D−|,

where |Ω| denotes the volume of Ω. We shall use this simple property in the
proof of some results later.

3.2. PDE formulation

For Ω = Ω+ ∪ Ω− ∈ Q(µ±, H̃), we can define u = Uµ − Uλ+χ
Ω+−λ−χ

Ω− .
Then by (3.1) with u = 0 in R

N\Ω, we have the following free boundary
problem

(3.8)

{
∆u = (λ+χΩ+ − µ+) − (λ−χΩ− − µ−), in R

N ,

u = 0, in R
N \ Ω and supp(µ±) ⊂ Ω±,

which is a two-phase version of (2.3).

The next theorem verifies the connection between the potential theory
formula and the PDE formulation.

Theorem 3.5. The quadrature identity (3.1) and the potential theory in-
terpretation (3.2) and PDE formulation (3.8) are equivalent.

Proof. (3.1) ⇒ (3.2)⇒ (3.8): This is clear.

(3.8) ⇒ (3.1): Suppose that (3.8) is given. For all h = Uη ∈ H̃(Ω) and
ν = (λ+χΩ+ − µ+) − (λ−χΩ− − µ−), Fubini’s theorem gives

(3.9)

∫
Uη dν =

∫
Uν dη =

∫

Ω
Uν dη +

∫

Ωc

Uν dη.

We prove that Uν vanishes in Ωc and consequently the second term of (3.9)
is zero.

Suppose that y ∈ Ωc. Let R > 0 and BR be a ball such that y ∈ BR,Ω ⊂
BR. Then by assumption on ν

Uν(y) =

∫

BR

G(x − y)dν(x) =

∫

BR

G(x − y)∆udx

=

∫

BR

(
G(x − y)∆u − ∆G(x − y)u

)
dx +

∫

BR

∆G(x − y)u dx

=

∫

∂BR

(
∂G

∂n
u − ∂u

∂n
G

)
ds +

∫

BR

δy(x)u(x) dx

= u(y)

= 0.
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On the other hand supp(η) ⊂ Ωc then the first term of (3.9) is also zero.
Therefore we have∫

Uη dν = 0, for all Uη ∈ H̃(Ω),

which is (3.1). �

3.3. Quadrature inequalities

The corresponding quadrature inequality (2.4) is more subtle in two-phase
case. To derive such an inequality suppose that η is a signed Radon measure
with compact support. We define:

S+(B) = {Uη : η|B ≤ 0},
S−(B) = {Uη : η|B ≥ 0}.

In other words all functions in S+(B) and S−(B) are subharmonic and super
harmonic on B respectively.

Suppose that Ω± ⊂ {u± ≥ 0}. Let

S̃(Ω) := S+(Ω+) ∩ S−(Ω−) = {Uη : η|Ω+ ≤ 0 , η|Ω− ≥ 0},
and consequently for all h = Uη ∈ S̃(Ω) one gets

(3.10)

∫

Ω
u∆h =

∫

Ω+

u+(−η) +

∫

Ω−

u−(−η) ≥ 0,

where u = u+ − u−.

Now again suppose that ν = ∆u = (λ+χΩ+ − µ+) − (λ−χΩ− − µ−) and

h = Uη ∈ S̃(Ω). We claim that

(3.11)

∫
Uη dν =

∫
Uν dη ≥ 0.

To prove this let BR be a ball contains Ω. We apply Green’s formula and
get

∫

BR

Uη dν =

∫

BR

h∆u

=

∫

BR

(
h∆u − u∆h

)
+

∫

BR

u∆h

=

∫

∂BR

(
h

∂u

∂n
− u

∂h

∂n

)
+

∫

BR

u∆h (u =
∂u

∂n
= 0 on ∂BR)

=

∫

BR

u∆h =

∫

Ω
u∆h ≥ 0. (by (3.10))

Set now hy(x) = −|x − y|2−N for y ∈ Ω+,N > 2 and hy(x) = − ln |x − y|
for y ∈ Ω+, N = 2. Then, it is clear that hy(x) is subharmonic in Ω+ and it
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is harmonic in Ω−, and consequently (3.11) reads

Uf (y) ≤ Uµ(y) in Ω+.(3.12)

Similarly, if we choose −hy(x), y ∈ Ω− as a test function in the inequality
(3.11), then

Uf (y) ≥ Uµ(y) in Ω−.(3.13)

Now we are able to make a reasonable definition.

Definition 3.6. Suppose that Ω, µ±, λ± are the same as in the definition
3.2 and let f = λ+χΩ+ − λ−χΩ− , and µ = µ+ − µ−, such that

{
Uf ≤ Uµ, in R

N \ Ω−,

Uf ≥ Uµ, in R
N \ Ω+,

then we say that Ω is a two-phase quadrature domain for the class S̃(Ω) and

we write Ω ∈ Q(µ, S̃). It is immediately verified that Q(µ, S̃) ⊂ Q(µ, H̃).

Furthermore, by Ω ∈ Q(µ±, Ã) we mean ∇Uf = ∇Uµ in Ωc\(∂Ω+∩∂Ω−)
and consequently one has

Q(µ, S̃) ⊆ Q(µ, H̃) ⊆ Q(µ, Ã).

Remark 4. It is clear that (3.10) is still valid, if one chooses h ∈ S+(Ω+) ∩
H̃(Ω−) and it reads

Uf ≤ Uµ, in R
N \ Ω−.

Similarly, if h ∈ S−(Ω−) ∩ H̃(Ω+), then

Uf ≥ Uµ, in R
N \ Ω+.

Proposition 3.7. Consider two non-negative bounded Radon measures µ±

with compact supports and two positive constants λ±. Moreover, suppose
that Uµ is the Newtonian potential of µ = µ+−µ− and f = λ+χΩ+−λ−χΩ− .
Then, the following statements are equivalent:

(1)
∫
Ω+ λ+h −

∫
Ω− λ−h ≥

∫
hdµ+ −

∫
hdµ−, ∀h ∈ S̃(Ω).

(2) Ω ∈ Q(µ, S̃(Ω)).

(3) If u = Uµ − Uf , then
{

∆u = (λ+χΩ+ − µ+) − (λ−χΩ− − µ−), in R
N ,

Ω± ⊂ {±u ≥ 0}.(3.14)

Proof. (1) ⇒ (2): It is clear by considering the equations (3.12) and (3.13).

(2) ⇒ (3): It is an immediate consequence of Definition 3.6 and the fact
that −∆Uf = f, −∆Uµ = µ.
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(3) ⇒ (1): By considering (3.11) one obtains
∫

Ω
(λ+χΩ+ − λ−χΩ− − (µ+ − µ−))h =

∫
Ω h∆u ≥ 0,

which is equivalent to (1). �

Remark 5. Obviously, by taking Ω̃± = {u± > 0}, the free boundary problem
(3.14) can be written as

{
∆u = (λ+χ{u>0} − µ+) − (λ−χ{u<0} − µ−), in R

N ,

Ω̃± = {u± ≥ 0},(3.15)

provided supp(µ±) ⊂ Ω̃±. This free boundary problem have been studied in
[7].

3.4. Some examples

In the special case of (3.8) with µ± = 0, λ± = 1 one can show that the

function u =
(x+

1 )2

2 − (x−

1 )2

2 , where x±
1 := max(±x1, 0), is a solution of

∆u = χ{u>0} − χ{u<0}, in R
N .

Now suppose that µ− = 0, µ+ 6= 0 and Ω± = {x : ±u(x) > 0} then
consequently the PDE formulations (3.8) turns

(3.16)

{
∆u = λ+χ{u>0} − µ+ − λ−χ{u<0}, in R

N ,

u = 0, in R
N \ Ω.

If ∂Ω− 6= ∅ then in Ω−




∆u = −λ− ≤ 0 in R
N \ Ω+,

u < 0, in Ω−,

u = 0, on ∂Ω−,

which is an obvious contradiction according to the minimum principle. There-
fore (3.16) has no solution.

Example 3.8. (N = 1) Suppose that µ± = a±δx± , x+ > 0, x− = −x+, a± >
0. Hence for r1, r2 > 0 one has Ω+ = (x+ − r1, x

+ + r1) and Ω− =
(x− − r2, x

− + r2) and they meets each other at x+ − r1 = x− + r2. In
other words, 2x+ = r1 + r2. Regarding (3.8) and the continuity conditions

one gets r1 = 2a−x+

a−+a+ , r2 = 2a+x+

a−+a+ and

u(x) =

{
(x−x+)2

2 − a+(x − x+)H(x − x+) + a−r2 − 1
2r2

1, in Ω+,

− (x−x−)2

2 + a−(x − x−)H(x − x−) + 1
2r2

2, in Ω−,

where H(x) is the Heaviside function.
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Example 3.9. Suppose that m denotes the Lebesgue measure and µ± are
two uniformly distributed surface measure on |x| = 2, 4 respectively such
that dµ± = ρ±dm for some ρ± > 0 to be decided below. Let

u±
i = ±|x|2/2N + a±i |x|2−N + b±i for i = 1, 2.

Now one can choose a±i ,b±i and ρ± in a such way so that the function u
defined as

u =





u+
1 , in 1 < |x| < 2,

u+
2 , in 2 ≤ |x| < 3,

u−
1 , in 3 ≤ |x| < 4,

u−
2 , in 4 ≤ |x| < 5,

is continuous in 1 ≤ |x| ≤ 5 and satisfies the two phase free boundary
equation (3.8). Therefore Ω = Ω+ ∪ Ω− = {1 < |x| < 3} ∪ {3 < |x| < 5} is
a two phase quadrature domain with respect to µ±. Here, the densities are
given by the difference of the normal derivatives of the left- and right-hand
sides limits. For existence of these quadrature domains see [15].

4. Discussion on existence theory

In general an existence result of two-phase quadrature domains, is not so
easy to obtain. It seems that one needs rather strong assumptions on the
densities λ± as well as the measures µ± to ensure the existence of a solution.
For example, in the simpler one phase case the crucial assumption is that
the measure should be non-negative and sufficiently concentrated, (see [11]).

In other words to ensure the existence of a solution for (3.15), one has to
make a balance between measures. However making such balance conditions
are a challenging problem and is under research. As far as we know, the
Sakai’s concentration condition together with estimates of the one phase
solutions of µ± is a sufficient condition (see [7]). For more existence result
see the recent article [9].

In the two-phase case, it is far from obvious that such an assumption
would be sufficient to guarantee the existence of a solution. Indeed, if one of
the measures µ± is so large that it would “eat up” the other one, i.e, large
concentration of one of the two measures, force the support of the other
to shrink. This can already be seen in one dimension. For instance, see
Example 1.1 in [7].

Our objective in this section is to present some known existence result for
the problem

(4.1) ∆u = (λ+χΩ+ − µ+) − (λ−χΩ− − µ−),

with the crucial sign properties Ω± = {±u > 0}. One of the few paper
discussing existence results in a simpler case is [7]. The authors of [7] apply
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the minimization technique to show the existence of solution of

(4.2) ∆u = (λ+ − µ+)χ{u>0} − (λ− − µ−)χ{u<0}, in R
N ,

which implies a weaker form of the two-phase problem (4.1) with the sign
assumptions. Remarkably, it is not so easy to find appropriate conditions to
obtain (4.1) by considering (4.2). In other words, it is a challenging problem
to find conditions such that

µ± = µ±χ{±u>0},

i.e., supp (µ±) ⊂ supp(± u). In the one phase case, the authors of [13] have
established some conditions to guarantee supp(µ) ⊂ supp(u), but for the
two-phase case the problem is almost completely open.

One can easily show the Euler-Lagrange equation for the functional

(4.3) JΩ(u) =

∫

Ω

(1

2
|∇u|2 − g(x)u+ + h(x)u−)

dx,

coincides in the following two-phase free boundary problem:

(4.4) −∆u = g(x)χ{u>0} − h(x)χ{u<0}.

The existence of a minimizer for (4.3) in appropriate functional space de-
pends on the existence of the minimizers for the two functionals in one phase
case

J+(u) =

∫

Ω

(1

2
|∇u|2 − g(x)u+

)
dx, J−(u) =

∫

Ω

(1

2
|∇u|2 + h(x)u−)

dx,

on the sets W± = {u ∈ W 1,2
0 (Ω), ±u ≥ 0} respectively.

Theorem 4.1. ( Proposition 2.1 in [7] ) Assume that Ω is a bounded do-

main. The functional JΩ has a minimizer u in the space W 1,2
0 and it satisfies

the following inequality

U− ≤ u ≤ U+,

where U± are the minimizers of J±.

Using Theorem (4.1) with g = µ+−λ+, h = λ−−µ−, we get the existence
of solution for (4.2), see [7].

5. Uniqueness results

In this section, we try to prove the uniqueness for (3.8) in some specific
cases. To be more clear the problem, from the point of view of the potential
theory, we can rewrite the main question.

By a solid domain we mean a domain U such that it is bounded, U = (U )◦

and the complement of U , i.e, (U)c is connected.
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Question: Suppose that µ is a positive measure with compact support.

Can Q(µ, H̃) contain two distinct domains Ω = Ω+ ∪Ω−, D = D+ ∪D− for
solid domains Ω± and D±?

If one does not consider ”solid” assumption on the domains , uniqueness
can fail. For instance, in [11] and [15] one can find examples which indicate
a non-uniqueness for the one-phase case without such assumptions.

It should be remarked that uniqueness in one-phase case is already a
challenging problem and there are studies on it such as [17] and [18]. The
following theorem provides uniqueness under the special sign assumptions.

Theorem 5.1. Let u, v be two solutions of (3.8) and suppose that

Ω± := {±u > 0}, D± := {±v > 0}.
Then, Ω± = D± and u ≡ v.

Proof. Set w := u − v in Ω+ ∪ D−. Then, in Ω+ ∪ D− we have

∆w = ∆u − ∆v = (λ+χΩ+ − λ−χΩ−) − (λ+χD+ − λ−χD−)(4.1)

= λ+(χ{Ω+\D+} − χ{D+\Ω+}) + λ−(χ{D−\Ω−} − χ{Ω−\D−})

= λ+χ{Ω+\D+} + λ−χ{D−\Ω−} ≥ 0.

For the boundary of the union one has

(4.2) ∂(Ω+ ∪ D−) = (∂Ω+ \ D−) ∪ (∂D− \ Ω+) := L1 ∪ L2.

Now, we have

(4.3) w = u − v = −v ≤ 0, on L1,

since v ≥ 0 outside D−. Similarly

(4.4) w = u − v = u ≤ 0, on L2,

since u ≤ 0 outside Ω+. Totally we get

(4.5) w = u − v ≤ 0, on ∂(Ω+ ∪ D−).

Then, by the maximum principle

u ≤ v, in Ω+ ∪ D−.

Suppose that | · | denotes the volume of a set. In Ω+, we have 0 < u ≤ v
which gives Ω+ ⊂ D+ and |Ω+| < |D+|, unless D+ = Ω+. In D−, we have
u ≤ v < 0 which gives D− ⊂ Ω− and |D−| < |Ω−|, unless D− = Ω−.

Then, we get

λ+|Ω+| − λ−|Ω−| < λ+|D+| − λ−|D−|.
The latter inequality contradicts Remark 3, otherwise D± = Ω±. This
proves the theorem. �

Remark 6. Theorem (5.1) it is the theorem 4.7(b) of [9] if λ± = 1.
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For simplicity, a general assumption will be made, that is, all domains
Ω± and D± in the next theorem will be assumed solid. Now, we present a
generalization of the previous theorem.

Theorem 5.2. If u, v are two solutions of (3.8) and Ω±, D± are the
corresponding regions respectively satisfy

(4.6) Ω− ⊆ {u < 0} and D+ ⊆ {v > 0},
then Ω± = D± with u ≡ v.

Proof. Set w := u − v then in Ω+ ∪ D−, we have (4.1). Here Ω+ and
D− do not necessarily have the sign property, but still we can conclude that
v ≥ 0 outside D− and that u ≤ 0 outside Ω+. This shows that the equations
(4.2)-(4.5) in Theorem 5.1 are still valid. Then, again by using the maximum
principle we obtain

w ≤ 0, in Ω+ ∪ D−.(4.7)

By assumption (4.6) and (4.7) one concludes that

(4.8) w ≤ 0, in R
N .

Let L = BR \ [(D+ ∪ Ω−) \ (Ω+ ∪ D−)], where Ω ∪ D ⊂⊂ BR. Then,
{

∆w ≥ 0, in L,

w ≤ 0, on ∂L.

The strong maximum principle for w in L states that either w < 0 in L, or
w = 0 in L. But w = 0 in (D ∪Ω)c ⊂ L. Hence w = 0 in L. For Lc we have

{
∆w ≤ 0, in Lc,

w = 0, on ∂Lc = ∂L.

Then the inequality (4.8) along with the strong minimum principle imply
that w = 0 in Lc. Therefore, w ≡ 0 in BR, and hence

(4.9) u ≡ v, in BR,

and finally Ω± = D±. �

The next proposition states that with no sign assumption, there are always
stationary points {∇u = 0} in Ω± provided ∂Ω± are locally C1,α away from
the so called branch points, (see [17]).

We say that a domain Ω satisfy the exterior sphere condition if for every
x ∈ ∂Ω, there exists a ball of radius r, centered at y ∈ Ω, such that B(y, r)∩
Ω = {x}. This is a sufficient condition to use Hopf’s lemma (see [8]).

Proposition 5.3. ( Special Points ) Suppose that u, v are two solutions of
(3.8) and Ω±, D± are the corresponding regions respectively. Moreover,
suppose that ∂Ω±, ∂D± satisfy the exterior sphere condition. Then at least
one of the following holds.



15 C.Babaoglu & M.Bazarganzadeh Paper A

(1) v attains its minimum (maximum) in D+ \ Ω+ (Ω+ \ D+).
(2) u attains its maximum (minimum) in Ω− \ D− (D− \ Ω−).

Proof. Consider L = BR \ [(D+ ∪ Ω−) \ (Ω+ ∪ D−)] with Ω ∪ D ⊂⊂ BR, so
w := u − v is a subsolution in L and, consequently w attains its maximum,
say at x0, on ∂L. It is clear that

w⌊∂L=





u, on (∂D+ ∪ ∂D−) ∩ ∂L,

−v, on (∂Ω+ ∪ ∂Ω−) ∩ ∂L,

0, on ∂BR.

(4.10)

If maxw = 0 then by considering the maximum principle on L we derive
that u ≡ v on L and (3.8) yields

λ+ = ∆u = ∆v = −λ−, on (Ω+ ∪ D−) \ (supp µ+ ∪ supp µ−).

This is a contradiction to the positivity assumptions of λ± and hence

(4.11) maxw 6= 0.

By considering (4.11) one has either x0 ∈ (∂Ω+)∩D+ or x0 ∈ (∂D−)∩Ω−.
Therefore we have two cases.

• x0 ∈ (∂Ω+) ∩ D+ and maxΩ+∪D− w = −v(x0).

Now Hopf’s lemma gives ∂νw(x0) = −∂νv(x0) > 0 where ν is the
outer normal vector on ∂Ω+ pointing into D+ \Ω+. It means that v
decreases in D+ \ Ω+ so we should have y0 ∈ D+ \ Ω+ such that

v(y0) = min
D+\Ω+

v and ∇v(y0) = 0.

• x0 ∈ (∂D−) ∩ Ω− and maxΩ+∪D− w = u(x0).

Similar discussion shows that there exists y0 ∈ Ω− \D− such that

u(y0) = max
Ω−\D−

u and ∇u(y0) = 0.

One can follow this recipe for w in L = BR \ [(D− ∪ Ω+) \ (Ω− ∪ D+)] and
obtain a similar result. �

The conclusion is that even in the case of non-uniqueness we have special
points in Ω± and D±.

6. Conjectures

Conjecture 6.1. Theorem 5.2, should still be valid if either Ω− := {u < 0}
or D+ := {v > 0}.
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Conjecture 6.2. The uniqueness for the solution of (3.8) can be obtained
by considering only Ω± = {±u > 0} without sign properties for D±.

Conjecture 6.3. It would be an interesting problem to generalize Theorem
(5.2) for the p-Laplacian operator, i.e, ∆pu = div(|∇u|p−2 ∇u) for 1 < p <
∞. According to the comparison principle for p-Laplacian (see [4]), it is
straightforward to prove the uniqueness theorem for this operator with all
sign properties. We guess that one is able to prove our main result (Theorem
5.2) for the p-Laplacian operator. For more information on p-Laplacian
properties and its relation with free boundary problems see [2], [3] and [4]
for instance.
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Shahgholian. The authors thank him for fruitful discussions and useful sug-
gestions. We would also like to thank Tomas Sjödin for valuable comments.
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[9] Gardiner S., Sjödin T., Two phase quadrature domains, Journal d’Analyse
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NUMERICAL APPROXIMATION OF ONE PHASE

QUADRATURE DOMAINS
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Abstract. In this work, we present two numerical schemes for a free boundary
problem called one phase quadrature domain. In the first method by applying
the proprieties of given free boundary problem, we derive a method that leads
to a fast iterative solver. The iteration procedure is adapted in order to work
in the case when topology changes. The second method is based on shape
reconstruction to establish an efficient Shape-Quasi-Newton-Method. Various
numerical experiments confirm the efficiency of the derived numerical methods.
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1. Introduction.

In this paper we shall consider general mathematical approaches to solve
the free boundary problems of type

(1.1) A(u,Ω) = 0,

(1.2) B(u,Ω) = 0.

Here A corresponds to a well posed elliptic boundary value problem in an
unknown domain Ω = {x : u(x) > 0} = {u > 0} and B operates on
the functions supported at the free boundary Γ = ∂Ω. It is supposed that
function u can be solved from equation (1.1) for any given suitable domain
Ω. More precisely, in this paper we consider the following problem:

(P)





∆u = χΩ − µ, in R
N ,

u ≥ 0, in R
N ,

u = 0, in R
N \ Ω,

where µ is a given measure. Our aim in this work is to study systematic
and efficient ways to solve Problem (P) numerically.

The outline of the paper is as follows: In section 2, we present some basic
facts and mathematical background of quadrature domains. In section 3, we
investigate one of the applications of quadrature domains, Hele Shaw flow.
Section 4 is devoted to derive a numerical scheme which is based on the
properties of the free boundary especially blow up techniques. In section
5 we construct a numerical scheme for Problem (P) based on shape recon-
struction formulation. Finally, in last section we investigate some numerical
examples which show the efficency of the numerical algorithms.

2. Notations and mathematical background of quadrature
domains.

Let us review some notations that we use here. By Ω we mean an open subset
of R

N and Lp(Ω) the usual Lebesgue space with respect to the Lebesgue
measure. HLp(Ω) denote the subspace of Lp(Ω) that consists of harmonic
functions and SLp(Ω) for the subspace of Lp(Ω) that consists of subharmonic
functions. We also show the characteristic function of Ω by χΩ and G always
denotes the usual ”fundamental solution” for the Laplace operator in R

N .
In other words, for x ∈ R

N \ {0}

G(x) =

{
1

N(N−2)ωN
|x|2−N , for N ≥ 3,

− 1
2π

ln |x|, for N = 2,

where ωN denotes the volume of the unit ball in R
N .
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Definition 2.1. Let µ be a measure with compact support. By a quadrature
domain we mean an open connected set Ω ⊂ R

N such that supp(µ) ⊂ Ω
and

(2.1)

∫

Ω
hdx ≥

∫
hdµ,

holds for all h ∈ SL1(Ω). We write Ω ∈ Q(µ, SL1) if (2.1) holds and
µ(Ω) < ∞.

If one consider
∫
Ω hdx =

∫
hdµ for all h ∈ HL1(Ω) then Ω is a quadrature

domain and we write Ω ∈ Q(µ,HL1).
The simplest quadrature domain is a circular disc. Suppose that µ = αδ

where δ is a Dirac mass at origin and α > 0. Then

Q(µ,HL1) = Q(µ, SL1) = {B(0; r)},
where r ≥ 0 is determined by |B(0; r)| = α, (see [6]). Generally if Ω is a
bounded domain in R

N and

(2.2)

∫

Ω
hdx = |Ω|h(x0),

holds for all h ∈ HL1(Ω), where x0 is an arbitrary point, then Ω is a ball
centered at x0.

Let Uµ, the Newtonian potential of the measure µ which is defined by

Uµ(x) := (G ∗ µ)(x) =

∫

RN

G(x − y)dµ(y), x ∈ R
N ,

and it satisfies the Poisson’s equation −∆Uµ = µ in the distribution sense.
For the sake of simplicity, we shall use UΩ instead of UχΩ . It is immediately
verified that if Ω is open and bounded then as function of x ∈ Ω,

G(x − y) ∈ HL1(Ω), ∀y ∈ Ωc and − G(x − y) ∈ SL1(Ω), ∀y ∈ Ω.

Gustafsson in [6] has showed that Ω ∈ Q(µ, SL1) if and only if

(2.3)

{
UΩ ≤ Uµ, in R

N ,

UΩ = Uµ, in R
N \ Ω.

Also if one considers u = Uµ − UΩ ≥ 0, then

(2.4) ∆u = χΩ − µ in R
N .

Note that from (2.4) one has ∆u = χΩ away from supp(µ) and according
to results in local regularity of solutions of elliptic PDEs, we obtain u ∈
W 2,p

loc (Ω) and for every 1 < p < ∞. Also ∇u ∈ W 1,p
loc (Ω). By the Sobolev

embedding theorem the first derivatives are therefore Hölder continuous with
Hölder exponent α < 1.

Sakai in [13] has proved that the definition of quadrature domain is equiv-
alent to the well-known one-phase free boundary problem in distribution
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scenes. More precisely, from PDE point of view, Ω ∈ Q(µ, SL1) is equiva-
lent to

(2.5)

{
∆u = χΩ − µ, in R

N ,

u ≥ 0, in R
N .

Remark 1. Suppose that m denotes the Lebesgue measure. By (2.3) we
know that u = ∇u = 0 in R

N \ Ω. Now taking integration of (2.4) gives

0 =

∫

∂Ω

∂u

∂n
ds =

∫

Ω
∆u dx = m(Ω) − µ(supp(µ)).

This fact is also a consequence of (2.1). In other words, we know the volume
of the solution priori.

Example 2.2. As an other example of one phase quadrature domain, sup-
pose that x0 ∈ R

N and a > 0, M > 1. Let B1 = B1(x0, a) and µ = MχB1
.

Then (2.5) reads

(2.6)

{
∆u = χΩ − MχB1

, in Ω,

u = ∇u = 0, in Ωc.

The spherical symmetry of the problem shows that the we have to find
a radial solution u = u(|x|) for (2.6). Consequently we suppose that Ω =
B2 = B2(x0, r) for some r > a. To make more easier we consider that u = u1

on B1 and u = u2 on B2 \B1. We desire to patch u1 and u2 on ∂B1 without
loosing regularity. Therefore our problem is

(2.7) ∆u =

{
1 − M, on B1,

1, on B2 \ B1,

with the following conditions

(2.8)





u1 = u2, on B1,

∇u1 = ∇u2, on B1,

u2 = 0, on (B2)
c,

∇u2 = 0, on (B2)
c.

By some calculations and considering the fundamental solution for Laplacian
operator one has

(2.9) u(x) =





(1 − M) |x−x0|2
2N

+ A1, on B1,
|x−x0|2

2N
+ A2|x − x0|2−N + A3, on B2 \ B1,

0, on (B2)
c,
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where A1, A2, A3 are appropriate constants which are computed with respect
to (2.8). Now we obtain

(2.10) u(x) =





(1 − M) |x−x0|2
2N

+ r2−Ma
2(2−N) , on B1,

|x−x0|2
2N

− rN |x−x0|2−N

N(N−2) + r2

2(2−N) , on B2 \ B1,

0, on (B2)
c,

where r = M
1
N a.

If N = 2 we can replace log |x − x0| instead of |x − x|2−N in (2.10) and
we derive that

(2.11) u(x) =





(1 − M) |x−x0|2
4 + a2

4 M + r2

2 (log a
r
− 1

2

)
, on B1,

|x−x0|2
4 + r2

2 log |x − x0| − r2

2

(
log r + 1

2

)
, on B2 \ B1,

0, on (B2)
c,

with r = M
1
2 a.

Remark 2. Suppose that N = 2, µ = δ0. Let B(0, ǫ) be an approximation
of supp(µ) with M = 1

πǫ2
for ǫ enough small. Then one can obtain r = 1√

π
.

2.1. An estimate of quadrature domain.

In our problem the domain Ω is part of the solution, so in order to generate
a mesh, one needs to find a domain which contains Ω. To do this we find a
bigger domain such that Ω is embedded in it as follows.

By r(µ) we mean a positive number corresponding to the positive measure
µ such that

|Br(µ)| = m(Br(µ)) =

∫

RN

dµ = µ(RN ),

where m denotes Lebesgue measure in R
N . The following theorem is due to

Sakai, see [14].

Theorem 2.3. [14] Let µ be a finite positive measure with support in the
closed ball BR, R > 0. Then every quadrature domain Ω of µ for subhar-
monic functions satisfies

(2.12) Ω ⊂ Br(µ)+R.

Furthermore, if r(µ) > 2R then

Br(µ)−R ⊂ Ω.

For instance let µ = g(x)χB1
, where g is a positive function with M =

supB1
g(x), then Ω ⊂ B√

M+1.

For more information about one phase quadrature domain see [6, 7, 8, 13,
15].
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3. An application (Hele Shaw flow).

One application of the problem appears in Laplacian growth like Hele-Shaw
flow which comes up in flow’s dynamic. One imagines that a domain like
D0 is filled with a fluid, say water, and the outer domain with another fluid,
say oil. Water is supposed to be injected at the origin and there is an oil
drain at infinity. The pressure p, satisfies the Laplace equation

∆p = 0.

We neglect the surface tension and suppose that pressure vanishes on the
boundary. More precisely and from a mathematical point of view, suppose
that some incompressible fluid has been confined between two parallel plate
and we inject more fluid by moderate velocity to it. Therefore the fluid
between plates begin to occupy more space. We are interested in to study
the behavior of the boundary of the fill space.

This problem was introduced by S. Richardson [12]. Suppose that ν is a
positive, finite and non zero measure with compact support and supp(ν) ⊆ D
where D is an open subset of R

N by a C1 boundary. Let pD the super
harmonic function such that

(3.1)

{
−∆pD = ν in D,

pD = 0 on ∂D.

We are looking for a family of regions Dt for t ≥ 0, such that ∂Dt moves
with the velocity −∇pDt.

Definition 3.1. Suppose that I is an interval in R. Let µ = χD0
+ tν, t ∈ I.

A map t → Dt ⊂ R
N is a weak solution of the free boundary problem if the

function ut ∈ H1(RN ) defined by

(3.2) ∆ut = χDt − µ,

satisfies the following conditions:

• ut ≥ 0,
•

∫
ut(1 − χDt) dx = 0.

Last condition guarantee that ut = 0 in R
N \ Dt, see [5].

Remark 3. PDE (3.2) together with the above conditions are a special case
of Problem (P).

Next theorem states the corresponding quadrature domain of the solution
of the Hele-Shaw problem.

Theorem 3.2. [5] Suppose that µ and D0 are as before and T > 0. Then
there exists a weak solution

[0, T ] ∋ t → Dt ⊂ R
N ,
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for Hele Shaw problem which is unique and if ut be the function appearing
in (3.2), then ut is also unique and

ut =

∫ t

0
pDτ dτ.

Moreover, Dt can be chosen to be

Dt = D0 ∪ {z : ut(z) > 0}.
For more information about Hele shaw see [5], [12], [9] and references

therein.

4. First numerical method to approximate the solution of
Problem (P).

In this part using the properties of given free boundary problem, we con-
struct an algorithm that leads to a fast iterative solver. The level set method
is next applied to evolve the interface in the direction of the normal velocity
field.

Consider Problem (P) in dimension one. Our motivation for the first
method is based on the fact that for any x outside of the supp(µ) one has

u′(x) = ±
√

2u.

To be more precise, one has

(4.1) ∆u = 1, in {x : u(x) > 0} \ supp(µ).

Let xf be a free boundary point. Multiply (4.1) by u′ and integrate over
[x , xf ] to find that

1

2
(u′)2(x) = u(x).

Let [c , d] be an initial guess for {x : u(x) > 0} which contains the support
of measure µ. Next we solve the following boundary value problem

(4.2)

{
u′′ = 1 − µ in [c , d],

u′(c) =
√

2u(c), u′(d) = −
√

2u(d).

Then to get the free boundary points, we move the points c, d in the normal
direction with speeds

√
2u(c) and

√
2u(d), i.e,

df = d −
√

2u(d), cf = c +
√

2u(c),

where cf and df are free boundary points. Note that in this case we need
only one iteration, see section 4.3.

Remark 4. To have existence for the boundary value problem (4.2) one has
to choose [c, d] enough closed to supp(µ).
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4.1. Blow up techniques and the main idea.

In higher dimensions we shall prove that when we are enough close to the

free boundary still the quotient |∇u(x)|√
2u(x)

goes to one. First, we recall some

known properties and lemmas that have been proved in [11], which we shall
use in the proof of Theorem 4.6.

The following lemma shows the growth of u away from the free boundary
Γ.

Lemma 4.1. [11] Let u ∈ L∞
loc(Ω), Ω = {u > 0} be a solution of Problem

(P). If x0 ∈ Γ then
sup

Br(x0)
u ≤ Cr2,

where C = C(N).

Corollary 4.2. Let u be as in Lemma 4.1. Then

u(x) ≤ Cdist(x, ∂Ω)2.

Also we need the following Non degeneracy property of the solutions.

Lemma 4.3. [11] Let u be a solution of given free boundary problem, then
we have the inequality

sup
∂Br(x0)

u ≥ r2

8N
, for any x0 ∈ Γ.

Definition 4.4. (Local solutions) For given R,M > 0, and x0 ∈ Γ, let
PR(x0,M) be the class of C1,1 solutions u of Problem (P) in BR(x0) such
that

|Du(x) − Du(y)| ≤ M |x − y| ∀x, y ∈ R
N .

In the case x0 = 0 we also set PR(M) = PR(0,M).

In the above definition if R = ∞ then we get solutions in the entire space
R

N and grow quadratically at infinity, which are called global solutions.
If u ∈ PR(x0,M) and λ > 0, then the proper re-scaling of u at x0 is

defined by

ux0,λ(x) =
u(x0 + λx) − u(x0)

λ2
.

Note that by using non degeneracy, Lemma 4.3, and quadratic growth prop-
erties, Lemma 4.1, it can be shown that when λ → 0 then

ux0,λ → u0 in C1,α
loc (RN ) for any 0 < α < 1,

where u0 ∈ C1,1
loc (RN ). This u0 is called a blowup of u with fixed center x0

and also u0 is a global solution, i.e, u0 ∈ P∞(M). For more details see [11].

Theorem 4.5. [11] (Blow up with fixed center). Let u ∈ PR(x0,M) be a
solution of Problem (P). Suppose that

u0(x) = lim
j→∞

ux0,λj
(x), x ∈ R

N ,
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for some sequence λj → 0 as j → ∞. Then u0 is homogeneous of degree two
with respect to the origin, i.e.

u0(λx) = λ2u0(x), for any x ∈ R
N and λ > 0.

In the proof of next theorem we will use the concept of regular points.
x0 ∈ Γ is a regular point if every blow up of u at x0 is a half plane solution.
Precisely, there is two category of blowup for a solution of the Problem (P).
Let u0 be a blowup with a fixed center then it has one of the following forms
(see [11]):

• Polynomial solution: u0(x) = 1
2(x ·Ax), x ∈ R

N . Here A is an n× n
symmetric matrix with Tr(A) = 1.

• Half plane solutions: u0(x) = 1
2(x · e)2+, x ∈ R

N where e is a unit
vector.

Theorem 4.6. Let x0 be a free boundary point and x ∈ {u > 0} then

lim sup
x→x0

= lim inf
x→x0

|∇u(x)|√
2u(x)

= 1.

Proof. By Theorem 4.5, blowup solutions at fixed point x0 ∈ Γ is a global
homogeneous solution of degree two. Let u be a homogeneous global solu-
tion. Then by above discussion, u has the following form

u0(x) =
1

2
(x · e)2+, x ∈ R

N where e is a unit vector.

Without loss of generality assume that x0 = 0 then we know that

u(rx)
r2 → (x1)2+

2 in C1,α,

which means ∣∣∣∣
u(rx)

r2
− (x1)

2
+

2

∣∣∣∣ → 0,

and consequently,
∣∣∣∣
∇u(rx)

r
− x1e1

∣∣∣∣ → 0.

From above one can get

u(rx) =
(rx1)

2
+

2
+ cr2, where c is an arbitrary small constant and

∇u(rx) = (rx1)e1 + O(rα), α < 1.

Using above expression for u(rx) and |∇u(rx)| and taking the quotient im-
plies the limit. �
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4.2. Level set formulation.

The level set method was introduced by Osher and Sethian for implicitly
tracking dynamic surfaces and curves, see [10, 16]. The main idea behind
this method is to embed an interface Γ, which lies in R

N−1 into a surface in
dimension R

N . We can do this embedding by defining a proper function φ
such that Γ is the zero level set of φ, i.e,

Γ = ∂Ω = {x ∈ R
N ; φ(x) = 0}.

Suppose that Γ divides R
N into multiple connected components then one

can recognize the inside of one component from its exterior when the sign
of φ changes.

Regarding to Theorem 2.3 let T be a given rectangle such that Ω ⊂
Br(µ)+R ⊂ T for appropriate R > 0. To apply the level set method for
Problem (P), we need φ be positive in T \Ω and negative in Ω. By this way
the outward normal vector of Ω is given by

n =
∇φ

|∇φ| .

We note that Problem (P) is stationary and the level set formulation
requires a time evolution so we define the parameter t and introduce a
family of boundaries Ω(t) for t > 0 as the level sets by

∂Ω(t) = {x ∈ R
N ; φ(x, t) = 0},

for unknown function φ : T × R
+ → R. By chain rule

φt + ∇φ(x(t), t) · x′(t) = 0.

Let F = x′(t) · n which means that F is speed in outward normal direction.
Then the level set equation will be as follows

{
φt + F |∇φ| = 0,

φ(x, t = 0) is given.

In this paper we restrict our attention to the case that φ is considered
as the sign distance function and therefore |∇φ| = 1. Hence the level set
equation turns to

(4.3)
∂φ

∂t
+ F = 0 in T × R

+.

4.3. A mixed boundary value problem and first algorithm.

Assume (Ω, u) be a smooth solution of Problem (P). Our aim is to build a
sequence (Ωk, uk) of solutions of an approximate quadrature domain problem
which converges towards (Ω, u). Assume that pk ∈ ∂Ωk. Let nk be the
normal outward vector on ∂Ωk. By Taylor formula, one can write

u(pk + dknk) ≃ u(pk) + dk∇u(pk) · nk +
d2

k

2
nT

k · D2u(pk) · nk.
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We wish to have u(pk +nkdk) = 0, so if we put the ∇u(pk) ·nk = −
√

2u(pk)

and use the approximation D2u ≃ 1
2(∆u)I, then one gets dk =

√
2u(pk). It

means that if Γk = ∂Ωk then {Γk + dk · nk} converges to Γ.
To construct an algorithm let U be an initial guess of Ω which contains

supp(µ). Consider the following boundary value problem which has a vital
role in the numerical scheme

(4.4)

{
∆u = 1 − µ, in U,
∂u
∂n

= −
√

2u, on ∂U.

Remark 5. We note that (4.4) is not stable at the points close to the free
boundary, therefore alternatively we solve the following problem to have
more efficient and robust scheme,

(4.5)

{
∆uk = 1 − µ, in Ωk,
∂uk

∂nk
= −θuk, on ∂Ωk.

We desire that θuk behaves like
√

2uk, therefore one is able to choose

θ =

√
2

uk−1
.

The existence of (4.5) is based on minimization techniques and is a special
case of the next lemma.

Lemma 4.7. [3] Assume β : R → R is smooth, with

0 < a ≤ β′(z) ≤ b (z ∈ R),

for constants a, b. Let f ∈ L2(U), U ⊂ R
N is a bounded, open set with

smooth boundary. For

(4.6)

{
−∆u = f, in U,
∂u
∂n

+ β(u) = 0, on ∂U,

there exists a unique weak solution.

Now consider the following boundary value problem

(4.7)

{
∆u(t) = 1 − µ, in Ω(t),
∂u(t)
∂n

= −
√

2
u(t−1)u(t), on ∂Ω(t).

We choose the quantity
√

2u(t) as the speed which decreases in Ω(t)\supp(µ)
and goes to zero when Ω(t) approaches to the free boundary. Regarding to
(4.3), the displacement of the boundary Ω(t) can be obtained by considering
the following equation :

(4.8)
∂φ

∂t
+

√
2u(t) = 0, on ∂Ω(t).
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Now let T be the rectangle in section 4.2. The extension of the previous
equation to whole domain T , is one of the important issue in the level set
approach. To do this we solve the problem:

(4.9)





∆v(t) = 1, in Ω(t) \ supp(µ),

∆v(t) = 0, in T \ Ω(t),

v(t) = 0, on ∂(supp(µ)) ∪ ∂T ,

v(t) =
√

2u(t), on ∂Ω(t).

We now extend equation (4.8) to T by

(4.10)
∂φ

∂t
+ v(t) = 0, in T \ supp(µ).

For more information on velocity extension see [4, 10].

4.3.1. First algorithm for Problem (P).

Choose a tolerance, TOL<< 1.

(1) Set k = 0, choose an initial domain Ω0 with Γ0 = ∂Ω0 such that

supp(µ) ⊂ Ω0 ⊂ Br(µ)+R.

(2) Compute uk on Ωk which is the solution of the following elliptic
boundary value problem

(⋆)

{
∆uk = 1 − µ, in Ωk,
∂uk

∂nk
= −θuk, on ∂Ωk.

(3) Solve (4.9) and obtain v.
(4) Update the level set function φ from (4.10) to get Ωk+1.
(5) Solve (⋆) in Ωk+1 and get uk+1.
(6) If |uk+1| < TOL, then stop else set k = k + 1 and go to (2).

5. Second numerical method to approach to the solution of
Problem (P) based on shape optimization.

The shape sensitivity analysis is used to define a velocity field, which allows
us to update the surface while decreasing a given cost function. The solution
of an elliptic boundary value problem usually depends highly nonlinearly on
the geometry of the given domain. Thus the geometry can not be solved
straightforward from a linear equation.

In shape optimization approach, we rewrite the free boundary problem
such that the minimum of some cost functional is attained at the solution
of free boundary. The solution of Problem (P) minimizes the functional

(5.1) E(u,Ω) =

∫

Ω

1

2
|∇u|2dx +

∫

Ω
(1 − µ)u dx,

over u ∈ H1(Ω) where Ω = {u > 0}. Note that we get u = 0 on ∂Ω.
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In the following we discuss the shape sensitivity analysis for the above
shape functional related to Problem (P). At first, we briefly recall some
basic facts related to shape calculus [20].

In shape sensitivity we analyze how the solution of a PDE changes when
the domain is changing with a velocity field. Let x ∈ R

N , and V(t, x) be a
velocity field (vector field) defined in D,V ∈ Ck(D; RN ),V|∂D = 0. Let t be
artificial time. Assume that Σ ⊆ D. It is natural to define transformation
Tt(V)x = X(t, x) with a velocity field V by differential equations

∂X

∂t
(t, x) = V(t, x), X(0, x) = x, x ∈ Σ.

One can see that this transformation is quite close to a perturbation of the
identity in [20, 1], where the transformation was defined by

Tt(V) = I + tV(x).

For small perturbations these two transformations are close (see [21]). The
image of Σ ⊂ Ω under Tt is Σt.

Let J be a domain functional J : Σ 7−→ R . We say that the functional
has a directional shape derivative to direction V at Σ if the limit

lim
t→0

J(Σt) − J(Σ)

t
:= dJ(Σ,V),

exists. If further dJ(Σ,V) is linear and continuous with respect to V and
it exists for all directions V, we say that J is shape differentiable at Σ.
By Hadamard’s structure theorem, dJ(Σ,V) depends only on the normal
component of V on the boundary of Σ, see [22, 23].

We use the notations uΩ or u(Ω) to show the dependence of solution
of a given PDE with respect to the domain Ω. For a function v(Σ) and
Σ ∈ Ck, k ≥ 1, we define material derivative as a limit

v̇(Σ;V)(x) := lim
t→0

v(Σt) ◦ Tt(V) − v(Σ)

t
.

This limit may exist either in a weak or a strong sense, and the material
derivative is called a weak or strong material derivative respectively, see [20].

The shape derivative of v(Σ) in the direction V is the element v′(Σ;V)
defined by

v′(Σ;V) := v̇(Σ;V) −∇v(Σ) · V(0),

whenever it exists either in a weak or a strong sense. For simplicity’s sake
we shall utilize v′Σ instead of v′(Σ;V).

Shape derivative represents the change of function v with respect to the
geometry. Equivalently, shape derivative is the variation of the state variable
with respect to the shape change.

The following lemmas represent the basic formulas for shape differentia-
tion of integrals. In the following we assume that Ω is bounded.
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Lemma 5.1. [20] Let f(Ωt) ∈ L1(Ωt) be shape differentiable and f ′(Ωt) ∈
L1(Ωt), t ∈ [0, T ] and T > 0. If Ωt is a C0,1-domain, then

(5.2)

(
d

dt

∫

Ωt

f(Ωt)dx

)∣∣∣∣
t=0

=

∫

Ω
f ′(Ω)dx +

∫

∂Ω
f(Ω) < V,n > ds.

5.1. Shape optimization techniques for Problem (P) and second
algorithm.

First ingredient is the shape derivative of the function uΩ.

Lemma 5.2. The shape derivative of uΩ in the normal direction V, is given
by the function u′

Ω, satisfies

(5.3)

{
∆u′

Ω = 0, in Ω,

u′
Ω = − ∂u

∂n
< V(0),n >, on ∂Ω.

Proof. The minimizer of the functional in (5.1) satisfies the following equa-
tion

∆uΩt = f = 1 − µ in Ωt.

By multiplying a test function, ϕ ∈ H1
0 (Ω), and taking integral one obtains

(5.4)

∫

Ωt

∇uΩt · ∇ϕ dx = −
∫

Ωt

f ϕdx.

Taking the derivative of the above equation respect to t and considering
Lemma 5.1 one can see that u′

Ω satisfies
∫

Ω
∇u′

Ω · ∇ϕdx = −
∫

∂Ω
f ′ dx = 0.

That is

∆u′
Ω = 0.

The boundary condition in (5.3) is verified by equation (3.6), chapter 3 in
[20]. �

Remark 6. Let Γ = ∂Ω be the free boundary for the solution of Problem
(P). Then

u′
Ω = 0 in Ω.

Let us now to analyze the behavior of the energy near the solution.

Lemma 5.3. Consider the energy functional (5.1) of Problem (P). Then
the shape derivative of E with respect to V is

(5.5) dE(Σ,V) =

∫

Σ
div(−1

2
|∇u|2 V) dx.
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Proof. By Lemma 5.1 one can see

dE(Σ,V) =

∫

Σ

(
∇u · ∇u′ + (1 − µ)u′) dx +

∫

∂Σ

(1

2
|∇u|2 + (1 − µ)u

)
V · n ds,

where u′ is the shape derivative of u into direction V. Our assumption on
Problem (P) states that u⌊∂Σ= 0. Then the shape derivative of E is

(5.6) dE(Σ,V) =

∫

Σ
∇u · ∇u′ dx +

∫

Σ
(1 − µ)u′ +

∫

∂Σ

1

2
|∇u|2 V · n ds.

According to Green’s theorem, the first term of (5.6) is

∫

Σ
∇u · ∇u′ dx = −

∫

Σ
u′ ∆u dx +

∫

∂Σ
u′ ∂u

∂n
ds,

and we get

dE(Σ,V) = −
∫

Σ
u′∆u dx +

∫

∂Σ
u′ ∂u

∂n
ds

+

∫

Σ
(1 − µ)u′ dx +

∫

∂Σ

1

2
|∇u|2 V · n ds

= −
∫

Σ
u′(1 − µ) dx +

∫

∂Σ
u′ ∂u

∂n
ds

+

∫

Σ
(1 − µ)u′ dx +

∫

∂Σ

1

2
|∇u|2 V · n ds

=

∫

∂Σ
u′ ∂u

∂n
ds +

∫

∂Σ

1

2
|∇u|2 V · n ds.

As u is the solution of a Dirichlet problem, Lemma 5.2 gives us u′ =
− ∂u

∂n
< V,n > on ∂Σ. Hence we have for dE(Σ,V) the expression

dE(Σ,V) = −
∫

∂Σ

1

2
|∇u|2 V · n ds,

and by Stock’s theorem it turns

dE(Σ,V) =

∫

Σ
div(−1

2
|∇u|2 V) dx.

�

Corollary 5.4. The solution of Problem (P) is a critical point of the energy
functional E.

Proof. We choose V · n = −∂uΣ

∂n
on ∂Σ. If Σ ⊂ Ω then ∂uΣ

∂n
< 0 so we

have dE(Σ,V) ≤ 0 and it means that E is decreasing respect to V and the
solution of free boundary where ∇u = 0, is a critical point of E. �
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5.1.1. Second algorithm for Problem (P).

(1) Set k = 0, choose an initial domain Σ0 such that supp(µ) ⊂ Σ0 and
set Γ0 = ∂Σ0.

(2) Solve ∆uk = 1 in Σk \ supp(µ) with Dirichlet boundary condition
uk = 0 on Γk,

(3) Compute a normal velocity from (2), i.e.

V · n = −∇uk · nΓk

(4) Stop if ‖∇uk‖L2(Γ) is sufficiently small.
(5) Given Γk, move the free boundary by Quasi-Newton method, i.e,

In dimension one

xk+1 = xk − u′(xk).

In dimension two

Γk+1 = Γk −∇u(xk) · I.

Obtain the new shape Σk+1 with free boundary Γk+1.
(6) Set k = k + 1 and go to (2).

5.2. Alternative viewpoint.

One can consider another starting point. We try to determine a shape Ω
such that

∂uΩ

∂n
= 0, on Γ.

In order to derive a suitable weak formulation, we multiply the normal
derivative by a smooth test function ϕ and integrate over Γ, i.e. we have

∫

Γ

∂uΩ

∂n
ϕ dσ = 0.

By Gauss’ Theorem together with the Poisson equation for uΩ we have
∫

Ω
(fϕ + ∇uΩ · ∇ϕ) dx = 0, ∀ ϕ ∈ H1

0 (Ω).

In other words, the first optimality condition for E (with respect to v) reads

dE(u;ϕ,Ω) := dE(u + εϕ,Ω)⌊ε=0=

∫

Ω
(fϕ + ∇uΩ · ∇ϕ) dx = 0,

for all u ∈ H1
0 (Ω). If one consider

J(ϕ,Ω) =

∫

Ω
(fϕ + ∇uΩ · ∇ϕ) dx,

then J(Ω, .) is a continuous linear functional on H1
0 (Ω), i.e, it can be in-

terpreted as an element of H−1(Ω) and we can define an operator F (Ω) =
J(Ω, .) mapping into H−1(Ω) such that (5.7) is equivalent to solving

(5.7) F (Ω) = 0 in H−1(Ω).
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Now we can do all similar calculations for the functional J and deduce same
results.

6. Numerical examples.

Example 6.1. In this example the support of the measure µ is a polygon
which is shown in Figure 1. We obtain the corresponding quadrature do-
main. Set µ = 1.5χP . In Figure 1, the initial guess is the circle and this
figure shows the solution after first iteration. Figure 2 states the result after
four iterations. Figure 3 illustrates the norm of the gradient on the boundary
of the solution in forth iteration.

Now let µ = 11χP . Figure 4 shows the solution after first iteration and
Figure 5 states the final result which is close to a ball. Figure 7 illustrates

the quantity of |∇u|√
2u

on a cross section line which has been shown in Figure

6. This Figure verifies Theorem 4.6.

Example 6.2. Suppose that µ = t(χB1
+ 2χB2

) is uniformly distributed on

two circles B1(x1, 1), B2(x2, 1) where x1 = (−2, 0), x2 = (
√

8, 0). According
to Example 2.2 or Remark 1 we find that if t = 4 then B1 and B2 touch
each other at origin tangentially. Let time increase to t = 5 and solve

(6.1)

{
∆u = 1 − t(χB1

+ 2χB2
), in Ω,

u = 0, on ∂Ω,

to get the corresponding quadrature domain. Figure 8 shows the solution
at t = 5 and Figure 9 illustrates |∇u| for t = 5. Figure 10 is the solution of
similar PDE for t = 6.
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Figure 1. The colored part shows the solution Ω1, after first iter-
ation, where support of µ is the polygon and the initial guess (Ω0)
is a ball.

Figure 2. Final domain after four iterations when µ = 1.5χP and
where P is the polygon.
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Figure 3. The value of |∇u| on the boundary of the solution after
four iterations.

Figure 4. The first iteration for µ = 11χP , where P is the poly-
gon. Initial guess is a ball with center at origin.



20 M.Bazarganzadeh & F.Bozorgnia Paper B

Figure 5. Final quadrature domain when µ = 11χP and where
P is the polygon.

Figure 6. The surface of the solution u and a cross section line.
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Figure 7. The amount of |∇u|√
2u

on the cross section line in figure (6).

Figure 8. The quadrature domain corresponding to the solution
of (6.1) for t = 5.
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Figure 9. The quantity of |∇u| on the boundary of the solution
of (6.1) for t = 5.
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