ISSN: 1401-5617

EXTENSION OF POSITIVE CURRENTS WITH SPECIAL PROPERTIES OF MONGE-AMPÈRE OPERATORS

AHMAD K. AL ABDULAALI

Research Reports in Mathematics Number 4, 2010

DEPARTMENT OF MATHEMATICS STOCKHOLM UNIVERSITY Electronic versions of this document are available at http://www.math.su.se/reports/2010/4

Date of publication: November 16, 2010 2000 Mathematics Subject Classification: Primary 32U40. Keywords: Closed positive currents, pluripolar sets, plurisubharmonic functions, plurisubharmonic positive currents, strictly k-convex functions.

Postal address: Department of Mathematics Stockholm University S-106 91 Stockholm Sweden

Electronic addresses: http://www.math.su.se/ info@math.su.se

EXTENSION OF POSITIVE CURRENTS WITH SPECIAL PROPERTIES OF MONGE-AMPÈRE OPERATORS

AHMAD K. AL ABDULAALI

ABSTRACT. In this paper we study the extension of currents across small obstacles. Our main results are:

- Let A be a closed complete pluripolar subset of an open subset Ω of \mathbb{C}^n and T a negative current of bidimension (p, p) on $\Omega \setminus A$ such that $dd^cT \geq -S$ on $\Omega \setminus A$ for some positive plurisubharmonic currents S on Ω . Assume that the Hausdorff measure $\mathcal{H}_{2p}(A \cap \overline{SuppT}) = 0$. Then \widetilde{T} exists. Furthermore the current $R = \widetilde{dd^cT} - dd^c\widetilde{T}$ is negative supported in A.
- Let u be a positive strictly k-convex function on an open subset Ω of Cⁿ and set A = {z ∈ Ω : u(z) = 0}. Let T be a negative current of bidimension (p, p) on Ω \ A such that dd^cT ≥ -S on Ω \ A for some positive plurisubharmonic (or dd^c-negative) currents S on Ω. If p ≥ k + 1, then T exists. If p ≥ k + 2, dd^cS ≤ 0 and u of class C², then dd^cT exists and dd^cT = dd^cT.

1. INTRODUCTION

In this paper we continue the work in [2]. So throughout this paper, we suppose that A is a special type of closed subset of an open subset Ω of \mathbb{C}^n and T is a positive (resp. negative) current of bidimension (p, p) of $\Omega \setminus A$ such that $dd^cT \leq S$ (resp. $dd^cT \geq -S$) on $\Omega \setminus A$ for some currents S on Ω . Our main issue is finding the sufficient conditions on S that guarantee the existence of \widetilde{T} and $\widetilde{dd^cT}$, and afterword studying the features of these extensions and the relations between it. In the literature, this kind of problems have been studied before. For instance, the studies in [5], [6], [11], [13], [15], [17], [21], [22] and [23], were basically based on the case when T is closed positive current. The case when S = 0 considered by Dabbek, Elkhadhra and El Mir. In 2009, Dabbek and Noureddine [9] discussed the case when S is closed and positive. As we see the closeness takes its place in this kind of study, so it is natural to ask about the sharpness of the closeness of S specially in [9]. Now, you can feel the theme in this paper which is a generalization of the work in [9] by replacing the closeness of S by other conditions.

The paper is divided into three sections. In the first section we gave definitions, basic properties and some facts about currents.

²⁰⁰⁰ Mathematics Subject Classification. 32U40.

Key words and phrases. Closed positive currents, pluripolar sets, plurisubharmonic functions, plurisubharmonic positive currents, strictly k-convex functions.

In the second one, we considered the case where A is a closed complete pluripolar set and proved our first main result.

1st Main Theorem (Theorem 3.3) Let A be a closed complete pluripolar subset of an open subset Ω of \mathbb{C}^n and T a negative current of bidimension (p,p) on $\Omega \setminus A$ such that $dd^cT \geq -S$ on $\Omega \setminus A$ for some positive plurisubharmonic currents S on Ω . Assume that $\mathcal{H}_{2p}(A \cap \overline{SuppT}) = 0$. Then \widetilde{T} exists. Furthermore the current $R = \widetilde{dd^cT} - dd^c\widetilde{T}$ is negative supported in A. If $dd^cS \leq 0$, then \widetilde{T} has the same properties of T.

Using the above result, we obtained a version of Chern-Levine-Nirenberg inequality.

Theorem (Theorem 3.5) Let A be a closed complete pluripolar subset of an open set Ω of \mathbb{C}^n and T be a positive current of bidimension (p, p)on $\Omega \setminus A$ such that $dd^cT \leq S$ on $\Omega \setminus A$ for some positive plurisubharmonic (resp. dd^c -negative) currents S on Ω . Let K and L compact set in Ω with $L \subset K$. Assume that $\mathcal{H}_{2p}(A \cap \overline{SuppT}) = 0$, then there exists a constant $C_{K,L} > 0$ such that for all u smooth bounded plurisubharmonic on Ω we have the following estimate

$$\int_{L\setminus A} T \wedge du \wedge d^c u \wedge \beta^{p-1} \le C_{K,L} \|u\|_{\mathcal{L}^{\infty}(K)}^2 (\|\widetilde{T}\|_K + \|\widetilde{dd^cT}\|_K)$$

In the third section, we started with the case where A is a zero set of strictly k-convex function and included our second main result.

2nd Main Theorem (Theorem 4.7) Let Ω be an open subset of \mathbb{C}^n and u be a positive strictly k-convex function on Ω . Set $A = \{z \in \Omega : u(z) = 0\}$ and T be a positive current of bidimension (p, p) on $\Omega \setminus A$ such that $dd^cT \leq S$ on $\Omega \setminus A$ for some positive and plurisubharmonic (or dd^c -negative) currents S on Ω . If $p \geq k + 1$, then \widetilde{T} exists. If $p \geq k + 2$, $dd^cS \leq 0$ and u is of class \mathcal{C}^2 , then $\widetilde{dd^cT}$ exists and $\widetilde{dd^cT} = dd^c\widetilde{T}$.

We ended this paper by assuming that A is a closed set and proving the following.

Theorem (Theorem 4.10) Let A be a closed subset of an open subset Ω of \mathbb{C}^n and T be a negative current of bidimension (p,p) on $\Omega \setminus A$ such that $dd^cT \geq -S$ on $\Omega \setminus A$ for some positive currents S on Ω . Assume that $\mathcal{H}_{2p-2}(\overline{SuppT} \cap A)$ is locally finite. Then \widetilde{T} exists. If $dd^cS \leq 0$, then $\widetilde{dd^cT}$ exists and $R = \widetilde{dd^cT} - dd^c\widetilde{T}$ is negative current supported in A.

In 1972, Harvey proved the previous result for the closed positive current T when $\mathcal{H}_{2p-1}(\overline{SuppT} \cap A) = 0$. The case where S = 0 was considered in [10]. In the inspirer article of this work [9], the authors proved the case when S is closed positive current.

It is my pleasure to acknowledge several helpful conversations with professors Hassine El Mir and Jan-Erik Björk.

2. Preliminaries and notations

Let Ω be an open subset of \mathbb{C}^n . Let $\mathcal{D}_{p,q}(\Omega, k)$ be the space \mathcal{C}^k compactly supported differential forms of bidegree (p,q) on Ω . A form $\varphi \in \mathcal{D}_{p,p}(\Omega, k)$ is said to be strongly positive form if φ can be written as

$$\varphi(z) = \sum_{j=1}^{N} \gamma_j(z) \ i\alpha_{1,j} \wedge \overline{\alpha}_{1,j} \wedge \dots \wedge i\alpha_{p,j} \wedge \overline{\alpha}_{p,j}$$

where $\gamma_j \geq 0$ and $\alpha_{s,j} \in \mathcal{D}_{0,1}(\Omega, k)$. Then $\mathcal{D}_{p,p}(\Omega, k)$ admits a basis consisting of strongly positive forms. The dual space $\mathcal{D}'_{p,q}(\Omega, k)$ is the space of currents of bidimension (p,q) or bidegree (n-p, n-q) and of order k. A current $T \in \mathcal{D}'_{p,p}(\Omega, k)$ is said to be positive if $\langle T, \varphi \rangle \geq 0$ for all forms $\varphi \in \mathcal{D}_{p,p}(\Omega, k)$ that are strongly positive. If $T \in \mathcal{D}'_{p,p}(\Omega, k)$ then it can be written as

$$T = i^{(n-p)^2} \sum_{|I|=|J|=n-p} T_{I,J} dz_I \wedge d\overline{z}_J$$

where $T_{I,J}$ are distributions on Ω . For the positive current $T \in \mathcal{D}'_{p,p}(\Omega, k)$ the mass of T is denoted by ||T|| and defined by $\sum |T_{I,J}|$ where $|T_{I,J}|$ are the total variations of the measures $T_{I,J}$. Let $\beta = dd^c |z|^2$ be the Khäler form on \mathbb{C}^n (where $d = \text{and } d^c = i(-\partial + \overline{\partial})$ thus $dd^c = 2i\partial\overline{\partial}$), then there exists a constant C > 0 depends only on n and p such that

$$T \wedge \frac{\beta^p}{2^p p!} \le \|T\| \le C \ T \wedge \beta^p$$

Along the way a current T is said to be plurisubharmonic if dd^cT is positive current. Let (χ_n) be a smooth bounded sequence which vanishes on a neighborhood of closed subset $A \subset \Omega$ and χ_n converges to $1_{\Omega \setminus A}$, and T be a current defined on $\Omega \setminus A$. If $\chi_n T$ has a limit which does not depend on (χ_n) , this limit is the trivial extension of T by zero across A noted by \tilde{T} . Thus, \tilde{T} exists if and only if ||T|| has locally finite mass on Ω .

A current T is said to be \mathbb{C} -normal if T and dd^cT are of locally finite mass. We recall that T is \mathbb{C} -flat current if $T = F + \partial H + \overline{\partial}S + \partial\overline{\partial}R$, where R, H, S and R are currents with locally integrable coefficients. On this class of currents, the support theorem says that for \mathbb{C} -flat current Tof bidimension (p,p) if $\mathcal{H}_{2p}(SuppT) = 0$, then T = 0. Let $k \leq p$ and $T \in$ $\mathcal{D}'_{p,q}(\Omega)$ with locally integrable coefficients. Set $\pi : \mathbb{C}^n \to \mathbb{C}^k, \pi(z', z'') = z'$ and $i_{z'} : \mathbb{C}^{n-k} \to \mathbb{C}^n, i_{z'}(z'') = (z', z'')$. Then the slice $\langle T, \pi, z' \rangle$ which is defined by

$$\langle T, \pi, z' \rangle(\varphi) = \int_{z'' \in \pi^{-1}(z')} i_{z'}^* T(z'') \wedge i_{z'}^* \varphi(z''), \quad \forall \varphi \in \mathcal{D}_{p-k, p-k}(\Omega)$$

is well defined (p - q, p - q)-current for a.e z', and supported in $\pi^{-1}(z')$. Notice that, by the pull back assumptions we obtain

$$dd^{c}\langle T, \pi, z' \rangle = \langle dd^{c}T, \pi, z' \rangle, \ d^{c}\langle T, \pi, z' \rangle = \langle d^{c}T, \pi, z' \rangle, \ d\langle T, \pi, z' \rangle = \langle dT, \pi, z' \rangle$$

So, we deduce that the slice $\langle T, \pi, z' \rangle$ is well defined for a.e z' and for every \mathbb{C} -flat current T. Moreover, we have the slicing formula

$$\int_{\Omega} T \wedge \varphi \wedge \pi^* \beta'^k = \int_{z' \in \pi(\Omega)} \langle T, \pi, z' \rangle(\varphi) \beta'^k$$

This formula is helpful in many cases. Actually, By this formula we can prove the properties of T by testing them for the slice of T.

We end this section by giving the following two theorems. The first one is called Chern-Levine-Nirenberg inequality and the second is a modification for that inequality proved by Al Ameer [3].

Theorem 2.1. Let Ω be an open subset of \mathbb{C}^n and T be a closed positive current of bidimension (p, p). Let $u_1, ..., u_p$ are locally bounded plurisubharmonic functions on Ω . For all compact subsets K, L of Ω with $L \subset K$, there exists s constant $C_{K,L} \geq 0$ such that

 $||T \wedge dd^{c}u_{1} \wedge \ldots \wedge dd^{c}u_{q}||_{L} \leq C_{K,L}||T||_{K}||u_{1}||_{\mathcal{L}^{\infty}(K)} \ldots ||u_{q}||_{\mathcal{L}^{\infty}(K)}$

Theorem 2.2. Let Ω be an open subset of \mathbb{C}^n . Let K and L compact sets in Ω with $L \subset \mathbb{C} K$. Assume that $T \in \mathcal{D}'_{p,p}(\Omega)$ is positive and dd^cT is of order zero, then there exists a constant $C_{K,L} > 0$ such that for all plurisubharmonic function u on Ω of class \mathcal{C}^2 we have the following estimate

 $||T \wedge dd^{c}u||_{L} \leq C_{K,L} ||u||_{\mathcal{L}^{\infty}(K)} (||T||_{K} + ||dd^{c}T||_{K})$

3. The case when A is closed pluripolar set

In this section we show our first main result. For closed currents T the result was done by El Mir and Feki [15]. The case when S = 0 was proved in [10] by Dabbek, Elkhadhra and El Mir. Recently, Dabbek and Noureddine [9] have shown the result when S is positive closed current. The proof of our main result will pass through several steps. So let us first give an inequality which is a very useful tool in our study.

Lemma 3.1. Let Ω be an open subset of \mathbb{C}^n . Let K and L compact sets in Ω with $L \subset \subset K$. Assume that T is positive and plurisubharmonic (resp. dd^c -negative) (p,p) current, then there exists a constant $C_{K,L} > 0$ such that for all plurisubharmonic functions $u_1, ..., u_q$ of class C^2 we have

$$||T \wedge dd^{c}u_{1} \wedge ... \wedge dd^{c}u_{q}||_{L} \leq C_{K,L} \prod_{j=1}^{q} ||u_{j}||_{\mathcal{L}^{\infty}(K)} (||T||_{K} + ||dd^{c}T||_{K})$$

Proof. By induction, the case when q = 1 follows from [12]. To show the case q = 2, let us take L_1 compact subset such that L_1 contains L and relatively compact in K. Since $T \wedge dd^c u_1$ is positive and plurisubharmonic (resp. dd^c -negative), then we get

$$\begin{aligned} \|T \wedge dd^{c}u_{1} \wedge dd^{c}u_{2}\|_{L} \\ &\leq C_{K,L}^{(1)} \|u_{2}\|_{\mathcal{L}^{\infty}(K)} (\|T \wedge dd^{c}u_{1}\|_{L_{1}} + \|dd^{c}T \wedge dd^{c}u_{1}\|_{L_{1}}) \end{aligned}$$

But $dd^cT \wedge dd^cu_1$ closed and positive (resp. negative) so by the first step and Chern-Levine-Nirenberg inequality we have

$$\begin{aligned} |T \wedge dd^{c}u_{1} \wedge dd^{c}u_{2}||_{L} \\ &\leq C_{K,L}^{(1)} ||u_{2}||_{\mathcal{L}^{\infty}(K)} \left[C_{K,L}^{(2)} ||u_{1}||_{\mathcal{L}^{\infty}(K)} (||T||_{K} + 2||dd^{c}T||_{K}) \right] \\ &\leq C_{K,L} ||u_{1}||_{\mathcal{L}^{\infty}(K)} ||u_{2}||_{\mathcal{L}^{\infty}(K)} (||T||_{K} + 2||dd^{c}T||_{K}) \end{aligned}$$

Assume that the inequality holds for q = k. We want to show the inequality for q = k + 1. Since $T \wedge \bigwedge_{j=1}^{k} dd^{c}u_{j}$ is positive and plurisubharmonic (resp. dd^{c} -negative) current, then similarly as we have done above we deduce

$$||T \wedge dd^c u_1 \wedge \ldots \wedge dd^c u_p||_L$$

$$\leq C_{K,L}^{(1)} \|u_{k+1}\|_{\mathcal{L}^{\infty}(K)} (\|T \wedge \bigwedge_{j=1}^{k} dd^{c} u_{j}\|_{L_{1}} + \|dd^{c}T \wedge \bigwedge_{j=1}^{k} dd^{c} u_{j}\|_{L_{1}})$$

$$\leq C_{K,L}^{(2)} \prod_{j=1}^{k+1} \|u_{j}\|_{\mathcal{L}^{\infty}(K)} (\|T\|_{K} + k\|dd^{c}T\|_{K})$$

$$+ C_{K,L}^{(3)} \prod_{j=1}^{k+1} \|u_{j}\|_{\mathcal{L}^{\infty}(K)} \|dd^{c}T\|_{K}$$

$$\leq C_{K,L} \prod_{j=1}^{k+1} \|u_{j}\|_{\mathcal{L}^{\infty}(K)} (\|T\|_{K} + (k+1)\|dd^{c}T\|_{K})$$

Proving our lemma.

Proposition 3.2. Let A be a closed complete pluripolar subset of an open subset $\Omega \subset \mathbb{C}^n$ and T be a positive current of bidimension (p,p) on $\Omega \setminus A$ such that $dd^cT \leq S$ on $\Omega \setminus A$ for some positive and plurisubharmonic (resp. dd^c -negative) currents S on Ω . Let v be a plurisubharmonic function of class \mathcal{C}^2 , $v \geq -1$ on Ω such that

$$\Omega' = \{z \in \Omega : v(z) < 0\}$$

is relatively compact in Ω . Let $K \subset \Omega'$ be a compact subset and let us set

$$c_K = -\sup_{z \in K} v(z)$$

Then there exists a constant $\eta \geq 0$ such that for all integer $1 \leq s \leq p$ and for every plurisubharmonic function u on Ω' of class C^2 satisfying $-1 \leq u < 0$ we have,

$$\int_{K\setminus A} T \wedge (dd^c u)^p \leq c_K^{-s} \int_{\Omega'\setminus A} T \wedge (dd^c v)^s \wedge (dd^c u)^{p-s} + \eta(\|S\|_{\Omega'} + \|dd^c S\|_{\Omega'})$$

This proposition generalizes a result in [10] where the authors considered the case of positive and dd^c -negative current. The case when S is closed positive done in [9].

Proof. We follow the same techniques in [10]. By ([13], Proposition II.2) there exists a negative plurisubharmonic function f on Ω' which is smooth on $\Omega' \setminus A$ such that

$$A \cap \Omega' = \{ z \in \Omega' : f(z) = -\infty \}$$

We choose λ, μ such that $0 < \mu < \lambda < c_K$. For $m \in \mathbb{N}$ and ε small enough we set

$$\varphi_m(z) = \mu u(z) + \frac{f(z)+m}{m+1}$$
 and $\varphi_{m,\varepsilon}(z) = \max_{\varepsilon} (v(z) + 1, \varphi_m(z))$

where \max_{ε} is the convolution of the function $(x_1, x_2) \mapsto \max(x_1, x_2)$ by a positive regularization kernel on \mathbb{R}^2 depending only on $||(x_1, x_2)||$. Thus we have $\varphi_{m,\varepsilon}(z) \in psh(\Omega') \cap C^{\infty}(\Omega')$. Furthermore, $\varphi_{m,\varepsilon}(z) = v(z) + 1$ in a neighborhood of $\partial \Omega' \cup (\Omega' \cap \{f \leq -m\})$. Consider the open subset

$$\Omega'_m = \Omega' \cap \{f > -m\}$$

Then by Stokes formula we have

$$\int_{\Omega'_m} T \wedge (dd^c u)^{p-s} \wedge (dd^c \varphi_{m,\varepsilon})^{s-1} \wedge dd^c (\varphi_{m,\varepsilon} - v - 1)$$
$$\leq \int_{\Omega'_m} (\varphi_{m,\varepsilon} - v - 1) S \wedge (dd^c u)^{p-s} \wedge (dd^c \varphi_{m,\varepsilon})^{s-1}$$

Hence

$$\int_{\Omega'_{m}} T \wedge (dd^{c}u)^{p-s} \wedge (dd^{c}\varphi_{m,\varepsilon})^{s} \\
\leq \int_{\Omega'_{m}} (\varphi_{m,\varepsilon} - v - 1)S \wedge (dd^{c}u)^{p-s} \wedge (dd^{c}\varphi_{m,\varepsilon})^{s-1} \\
+ \int_{\Omega'_{m}} T \wedge (dd^{c}u)^{p-s} \wedge (dd^{c}\varphi_{m,\varepsilon})^{s-1} \wedge dd^{c}v$$
(3.1)

Let us set

$$S_{k,\varepsilon} := \int_{\Omega'_m} (\varphi_{m,\varepsilon} - v - 1) S \wedge (dd^c u)^{p-s} \wedge (dd^c \varphi_{m,\varepsilon})^{s-1-k} \wedge (dd^c v)^k$$

By iterating the operation in (3.1), we deduce that

$$\int_{\Omega'_m} T \wedge (dd^c u)^{p-s} \wedge (dd^c \varphi_{m,\varepsilon})^s \leq \int_{\Omega'_m} T \wedge (dd^c u)^{p-s} \wedge (dd^c v)^s + \sum_{k=0}^{s-1} S_{k,\varepsilon}$$

Let R > 0 and $K_R = \{z \in K : f(z) \ge -R\}$. For *m* sufficiently large, $K_R \subset \Omega'_m$ and for any $z \in K_R$,

$$\varphi_m(z) \ge -\mu + \frac{m-R}{m+1} > 1 - \lambda$$

Moreover, $v \leq -c_K$ on K_R so we get

$$v+1 \le 1 - c_K \le 1 - \lambda$$

then $\varphi_{m,\varepsilon} = \varphi_m$ in a neighborhood of K_R . Therefore, by the above inequality we obtain

$$\int_{K_R} T \wedge (dd^c u)^{p-s} \wedge (dd^c \varphi_m)^s \le \int_{\Omega'_m} T \wedge (dd^c u)^{p-s} \wedge (dd^c v)^s + \sum_{k=0}^{s-1} S_{k,\varepsilon}$$

Notice that $(dd^c \varphi_m)^s \ge \mu^s (dd^c u)^s$ because $dd^c f \ge 0$. So

$$\mu^{s} \int_{K_{R}} T \wedge (dd^{c}u)^{p} \leq \int_{\Omega'_{m}} T \wedge (dd^{c}u)^{p-s} \wedge (dd^{c}v)^{s} + \sum_{k=0}^{s-1} S_{k,\varepsilon}$$
(3.2)

Notice that each $S_{k,\varepsilon}$ is bounded independently of ε . Indeed, since S is positive plurisubharmonic current and $\varphi_{m,\varepsilon} - v - 1 = 0$ on $\partial \Omega'_m$, then by the previous lemma there exists $\eta_k \ge 0$ such that

$$S_{k,\varepsilon} \leq \eta_k \|u\|_{\mathcal{L}^{\infty}(\Omega')}^{p-s} \|\varphi_{m,\varepsilon}\|_{\mathcal{L}^{\infty}(\Omega')}^{s-k-1} \|v\|_{\mathcal{L}^{\infty}(\Omega')}^k (\|S\|_{\Omega'} + \|dd^c S\|_{\Omega'})$$
(3.3)

Therefore there exists $\eta \geq 0$ making (3.2) as follows

$$\mu^s \int_{K_R} T \wedge (dd^c u)^p \leq \int_{\Omega'_m} T \wedge (dd^c u)^{p-s} \wedge (dd^c v)^s + \eta (\|S\|_{\Omega'} + (p-1)\|dd^c S\|_{\Omega'})$$

We finished the proof by letting first $m \to \infty$ and secondly $R \to \infty$.

Now we will prove our first main theorem using the same technique in [10] and Proposition 3.2.

Theorem 3.3. Let A be a closed complete pluripolar subset of an open subset Ω of \mathbb{C}^n and T a negative current of bidimension (p, p) on $\Omega \setminus A$ such that $dd^cT \geq -S$ on $\Omega \setminus A$ for some positive plurisubharmonic currents Son Ω . Assume that $\mathcal{H}_{2p}(A \cap \overline{SuppT}) = 0$. Then \tilde{T} exists. Furthermore the current $R = \widetilde{dd^cT} - dd^c\tilde{T}$ is negative supported in A. If $dd^cS \leq 0$, then \tilde{T} has the same properties of T.

Proof. Let us first assume that \widetilde{T} exists. Then by [12] the extension $dd^{c}T$ exists and R is negative current. If S is dd^{c} -negative current then by ([10], Proposition 2) the current $\widetilde{-S}$ is negative plurisubharmonic. Implies that \widetilde{T} is negative and $dd^{c}\widetilde{T} \geq \widetilde{dd^{c}T} \geq \widetilde{-S}$. In other word, \widetilde{T} and T are of the same class.

In order to show the existence of T we will proceed as in [10]. Since the problem is local, we will show that T is of lacally finite mass near every point z_0 in A. Without loss of generality, one can assume that z_0 is the origin. Since $\mathcal{H}_{2p}(A \cap \overline{SuppT}) = 0$, there exists a system of coordinates and a polydisk $\Delta^p \times \Delta^{n-p} \subset \mathbb{C}^p \times \mathbb{C}^{n-p}$ such that $(A \cap \overline{SuppT}) \cap (\Delta^p \times \partial \Delta^{n-p}) = \phi$. Moreover the projection map $\pi : (A \cap \overline{SuppT}) \cap (\Delta^p \times \Delta^{n-p}) \to \Delta^p$ is proper, and as $\pi(A \cap \overline{SuppT})$ is closed with a zero Lebesgue measure in Δ^p one can find an open subset $O \subset \Delta^p \setminus \pi(A \cap \overline{SuppT})$. Therefore the current has locally finite on $O \times \Delta^{n-p}$. Let $0 < \delta < 1$ such that $(A \cap \overline{SuppT}) \cap (\triangle^p \times \triangle^{n-p}(1-\delta, 1+\delta)) = \phi$ and fix a and t two reals in $(\delta, 1)$ such that a < t. Set

$$\rho_{\varepsilon} = \max_{\varepsilon} \left(\pi^* \rho, \frac{1}{t^2 - a^2} (|z''|^2 - t^2) \right)$$

where ρ is a plurisubharmonic function on \triangle^p such that $(dd^c \rho)^p$ supported in O. We have $-1 \leq \rho_{\varepsilon} < 0$ in $t \triangle^n$ and $\rho_{\varepsilon} = \pi^* \rho$ on $|z''| \leq a$, and we obtain

$$\int_{(t\Delta^n)\backslash A} T \wedge (dd^c \rho_{\varepsilon})^p = \int_{(t\Delta^p) \times \{|z''| < a\} \backslash A} T \wedge (dd^c (\pi^* \rho))^p + \int_{(t\Delta^p) \times \{a \le |z''| < t\}} T \wedge (dd^c \rho_{\varepsilon})^p$$

since $(dd^c \pi^* \rho)^p$ supported in $O \times \Delta^{n-p}$ then both integrals of the right hand side are finite. By applying Proposition 3.2 on -T, we deduce that \widetilde{T} exists.

Corollary 3.4. Let A be a closed complete pluripolar subset of an open subset Ω of \mathbb{C}^n and T a positive current of bidimension (p,p) on $\Omega \setminus A$ such that $dd^cT \geq -S$ on $\Omega \setminus A$ for some positive dd^c -negative currents S on Ω . Assume that $\mathcal{H}_{2p-2}(A \cap \overline{SuppT}) = 0$. Then \tilde{T} exists. Furthermore the current $\widetilde{dd^cT} = dd^c \tilde{T}$.

This result has been studied in many different cases before. Actually, the authors in [10] considered the case when S = 0. The case when $\widetilde{dd^cT}$ exists and $\mathcal{H}_{2p}(A \cap \overline{SuppT}) = 0$ done by Dabbek in [Da]. Dabbek proved that in this case the residual current is positive and closed by using the same technique in [10] with the local potential of a positive closed current given in [5]. In [2], the result was proved for the positive closed current S.

Proof. Applying ([10], Theorem 1) for the current $dd^cT + S$, the extension $\widetilde{dd^cT}$ exists. Now, the result follows from Theorem 5 in [10].

We end this section by the following theorem which is a version of Chern-Levine-Nirenberg inequality.

Theorem 3.5. Let A be a closed complete pluripolar subset of an open set Ω of \mathbb{C}^n and T be a positive current of bidimension (p, p) on $\Omega \setminus A$ such that $dd^cT \leq S$ on $\Omega \setminus A$ for some positive plurisubharmonic (resp. dd^c -negative) currents S on Ω . Let K and L compact set in Ω with $L \subset K$. Assume that $\mathcal{H}_{2p}(A \cap \overline{SuppT}) = 0$, then there exists a constant $C_{K,L} > 0$ such that for all u plurisubharmonic function on Ω of class \mathcal{C}^2 we have the following estimate

$$\int_{L\setminus A} T \wedge dd^c u \wedge \beta^{p-1} \le C_{K,L} \|u\|_{\mathcal{L}^{\infty}(K)}(\|\widetilde{T}\|_K + \|\widetilde{dd^cT}\|_K)$$

Proof. From Theorem 3.3, the extensions \widetilde{T} and $\widetilde{dd^cT}$ exist. Moreover, \widetilde{T} is positive and $\widetilde{dd^cT}$ is of order zero. Hence the result follows from Theorem 2.2.

Application of Theorem 3.3. Let A be a closed complete pluripolar subset of an open subset Ω of \mathbb{C}^n and T be a closed positive current of bidimension (p, p) on $\Omega \setminus A$. Assume that $\mathcal{H}_{2p-2}(A) = 0$. Now, suppose that gis plurisubharmonic function on Ω which is smooth on $\Omega \setminus A$ and (g_j) is decreasing sequence of smooth plurisubharmonic functions on Ω converging pointwise to g on $\Omega \setminus A$. In this case by using ([10], Theorem 1), we can find the extensions $\widetilde{g_jT}$ and \widetilde{gT} . But we can't use that theorem to find $\widetilde{g^2T}$, since we don't know weather g^2 is plurisubharmonic or not. Despite this, we can extend g^2T over A. In fact, the current g^2T is positive. We may assume that locally $g \leq 0$, so simple computation shows that

$$dd^{c}(g^{2}T) = 2dg \wedge d^{c}g \wedge T + 2gdd^{c}g \wedge T$$
$$\leq 2dg \wedge d^{c}g \wedge T$$

Now, set $S = 2dg \wedge d^c g \wedge T$, then S is positive dd^c -negative current on $\Omega \setminus A$. Applying [10], the current \widetilde{S} exists and is positive dd^c -negative on Ω . Hence by Theorem 3.3, $\widetilde{g^2T}$ and $\widetilde{g_j^2T}$ exist for all j. Moreover, $\widetilde{g_j^2T}$ converges to $\widetilde{g^2T}$.

4. The case when A is a zero set of a strictly k-convex function

In this section we include our second main result. The result was considered before in several case. In 1984, El Mir [13] studied the case when T is positive closed current and A is a zero set of exhaustion strictly plurisubharmonic function. For positive dd^c -negative currents T the result was proved in [10]. In [9] the authors obtained the result when S is closed positive current. Al Abdulaali [2] considered the case when S is positive and A is a zero set of exhaustion strictly plurisubharmonic function.

Let us start this section with the definition of k-convex functions followed by a lemma which is given in [14].

Definition 4.1. Let u be a continuous real function defined on an open subset Ω of \mathbb{C}^n . we say that u is strictly k-convex if there exists a continuous (1,1)-form γ defined on Ω which admits (n-k)-positive eigenvalues at each point, and such that the current $dd^c u - \gamma$ is positive on Ω .

Lemma 4.2. Let u be a strictly k-convex function on an open subset Ω of \mathbb{C}^n and let $\gamma \geq 0$ be a continuous (1,1)-form on Ω . Then for all $z \in \Omega$, there exists a neighborhood V_z of z and a smooth strictly plurisubharmonic function f on V_z such that

 $dd^{c}u \wedge (dd^{c}f)^{k} - \gamma^{k+1}$ is positive on V_{z}

Proposition 4.3. Let Ω be an open subset of \mathbb{C}^n and u be a strictly kconvex function on Ω . For $c \in \mathbb{R}$, we set $\Omega_c = \{z \in \Omega : u(z) \leq c\}$. Let Tbe a positive current of bidimension (p, p) on $\Omega \setminus \Omega_c$ such that $dd^cT \leq S$ on $\Omega \setminus \Omega_c$ for some positive and plurisubharmonic (resp. dd^c -negative) currents S on Ω . If $p \ge k + 1$, then T is of finite mass near Ω_c .

Proof. As in [10] we can assume that $u \in \mathcal{C}^{\infty}(\Omega \setminus A)$. Since the problem is local, all what we need is to show that for every $z \in u^{-1}\{c\}$, there exists $\omega \subset \subset \Omega$ contains z such that

$$\int_{\omega \setminus \Omega_{c+\frac{2}{n}}} T \wedge \beta^p < \infty$$

independently of n. Since u is strictly k-convex function then there exists a system of coordinates on \mathbb{C}^n and an open neighborhood V of z and $\lambda > 0$ such that

$$dd^c u + \frac{\lambda}{2}\beta' - 2\beta''$$

is a positive current on V, where $\beta' = dd^c |z'|^2$, $z' \in \mathbb{C}^k$ and $\beta'' = dd^c |z''|^2$, $z'' \in \mathbb{C}^{n-k}$. Let r > 0 such that $B(z,r) \subset V$, and χ be a smooth function satisfying $\chi = 0$ on $\overline{B}(z,r)$ and $\chi = -1$ on $\Omega \setminus B(z, \frac{2}{3}r)$. For a sufficiently small $\delta > 0$, we set $v = u + \delta \chi$ and denote by φ_{ε} a regularization kernel on \mathbb{C}^n depending only on |z|. Choose ε_n small enough so that $v_n = v * \varphi_{\varepsilon_n}$ satisfies $0 < v - v_n < \frac{1}{n}$ and

$$dd^c v_n + \lambda \beta' - \beta''$$

is a positive form for all n. By Lemma 4.2, if $\alpha = dd^c f$ and $n \in \mathbb{N}$, then we find that $T \wedge \beta^p \leq T \wedge dd^c v_n \wedge \alpha^{p-1}$ on $V \setminus \Omega_c$. Now let $(h_n)_n$ be a sequence of increasing convex positive functions such that

$$0 \leq \sup(t-c,0) - h_n(t) \leq \frac{1}{n}, \forall n \in \mathbb{N}, \forall t \in \mathbb{R}$$

and

$$h'_n(t) = 1$$
 for $t \ge c + \frac{1}{n}$.

If we set $u_n = h_n \circ v_n$, then clearly we have

$$dd^{c}u_{n} \wedge \alpha^{p-1} = (h'_{n} \circ v_{n})dd^{c}v_{n} \wedge \alpha^{p-1} + (h''_{n} \circ v_{n})i\partial v_{v} \wedge \overline{\partial}v_{n} \wedge \alpha^{p-1}$$

From the above equality and the hypotheses of $(h_n)_n$, it follows that $dd^c \wedge \alpha^{p-1} \geq \beta^p$ on $B(z, \frac{r}{2}) \setminus \Omega_{c+\frac{2}{n}}$. Indeed, $\chi = 0$ on $B(z, \frac{r}{2})$. So when $u > c + \frac{2}{n}$ we have

$$v_n \ge v - \frac{1}{n} = u - \frac{1}{n} > c + \frac{1}{n}$$

Therefore $h'_n \circ v_n = 1$ and $h''_n \circ v_n = 0$. Implies that $dd^c u_n \wedge \alpha^{p-1} = dd^c v_n \wedge \alpha^{p-1}$ on $B(z, \frac{r}{2}) \setminus \Omega_{c+\frac{2}{n}}$. Moreover, (u_n) vanishes in a neighborhood of Ω_c , depending on n. Let g be a smooth function with compact support belonging to $\Omega \setminus \Omega_c$, g = 1 in a neighborhood of $\partial B(z, r)$, $0 \leq g \leq 1$ and vanishes on a neighborhood of $(\Omega \setminus \Omega_c) \cap B(z, \frac{2}{3}r)$. Let $T_{\varepsilon_k} = T * \varphi_{\varepsilon_k}$ be

a smoothing of T which is of course convergent weakly^{*} to T. Let us set $B_r = B(z,r)$ and $\omega = B_{\frac{r}{2}}$, hence

$$\int_{\omega \setminus \Omega_{c+\frac{2}{n}}} T \wedge \beta^p \le \lim_{\varepsilon_k \to 0} \int_{B_r} T_{\varepsilon_k} \wedge dd^c u_n \wedge \alpha^{p-1}$$
(4.1)

On the other hand, we have

$$\int_{B_r} T_{\varepsilon_k} \wedge dd^c u_n \wedge \alpha^{p-1} = \int_{B_r} T_{\varepsilon_k} \wedge dd^c (gu_n + (1-g)u_n) \wedge \alpha^{p-1}$$

$$= \int_{B_r} T_{\varepsilon_k} \wedge dd^c (gu_n) \wedge \alpha^{p-1}$$

$$+ \int_{B_r} u_n (1-g) dd^c T_{\varepsilon_k} \wedge \alpha^{p-1}$$

$$\leq \int_{B_r} T_{\varepsilon_k} \wedge dd^c (gu_n) \wedge \alpha^{p-1}$$

$$+ \int_{B_r} u_n (1-g) S_{\varepsilon_k} \wedge \alpha^{p-1}$$
(4.2)

The nice choice of g makes the sequence (gu_n) converges uniformly to (v-c)g. Moreover, on $Supp \ g \cap Suppu_n$ the positive current T has locally finite mass. So by Lemma 3.1, we obtain that the last right hand side integrals in (4.2) are bounded independently of ε_k and n. In virtue of (4.1) we deduce that T is of finite mass on $\omega \setminus \Omega_c$.

Remark 4.4. In the case of strictly 0-convex functions, the condition $dd^c S \ge 0$ (or $dd^c S \le 0$) can be omitted. Indeed, in this case we can replace α by β in the proof of last proposition. As S is positive, there exists C > 0 so that

$$\int_{B_r} T_{\varepsilon_k} \wedge dd^c u_n \wedge \beta^{p-1}$$

$$\leq \int_{B_r} T_{\varepsilon_k} \wedge dd^c (gu_n) \wedge \beta^{p-1} + \int_{B_r} u_n (1-g) S_{\varepsilon_k} \wedge \beta^{p-1}$$

$$\leq \int_{B_r} T_{\varepsilon_k} \wedge dd^c (gu_n) \wedge \beta^{p-1} + C \|S_{\varepsilon_k}\|_{B_r}$$

Corollary 4.5. Let Ω be an open subset of \mathbb{C}^n and let u be a positive plurisubharmonic function of class \mathcal{C}^2 and $0 \leq s < r$ such that $B_r\{z \in \Omega, u(z) < r\} \subset \subset \Omega$. Let T be a positive current of bidimension (p, p) on $\Omega \setminus B_s$ such that $dd^cT \leq S$ on $\Omega \setminus B_s$ for some positive and plurisubharmonic (resp. dd^c -negative) current on Ω . Choose $\delta \in \mathbb{R}$ such that $0 < \delta < r - s$ and $B_{r+\delta} \subset \subset \Omega$. Then there exist $C_1 > 0$ and $C_2 > 0$ such that

$$\int_{B_r \setminus B_s} T \wedge (dd^c u)^p \leq C_1 \int_{C(r-\delta, r+\delta)} T \wedge (dd^c u)^p + C_2 \|u\|_{\mathcal{L}^{\infty}(L)}^{p-1} (\|S\|_L + (p-1)\|dd^c S\|_L)$$

where $C(r - \delta, r + \delta) = \{z \in \Omega, r - \delta < u(z) < r + \delta\}$ and $L = \overline{B_{r+\delta}}$

Proof. We set $\varphi_n = \max(u - \frac{1}{n} - s) * \alpha_{\varepsilon_n}$. For ε_n small enough have $dd^c \varphi_n \ge \frac{1}{2} dd^c u$ on $\{u > \frac{2}{n} + s\}$, then

$$\frac{1}{2} \int_{C(\frac{2}{n}+s,r)} T \wedge (dd^c u)^p \le \lim_{\varepsilon_k \to 0} \int_{B_r} T_{\varepsilon_k} \wedge dd^c \varphi_n \wedge (dd^c u)^{p-1}$$
(4.3)

Let g be a smooth function with support in $C(r-\delta, r+\delta)$ such that $0 \le g \le 1$ and g = 1 on a neighborhood of ∂B_r . The sequence $g\varphi_n$ converges toward g(u-s) in \mathcal{C}^2 . Then by similar argument as in Proposition 4.3, we have

$$\begin{split} \int_{B_r} T_{\varepsilon_k} \wedge dd^c \varphi_n \wedge (dd^c u)^{p-1} &= \int_{B_r} T_{\varepsilon_k} \wedge dd^c (g\varphi_n + (1-g)\varphi_n) \wedge (dd^c u)^{p-1} \\ &= \int_{B_r} T_{\varepsilon_k} \wedge dd^c (g\varphi_n) \wedge (dd^c u)^{p-1} \\ &+ \int_{B_r} \varphi_n (1-g) dd^c T_{\varepsilon_k} \wedge (dd^c u)^{p-1} \\ &\leq \int_{B_r} T_{\varepsilon_k} \wedge dd^c (g\varphi_n) \wedge (dd^c u)^{p-1} \\ &+ \int_{B_r} \varphi_n (1-g) S_{\varepsilon_k} \wedge (dd^c u)^{p-1} \end{split}$$

and by Lemma 3.1, there exist $C_1 > 0$ and $C_2 > 0$ independent of n and ε_k such that

$$\lim_{\varepsilon_k \to 0} \int_{B_r} T_{\varepsilon_k} \wedge dd^c \varphi_n \wedge (dd^c u)^{p-1} \leq C_1 \int_{Supp(g)} T \wedge (dd^c u)^p + C_2 \|u\|_{\mathcal{L}^{\infty}(L)}^{p-1} (\|S\|_L + (p-1)\|dd^c S\|_L)$$

We end the proof by letting n tends to ∞ in (4.3).

Remark 4.6. If $u(z) = |z|^2$, then we don't need the plurisubharmonicity of S in Corollary 4.5.

Theorem 4.7. Let Ω be an open subset of \mathbb{C}^n and u be a positive strictly k-convex function on Ω . Set $A = \{z \in \Omega : u(z) = 0\}$ and T be a positive current of bidimension (p,p) on $\Omega \setminus A$ such that $dd^cT \leq S$ on $\Omega \setminus A$ for some positive and plurisubharmonic (or dd^c -negative) currents S on Ω . If $p \geq k + 1$, then \tilde{T} exists. If $p \geq k + 2$, $dd^cS \leq 0$ and u is of class \mathcal{C}^2 , then dd^cT exists and $dd^cT = dd^c\tilde{T}$.

Proof. If $p \ge k + 1$, then by the previous proposition \widetilde{T} exists. To show the second part we first note that $S - dd^cT$ is positive dd^c -negative (p-1, p-1)-current. So if $p-1 \ge k+1$, then $\widetilde{S - dd^cT}$ exists. Implies that $\widetilde{dd^cT}$ exists, and by ([10], Theorem 4) the result follows.

Corollary 4.8. Ω be an open subset of \mathbb{C}^n and A be a Cauchy-Riemann variety of class \mathcal{C}^1 in Ω with dimension k. Let T be a positive current of bidimension (p,p) on $\Omega \setminus A$ such that $dd^cT \leq S$ on $\Omega \setminus A$ for some for some positive dd^c -negative currents S on Ω . If $p \geq k+1$, then \widetilde{T} exists. If $p \geq k+2$, then $\widetilde{dd^cT}$ exists and $dd^c\widetilde{T} = \widetilde{dd^cT}$.

Notice that, For strictly 0-convex functions we only need the positivity of S to find \tilde{T} , thanks to Remark 4.4.

Proof. By Theorem III.6 and Theorem II.7 in [13], locally there exists a positive strictly k-convex function u of class C^2 such that $A = u^{-1}(\{0\})$. Then the result follows from Theorem 4.7.

As we saw in the case of pluripolar sets A, the condition on the Hausdorff measure of A is sharp (see [10], Example 3). But using Proposition 4.3. we can obtain the extension in the case of compact pluripolar sets even if its Hausdorff measure is very high.

Theorem 4.9. Let A be a compact pluripolar subset of an open subset Ω of \mathbb{C}^n and T be a positive (p, p) current on $\Omega \setminus A$ such that $dd^cT \leq S$ on $\Omega \setminus A$ for some positive currents S on Ω . If $p \geq 1$, then \widetilde{T} exists and $R = \widetilde{dd^cT} - dd^c\widetilde{T}$ is positive current supported in A.

Proof. By Proposition II.2. in [13], there exists a strictly pseudoconvex open set Ω' such that $A \subset \Omega' \subset \subset \Omega$, and a negative plurisubharmonic function uon Ω' satisfying $A = \{z \in \Omega', u(z) = -\infty\}$ and such that e^u is continuous. Let φ be an exhaustion continuous strictly plurisubharmonic function on Ω' and set $c = \sup\{\varphi(z), z \in A\}$. Now consider the following sequence

$$u_n = \sup\left(\varphi - c - \frac{1}{n}, e^{(\frac{1}{n})u + |z|^2} - \frac{1}{n}, 0\right)$$

Since φ is exhaustion, then there exists $\Omega'' \subset \subset \Omega'$ and contains A such that $u_n = \varphi - c - \frac{1}{n}$ on $\Omega' \setminus \Omega''$ for all n. Now consider $A_n = \{z \in \Omega', u_n = 0\}$ and $g \in \mathcal{C}_0^{\infty}(\Omega \setminus \Omega''), 0 \leq g \leq 1$ and g = 1 in a neighborhood of $\partial \Omega''$. By similar argument as in Proposition 4.3, one can show that

$$\int_{\Omega' \setminus A_n} T \wedge \beta^p < \infty$$

independently of n. Hence \widetilde{T} exists, and by [12], the current R is positive and supported in A.

If T is positive closed current, Corollary 4.6 due to El Mir [13]. The case where T positive dd^c -negative current considered in [10], they proved that $dd^c \tilde{T} = dd^c T$, if $p \ge 2$. Recently, Dabbek and Noureddine studied the case when T is quasi-plurisubharmonic current.

In what remains in this paper we suppose that A is a closed obstacle.

Theorem 4.10. Let A be a closed subset of an open subset Ω of \mathbb{C}^n and Tbe a negative current of bidimension (p,p) on $\Omega \setminus A$ such that $dd^cT \geq -S$ on $\Omega \setminus A$ for some positive currents S on Ω . Assume that $\mathcal{H}_{2p-2}(\overline{SuppT} \cap A)$ is locally finite. Then \tilde{T} exists. If $dd^cS \leq 0$, then $\widetilde{dd^cT}$ exists and $R = \widetilde{dd^cT} - dd^c\tilde{T}$ is negative current supported in A. The same result obtained by Harvey [17] when T is closed positive current and $\mathcal{H}_{2p-1}(\overline{SuppT} \cap A) = 0$. The case when S = 0 due to Dabbek, Elkhadhra and El Mir [10]. In [9], Dabbek and Noureddine studied the case when T is quasi-plurisubharmonic current.

Proof. Our problem is local. So we may assume that $0 \in \overline{SuppT} \cap A$ and our aim now is studying the mass of T in a neighborhood of 0. Since $\mathcal{H}_{2p-1}(\overline{SuppT} \cap A) = 0$, there exists a system of coordinates (z', z'') of $\mathbb{C}^{p-1} \times \mathbb{C}^{n-p+1}$ and plydisk $\triangle^{p-1} \times \triangle^{n-p+1} \subset \mathbb{C}^{p-1} \times \mathbb{C}^{n-p+1}$ such that $(A \cap \overline{SuppT}) \cap (\triangle^{p-1} \times \partial \triangle^{n-p+1}) = \phi$. Moreover, for any projection $\pi_I : \mathbb{C}^n \to \mathbb{C}^{p-1}$ and any strictly multi-index $I = (i_1, ..., i_{p-1})$, one has $\pi_I\{0\} \cap (\overline{SuppT} \cap A) = \{0\}$ (cf. [21]). Let 0 < t < 1 such that $\triangle^{p-1} \times$ $\{z'', t < |z''| < 1\} \cap (\overline{SuppT} \cap A) = \phi$. For each $z' \in \Delta^{p-1}$, we set $A_{z'} = (\overline{SuppT} \cap A) \cap (\{z'\} \times \triangle^{n-p+1}).$ Since $\mathcal{H}_{2p-2}(\overline{SuppT} \cap A)$ is locally finite, then by [21] we have that $\mathcal{H}_0(A_{z'})$ is finite. Implies that $A_{z'}$ is a discrete subset for a.e z'. Without lose of generality, we may assume that $A_{z'}$ is reduced to a single point (z', 0). On the other hand, T is a \mathbb{C} -normal current on $\Omega \setminus A$, so it is C-flat on $\Omega \setminus A$ (cf. [4], pages, 573-574). The slice $\langle T, \pi_I, z' \rangle$ exists for a.e z', and is negative current of bidimension (1, 1) on $\Omega \setminus A_{z'}$, supported in $\{z'\} \times \triangle^{n-p+1}$ such that $dd^c \langle T, \pi_I, z' \rangle \ge \langle -S, \pi_I, z' \rangle$ on $\Omega \setminus A_{z'}$. Let K be a compact subset of $\triangle^{p-1} \times \triangle^{n-p+1}$. Since T is negative, it is enough to show that

$$\int_{K \setminus A} -T \wedge \pi_I^* \beta'^{p-1} \wedge \beta < \infty$$

where $\beta' = dd^c |z'|^2$. Applying Remark 4.6 on the current -T, we obtain

$$\int_{\Delta^{n-p+1}((z',0),1)\backslash A_{z'}} \langle T,\pi_I,z'\rangle \wedge \beta \leq C_1 \int_{\{z''\in\Delta^{n-p+1},|z''|>t\}} \langle T,\pi_I,z'\rangle \wedge \beta + C_2 \|\langle S,\pi_I,z'\rangle\|_L$$

where $L = (1 + \varepsilon)\overline{\Delta^{n-p+1}}$, for small $\varepsilon > 0$. Now, by slice formula we get

$$\int_{K\setminus A} -T \wedge \pi_I^* \beta'^{p-1} \wedge \beta \leq C \int_{z'} \left(\int_{\Delta^{n-p+1}((z',0),1)\setminus A_{z'}} \langle T,\pi_I,z'\rangle \wedge \beta \right) \beta'^{p-1} \\
\leq C_1' \int_{z'} \left(\int_{\{z''\in\Delta^{n-p+1},|z''|>t\}} \langle T,\pi_I,z'\rangle \wedge \beta \right) \beta'^{p-1} \\
+ C_2' \int_{z'} \left(\int_L \langle S,\pi_I,z'\rangle \right) \beta'^{p-1} \\
\leq D_1 \int_{\Delta^{p-1}\times\{z'',t<|z''|<1\}} -T \wedge \pi_I^* \beta'^{p-1} \wedge \beta \\
+ D_2 \int_{\Delta^{p-1}\times L} S \wedge \pi_I^* \beta'^{p-1} \tag{4.4}$$

As -T is of locally finite mass outside A and S is positive, the last right hand side integrals in (4.4) are bounded. Hence, \tilde{T} exists. Now, assume

15

that $dd^c S \leq 0$. We want to show the existence of $dd^c T$. As we saw above, for almost every z', the current $\langle T, \pi_I, z' \rangle$ is negative and $dd^c \langle T, \pi_I, z' \rangle \geq \langle -S, \pi_I, z' \rangle$ apart of $A_{z'}$, which is complete pluripolar. So by Theorem 3.3, $\langle T, \pi_I, z' \rangle$ exists and $\langle R, \pi_I, z' \rangle = \langle \widetilde{dd^c T}, \pi_I, z' \rangle - \langle dd^c \widetilde{T}, \pi_I, z' \rangle$ is negative for a.e. z'. By similar argument as in above we find that $\widetilde{dd^c T}$ exists. Indeed, for K compact subset of $\Delta^{p-1} \times \Delta^{n-p+1}$ we have

$$\int_{K\setminus A} (dd^c T + S) \wedge \pi_I^* \beta'^{p-1}$$

$$\leq B \int_{z'} \left(\int_{\Delta^{n-p+1}((z',0),1)\setminus A_{z'}} \langle (dd^c T + S), \pi_I, z' \rangle \right) \beta'^{p-1}$$

As $\langle \widetilde{dd^cT}, \pi_I, z' \rangle$ exists, the right hand side integral in the previous inequality is bounded. So, $d\widetilde{d^cT} + S$ exists, implies that $\widetilde{dd^cT}$ exists. Remains to show that R is negative, so take a positive function $\varphi \in \mathcal{D}(\Omega)$. By slice formula, we have

$$\int R \wedge \pi_I^* \beta'^{p-1} \wedge \varphi = \int_{z'} \langle R, \pi_I, z' \rangle(\varphi) \beta'^{p-1} \le 0$$
(4.5)

Hence, $R \wedge \pi_I^* \beta'^{p-1} \leq 0$. Since (4.5) true for almost all choice of unitary coordinates (z', z''), the current R is negative and supported in A.

Remark 4.11. In the previous theorem, the currents T and dd^cT are \mathbb{C} -normal on $\Omega \setminus A$, so the extensions \tilde{T} and $\tilde{dd^cT}$ are \mathbb{C} -flat (cf. [4]). Therefore, by the support theorem $dd^c\tilde{T} = \tilde{dd^cT}$ as soon as $\mathcal{H}_{2p-2}(\overline{SuppT} \cap A) = 0$. Moreover, if $\mathcal{H}_{2p-4}(\overline{SuppT} \cap A)$ is locally finite, then by [10], the extension $\tilde{-S}$ is positive and plurisubharmonic. Implies that in this case \tilde{T} has the same properties of T.

Corollary 4.12. Let A be a closed subset of an open subset Ω of \mathbb{C}^n and T be a positive current of bidimension (p,p) on $\Omega \setminus A$ such that $dd^cT \geq -S$ on $\Omega \setminus A$ for some positive and dd^c -negative currents S on Ω . Assume that $\mathcal{H}_{2p-4}(\overline{SuppT} \cap A)$ is locally finite. Then \tilde{T} exists. Moreover, $\widetilde{dd^cT} = dd^c\tilde{T}$.

Proof. As $dd^cT + S$ is a positive and dd^c -negative current of bidimension (p-1, p-1), the extension $dd^cT + S$ exists (cf. [10], Theorem 6). Implies dd^cT exists, and the results follows thanks to Theorem 5 in [10].

References

- Al Abdulaali, Ahmad K., On the extension of plurisubharmonic currents. Master thesis. K.F.U. 2008.
- [2] Al Abdulaali, Ahmad K., Extension and embedding of plurisubharmonic currents. Research reports in department of mathematics, Stockholm University, Number 3, 2010.
- [3] Al Ameer. A., Extension of plurisubharmonic current across the zero set of a k-convex function. Master thesis K.F.U 2009.
- Bassanelli, G., A cut-off theorem for plurisubharmonic currents. Forum Math. 6 (1994), no. 5, 567–595.

- [5] Ben Messaoud, Hedi; El Mir, Hassine, Opérateur de Monge-Ampère et formule de tranchage pour un courant positif fermé. (French) [Monge-Ampère operator and slicing formula for a positive d-closed current] C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 3, 277–282.
- [6] Cegrell, U., Relations between removable singularity sets for plurisubharmonic functions and positive, closed (1,1)-currents. Arch. Math. (Basel) 30 (1978), no. 4, 422– 426.
- [7] Dabbek, K., Prolongement d'un courant positif plurisousharmonique. (French) [Extension of a positive plurisubharmonic current] C. R. Math. Acad. Sci. Paris 342 (2006), no. 11, 819–823.
- [8] Dabbek, K.; Elkhadhra, F., Prolongement d'un courant positif à travers une sousvariété non Levi-plate. (French) [Extension of a positive current across a non-Levi-flat submanifold] C. R. Math. Acad. Sci. Paris 340 (2005), no. 4, 263–268.
- [9] Dabbek, K.; Noureddine, G., Prolongement d'un courant positif quasiplurisurharmonique. (French) [Extension of a positive quasi-plurisuperharmonic current] Ann. Math. Blaise Pascal 16 (2009), no. 2, 287–304.
- [10] Dabbek K.; Elkhadra F.; El Mir H., Extension of plurisubharmonic currents Math Zeitschrift 245, 455-481 (2003).
- [11] Demailly, J.-P., Complex Analytic and differential Geometry. Free accessible book http://www-fourier.ujf-grenoble.fr
- [12] Dinh, T.; Sibony, N., Pull-back currents by holomorphic maps. Manuscripta Math. 123 (2007), no. 3, 357–371.
- [13] El Mir, H., Sur le prolongement des courants positifs fermés. (French) [On the extension of closed positive currents] Acta Math. 153 (1984), no. 1-2, 1–45.
- [14] El Mir, H., prolongement des courants positifs fermés et fonctions k-convexe. Complex Analysis and Applications'85, Sofia, 1986.
- [15] El Mir, H.; Feki, I., Prolongement et contrôle d'un courant positif fermé par ses tranches. (French) [Extension and mass control of a positive d-closed current by its slices] C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 9, 797–802.
- [16] Federer, H., Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969.
- [17] Harvey, R., Removable singularities for positive currents. Amer. J. Math. 96 (1974), 67–78.
- [18] Harvey, R; Wells, R. O., Holomorphic approximation and hyperfunction theory on a C¹ totally real submanifold of a complex manifold. Math. Ann. 197 (1972), 287–318.
- [19] Hörmander, L., An introduction to complex analysis in several variables. Third edition. North Holland Publishing Company.
- [20] Hörmander, L., The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Springer-Verlag.
- [21] Shiffman, B., On the removal of singularities of analytic sets. Michigan Math. J. 15 1968 111–120.
- [22] Sibony, N, problèmes de prolongement de courants en analyse complexe. (French) [Some extension problems for currents in complex analysis] Duke Math. J. 52 (1985), no. 1, 157–197.
- [23] Siu, Y.T. Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27 (1974), 53–156.

The Department of Mathematics, Stockholm University, 106 91 Stockhlom, Sweden

E-mail address: ahmad@math.su.se

16