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Abstract

In this thesis, we present some basic research on the coamoeba A
′

V of a

complex algebraic variety V and its relation to the corresponding amoeba

AV . The amoeba has proven to be useful in many areas of mathematics,

and it is to be expected that its dual companion, the coamoeba, should

acquire a similar importance. So far not much has been written about the

coamoeba and its position in mathematics is to a large extent yet to be

discovered. However, there are already known applications, both within

mathematics and also in theoretical physics.

Among the specific results obtained one can mention the following.

We provide some general new results about the boundary and closure of

the coamoeba, and we also use topological methods to find a minimal

extension of A′

V when V is a hypersurface in C
2. In particular, we study

the linear case. Even in this basic setting, where the methods from linear

algebra can be efficiently used, there has been very little previous work.

Our findings are therefore of a rather fundamental nature. The coamoebas

of a line, a hyperplane and a linear space of codimension p in C
2p, are

particularly closely examined.
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1 Introduction

The notion of amoebas was introduced 1994 by Gelfand, Kapranov and Zelevin-
sky and originally used for the study of hypergeometric functions. Since then,
amoebas have proven to be of interest in many areas and also in its own right
as a bridge between complex analysis and tropical geometry.

In 2005, Passare and Tsikh introduced the concept of coamoebas. It is de-
fined as the set of argument vectors corresponding to points in a variety. Physi-
cians often use the term algae instead. Some people who have studied coamoebas
are Lisa Nilsson and Mikael Passare at Stockholm University ([12],[11]), Mounir
Nisse at Texas University ([13]) and Grigory Mikhalkin at the University of
Toronto and Andrei Okounkov at Princeton University ([9]).

The purpose of this thesis is to give a description of the coamoeba of a
complex algebraic variety and its relation to the variety. Since the coamoeba
has not been an object of study for more than five years, we are still in the stage
of very basic research like the study of the extension and boundary. Except for
these things, the coamoeba is characterized by its contour, that is, the critical
values of the argument mapping. Finally we are generally interested of the fiber
in the variety of a point in the coamoeba.

In the first chapter, we give the basic definitions and show some basic results.
Also, two of the situations where the amoeba and coamoeba are well understood
are presented. The first is when the variety is a hyperplane and the second when
it is a line.

In the following two chapters, we are concentrating on general questions. The
main result concerning the boundary of the coamoeba is Theorem 3.3, a result
that has been shown independently by Nisse and Sottile. This result points at
the importance of looking at initial forms of the members of the polynomial
ideal corresponding to the variety. Just as in the case of amoebas, the initial
forms are crucial for the understanding of the coamoeba globally.

Theorems 4.7 and 4.11 concern the extension of the coamoeba on the torus
and the fibers of points. Also here the initial forms plays a central role. The
main tool used is the theta variety. The second half of the chapter is solely
about hypersurfaces in C2.

We return to the affine linear setting in the last chapter. Even the linear
situation is not yet completely understood and at the end, we focus on the
special case of linear spaces with half the dimension of the space containing
them. The baby example of a coamoeba is that of a line V in C2. Then V is
also a hyperplane, and finally a half-dimensional space. Thus it carries three
different kind of properties and in fact it becomes clear that we can retrieve
different kinds of “traces” of the two-dimensional line as general statements in
each of the three special cases.

Almost everything in the thesis is ongoing work. Several results do not yet
have its, what we believe, potential application, like Theorem 4.7 and Proposi-
tion 5.11. Many concepts we use, like e.g. theta variety/cone, degenerate, are
not used in any preceding works directly related to amoebas or coamoebas that
we know.
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2 Definitions and basic results

Throughout this section, V is an algebraic variety in Cn∗ of pure codimension p
and f is a Laurent polynomial on Cn. We write

f(z) =
∑

α∈A

aαz
α

where A is the set in Zn ⊂ Rn for which aα 6= 0, α ∈ A. Here we use multi-index
notation:

zα := zα1

1 ...zαn
n

Definition 1. The Newton polytope ∆f of f is the convex hull in Rn of A.
Let Γ be a face of ∆f . Then we write f |Γ for the truncation of f to Γ:

f |Γ =
∑

α∈Γ

aαz
α

Since the polynomials representing a variety V of codimension 1 have the same
index set A up to translation, the Newton polytopes of these polynomials also
coincide up to translation and hence it is an invariant of V , which happen to
contain a lot of information about the structure of V .

Definition 2. The amoeba AV of V is the set Log V ⊆ Rn where

Log z = (log |z1|, ..., log |zn|)

The coamoeba A′
V of V is the set Arg V ⊆ T

n or ⊆ R
n where

Arg z = (arg z1, ..., arg zn)

The term amoeba alludes to the shape of the set LogV with its holes and
“tentacles”. The first picture to have in mind is that of a two-dimensional
amoeba A in R

2. From long distance, A looks like a fan with a ray at every
direction normal to the facet Γ of ∆f , equalling the amoeba of f |Γ. The infinite
components of Ac correspond to regions where monomials at the boundary of
∆f dominates. In particular, each vertex α of ∆f corresponds to a cone in Ac

called the recession cone , that is bounded by lines normal to the two edges
adjacent to α (see [4]). Bounded components of Ac correspond to regions where
a monomial with order in int∆f dominates. A more careful discussion of this
can be found in [14].

We are frequently going to talk about ExpA, the amoeba lifted to R
n
+ by

the coordinatewise mapping xj 7→ exj , rather than A itself, since this usually
can be described more briefly. Note that these sets are homeomorphic. The
corresponding lifting TanA′ of A′ is that of θj 7→ tan θj in each coordinate.
However, this mapping is homeomorphic only on a fundamental domain in Rn

of Tan.
Let P : R2(n−p) → V be a locally smooth parametrization of V at a regular

point z and let ϕ : V → Rn be a smooth mapping. If the differential of ϕ ◦ P
has full rank, i. e. rank min(2n − 2p, n), at P−1(z), then ϕ ◦ P is locally a
submersion from R2n−2p to a smooth manifold of maximal dimension in ϕ(V )
and with this motivation, we say that z is a non-critical point of ϕ. If z is a
singular point of V or for any parametrization P , the differential of ϕ ◦ P does
not have full rank at P−1(z), we say that z is a critical point of ϕ.
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Theorem 2.1. The critical points of Log and Arg on V coincide.

Proof. Let z be a regular point on V . In a small neighborhood U of z, we can
choose a branch of the coordinatewise complex logarithm log = Log +iArg so
that it is holomorphic there. Hence W := U ∩ logV is a holomorphic surface
and since Re and Im are linear mappings we have for any w ∈ W that

ReTW (w) = TReW (Rew), ImTW (w) = TImW (Imw)

where TX(q) denotes the tangent space of X at q. Since log = Log +iArg, we
are done if we can show that ReTW (z) has the same dimension as ImTW (z).

Since z is regular on V and log is diffeomorphic on U , log z is regular on W .
Hence TW (w) has maximal dimension and is defined by p linearly independent
forms 〈ck, ζ〉 = 0, ck = (ck1, ..., ckn) ∈ Cn. Let A, B be the p× n-matrices with
Akj = Re ckj , Bkj = Im ckj and let u, v ∈ Rn. Then u+ iv ∈ TW (z) if and only
if u and v satisfies

Re (〈ck, u+ iv〉) = Im (〈ck, u+ iv〉) = 0,

that is, the real equation systems Au = Bv, Bu = −Av. Now, we have

(

A
B

)

u =

(

B
−A

)

v ⇔

(

0 E
−E 0

) (

A
B

)

u =

(

0 E
−E 0

) (

B
−A

)

v ⇔

(

B
−A

)

u =

(

−A
−B

)

v

So u+iv ∈ TW (w) if and only if −v+iu ∈ TW (w). In particular, ReTW (w) =
ImTW (w). The theorem follows.

We denote the set of critical points of Log and Arg on V by KV . Let
PRn−1 be the real projective space of projective dimension n− 1. When V is a
hypersurface, KV can be described by the following mapping:

Definition 3. The logarithmic Gauss mapping γ : regV → Pn−1 is given by

γ(z) = (z1
∂f

∂z1
: ... : zn

∂f

∂zn
)

The vector γ(z) is the normal of the tangent space of the manifold logV at
the point log z, where we choose a locally holomorphic branch of log, hence the
name of the term. The following theorem was proved by Mikhalkin in [8].

Theorem 2.2. When V is a hypersurface, KV = γ−1(RPn−1).

Proof. Since V is a hypersurface, the matrices A, B in the proof of Theorem
2.1 are row vectors and since γ is normal to TW (w), we can choose A = Re γ,
B = Im γ. That is, u+ iv is in the tangent space of logV at log z precisely when
it satisfies the following real equation system:

〈Re γ, u〉 = 〈Im γ, v〉, 〈Re γ, v〉 = −〈Im γ, u〉 (2.1)
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If γ /∈ RPn−1), then Re γ and Im γ are linearly independent and for any fixed v
there is a solution to (2.1) for u. Hence z /∈ KV . Otherwise, Re γ = λIm γ for
some λ ∈ R and we see that a solution (u, v) to (2.1) must satisfy 〈Re γ, u〉 =
〈Im γ, u〉 = 0. Hence the rank of ReTW is not maximal and z ∈ KV .

Definition 4. The contour C(′) of A(′) is the image of KV in A(′).

Proposition 2.3. For an irreducible variety V ⊆ Cn with complex codimension
p, either V = KV or dim(KV ) < dim(V ) and

dim(A\C) = dim(A′\C′) = min(2n− 2p, n)

In particular, A(′) = C(′) if and only if V = KV .

Proof. By definition, dim(Arg(V \KV )) = min(dim(V \KV ), n) Furthermore,
KV is a subvariety of V and hence dim(KV ) < dim(V ) if V 6= VK . The re-
sult follows.

We finish this section with a simple observation. With real coefficients in
the defining polynomials, the coamoeba becomes symmetric.

Proposition 2.4. If V is a variety cut out by some polynomials f1, f2,...,f3
with real coefficients, then z ∈ V if and only if z̄ ∈ V . In particular, θ ∈ A′

V if
and only if −θ ∈ A′

V .

Proof. Since the coefficients are real, m(z̄) = m̄(z) for any monomial in any
function fj . Hence, if fj(z) = 0, then fj(z̄) = f̄j(z) = 0.

2.1 Hyperplanes

The case when it is easiest to describe A and A′ is when V is a hyperplane in Cn.
Let us assume that V = f−1(0) for a linear function f(z) = a0+a1z1+...+anzn.
We now state a result proved by Forsberg, Passare and Tsikh in [4].

Theorem 2.5. The set ExpA is given by the points r ∈ Rn+ that satisfies the
following generalized triangle inequalities:

|a0| ≤
n

∑

j=1

|aj|rj

|ak|rk ≤ |a0| +
∑

j 6=k

|aj |rj ∀k = 1, 2, ..., n

Clearly ExpA is included in the set given by these inequalities since oth-
erwise one of the monomials are dominating over all the others. The other
direction will not be discussed here.

The coamoeba of V is even easier to compute. The theory that applies is
discussed in chapter 4 and 5, but we will give a flavour already now. First look
at the case n = 2. We can assume that V is the zero set of f = 1 + az1 + bz2
where Arg a = α, Arg b = β. Consider the lines

θ1 = π + α, θ2 = π + β, θ2 = π + β − α+ θ1

on the torus. It is easy to check that they correspond to the coamoebas of
1 + az1 = 0, 1 + bz2 = 0 and az1 + bz1 = 0 respectively. Any line is orthogonal
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Figure 1: The amoeba and coamoeba for f = 1 + z1 + z2. The interior of A′ is
given by the oriented cells.

to one of the three facets of the unit simplex ∆f and we orient them outwards
from this polygon. Then A′ is given by the interior of the oriented cells that
appears on T, plus the three intersection points of the three lines. For arbitrary
dimensions, the following theorem now gives us the coamoeba.

Theorem 2.6. Let S be the set of one dimensional faces of ∆. Then

A′ =
⋃

Γ∈S

A′
Γ

This is a special case of Corollary 5.3 and we postpone the proof.

Figure 2: The complement of the coamoeba of f = 1 + z1 + z2 + z3 on the
fundamental domain ] − π, π]3 is the convex hull of two cubes. Origo is at the
center.

2.2 Lines

The other case when A and A′ are well understood is when V is a line. Then we
can, and will, describe the amoeba, the coamoeba and their contours by very
explicit calculations. Throughout this chapter, we let V ⊂ Cn be given by the
parametrization

t 7→ (t, d2 + e2t, ..., dn + ent), t = x+ iy, (x, y) ∈ R
2

6



Then V is cut out e.g. by the hyperplanes defined by

fk(z) = ekz1 + dk − zk, k = 2, 3, ..., n (2.2)

Definition 5. The line V is said to be real if

(
d2

e2
:
d3

e3
: ... :

dn
en

) ∈ PR
n−2

Note that the following assertion is equivalent:

djek
dkej

∈ R ∀ j, k = 2, 3, ..., n

We get the useful equation

0 = Im (dkej d̄j ēk) = Re (ej d̄j)Im (dkēk) + Re (dkēk)Im (ej d̄j) =

= Re (dj ēj)Im (dkēk) − Re (dk ēk)Im (dj ēj)
(2.3)

for every j, k = 2, 3, ..., n. Note that by this notion, the class of real lines
is strictly bigger than the class of lines that can be parametrized by a linear
mapping with real coefficients. A motivation of this broader definition is the
following theorem, for the parts concerning amoebas first proved by Kuzvesov
in [7].

Theorem 2.7. Let n ≥ 3. If a line V ⊂ Cn is real, then TanC′ consists of the
single point

(
Im (dj ēj)

Re (dj ēj)
,
Im d2

Re d2
, ...,

Im dn
Re dn

) (2.4)

where j can be any number between 2 and n. Furthermore, Log−1(x)∩V consists
of one point if x ∈ C and two points otherwise.

If V is not real, then C = C′ = ∅ and both A and A′ are homeomorphic to the
Riemann sphere minus k points where 3 ≤ k ≤ n+ 1 and generically k = n+ 1.

Proof. To decide wether a point z ∈ V is in KV , it suffices to see that the rank
of the n× 2-matrix A = Jac(Tan ◦Arg)V equals one at z. Let

τj = tan arg zj = Im zj/Re zj

By our parametrization, the first row of A is

(
∂τ1
∂x

,
∂τ1
∂y

) = (−
y

x2
,
1

x
)

while the j:th row, 2 ≤ j ≤ n, equals

(
∂τj
∂x

,
∂τj
∂y

) = (
Im (d̄jej) − y|ej|2

(Re dj + xRe ej − yIm ej)2
,

Re (d̄jej) + x|ej |2

(Re dj + xRe ej − yIm ej)2
)

The two columns of A are linearly dependent when every minor of A vanishes,
that is yRe (djej) − xIm (d̄jej) = 0. This means that

τ1 = y/x = −
Im (d̄jej)

Re (d̄jej)
=

Im (dj ēj)

Re (dj ēj)
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and by (2.3), this equality is possible for every j if and only if V is real. From
this we compute τk by repeated use of (2.3):

τk =
Im dk + yRe ek + xIm ek
Re dk + xRe ek − yIm ek

=

Im dkRe (dj ēj) + xRe ekIm (dj ēj) + xIm ekRe (dj ēj)

Re dkRe (dj ēj) + xRe ekRe (dj ēj) − xIm ekIm (dj ēj)
· 1 · 1 =

Im dkRe (dj ēj) + xIm (ekdj ēj)

Re dkRe (dj ēj) + xRe (ekdj ēj)
·
Re dkRe (dj ēj) − xRe (ekdj ēj)

Re dkRe (dj ēj) − xRe (ekdj ēj)
· 1 =

Im dkRe dkRe 2(dj ēj) − x2Re (ekdj ēj)Im (ekdj ēj)

Re 2dkRe 2(dj ēj) − x2Re 2(ekdj ēj)
·
Re dk
Re dk

=

Im dkRe dkRe 2(dj ēj)Re dk − x2Re 2(ekdj ēj)Im dk

(Re 2dkRe 2(dj ēj) − x2Re 2(ekdj ēj))Re dk
=

Im dk
Re dk

Assume that t is such that z(t) /∈ KV . Let θ = Arg t. For a fixed j,
|dj + a| = |dj + b| for a 6= b with |a| = |b| if and only if b is the reflection of a in
the line through dj and origo, that is, arg b = arg dj − arg a. Hence, letting θ′ =
arg dj−(arg ej+θ) and t′ = |t|eiθ, we have that |zj(t)| = |zj(t′)|. Since V is real,
arg dj − arg ej coincide for every j = 2, 3, ..., n and hence Log z(t) = Log z(t′).
There are no other points in V with the same value of Log, since |z1(t)| = |z1(t

′)|
whenever |t| 6= |t′|. Note that z(t) = z(t′) if and only if arg dj = ±(arg ej + θ)
for j = 2, 3, ..., n. But by (2.4) this is exactly when Arg z(t) ∈ C′, and hence
Log z(t) ∈ C.

If on the other hand V is not real, then we have seen that A and A′ have no
contour, meaning that Log and Arg are local diffeomorphisms. We also check
that Log and Arg are injections from V to A and A′, respectively, and it follows
that they are diffeomorphism. Since V is parametrized by P\{0, p2, ..., pn,∞}
where pj = −dj/ej , and since −dj/ej = 0 or ∞ for every j implies that V is
real, the theorem follows.

Figure 3: The amoeba of a real line (left) and a line that is not real (right).

We are now going to study A closer in the real case or rather the lifting
ExpA ⊂ Rn+ of A. Hence, we consider rj := |zj| rather than log |zj |.

8



Setting Re s = x and Im s = y we have that

r2j = (Re dj + xRe ej − yIm ej)
2 + (Im dj + xIm ej + yRe ej)

2 =

= |dj |
2 + 2Re (dj ēj)x+ 2Im (dj ēj)y + |ej |

2r21
(2.5)

Using the proportionality of (2.3) we hence have that for every j, k = 3, 4, ..., n
there is a λjk ∈ R such that

r2j + λjkr
2
k − |dj |

2 − λjk|dk|
2 − (|ej |

2 + λjk |ek|
2)r21 = 0 (2.6)

Of these equations we clearly can choose n−2 that are algebraically independent
and we see that ExpA must lie on a quadratic surface Z of real dimension 2.

However, the whole Z does not correspond to A. Each polynomial fj−1 in
(2.2) provides the inequalities

(|dj | − |ej |r1)
2 ≤ r2j ≤ (|dj | + |ej |r1)

2 (2.7)

By Theorem 2.5, z ∈ ∂Afj
whenever the absolute value of one monomial equals

the sum of absolute values of the two other monomials. This is precisely when
arg z1 ≡ arg(dj/ej) and arg zj ≡ arg dj modulo π and f(z) = 0. This in turn is
the case when θ ∈ C′

V = ∂A′. We conclude that

∂AV ⊂ ∂Afj

Hence, ExpAV = Z∩ExpAfj
. Note that {f2, f3, ..., fn} is a basis for the linear

polynomials that vanish on V . Hence for any such polynomial, the inequalities
in Theorem 2.5 are enough to determine ExpA given Z.

The following theorem sums up the previous discussion.

Theorem 2.8. Let V be a real line. Given the algebraic 2-surface Z containing
ExpA and any linear polynomial f that vanishes on V ,

ExpA = Z ∩ ExpAf

Next, we study the coamoeba of a line. Analogously to the case with amoe-
bas, we will consider TanA′ and find the surface and inequalities defining it.
To start with we consider any line, not just the real ones. If we set τj := tan θj ,
then we have τ1 = y/x and so, for k ≥ 2:

τj =
Im (dj + ejt)

Re (dj + ejt)
=

Im dj + τ1xRe ej + xIm ej
Re dj + xRe ek − τ1xIm ej

, ∀j (2.8)

By this, we get for a fixed k,

x =
Im (dk) − τkRe dk

τ1τkIm ek + τkRe ek − τ1Re ek + Im ek
(2.9)

By exchanging x in (2.8) by the expression given in (2.9), we get n − 2 alge-
braically independent cubic equations in τ1, ..., τn cutting out a real 2-dimensional
surface in (R∪{∞})n, quite analogous to the case of the amoeba. We note that
these equations become homogeneous of degree two precisely when all coeffi-
cients dj , ej are real (but hence not necessarily when V is real).
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The points on P which we exclude when we parametrize V are 0,∞ and for
every j, −dj/ej. If V is real, then by using (2.3), we get

Im (dk + ek(−dj/ej))

Re (dk + ek(−dj/ej))
=

Im dk
Re dk

, j 6= k (2.10)

Since TanC′ is just one point, the boundary of TanA′ must therefore be given
by the union of the following lines:

(λ,
Im d2

Re d2
, ...,

Im dn
Re dn

) (2.11)

(
Im dj ēj
Re d2ēj

,
Im d2

Re d2
, ...,

Im dj−1

Re dj−1
, λ,

Im dj+1

Re dj+1
, ...,

Im dn
Re dn

), j = 2, 3, ..., n (2.12)

(λ,
Im e2 + λRe e2
Re e2 − λIm e2

, ...,
Im en + λRe en
Re en − λIm en

) (2.13)

for λ ∈ R∪{∞}. On the other hand, by using (2.10) again, we see that ∂ TanA′
fj

is given by the hyperplanes

(τ1, τ2, ..., τj−1,
Im dj
Re dj

, τj+1, ..., τn)

(
Im dj ēj
Re dj ēj

, τ2, ..., τn)

(λ, τj , ..., τj−1,
Im ej + λRe ej
Re ej − λIm ej

, τj+1, ..., τn)

We see that ∂TanA′
V ⊂ ∂ TanA′

fj
. Hence we get an analogue for coamoebas

of Theorem 2.8.

Theorem 2.9. Let V be a real line. Given the algebraic 2-surface Z containing
TanA′ and any linear polynomial f that vanishes on V ,

TanA′ = Z ∩ TanA′
f = Z\(∂TanA′

f\TanC′
f )

Proof. The first equality follows from the discussion preceding the theorem. For
the second equality, first assume that ∆f is of dimension n. Write

Vf = {z ∈ C
n
∗ ; zn = 〈a, (1, z1, ..., zn−1)〉}, a ∈ C

n

and set zj = xj + iyj. Then the equation system yj/xj = τj , 1 ≤ j ≤ n in
x1, ..., xn−1, y1, ..., yn−1 is solvable in (R2

∗)
n for almost every vector (τ1, ..., τn) ∈

(R ∪ {∞})n. Thus, (TanA′
f )
c must be included in ∂ TanA′

f . By change of
variables, we get the same thing for any dimension of ∆f . Hence we have shown
the direction

Z ∩ TanA′
f ⊆ Z\(∂TanA′

f\TanC′
f)

By straightforward calculations we observe that C′ equals the pairwise intersec-
tion of the boundary lines of TanA′ given by (2.11). We will return to this in
Theorem 5.7, which together with Theorem 3.3 gives the converse inclusion in
Theorem 2.9.

10



2.3 Hypersurfaces

In this chapter, we let V = f−1(0) for a polynomial f on C
n.

While the amoeba is closed, the coamoeba is generally not, since sequences
{zj} ⊂ V with |zj| → ∞ might correspond to convergent sequences on Tn.
However, for hypersurfaces we have the following:

Lemma 2.10. Let f be a polynomial on C
n. Then A′

f ⊆
⋃

Γ∈S A
′
fΓ

, where S
is the set of faces of ∆f of all dimensions.

Proof. Assume that θ ∈ ∂A′
f\A

′
f . Then we can choose a sequence {zj} in V

such that arg zj → θ. Since the support of f is a finite set A = {α1, ..., αp}, we
can choose the sequence such that, for the right choice of indexing of A,

|zα1

j | ≥ |zα2

j | ≥ ... ≥ |z
αp

j |, ∀j

and, since [0, 1] is compact, we can also assume that

lim
j→∞

|zαk

j |/|zα1

j | → dk

for some dk ∈ [0, 1]. Let m be the number such that dk > 0 if and only if
k ≤ m. Since zj ∈ V , m ≥ 2. Furthermore, since lim zj /∈ V and V is closed,
the sequence {|zj |} converges to the boundary of Cn∗ . That is, m < p. In fact,
we are now going to show that {α1, ..., αm} = Γ ∩ A for some strict subface Γ
of ∆f .

Let xj = Log zj and

Kj = {ξ ∈ R
n| log dm − 1 ≤ 〈ξ − α1, xj〉 ≤ 0}

Then α1, ..., αm is contained in Kj for j big enough. Since |xj | → ∞, Kj is
flattening out to a hyperplane as j → ∞. We conclude that

{α1, ..., αm} = A ∩
⋂

j

Kj = A ∩ Γ

for a strict subface Γ of ∆f .
Choose a hyperplane containing Γ and let µ be its unit normal. Then 〈αk, µ〉

equals some c ∈ R for all k and hence

〈αk,
〈α1,Log zj〉

c
µ〉 = 〈α1,Log zj〉

for all k = 1, 2, ...,m and j. Denoting the second argument on the left hand
side by yj , we hence have 〈αk,Log zj − yj〉 → log dk, so limLog zj − yj ∈
Rn. This means that zje

−yj → w ∈ (C∗)n. Since argw = θ and fΓ(w) =
lim f(zj)e

−〈yj,α1〉 = 0, we have shown that θ ∈ A′
f |Γ

.

We will see later that in fact equality holds in the lemma. The natural
question is to ask if something similar is true for amoebas of varieties in arbitrary
codimension. The main theorem in Chapter 3 is an affirmative answer to this
question.

11



3 General varieties

For a general description of the coamoebas for varieties of arbitrary codimension,
the following result is essential.

Theorem 3.1. For an algebraic variety V in Cn,

AV =
⋂

f∈I(V )

Af

and
A′
V =

⋂

f∈I(V )

A′
f

Proof. The inclusions A(′)
V ⊆

⋂

f∈I(V ) A
(′)
f are trivial. For the other direction,

let f1, ..., fp be polynomials cutting out V ,

fj(z) =
∑

α

ajαz
α

Assume that θ ∈ Tn\A′
V . We need to find some f generated by these polyno-

mials such that θ /∈ A′
f . To this end, set

gj(z) =
∑

α

ājα(e−2iθjz)α

Since gj is a polynomial, setting f =
∑

j fjgj we have that f ∈ I(V ). Since for
any r ∈ Rn+,

f(reiθ) =
∑

j

fj(re
iθ)gj(re

iθ) =
∑

j

|fj(re
iθ)|2 > 0

we have shown that
⋂

f∈I(V ) A
′
f ⊆ A′

V .

For amoebas, the proof is analogous. Assume that r ∈ R
n
+\ExpAV and set

hj(z) =
∑

α

ājα(r2j /z)
α

Setting f =
∑

j fjgj we have just as above that f ∈ I(V ) and r /∈ ExpA′
f .

Clearly
⋂

f∈I(V ) Af ⊆ AV .

From the proof it is clear that it is actually enough to intersect the amoebas
or coamoebas of the polynomials of degree ≤ 2 maxk∈[p](deg fk) to get A or A′

respectively, given defining polynomials f1, ..., fp of V . However, if for example
V is linear, it is not true that A is given as the intersection of amoebas of
hyperplanes containing V . Look for example at the line V in C3 given by.

t 7→ (t, 1 + t, 2 − t)

Clearly, there is no z ∈ V with |z| = (1, 2, 3). Furthermore, if f(z) vanishes on
V , then

f(z) = (a+ 2b) + (a− b)z1 − az2 − bz3, a, b ∈ C

We check that every positive number |a + 2b|, |a − b|, 2|a|, 3|b| is less than or
equal to the sum of the others. Hence, by Theorem 2.5, (1, 2, 3) ∈ Af .

We are now going to take a closer look at the boundary of general coamoebas.
To begin with, we need some definitions to generalise the face coamoebas A′

Γ of
hyperplanes to what we will call directed coamoebas for arbitrary varieties.
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Definition 6. Let f be a polynomial on Cn and ω ∈ Rn. Then the initial form
f |ω is the sum of terms aαz

α of f such that α · ω is maximal.

Clearly f |ω = f |Γ for the face Γ of ∆f of highest dimension whose directed
normal space includes ω. Note also that f |0 = f . By the definiton of Minkowski
sum, we see immediately that the following property holds.

Proposition 3.2. If x is a normal directed outwards from the face Γ of ∆fg,
then

(fg)|Γ = f |xg|x

The next definition is central for the chapter.

Definition 7. Let I be a polynomial ideal over Cn and ω ∈ Rn. Then we set
the initial ideal of I at ω to be Iω := 〈fω; f ∈ I〉. If furthermore V is determined
by I, we say that the variety Vω determined by Iω is the initial variety of V at
ω. If A′ is the coamoeba of V , we say that the coamoeba of Vω is the initial
coamoeba of A′ at ω and denote it by A′

ω.

We can now state the main theorem of the chapter. An equivalent theorem
has been proven independently by Nisse and Sottile.

Theorem 3.3. For a variety V in Cn,

A′
V =

⋃

ω

A′
ω

To prove this, the following generalisation to n-variate functions of Rouché’s
theorem will be useful.

Theorem 3.4. Let f and g be holomorphic mappings from some bounded open
U ⊂ Cm to Cm such that

|g(z)| < |f(z)|, z ∈ ∂U

Then f and f+g have the same number of zeros in U , counted with multiplicity.

The theorem is a consequence of classical results of Poincaré’ and Bol and
the proof will not be discussed here. A good reference is [1] p. 18-23.

Proposition 3.5. Let I be an ideal generated by a class J of polynomials of
uniformly bounded degree. Then

⋂

f∈I

⋃

ω∈Rn

A′
f |ω

⊆
⋃

ω∈Rn

⋂

f∈J

A′
f |ω

Proof. Choose θ ∈ T n−1 and assume that

θ /∈
⋃

ω

⋂

f∈J

A′
f |ω

(3.1)

It suffices to show that there is a P ∈ I such that θ is not contained in A′
P |ω

for any ω ∈ Rn, that is, θ is not contained in A′
P |Γ

for any Γ ∈ ∆P . To this
end, first note that there are only finitely many possible Newton polytopes for

13



f ∈ J and hence a finite number, say m, of faces. In order for (3.1) to be true,
there must hence be a finite set of polynomials J ′ = {f1, ..., fp}, p ≤ m such
that (3.1) does not hold when replacing J with J ′.

To construct the desired polynomial P , we now use a similar technique as
in the proof of Theorem 3.1. First, for every fj, we find a gj as in that proof
such that fjgj(z) is nonnegative for every z with Arg z = θ. Next, we introduce
p polynomials kj such that ∆kj

= ∆fjgj
and with coefficient rjαe

−iα·θ for the
monomial with exponent α, rjα > 0. Now, setting

hj = k1k2...kj−1fjgjkj+1...kp

we have that ∆hj
is identically equal to some ∆ for every j ∈ {1, 2, ..., p}. Now

consider the polynomial P =
∑

j hj . Obviously, ∆P = ∆ for the right choices
of rjα. Choose any face Γ of ∆ and let ω be a normal of Γ directed outwards
from ∆. Now by Proposition 3.2,

P |Γ(z) =
∑

hj |Γ(z) =
∑

j

(fjgj)|ω(z)
∏

i

ki|ω(z)

Assume that Arg z = θ. Then the products on the right hand side are all
strictly positive numbers. Furthermore, by our assumption at least one product
(fjgj)(z) is strictly positive, while the others are nonnegative real numbers.
Hence P is the polynomial we needed and the proposition is proved.

Proof of Theorem 3.3. Applying Theorem 3.1 and Lemma 2.10, we get

A′
V =

⋂

f∈I(V )

A′
f ⊆

⋂

f∈I(V )

A′
f =

⋂

f∈I(V )

⋃

ω

A′
f |ω

(3.2)

Let J be a set of polynomials of high enough uniform bound of the degree as
in Theorem 3.1 and let S be the finite set of faces of the Newton polytopes of
these polynomials. By Proposition 3.5, we have that

⋂

f∈I(V )

⋃

ω∈Rn

A′
f |ω

⊆
⋃

ω∈Rn

⋂

f∈J

A′
f |ω

=
⋃

ω∈Rn

⋂

f∈I(V )

A′
f |ω

(the last equality is trivial). Applying Theorem 3.1 one more time, we have
shown the inclusion A′

V ⊆
⋃

ω A
′
V ω

For the other inclusion, set V = V (f), f = (f1, ..., fp), 1 ≤ p < n, fix ω ∈ Rn

such that A′
ω is nonempty and fix θ ∈ A′

ω . Let z̃ ∈ Vω be such that Arg z̃ = θ.
Choose ε > 0 so that |z̃ − z| < ε implies that |θ − arg z| is as small as desired.

For every t, z̃t = (z̃1e
tω1 , ..., z̃ne

tωn) is a zero of f |ω with argument θ. Now let
B be a p-ball with radius ε centered at z̃ with ∂B ∩Vω = ∅. Then ∂Bt ∩Vω = ∅
where Bt is the translation of B around z̃t. Hence, if t ∈ R is big enough, then
|f − f |ω| is strictly less than |f |ω| on ∂Bt. Composed with a parametrization
of the p-plane containing Bt, f |ω and f − f |ω are holomorphic mappings from
Cp to Cp. Now theorem 3.4 implies that also f has a zero z in Bt. But then
|z̃ − ze−tω| < ε, and since arg(ze−tω) = arg z, we conclude that θ ∈ A′.

We really did not use any concepts or results that was not directly related to
the formulation of Theorem 3.3, to prove the direction A′ ⊆

⋃

ω A
′
ω. However,

it is possible to get this direction in an easier way by introducing some new
concepts. We will do this in next chapter.
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4 The theta variety

In this chapter, we will consider V as the zero-set of a polynomial mapping
f and for fixed argument vectors θ study the variety of values of f , the theta
variety of f . By a compactification of this variety, we get a sense of the topology
of V at infinity, which is essential when studying the coamoeba.

The varieties to first have in mind when studying the theta variety (or theta
cone as i Chapter 5), is those of dimension n/2 since then the theta variety of V
has the same dimension as V itself. The main benefits from the present chapter
comes in 4.2, where we consider this case.

4.1 Definintions and general facts

Let V be a variety in Cn defined by the polynomials fk, 1 ≤ k ≤ p or equivalently
as the zero-set of the mapping f := (f1, f2, ..., fp). Here we do not require that
f1, ..., fp are algebraically independent: hence Vp might be of codimension less
than p and possibly p > n. Write fk(z) =

∑

αmkα where mkα is the monomial
with exponent α. We can assume that mk0 = 1 for every k. For a fixed θ ∈ Tn,
define the mappings φkθ : Rn → C, Fkθ : Rn → D,

φkθ(x) = fk(e
x+iθ), (4.1)

Fkθ(x) = (fk/
∑

|mkα|)(e
x+iθ). (4.2)

Here, D is the complex unit disc. Set φθ = (φ1θ , ..., φpθ), F = (F1θ, ..., Fpθ).

Definition 8. The theta variety Mf (θ) = M(θ) of f at θ is the set

φθ(R
n) ⊂ C

p.

The compactified theta variety Kf (θ) = K(θ) of f at θ is the set

Fθ(R
n) ⊂ Dp.

Some important properties of Mf and Kf are determined by V . To start
with, the following of course holds regardless of the choice of f :

Proposition 4.1.

θ ∈ A′
V ⇔ 0 ∈ Mf (θ) ⇔ 0 ∈ Kf (θ)

Rather immediate is also the next result.

Proposition 4.2. Let dimV = p = n/2. If 0 is a singular value of φθ, then
θ ∈ C′

V .

Proof. If 0 is a singular value of φθ, then there is an x ∈ Rn such that φθ(x) = 0
and Jacφθ = 0 at x, but this means that x ∈ CV and hence by Theorem 2.1,
θ ∈ C′

V .
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For any ω ∈ Rn, let Γk be the face of ∆fk
such that Fk|Γk

= Fk|ω and
φk|Γk

= φk|ω. Set F |ω := (F1|ω, ..., Fn|ω) and define φω analogously. If ω 6= 0
we can translate Γk so that they are all contained in a hyperplane P orthogonal
to ω. It is easy to verify that F |ω(Rn) = F |ω(P ) and hence we have the
following:

Proposition 4.3. When ω 6= 0, dimKω ≤ n− 1.

In view of to Proposition 4.1, we want to study K as closely as possible. But
of course, the lower dimension the faces of ∆1,∆2, ... corresponding to ω have,
the easier it is to describe Kω. Set K∞ :=

⋃

ω 6=0 Kω .

Proposition 4.4. For any θ ∈ Tn, Fθ(rS
n) → K∞(θ) in the Hausdorff metric

as r → ∞. In particular,

K =
⋃

ω∈Rn

Kω

Note that K is contained in the union on the right hand side since K0 = K.

Proof. If z = F |ω(x) for some ω ∈ Sn, x ∈ Rn, then

z = lim
r→∞

F (x+ rω)

and hence z ∈ K. Since K∞ is compact, the convergence is uniform, that is

lim
r→∞

sup
z∈K∞

|z − F (x+ rω)| → 0 (4.3)

On the other hand, assume that z ∈ ∂K\K. Then z = limj→∞ F (xj) for a
sequence {xj} ⊆ Rn such that |xj | → ∞. Since Sn is compact, we can choose a
subsequence {xjk} such that xjk/|xjk | converges to some ω ∈ Sn. Now

F |ω(ω) = limF |ω(xj) = limF (xj) = z

and hence z ∈ Kω. By (4.3), F (rSn) → K∞ in the Hausdorff metric as r → ∞.
The proposition follows.

A Gröbner basis G of a polynomial ideal I with respect to the weight ω ∈ Rn

can be defined as a subset of I such that Iω = {f |ω; f ∈ G}. A universal Gröbner
basis U of I is a subset of I such that Iω = {f |ω; f ∈ G} for any weight ω ∈ Rn.
For any I there is a finite universal Gröbner basis. To read more about this, see
[16] pag. 1-2.

In regard of this, we get without much effort the hardest direction of the
main result in Chapter 3 as a corollary of Proposition 4.4.

Corollary 4.5. For a variety V in Cn,

A′
V ⊆

⋃

ω

A′
Vω
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Proof. Let {f1, ..., fp} be a finite universal Gröbner basis of I(V ) and set f =
(f1, ..., fp). Then f |ω cuts out Vω for every ω ∈ Rn. Let K = Kf and consider
the set

B = {(x, θ) ∈ Dp × T
n;x ∈

⋃

ω∈Rn

Kω(θ)}

Since Fθ depends continuously on θ and
⋃

Rn Kω(θ) is closed by Proposition 4.4,
B is a closed set. But in view of Proposition 4.1,

⋃

ω A
′
Vω

is the projection of
B ∩ {x = 0} on Tn and is hence closed. The result follows.

4.2 The case p=n/2

Throughout this chapter we will use well-known theory and results from alge-
braic topology. For a more careful discussion of these matters, see for example
[10] or [6].

Let X be a topological space with a subspace Y . Consider the quotient
C•(X,Y ) := C•(X)/C•(Y ) of the chains on X and Y respectively. The relative
homology group Hk(X,Y ) is the k-th homology group of C•(X,Y ),

Hk(X,Y ) = Ker ∂Ck(X,Y )/Im ∂Ck+1(X,Y )

Here ∂ is the boundary operator on C•(X); clearly ∂2 = 0 also on the quotient
complex. We see that an element of Hk(X,Y ) is represented by a relative cycle:
a k-chain σ over X such that ∂σ ∈ Ck−1(Y ). Hence ∂ : Hk(X,Y ) → H(Y ). In
fact, we have the following:

Theorem 4.6. There is an exact sequence

...
∂
→ Hk(Y ) → Hk(X) → Hk(X,Y )

∂
→ Hk−1(Y ) → ...→ H0(X,Y ) → 0

This type of exact sequence has the property of naturality. This means that
given two spaces X1, X2 with subspaces Y1 and Y2 and a continuous mapping
ϕ : X1 → X2 for which ϕ(Y1) ⊆ Y2, the following diagram is commutative:

... −−−−→ Hk(X1) −−−−→ Hk(X1, Y1)
∂

−−−−→ Hk−1((Y1) −−−−→ ...




y

ϕ∗





y

ϕ∗





y

ϕ∗

... −−−−→ Hk(X2) −−−−→ Hk(X2, Y2)
∂

−−−−→ Hk−1(Y2) −−−−→ ...

(4.4)

Here ϕ∗ is the lifting of ϕ to the current homology group.

Assume that n is even and p = n/2 = dimV . We state the main result of
this chapter.

Theorem 4.7. For a generic θ ∈ T
n, letting d be the degree of the cycle Kf∞(θ)

on the punctured polydisc Dn/2\{0} we have that

|Arg−1(θ) ∩ V | ≥ |d|

The more precise condition on θ that we use in the proof of this result, is
that θ /∈ C′ ∪

⋃

ω 6=0 A
′
fω

. Note here that by the Rank Theorem (see e.g. [3] p.
47) dim C′ < n and by Proposition 4.3, dimA′

fω
< n.

To prove Theorem 4.7, we need the following basic result in homological
algebra (see for example [2] p. 192).
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Theorem 4.8. Let ϕ : Sn → Sn be differentiable and y ∈ Sn a regular value
with ϕ−1(x) = {x1, ..., xm}. Then

m
∑

j=1

sgn Jacϕ(xj) = deg(ϕ)

.

Proof of Theorem 4.7. First note that d equals the degree of fθ(x) on Cn/2\{0}
since only the radius of each coordinate in fθ and Fθ differs.

If θ /∈ C′, then Log Arg−1(θ) is finite and hence contained in a big enough
ball. Choose a possibly even bigger ball U ⊂ Rn to assure that Fθ(∂U) is homo-
topy equivalent to K∞ with respect to Dn/2\{0}; this is possible by Proposition
4.4. We have that

U ∼= fθ(U) ∼= Bn, ∂U ∼= fθ(∂U) ∼= Sn−1

The k-th homology of a ball is trivial for k 6= 0 since the set is contractible.
Hence, if we set X1 = U , X2 = fθ(U), Y1 = ∂U , Y2 = fθ(∂U) in (4.4), we get
as a part the following diagram:

0 −−−−→ Hn(U, ∂U)
∂

−−−−→ Hn−1(∂U) −−−−→ 0




y

f∗

θ





y

f∗

θ

0 −−−−→ Hn(fθ(U), fθ(∂U))
∂

−−−−→ Hn−1(fθ(∂U)) −−−−→ 0

(4.5)

By basic homology theory we have

Hn(B
n, Sn) = Hn(S

n) = Z

and since φθ is continuous, the diagram commutes. Furthermore, the vertical
mapping to the right equals d by our assumption. Hence, so does the vertical
mapping to the left. By Lemma 4.2, origo is a regular value and hence by
Theorem 4.8, there are at least d points x1, ..., xd in U such that φθ(xj) = 0.
This means that f(exj+iθ) = 0 and we are done.

Before we discuss this bound in details, we will see how this local result can
help us find similar bounds globally. However, we have so far only worked this
out properly for the case when n = 2.

4.3 The case n = 2

Consider a polynomial f on C2 with 2-dimensional Newton polytope ∆. We
will write f as

f(z) =
∑

α/∈vert∆

mα +

m
∑

j=1

mj , mα = aαz
α, mj = ajz

αj

where the indexes αj are the vertices of ∆ and numbered anticlockwise. For a
multiargument θ ∈ T2, let

vj = vj(θ) =
mj

|mj |
(e(x,y)+iθ)
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Now number the faces Γk of ∆ anticlockwise and assume that αk is the endpoint
of Γk with the lowest index so that αk+1 becomes the other endpoint, k < m,
while Γm starts at αm and ends at α1.

Let |Γ| be the integer length of the facet Γ, that is, the number of points in
Z2 contained in Γ minus one.

Proposition 4.9. The coamoeba A′
k of f truncated to Γk is a union of maxi-

mally, and generically, |Γk| parallel lines on T
2 orthogonal to Γk.

Proof. If αk = (a, b), αk+1 = (c, d), let l be the largest common divisor of c− a
and d− b. Clearly, l = |Γk| and letting fk be the truncation of f to Γk, we have
that

A′
k = A′

fk
= A′

fk/za
1
zb
2

By the coordinate change

w = z
c−a

l

1 z
d−b

l

2

we have that fk/z
a
1z
b
2 is of degree l in w and hence can be written as f(w) =

(a1 − w)(a2 − w)...(al − w) for complex numbers a1, ..., aL. Hence, A′
k consists

of the lines
c− a

l
arg z1 +

d− b

l
arg z2 = argw = π + arg aj

which obviously are orthogonal to Γk.

By this result we may construct a weighted directed graph on T2 in the
following way. Let (a1 −w)...(al − w) be the factorization of fk as in the proof
of proposition 4.9 and for L ⊆ A′

k, assume that d of these factors have coamoeba
equal to L, that is, L has multiplicity d ≥ 1 in A′

k. Either L is not contained in
any other facet coamoeba A′

j and then we set w(L) = d and orient L outward
from the facet Γk of ∆. Otherwise there is a facet Γj parallel to Γk, j 6= k
containing the line L with the multiplicity of L in A′

j equalling c ≥ 1. If c < d,
we orient L outwards from the face Γk of ∆ and set w(L) = d− c. If c > d we
do the opposite. If c = d we set w(L) = 0.

Definition 9. Let H = Hf be the weighted directed graph on T2 obtained by
taking the union of the directed lines L in the facet coamoebas as above with
w(L) 6= 0, and giving each line L the weight w(L).

Compare this definition with the discussion of hyperplane arrangements in
[13].

Proposition 4.10. The graph H is a balanced, that is, any closed curve on
T2 “crosses” H equally many times from the right and from the left, where a
crossing of a line L ⊂ H counts as many times as the weight of L.

The proof is straight-forward but a little lengthy. However, it is also a
corollary to Theorem 4.11.

Recall the definition in (4.2) of Fθ : R2 → D for a polynomial f and an
argument vector θ ∈ T

2 and denote the corresponding compactification for the
polynomial fk at θ by Fk = Fθk. We see that Fk will map R2 to some curve in
D connecting the two boundary points vk and vk+1. In the special case where
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fk is a binomial, this curve will in fact be a straight line segment, since one has
then for every θ ∈ R2,

Fk(θ) =
mk +mk+1

|mk| + |mk+1|
= tvk + (1 − t)vk+1

where t = |mk|/(|mk| + |mk+1|). Orient the curve Fk(R
2) from vk to vk+1 and

denote it Kk(θ). The graph K∞ :=
⋃

Kk is now an oriented cycle that could be
considered as a deformation of the anticlockwise oriented Newton polygon ∆.

Define an integer-valued function W = Wf on T2 by letting W (θ) be the
winding number of K∞ with respect to the origin.

Theorem 4.11. Let β, β′ ∈ T
2 be connected by a path γ oriented from β to β′

crossing the lines L1, ..., Ll. We set σj = 1 if γ crosses Lj from the right and
σj = −1 otherwise. If

l
∑

j=1

σjw(Lj) = d

then W (β) = W (β′)− d. In particular, if β and β′ are in the same complement
component of H, W (β) = W (β′).

As an immediate consequence of Theorem 4.11, we get Proposition 4.10,
since we in particular can choose γ to be a cycle.

Definition 10. The multiplicity of an argument vector θ with respect to f , is
the number of roots z to f(z) = 0, counted with ordinary multiplicity, with
Arg z = θ.

Note that if W (θ) is known for one particular θ, then Theorem 4.11 determines
W on the whole torus T2. To check W (θ) for a fixed θ is often straightforward.
Hence, in view of Theorem 4.7, Theorem 4.11 gives a minimum of the multi-
plicity of θ in V for any θ ∈ T2. In particular, it approximates the extension of
A′.

Lemma 4.12. Let L be any non-trivial oriented circle on T, that is, L =
{(n1t, n2t)} for some n1, n2 ∈ Z. Let d be the integer length of [αk, αk+1] and
assume that vk+1/vk moves anticlockwize around S1 when θ moves along L.
Orient Kk from vk to vk+1. Assume that for every θ ∈ L, G(θ) is a cycle
depending continuously on θ such that G ⊇ Kk(θ) and 0 /∈ G\Kg(θ). Then,
letting θ increase from zero to 2π, Kk(θ) will cross the origin exactly d times
counted with multiplicity and the winding number of G with respect to the origin
will decrease with every crossing.

Proof. After a coordinate change as in the proof of Proposition 4.9, we can
assume that f |Γk

= a0 + a1z + ... + adz
d so that vk = a0/|a0| and vk+1 =

adz
d/|adzd|. Since Kk(θ + 2π) = Kk(θ) and the transforming along [θ, θ + 2π]

is continuous, we have that G(θ + 2π) = G(θ) − dS1 where S1 is oriented
anticlockwise, and hence the winding number of the origin by G(θ+ 2π) equals
the winding number of the origin by G(θ + 2π) minus d.

On the other hand, since deg g = d, there are d roots of g, that is, d ar-
guments ϕ ∈] − π, π] for which the origin is contained in Kk(ϕ), counted with
multiplicity. Since G crosses the origin if and only if Kk does, the lemma fol-
lows.
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Figure 4: The graphs Hf (to the left), ∆f (top right) and Kf∞(0, 0) for
f(z, w) = 1 + zei4π/5 + z3wei8π/5 + zw2ei2π/5 + wei6π/5

with the winding number of origo by Kf∞ written out for each complement
component of Hf . In the pictures of Kf∞ and Hf , origo is at the center. Below
is the coamoeba of f .

We are now ready to prove Theorem 4.11.

Proof of Theorem 4.11. By Proposition 4.1, we have that θ ∈ A′
k precisely when

0 ∈ Kk(θ) and hence W is constant on every complement component of H .
Now assume that β and β′ are in adjacent complement components of H ,

separated by a line L. We can assume that the line segment [β, β′] directed
from β to β′, intersects L from the right.

If A′
k is the only facet coamoeba containing L, then w(L) is the multiplicity

of any θ ∈ L with respect to fk. Furthermore, setting G(θ) = K∞(θ) for
θ ∈ [β, β′], G is as in Lemma 4.12. By this lemma, W can only decrease when
K∞(θ), that is Kk(θ), crosses origo by letting θ moves from β to β′ and we
conclude that W (β′) = W (β) − w(L).

If there is a unique j 6= k such that L is contained also in A′
j , then let Sj

be the anticlockwise oriented circle segment from vj to vj+1 and S−1
j the same

segment oriented clockwise. Now, K∞ = G1 ∪ G2 where G1, G2 are the cycles
given by

G1 = Kj ∪ Sj , G2 = K∞\Kj ∪ S
−1
j

21



Figure 5: The graph Kk for a fixed θ.

Now, G1 and G2 are as in Lemma 4.12 and WK is given by WG1
+WG2

. The
theorem follows.

Denote by B′ the closure of the union of those complement components of H
on which W is non-zero. By Theorem 4.7, B′ ⊆ A′ since the degree of a mapping
and the winding number coincide on D. But in general, the bound for Arg−1(θ)
given by Theorem 4.7 is not high enough on the whole torus. In particular, A′

is usually not equal to B′. We are now going to study some special cases when
this is true. First we will state a quite immediate result for the “upper bound”
of A′.

Proposition 4.13. Let fαβγ be the trinomial given by f restricted to the index
set {α, β, γ} and A′

αβγ the coamoeba of fα,β,γ. Then

A′
f ⊆

⋃

A′
αβγ := D′

Proof. If there are no indices α, β, γ such that θ ∈ A′
αβγ , then by Proposition

4.1, origo is not contained in Kfαβγ
(θ) for any θ and any triple α, β, γ and hence

not in the convex hull of K∞(θ) for any θ. But every value of F is a mean value
of the monomials of F , so F (R2) ⊆ Conv(K∞(θ)) and the result follows.

An obvious case where A′ = B′ is of course when B′ = D′, that is, when
every θ ∈ T either assures that 0 /∈ Conv(Gθ) or assures convexity for K(θ). The
simplest example of this is when f consists of three monomials so that K(θ) is
a (possibly degenerated) triangle for every θ and hence always convex. In fact,
there are not many other possible polynomials for which the identity B′ = D′

holds.

Theorem 4.14. For a polynomial f with 2-dimensional Newton polytope, we
have the equality B′ = A′ = D′ if and only if either f is a trinomial or a
tetranomial of the form

f(z) = 1 + azα + bzβ − rabzα+β , a, b ∈ C
∗, r > 0 (4.6)

up to multiplication with a monomial.

Proof. For the case of the coamoeba of a polynomial with four or more mono-
mials, we can assume that f = 1 +

∑m
j=1mj . Let L be the circle on T given

22



by v1 = π. Note that origo is on the boundary of K whenever θ ∈ L and hence
θ ∈ ∂B′. If B′ = D′, then this means that θ is also on the boundary of D′, so
v2(θ), v3(θ), ..., vm(θ) must be on the upper and on the lower unit circle at the
same time for every θ ∈ L. Since vj depends linearly on θ along L, this means
that v2(θ) = v3(θ) = ... = vm(θ) for every θ ∈ L. Hence, the only possibility is
that f is as in (4.6). Clearly, B′ = D′ for this polynomial.

So far it is unknown if there are irreducible hypersurfaces in C2 except the
ones mentioned in Theorem 4.14, for which A′ equals B′ and has full dimension.

4.4 The case p < n/2

Theorem 4.7 concerns only varieties of half the dimension n of the space they
live in. However, it implicitly deals with varieties of any dimension less than
n/2. This because of Proposition 4.4. One expects the compactified theta
variety Kω(θ) to be of dimension 2p if the faces Γk such that Fk|Γk

= Fk|ω are
of high enough dimension. In these cases we can use that Theorem 3.3 yields
intA′

ω ⊆ A′, in order to describe A′.
As soon as V is not a hypersurface, it is in some sense non-generic that

the Newton polytopes of all polynomials f1,...,fp have any common normal
vector 6= 0 for nonzero dimensional faces, and even less generic that they have
enough common normal space N for

⋃

ω∈N intA′
ω to be a good approximation

of A′. However, when V is a hypersurface, the approximation might sometimes
be good. For linear spaces, A′ is in fact completely described by the initial
coamoebas of dimension n/2 (see Corollary 5.3). The general result we get in
this direction is the following.

Proposition 4.15. If V ⊂ Cn is a hypersurface and n ≥ 2, then

A′ ⊇
⋃

Γ∈S

intA′
f |Γ

⊇
⋃

Γ∈S

intB′
f |Γ

where S is the set of 2-dimensional faces of ∆.

5 Linear spaces and the theta cone

5.1 Preliminaires

In this chapter we study the theta variety for affine linear spaces. Recall that
the theta variety M(θ) of V is the image of a defining polynomial mapping f of
the set {Arg z = θ} ⊂ C

n in C
p. Now, we assume that V ⊂ C

n
∗ is an affine linear

variety of codimension p cut out by independent linear polynomials f1, ..., fp for
some p ∈ {1, ..., n} and as usual, we denote by A′ its coamoeba. We suppose
that the polynomials are given by

fk(z) = ck0 +
n

∑

j=1

ckjzj

where ckj = akj + bkji, akj , bkj ∈ R, and we let C denote the complex p × n-
matrix (ckj).
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Definition 11. The variety V is semi-degenerate if there are k columns in C
for some k ≤ p such that the submatrix consisting of these columns has rank< k.

The notion of semi-degeneration is related to the stronger condition of degener-
ation, see Definition 12.

Let ∆n be the n-th unit simplex,

∆n = Conv{e0, e1, ..., en}

where ej is the j:th unit vector, j ≥ 0 and e0 is origo. We denote the face
spanned by the vertices el1 , ..., eld by (l1...ld). Hence, in particular A′

01...n = A′.
For a set I ⊆ {0, 1, ..., n}, we now use the notation gI for the linear function g
restricted to the indices in I and VI , A′

I for the variety defined by f1I , ..., fpI and
its coamoeba. We will compare this notion with the notion of initial coamoebas.
Set

ωI =
∑

j∈I

ej, I ⊆ {1, 2, ..., n}

ωI =
∑

j∈{1,2,...,n}\I

−ej, 0 ∈ I

Proposition 5.1. If V is not semi-degenerate, then A′
I = A′

ωI
.

Proof. Clearly gI = g|ωI
for a polynomial g whenever gI 6= 0, so A′

I ⊇ A′
ωI

.
Assume now that A′

I 6= ∅ and V is not semi-degenerate. Then |I| ≥ p and the
restriction CI of C to the columns with indices in I, has rank p. Hence, for
every g ∈ I(V ), gI 6= 0, and hence gI = g|ωI

. The proposition follows.

Let us look at an example. If V is the line in C3 given by t 7→ (t,−1− t,−1),
then

C =

(

1 1 1 0
1 0 0 1

)

up to linear equivalence. Hence, if I = {1, 2}, then VI is the plane (s, t) 7→
(s,−s, t) while VωI

= V ({z1 + z2 = 0, 1 + z3 = 0}) = {(s,−s,−1)}.
Finally some words about classifying linear spaces. The Grassmannian

G(k, n) is the space of linear k-subspaces of Cn. There are several ways to equip
G(k, n) with coordinates. We will use the Plücker coordinates. Our space V
has

(

n
p

)

coodinates qj1,...,jn−p
where qj1,...,jn−p

is the maximal minor of C. That
V is semi-degenerate hence means precisely that one of the Plücker coordinates
for V is zero.

5.2 The theta cone

We change to polar coordinates and fix the arguments (θ1, θ2, ..., θn) = θ. By
separating the real and imaginary part of every equation, we now have a real
system of 2p linear equations in n variables rj with the restriction rj > 0. We
will write this in a compact way.

Define vectors mj = mj(θ) ∈ R2p by setting

m0 = (a10, b10, a20, b20, ..., an0, bn0)
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and

m
(2k−1)
j = Re (ckje

iθj ) = akj cos θj − bkj sin θj ,

m
(2k)
j = Im (c

(j)
k eiθj ) = bkj cos θj + akj sin θj , 1 ≤ j ≤ n

(5.1)

We denote by M(θ) the real 2p × (n + 1)-matrix with columns mj(θ). If M1

and M2 are such matrices of two different linear mappings f, f ′ : Cn → Cp both
cutting out V , we note that M1 and M2 are linearly equivalent. In particular V
and θ uniquely determine a linear space L in R2p with generatorsm0,m1, ...,mn.
Let M = M(θ) = MV (θ) be the cone in R2p obtained by intersecting L with the
open positive orthant. Recalling the definition of the theta variety in Chapter
4, we see that M(θ) is the theta variety of V at θ (see definition 8). Since it is
a cone, we call it the theta cone of V at θ.

The following proposition is fundamental when using M for the study of A′.

Proposition 5.2. If θ ∈ A′, dimM(θ) = d and k ∈ {0, 1, ..., n}, then there are
d monomials mj1 , ...,mjd and non-negative numbers tj1 , ..., tjd such that

mk +

d
∑

i=1

tjimji = 0

Proof. For n = d, this follows immediately. Assume that it is true for n =
d +m − 1. Now let n = d +m. Choose rj > 0 such that m0 +

∑n
j=1 rjmj =

0. Without loss of generality, we may assume that m0, ...,md−1 are linearly
independent and k /∈ {0, 1, ..., d}. Now there are real numbers λj such that

md =
∑d

j=1 λjmj . For any µ ∈ R+ we hence have

d−1
∑

j=0

(rj − µλj)mj + (rd − µ)md +

n
∑

j=d+1

rjmj = 0

Choose the minimal µ such that either rj − µλj = 0 for some j or rd − µ = 0.
Then we have that zero is included in the space spanned by d+m monomials,
among these mk, over R+. Hence by the assumption the assertion in the lemma
holds when n = d+m. By induction, the proposition follows.

We get the following corollary.

Corollary 5.3. If n ≥ 2p and d ≤ n− 2p, then A′ =
⋃

|I|=n−dA
′
I .

Proof. The maximal dimension of M(θ) is 2p. Thus if θ ∈ A′, then by Propo-
sition 5.2 there is an interval I ⊆ {0, 1, ..., n} of length ≤ 2p such that there are
rj > 0, j ∈ I such that

∑

I rjmj = 0. Hence, θ ∈ A′
I .

Note that applying this result on a hypersurface, that is letting p = 1, we
get Theorem 2.6, since obviously A′

I = A′
Γ if Γ is the face spanned by the points

in I (that is, no hypersurface is semi-degenerate).
The next theorem points at the usefulness of the study of M.

Theorem 5.4. If dimM(θ) = d and θ ∈ A′, then the fiber Arg−1(θ) ⊆ V is a
surface of dimension n− d.
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Proof. Choose d linear independent vectors m1, ...,md in M and let r ∈ Rn+ be
such that m0 +

∑n
j=1 rjmj = 0. Then

F (t1, ..., td) :=

d
∑

j=0

tjmj

is a bijection between Rd+ and some open neighborhoodU of −(m0+
∑n
j=d+1 rjmj).

Hence, there is a δ > 0 such that for every (td+1, ..., tn) ∈ R
n−d
+ ∩Bδ(rd+1, ..., rn),

−(m0 +
∑n

j=d+1 tjmj) ∈ U and hence there is a unique tuple (t1, ..., td) ∈ R

such that

F (t1, ..., td) = −(m0 +
n

∑

j=d+1

tjmj)

But this means that t1, ..., tn correspond to a z in the fiber of θ. The theorem
follows.

The geometric approach with theta cones is intuitively satisfactory useful
for obtaining general results, but things are in general not hard to understand
algebraically either. We will now obtain the fiber in V at θ explicitly by means
of a linear system of equations.

For every zj , let xj = Re zj , yj = Im zj. Let A be the 2p× 2n-matrix with
columns u1,...,un, v1,...,vn where

u
(2k−1)
j = v

(2k)
j = ajk

−u
(2k)
j = v

(2k−1)
j = bjk

(5.2)

Hence,

M(θ) =
(

m0 A
)





























1 0 0 ... 0
0 cos θ1 0 ... 0
0 0 cos θ2 ... 0
...
0 0 0 ... cos θn
0 sin θ1 0 ... 0
0 0 sin θ2 ... 0
...
0 0 0 ... sin θn





























By convention, we write θ ≡ θ′ whenever θj ≡ θ′j mod π for every coordinate j.

The space LA = {x ∈ R2n;Ax = m0} has dimension 2n− d where d is the rank
of A and clearly z ∈ V if and only if (x1, ..., xn, y1, ..., yn) ∈ LA. Furthermore
Arg z ≡ θ for θ ∈ Tn if and only if (x1, ..., xn, y1, ..., yn) is included in the linear
n-subspace

Lθ = {sin θjxj = cos θjyj}

Hence, the union of the fibers of the n points θ′ ≡ θ equals the intersection of
LA and Lθ or alternatively the space {Aθx = û0} where m̂0 is the 2p+n-vector
obtained by adding n zeroes at the end of m0 and Aθ is (2p + n) × 2n-matrix
obtained by adding the rows (0, ..., 0, sin θj, 0, ..., 0,− cos θj , 0, ..., 0) to A, where
sin θj is in the j:th and − cos θj is in the n+ j:th column.

To sum up this, we state the following result:

26



Proposition 5.5. For θ ∈ Tn the following assertions are equivalent:
1. There is a unique θ′ ≡ θ such that θ′ ∈ A′ ⇔
2. 2p ≥ n and there is a θ′ ≡ θ such that θ′ ∈ A′\C′ ⇔
3. For every j, the matrix Mj obtained by taking away the j : th column of

M(θ) has the same rank as M(θ), and this rank is n (dimM(θ) = n and each
n-tuple of vectors mj(θ) spans M(θ)).

4. The system Aθx = m̂0 has a unique solution in (R2)n∗ .

Proof. We have that θ ∈ A′ if and only if there are numbers rj ∈ R+ such that
∑n

j=1 rjmj(θ) = −m0. If we could allow rj to be any real number, we just have
to determine when m0 is contained in the space L spanned by m1, ...,mn. But
by allowing any θ′ ≡ θ, this can be done - a negative rj corresponds to adding
π to the j:th coordinate of θ. We just have to exclude for every j the linear
subspace where rj = 0.

Futhermore, if −m0 ∈ L and dimL < n, then there is obviously a subspace
of positive dimension of solutions λ1m1 + ... + λnmn = −m0 to L, while the
solution is unique when dimL = n. Hence we have 1⇐2⇔3. The equivalence
1⇔4 was discussed above.

It remains to show 3⇒1. Assume that 3 is not true. Then by Lemma 5.2,
there are d monomials mj1 , ...,mjd and non-negative numbers tj1 , ..., tjd such

that m0 +
∑d
i=1 tjimji = 0. Hence for any µ > 1,

0 = m0 +

n
∑

j=1

rjmj − µ(m0 +

d
∑

i=1

tjimji)

= (1 − µ)m0 +
d

∑

i=1

(rji − µtji)mji +
∑

j /∈{j1,...,jd}

rjmj

Choose µ so that (rji − µtji) < 0 for every i. We see now that the expression
equals (1 − µ)f(z) for some z with arg z 6= θ but ≡ θ. The implication is
proved.

From the same proof, we also obtain the following complementary result:

Proposition 5.6. For θ ∈ Tn the following assertions are equivalent:
1. There are several θ′ ≡ θ such that θ′ ∈ A′ ⇔
2. Either 2p < n or there is a θ′ ≡ θ such that θ′ ∈ C′ ⇔
3. For every j, the matrix obtained by taking away the j : th column of M(θ)

has the same rank as M(θ) has, and this rank is < n (dimM(θ) < n and each
n-tuple of vectors mj(θ) spans M(θ)).

4. The system Aθx = m̂0 has infinitely many solutions in (R2)n∗ .

The only case that is not covered by these two propositions is clearly the
one when Tan θ /∈ TanA′.

A consequence of the Propositions 5.2 and 5.6 is the following useful tool for
the study of the contour C′.

Theorem 5.7. For any θ ∈ Tn, the following statements are equivalent:
1. There is more than one point in V with argument θ.
2. There is a curve in V of positive length with constant argument θ (if the

codimension of V is less than or equal to n/2, θ ∈ C′).
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3. There is a subset S of P ({0, 1, ..., n}) not including {0, 1, ..., n} such that
⋂

S I = {0, 1, ..., n} and θ ∈
⋂

S A
′
I .

4. θ ∈ A′ and there is an I 6= {0, 1, ..., n} with θ ∈ A′
I .

5. θ ∈ A′ and dimM(θ) < n.

Proof. By Proposition 5.6, we have the equivalences 1 ⇔ 2 ⇔ 5. Furthermore
by Proposition 5.2, one also has 5 ⇒ 4. Let I 6= ∅ be such that θ ∈ A′

θ. For every
k ∈ I, we can by Proposition 5.2 choose k such that there is a J ⊂ {0, 1, ..., n}
with k ∈ J such that θ ∈ A′

J , and this yields the implication 5 ⇒ 3. Finally,
by addition of equation systems as in the proof of Proposition 5.5, we see that
3 and 4 both imply 1.

For the case when p ≤ n/2, Theorem 5.7 implies that Arg is a bijection from
the non-critical points of V to A′\C′. Recall that by Theorem 2.1, the critical
points of Arg are the same as the critical points of Log. It follows that we can
define a surjective mapping G from A′\C′ to A\C by setting G = Log ◦Arg−1.

Proposition 5.8. The mapping G is an isometry, that is, the Jacobian deter-
minant of G equals one.

Proof. Denote the Jacobian matrix of Log, Arg and Arg−1 by J , J ′ and J ′−1 re-
spectively. The Jacobian matrix ofG then equals JJ ′−1. The complex logarithm
log = Log +iArg is a holomorphic function. Hence, by the Cauchy-Riemann
equations,

∂ Log zk
∂xj

=
∂ Arg zk
∂yj

,
∂ Log zk
∂yj

= −
∂Arg zk
∂xj

Thus, J is obtained from J ′ by interchanging pairs of rows and changing sign
on one row in every pair and then JJ ′−1 is obtained from the unit matrix
E = J ′J ′−1 in the same way. By elementary linear algebra, it follows that

|JJ ′−1| = |E| = 1

5.3 Conditions for degeneration

Let us now take a look at the case 2p ≤ n. The maximal, and “ex-
pected”, dimension of A′ is 2n−2p, since there are 2p real equations Re fk = 0,
Im fk = 0 to be satisfied by 2p variables rj , θj . In fact, by Theorem 2.3, on has
dim(A′\C′) = 2n− 2p whenever A′ 6= C′. More generally,

Proposition 5.9. If |I| = d and the rank of CI is q, then dimA′
I ≤ n−2q+d−1.

Proof. For d = n, the result follows from the discussion above. Now let d < n.
By a linear change of coordinates, one get defining equations for VI in, say,
w1, w2, ..., wd−1. Let W be the space given by these variables. Now VI is a
subspace of W whose coamoeba A′

W has dimension ≤ 2(d− 1− q). But clearly
A′
I is given by the union of (n + 1 − d)-planes in Rn whose intersection with

LogW is a point in A′
W . The result follows.
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Let us study the conditions for A′ not to be equal to C′. By Proposition 5.5,
this occurs precisely when there is a θ ∈ A′ such that Aθ has rank 2n. Hence
we want to see when this is the case. First, we need some linear algebra.

Let Lj be the plane in R2p generated by the column vectors uj and vj of A.
For any N ⊆ {0, 1, ..., n}, let LI be the minimal linear space including all the
spaces Lj for j ∈ I. Recall the definition of uj , vj in (5.2). For ϕ ∈ Tn, let KϕI

be the linear space in R2p generated by cosϕjuj + sinϕjvj , j ∈ I. Then clearly
KϕI ⊆ LI . Note also that Kϕ{0,1,...,n} is the minimal linear space that contains
M(ϕ).

Lemma 5.10. Assume that dimLI ≥ |I| for every I ⊆ {0, 1, ..., n} and let
I1, ..., Id be a partition of {0, 1, ..., n} such that the span of the spaces LIj

, j 6= l,
does not intersect LIk

for any k ∈ [d] (generically, this partition is trivial).
Let dimKϕIk

< |Ik|. Then there are multiarguments ψ such that KψIk
is of

dimension |Ik|, KϕIk
⊂ KψIk

and
⋃

ψKψIk
generates LIl

.

Proof. We are going to show this by induction over n. The statement is trivial
for n = 1. Assume it holds for n−1, n ≥ 2 and show it for n. For contradiction,
we want to assume that dimKϕI < n for some I in the partition, but there is
no loss of generality in letting dimKϕI = n− 1.

First assume that every n − 1-set of generators cosϕjuj + sinϕj of KϕI ,
generates the whole KϕI . Then it is clear that the set of spaces KψI where
ψj = ϕj , j 6= k for a distinct k, all include KϕI . Since dimLI ≥ |I|, there
are integer sets J1, J2 not both empty such that uj , vk ∈ LI\KϕI if and only if
j ∈ J1, k ∈ J2. Hence, letting αj ∈ Tn be obtained from φ by changing ϕj to 0,
j ∈ J1 and βk ∈ Tn by the analogue change of ϕk to π/2, k ∈ J2,

dimKαjI = dimKβkI = |I|

and these spaces generate LI .
Next assume that there is a k such that the linear space KϕI\{k} does not

equal KϕI . Then dimKϕI\{k} = n− 2 and by the assumption on I made in the
lemma, Lk is not disjoint from LI\{k} and hence dimLI\{k} ≥ dimLI−1. Make
a partition P of {0, 1, ..., n}\{k} as in the lemma. Then I\{k} is the union of
I1, ..., Id ∈ P and

dimKϕI\{k} =

d
∑

j=1

dimKϕIj

and hence there is a p ∈ [d] such that dimKϕIp
= |Ip|−1. By the assumption for

dimension n− 1, there are ψ ∈ T
|Ip|−1 such that KψIp

⊃ KϕIp
, dimKψIp

= |Ip|
and KψIp

generates LIp
. Since dimLIp

≥ p and cosϕkuk + sinϕkvk /∈ LIp
, the

last property means that we can choose such a ψ so that cosϕkuk + sinϕkvk /∈
KψIp

. We let ψ′ ∈ Tn be given by exchanging every coordinate ϕj of ϕ with
j ∈ Ip, by ψj . Now Kψ′I is of dimension |I|, includes KϕI and all such spaces
generates LI . The result now follows by induction.

Proposition 5.11. Assume that dimLI ≥ |I| for any I ⊆ {0, 1, ..., n} and let
dimKϕ{0,1,...,n} < n, ϕ ∈ Tn. Then there is a ψ ∈

⋃

I A
′
I such that dimM(ψ) =

n.

Proof. Let ϕ ∈ A′. Note that for a partition of {0, 1, ..., n} as in Lemma 5.10,
dimKϕ{0,1,...,n} =

∑

dimKϕIj
. Hence the lemma says that there is a ψ ∈
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Tn such that dimKψ{0,1,...,n} = n, that is dimMψ = n, and Kψ{0,1,...,n} ⊃
Kϕ{0,1,...,n}. The latter means that ψ′ ∈

⋃

I A
′
I for some ψ′ ≡ ψ.

With these results at hand, we are ready to solve our problem. Recall that
C is the matrix with the complex multicoefficients c0, c1, ..., cn of f as columns.

Definition 12. A linear variety V is degenerate if there is a (k × p)-submatrix
of C with rank < k/2, k ≤ n.

The condition of degeneration is directly related to the Plücker coordinates
of V since we can reformulate it in the following way: there are at least 2k + 1
columns in C such that all minors of C containing min(k+1, p) of these columns
must be zero.

In the real setting, degeneration means that the 2p × 2k-matrix of k pairs
uj , vj or the 2p × (2k − 1)-matrix of k − 1 pairs uj, vj and m̂0 has rank < k,
that is, for some I, dimLI < k and |I| = k or dimLI = k − 1, |I| = k − 1 and
m̂0 ∈ LI .

Proposition 5.12. If 2p ≥ n and V is degenerate, then A′ = C′.

Proof. First assume that there are k pairs uj , vj , j ≥ 1, such that the matrix
with these vectors as columns has rank < k. Then regardless of the last n rows
of Aθ, and hence of θ, the rank of the submatrix of Aθ with the same columns,
has rank < 2k since the last n columns have zeroes in all but k rows. Hence the
rank of Aθ is < 2k + (2n− 2k) = 2n for any θ ∈ Tn and there is a subspace in
R

2n of solutions to Aθx = m̂0. In particular, if one solution is in (R2)n∗ , that is
θ ∈ A′, then infinitely many solutions are there, that is θ ∈ C′.

The other possibility is that there are k pairs uj , vj , j ≥ 1, such that the
2p×2k-matrix AI with these vectors as columns has rank k and m̂0 is generated
by u1, ..., uk, v1, ..., vk. Let θ ∈ A′. Then the restriction AIθ ofAθ to the columns
of AI has rank ≤ 2k and hence there is a solution to AIθx = m̂0, that is, θ ∈ A′

J

for some J ⊆ I. But then by Theorem 5.7, θ ∈ C′.

5.4 The case p=n/2

Proposition 5.11 indicates that the converse of Proposition 5.12 should hold.
However, we just prove it in the case p = n/2. Since Aθ is quadratic, Aθx = m̂0

is solvable in R
n for every θ so for every θ ∈ T

n there is a θ′ ≡ θ with θ′ ∈
⋃

I⊆{0,1,...,n}AI . Hence Proposition 5.12 just says that dimM(θ) = n for some

θ ∈ Tn−1.

Theorem 5.13. If 2p = n, then A′ = C′ if and only if V is degenerate. Fur-
thermore the dimension of A′ is maximal, that is equal to n, if and only if V is
non-degenerate.

Proof. In view of Proposition 5.12, it suffices to prove that every V with A′ = C′

is degenerate. Assume the former. Then by Proposition 5.11, there is a ψ ∈
Tn−1 such that dimM(ψ) = n and hence there is an open set U ⊂ Tn−1 such
that dimM(θ) = n for every θ ∈ U . Assume that there is an I such that A′

I

contains an open subset of U , that is, dimA′
I = n. Set d = |I| and q = rankCI .

Then by Proposition 5.9,

n = dimA′
I ≤ n− 2q + d− 1
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that is, q ≤ (d − 1)/2 or rankCI < d/2, which is a contradiction since V is
non-degenerate.

Hence there is an open set U ′ ⊆ U such that for every θ ∈ U ′ there is a
θ′ ≡ θ with θ′ ⊆ A′. The result follows.

We illustrate what we have done so far with an example. Let V be the plane
in C

4 with coefficient matrix

C =

(

1 1 1 1 1
1 2 −1 0 0

)

Then for θ ∈ T3,

m̂0 =
(

1 0 1 0 0 0 0 0
)T
,

Aθ =

























1 1 1 1 0 0 0 0
0 0 0 0 −1 −1 −1 −1
2 −1 0 0 0 0 0 0
0 0 0 0 −2 1 0 0

sin θ1 0 0 0 − cos θ1 0 0 0
0 sin θ2 0 0 0 − cos θ2 0 0
0 0 sin θ3 0 0 0 − cos θ3 0
0 0 0 sin θ4 0 0 0 − cos θ4

























The determinant of the 8 × 8-matrix Aθ is non-zero except if

θ1 ≡ θ2 or θ3 ≡ θ4 mod π (5.3)

The initial coamoebas A′
j of A′

V can be described as coamoebas A′
Wj

of lines

Wj ⊂ C3 stretched out along the j:th axis of R4 (where the zeroeth axis is the
line (λ, λ, λ, λ)). However, A′

0, A
′
1 and A′

2 are degenerate in the sense that W0,
W1, W2 are lines in C

2 embedded in C
3.

The first case in (5.3) corresponds to θ ∈ A′
1234 and the second to θ ∈ A′

34.
Note that for every I 6= {3, 4} with |I| ≤ 3, the dimension of I is zero. Hence
by Theorem 5.7, the contour C′ is given by

1) The intersection of A′
34 with A′

0123 and A′
0124.

2) The intersection of A′
1234 with A′

0134 and A′
0234.

3) The intersection of A′
1234 with A′

0123 and A′
0124.

4) Some isolated points.
From 1) we get a two-dimensional surface whose projection on the torus

θ4 = 0 is a coamoeba of a line, and with θ4 = θ3 + π. From 2) we get a
two-dimensional flat surface: the coamoeba of the line 1 + z + w = 0 in the
coordinate plane given by θ3, θ4 embedded at θ1 = 0, θ2 = 0, θ1 = π, θ2 = 0 and
θ1 = π, θ2 = π. From 3), we get intersections of two three-dimensional surfaces
on T3, which we also expect to have dimension two.

Assume that the dimension of V is n/2. If V is non-degenerate, then by
Theorem 5.9, dimA′

I < n for every I ⊂ {0, 1, ..., n}. Since
⋃

I⊆{0,1,...,n}A
′
I = Tn

and dim C′ < n, Proposition 5.5 gives that for almost every θ ∈ T
n, there is a

unique θ′ ≡ θ such that θ ∈ A′. We get the following result.

Theorem 5.14. If V is non-degenerate, the volume of A′
V equals πn.
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For the rest of the chapter, we will concentrate on the simplest case of a
“middle-dimensional” space that is not a hyperplane and a line at the same
time; that is, we let V be a complex plane in C

4.
Assume that the defining polynomials for V are a0 +

∑4
j=1 ajzj = 0, b0 +

∑4
j=1 bjzj = 0. Then, V satisfy the latter condition in Theorem 5.13 if and only

if either a column of C is zero, or three columns of C gives a matrix or rank one.
In the first case, V equals some of its initial ideals and hence is a line V ′ in C3

stretched out along the axes L corresponding to the coordinate with coefficients
zero, and A′ equals the coamoeba of V ′ stretched out along the corresponding
axes in R4 with each point θ ∈ A′ corresponding to a real line in V ′ through L.
Hence, clearly A′ = C′ with dimA′ = 3.

In the second case, we can without loss of generality assume that

1 +
4

∑

j=1

ajzj = 0, 1 + b4z4 = 0

Then z4 is fixed in V while the other variables only depend on one equation
so V is a hypersurface in C3 embedded in C4. Hence, A′ is the coamoeba of a
hypersurface in R3 with G(θ) being a curve in A for every θ, embedded in R4

and again, A′ = C′ and dimA′ = 3.
Consider the parametrization

(s, t) 7→ (s, t, c3 + d3s+ e3t, c4 + d4s+ e4t)

of V , (s, t) ∈ C2.

Definition 13. The plane V is real if

(
cj
dj

:
ck
dk

), (
cj
ej

:
ck
ek

), (
dj
ej

:
dk
ek

) ∈ PR ∀j, k = 3, 4, ..., n (5.4)

Note that it is enough to assume that two of the three projective points for fixed
j and k are real.

We compare with the definition in Chapter 2 of a real line and see that every
line on a real plane is not real. For example, if n = 4, c3 = d3 = 1, e3 = 2 and
c4 = d4 = e4 = i, then V contains the line

u 7→ (u, iu, 1 + (1 + 2i)u, i+ (−1 + i)u)

Proposition 5.15. If V is a real plane in C4, then for every x ∈ A\C, the
number of points in G−1(x) is 4.

Proof. Write zj and coefficients in the parametrization on polar form:

cj = Cje
γji, dj = Dje

δji, ej = E
ǫji
j , zj = rje

θji

Then by some calculation we get

r2j = Re 2(cj + djs+ ejt) + Im 2(cj + djs+ ejt) =

C2
j +D2

j r
2
1 + E2

j r
2
2 + 2CjDjr1 cos(−γj + δj + θ1)+

2CjEjr2 cos(−γj + ǫj + θ2) + 2DjEjr1r2 cos(δj − ǫj + θ1 − θ2)

(5.5)
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Since V is real, δj − γj , ǫj − γj and δj − ǫj do not change with j. Set

ξ1 = cos(δj − γj + θ1)

ξ2 = cos(ǫj − γj + θ2)

ξ3 = cos(δj − ǫj + θ1 − θ2)

Then for r = (r1, ..., r4) fixed, (5.5) determines a linear equation system in
ξ1, ξ2, ξ3 with 2 equations, and hence a line or a plane Lr. Furthermore, ξ1, ξ2, ξ3
must satisfy

ξ21 + ξ22 + ξ23 = 1 + 2ξ1ξ2ξ3, |ξ1|, |ξ2|, |ξ3| ≤ 1 (5.6)

This describes the boundary of a convex region E, an “inflated” tetrahedron,
see Fig. 6. Now, the intersection of E and L determines the points θ ∈ A′

for which G(θ) = Log r. If L is a tangent to E, then there is an r′ in every
neighborhood of r such that Lr′ ∩E = ∅. Hence Log r ∈ ∂A ⊆ C. If L is a plane
intersecting E, then clearly θ ∈ C′. Otherwise either L∩E = ∅ or it consists of
two points. Since every point (ξ1, ξ2, ξ3) ∈ E corresponds to the pair of points
±(arccos ξ1, arccos ξ2) ∈ A′, the theorem follows.

Figure 6: The intersection of the region given by (5.5) and a line is generically
empty or consist of two points.

Theorem 5.16. If V is a real, non-degenerate plane in C4, then the volume of
AV is π4/4.

Proof. By Theorem 5.14, the volume of A′
V is π4. Hence the result follows from

Propositions 5.8 and 5.15.
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[16] B. Sturmfels: Gröbner bases and convex polytopes, American Mathemat-
ical Society 1996

34


