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Abstract

In this thesis, we describe a technique of globalizing L∞-automorphisms of the Schouten
algebra of polyvector fields. From a given local automorphism of the Schouten algebra
Tpoly(R

d) on affine space satisfying certain conditions, we construct an associated global
automorphism of the Schouten algebra Tpoly(M) on a general smooth manifold. Exotic
automorphisms of the Schouten algebra on affine space were constructed by Merkulov
in [15]. It is very plausible that these automorphisms satisfy the conditions posed in this
thesis. If this conjecture holds, these results together yield exotic automorphisms of the
Schouten algebra of polyvector fields on a general smooth manifold.
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1 Introduction

In this thesis we use a method by Fedosov [8] for solving a new instance of an old problem:
Extending a local geometric construction to a global one. The construction that we will
globalize is an L∞-automorphism of the Schouten algebra of polyvector fields. A reader
unfamiliar with these concepts can find some motivation and a historical outline in
Section 1.1, and a short introduction in Chapter 2.

We continue with a more precise statement of the main result. Let F be an L∞-
automorphism of the Schouten algebra Tpoly(R

d) of polyvector fields on affine space.
Assume furthermore that the automorphism satisfies the following condition:

Condition 1. (i) For n ≥ 2, Fn vanishes on vector fields. That means

Fn(v1, . . . , vn) = 0,

for vector fields v1, . . . , vn.

(ii) F vanishes if one of the inputs is a vector field that is linear in the standard
coordinates on R

d. That means

Fn(γ1, . . . , l
i(x)

∂

∂xi
, . . . , γn) = 0,

for arbitrary polyvector fields γ1 to γn and a vector field li(x) ∂
∂xi where the li(x)

are linear in the coordinates x1, . . . , xd of affine space R
d.

Using the given local automorphism F , we construct a new, globalized morphism Fglob

such that the following holds:

Main Theorem. For a smooth d-dimensional manifold M and an L∞-morphism F of
Tpoly(R

d) satisfying Condition 1, the globalized morphism Fglob constructed below is an
L∞-morphism of Tpoly(M).

This thesis is based on a result of Merkulov’s [15], the construction of a family of exotic
L∞-automorphisms of the Schouten algebra on affine space. The constructed morphisms
are non-trivial L∞-morphisms

F = {Fn : ∧nTpoly(R
n)→ Tpoly(R

n)}n≥1

of the form

Fn =

{

id n = 1,
∑

Γ CΓΦΓ n ≥ 2
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where the summation runs over graphs Γ with n vertices and 2n − 2 directed edges.
The ΦΓ are multilinear maps

⊗n Tpoly(R
n)→ Tpoly(R

n) associated to the graph Γ and
the CΓ are real weights given by an integral over a compactified configuration space of
a differential form associated to Γ. The weights CΓ are independent of the choice of
coordinates, but the maps ΦΓ are in general only invariant up to affine transformation.

The result described in this thesis parallels a result of Cattaneo, Felder, and Tomassini
[3,4], and Dolgushev [7]: The globalization of Kontsevich’s L∞-quasi-isomorphism from
polyvector fields Tpoly(R

d) to polydifferential operators Dpoly(R
d) [12]. Kontsevich’s

result in turn is based on the Hochschild-Kostant-Rosenberg theorem [10]: The Lie
algebra of polyvector fields with the Schouten bracket is isomorphic to the cohomology of
the Lie algebra of polydifferential operators with the Gerstenhaber bracket. Kontsevich’s
L∞-quasi-isomorphism is a stronger result, which solved the problem of deformation
quantization of a general Poisson manifold. Kontsevich proved his result for affine space
R
d and sketched the proof for general manifolds. This was elaborated on by Cattaneo,

Felder, and Tomassini [3, 4], and later also Dolgushev [7] for obtaining an equivariant
formality theorem.

The result of Merkulov [15], which this thesis builds on, is obtained using methods
similar to those of Kontsevich’s for constructing an L∞-automorphisms of polyvector
fields Tpoly(R

d) on affine space. It should not be surprising that this thesis uses the
methods of Cattaneo, Felder, and Tomassini, and Dolgushev respectively, for the glob-
alization of Merkulov’s result to general manifolds. They in turn use a trick invented
by Fedosov for the construction of the Fedosov star product [8]. This thesis is mostly
based on Dolgushev’s application of the well-known technique. Indeed, most of the re-
sults are careful checks of Dolgushev’s results for our case. We state the correspondence
with Dolgushev’s work in detail. Lemma 3 here corresponds to Dolgushev’s Theorem
2, Proposition 1 to Dolgushev’s Theorem 3, Proposition 2 to Dolgushev’s Proposition 2
and the Main Theorem to Dolgushev’s Theorem 4.

Condition 1 is analogous to two conditions in Kontsevich’s work [12]. Kontsevich’s
L∞-morphism between polydifferential operators and polyvector fields satisfies certain
conditions (P4) and (P5), which was proved in the same work. Merkulov’s exotic au-
tomorphisms are constructed in an analogous way, which makes it plausible that they
satisfy the analogous condition. A proper investigation is very obvious future work.

As an alternative to Condition 1, one can impose another condition on the local
automorphism constructed as in [15]. Later, we give an easy proof that Condition 1 is
satisfied if the following condition holds:

Condition 2. If the graph Γ contains a vertex with at most one ingoing and at most
one outgoing edge, then the weight CΓ is zero.

The outline of the thesis is the following: We start with a historical overview over
polyvector fields and polydifferential operators. It followed by a short introduction
to polyvector fields, the Schouten bracket, L∞-algebras and Maurer-Cartan elements.
Maurer-Cartan elements are the keys to the twist of Lie algebras and L∞-morphisms,
a method which we will need later. After that, the first step towards proving the main
result is the introduction of vertical polyvector fields. They are used to construct a
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resolution of the Schouten algebra Tpoly(M). For obtaining a resolution not only as
a C∞(M)-module, but also as a Lie algebra, the resolution has to be twisted using
a chosen covariant derivation. This is called the Fedosov trick. The given local L∞-
morphism acts fiberwise on the obtained resolution as a C∞(M)-module. After a twist
of the fiberwise morphism, we obtain an L∞-morphism of the resolution as a Lie algebra.
Using Condition 1, we see that this twisted, fiberwise morphism is invariant under change
of coordinates, which proves the result. We conclude with showing that Condition 2
actually implies Condition 1.

Although the aim of this thesis is a global construction, we are going to work in local
coordinates most of the time. If not stated otherwise, the formulas that we are going to
use are independent of the choice of local coordinates. Throughout this thesis, we use
the Einstein summation convention.

1.1 A short history of polyvector fields

This section is intended for the non-expert reader who wonders why polyvector fields
or L∞-algebras are something worth investigating. We have no ambition to write a
complete treatise and only aim to tell a story. There are nice and careful expositions
such as [17] or [5]. The Schouten algebra of polyvector fields, L∞-algebras and Maurer-
Cartan elements will be defined in Chapter 2, Basic notions. However, we give short
definitions here that should suffice for this historical overview.

Let M be a smooth d-dimensional manifold. The Schouten algebra of polyvector fields
Tpoly(M) on M is the C∞(M)-module of sections of the exterior algebra of the tangent
bundle, i.e.,

Tpoly(M) =

∞
⊕

n=0

T npoly(M),

where
T npoly(M) = Γ(

∧nTM).

Via the graded Leibniz rule, the Lie bracket on vector fields can be extended to polyvector
fields. The resulting Lie bracket is called the Schouten bracket.

An L∞-algebra is a generalization of a Lie algebra which consists not only of a binary
operation, the bracket, but of a (possibly vanishing) n-ary operation for each positive
integer n. The operations suffice a countable number of compatibility relations, among
others a Jacobi identity up to homotopy. A Maurer-Cartan element is an element of
the L∞-algebra that can be used to twist the L∞-algebra, that is, to construct a new
L∞-algebra structure from the old one with help of the Maurer-Cartan element.

We continue by introducing the C∞(M)-module of polydifferential operatorsDpoly(M).
On a local patch U of the manifold M where we denote coordinates by x1, . . . , xd, a poly-
differential operator is a map

C∞(U)⊗ . . .⊗ C∞(U)→ C∞(U)
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of the form

∆U = ∆I1...In
U (x)

∂|I1|

∂xi
(1)
1 . . . ∂x

i
(1)
k1

⊗ . . .⊗
∂|In|

∂xi
(n)
1 . . . ∂xi

(n)
kn

, (1.1)

where the ∆I1...In
U (x) are smooth functions, the Ij are multi-indices

Ij = (i
(j)
1 , . . . , i

(j)
kj

)

and |Ij | = kj . On smooth functions a1, . . . , an, they act as

∆(a1, . . . , an) = ∆I1...In
∂|I1|a1

∂xi
(1)
1 . . . ∂x

i
(1)
k1

· . . . ·
∂|In|an

∂xi
(n)
1 . . . ∂xi

(n)
kn

.

Having described polydifferential operators locally, we define polydifferential operators
on the manifold M as maps

∆ : C∞(M)⊗ . . .⊗ C∞(M)→ C∞(M)

that are locally of the form (1.1). More precisely, there is a covering of M with open
subsets Ui such that ∆ restricted to C∞(Ui)

⊗n is of the form (1.1).
The polydifferential operators form a complex with the grading

Dpoly(M) =
∞

⊕

n=0

Dn
poly(M),

where Dn
poly(M) consists of the polydifferential operators from C∞(M)⊗n to C∞(M). It

is a subcomplex of the Hochschild cochain complex C•(A,A) for the associative algebra
A := C∞(M), where

Cn(A,A) = HomR(A⊗n+1, A).

The differential in this complex is given by d : Cn(A,A)→ Cn+1(A,A) with

(d∆)(a0, . . . an) =

a0∆(a1, . . . , an) +

n
∑

i=1

(−1)i∆(a0, . . . , ai−1ai, . . . , an) + ∆(a0, . . . , an−1)an.

The cohomology of the Hochschild cochain complex is denoted by HH∗(A,A), the coho-
mology of the subcomplex Dpoly(M) is denoted by HH∗

diff(M). We mention also that the
polydifferential operators form a Lie algebra with respect to the so-called Gerstenhaber
bracket, which induces a bracket on cohomology. So both the space of polydifferential
operators and its cohomology are Lie algebras. They are the topic of a famous theorem:

Hochschild-Kostant-Rosenberg-Theorem. [10] The cohomology of the differential
Hochschild complex of polydifferential operators is isomorphic as a Lie algebra to the Lie
algebra of polyvector fields with the Schouten bracket:

(HH∗
diff , [−,−]G) = (Tpoly(M), [−,−]S).
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Why, however, should one be interested in the Hochschild cochain complex of C∞(M)?
One answer is given by Gerstenhaber in the work [9]: The Hochschild cohomology groups
of an associative algebra control the deformations of this algebra. Here, we consider a
special deformation problem, deformation quantization, posed by Bayen, Flato, Fronsdal,
Lichnerowicz, and Sternheimer in [1] and [2].

Let A be a commutative algebra over a field K. We introduce a formal parameter v
and deform the algebra A to an associative algebra A[[v]] over K[[v]]. The problem of
deformation quantization is to find a so-called star product, i.e., an associative product

⋆ : A[[v]]⊗K[[v]] A[[v]]→ A[[v]].

It can be written in the form

a ⋆ b = ab+ vB1(a, b) + v2B2(a, b) + . . . .

Consider the important special case when A is the algebra C∞(M) of smooth functions
on a manifold M . From the associativity of the star product, it follows that {−,−}
defined by

{a, b} =
B1(a, b) −B1(b, a)

2

makes A[[v]] into a Poisson algebra, i.e., a special Lie algebra. If there exists a Poisson
algebra structure on A = C∞(M), then M is called a Poisson manifold. One can prove
that the Poisson algebra structures on A[[v]] determine the star products on A[[v]]. A
more general formulation of the problem is to construct a star product for a given Poisson
algebra structure.

For the mathematician not educated in physics, it is difficult to understand what
these products have to do with quantization. An attempt to give some physical intuition
behind this formula is to interpret the algebra A as the algebra of classical observables
and the deformed associative algebra as the algebra of quantum observables. The formal
parameter v is often set to i~

2 where ~ is the Planck constant.
Now L∞-algebras slowly come into the picture. The solution to the deformation

quantization problem for symplectic manifolds, i.e., nondegenerate Poisson manifolds,
was given by Fedosov [8]. Its main idea is the Fedosov construction, which this thesis
uses heavily. The solution for general Poisson structures is due to Kontsevich [11,12]. It
consists of the proof of the Formality Theorem (stated as Formality Conjecture in [11]),
which is a stronger version of the Hochschild-Kostant-Rosenberg Theorem.

Formality Theorem. [12] There exists an L∞-quasi-isomorphism between the Lie al-
gebras Tpoly(M) and Dpoly(M).

The connection to deformation quantization is roughly the following: If the Formal-
ity Conjecture is true, one can relate the Maurer-Cartan elements of Dpoly(M) and
Tpoly(M). The Maurer-Cartan elements of Tpoly(M) are the Poisson structures, and
the Maurer-Cartan elements of Dpoly(M) can be identified with deformations of the
usual multiplication. Hence, the existence of a star product as above follows from the
Formality Conjecture. For more details we refer to [11], [16] and the introduction [5].
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Kontsevich succeeded in proving the Formality Theorem [12]. Actually, he proved it
only for affine space R

d, but sketched a proof of a globalization to general manifolds. As
already written in the beginning of the introduction, this allowed Cattaneo, Felder and
Tomassini [3, 4] as well as Dolgushev [7] to establish the globalization of Kontsevich’s
result.

Now the non-expert reader should have the background to read the beginning of the
introduction again.
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2 Basic notions

2.1 The Schouten algebra of polyvector fields

Let M be a smooth manifold of dimension d with the R-algebra of smooth functions
C∞(M) and tangent bundle TM . The Schouten algebra of polyvector fields Tpoly(M)
on M is the C∞(M)-module of sections of the exterior algebra of the tangent bundle,
i.e.,

Tpoly(M) =
∞

⊕

n=0

T npoly(M),

where
T npoly(M) = Γ(

∧nTM)

for n ≥ 1. We set T 0
poly(M) = C∞(M). We obtain a grading of the Schouten algebra

by saying that an element of T npoly(M) = Γ(
∧n TM) has degree n. The degree of a

homogeneous polyvector field f is denoted by |f |. Usual vector fields are polyvector
fields of degree 1.

In the chosen grading, the Lie bracket for vector fields has degree -1. It can be extended
to an odd Lie bracket on polyvector fields via the graded Leibniz rule: Let f, g and h be
homogeneous polyvector fields, then

[f, g ∧ h] = [f, g] ∧ h+ (−1)(|f |−1)|g|g ∧ [f, h],

the -1 in the exponent coming from the degree of the bracket. We recall the properties
of odd Lie brackets:

• Skew-symmetry: [f, g] = −(−1)(|f |+1)(|g|+1)[g, f ], and

• Jacobi identity: [f, [g, h]] = [[f, g], h] + (−1)(|f |+1)(|g|+1)[g, [f, h]].

There are several ways to write down the Schouten bracket explicitly. Here we are
going to present two of them. For vector fields v0, . . . , vk , w0, . . . , wl and a smooth
function a we have that

[v0 ∧ . . . ∧ vk, w0 ∧ . . . ∧ wl] =

k
∑

i=0

l
∑

j=0

(−1)i+j [vi, wj ]∧ v0∧ . . .∧ vi−1∧ vi+1∧ . . .∧ vk∧w0∧ . . .∧wj−1∧wj+1∧ . . .∧wl
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and

[v0 ∧ . . . ∧ vk, a] = (−1)k
k

∑

i=0

(−1)ivi(a) v0 ∧ . . . ∧ vi−1 ∧ vi+1 ∧ . . . ∧ vk.

On a local patch U of M with coordinates x1, . . . , xn, a polyvector field takes the form

f i0...ik(x)
∂

∂xi0
∧ . . . ∧

∂

∂xik
.

Here, the f i0...ik(x) are smooth functions on U . Observe that the Einstein summation
convention is used in this formula. We write ϕi instead of ∂

∂xi . Then a polyvector
field restricted to the patch U is an element of the graded commutative polynomial ring
C∞(U)[ϕ1, . . . , ϕd], where the ϕi are of degree 1. This allows us to write the Schouten
bracket in local coordinates simply as

[f, g] = −

(

∂f

∂xi
∂g

∂ϕi
+ (−1)|f |

∂f

∂ϕi

∂g

∂xi

)

. (2.1)

Here f and g are elements of C∞(U)[ϕ1, . . . , ϕd], i.e. polyvector fields in local coordinates.
Observe that C∞(U)[ϕ1, . . . , ϕd] is graded commutative, i.e.,

ϕiϕj = (−1)|ϕi||ϕj |ϕjϕi = −ϕjϕi.

Furthermore
∂

∂xj

(

f i0...ik(x)ϕi0 . . . ϕik
)

=
∂f i0...ik(x)

∂xj
ϕi0 . . . ϕik

and
∂

∂ϕj
ϕiϕj = −

∂

∂ϕj
ϕjϕi = −ϕi.

2.2 L∞-algebras and Maurer-Cartan elements

L∞-algebras are a generalization of Lie algebras, consisting not only of a binary bracket,
but of a set of maps

Q1 : g → g

Q2 : g ⊗ g → g

Q3 : g ⊗ g ⊗ g → g

...

where g is a graded vector space. Every Lie algebra is an L∞-algebra, where all but the
binary map are zero. Not every L∞-algebra is a Lie algebra, but one says that it is a
Lie algebra up to homotopy. L∞-algebras are also called strong homotopy Lie algebras
or sh Lie algebras. This introduction is going to be very short. We skip the proofs
and specification of signs. For this, we refer to much more elaborate introductions such
as [13], [14] or [5].
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An L∞-structure on a Z-graded vector space g is a collection of skew-symmetric maps

Qn :
⊗ng → g

of degree 2− n such that

∑

i+j=n+1

∑

σ

±Qi(Qj(vσ(1) ⊗ . . .⊗ vσ(j))⊗ vσ(j+1) ⊗ . . . ⊗ vσ(n)) = 0 (2.2)

for all n ≥ 1. The inner sum runs over all permutations σ such that σ(1) < . . . < σ(j)
and σ(j + 1) < . . . < σ(n). The sign ± depends on i, j and the permutation σ. If
all the maps except Q2 are zero, then Equation (2.2) for n = 3 is the usual graded
Jacobi identity. In general, n = 3 yields a Jacobi identity up to higher terms, or up to
homotopy.

We are now going to describe another approach to defining L∞-algebras. Consider
the reduced graded symmetric coalgebra

S̄(g[1]) =
∞
∑

i=1

Sng[1],

where Sn denotes the n-th symmetric tensor power and g[1] the vector space g with
grading shifted by 1, i.e., g[1]n = gn+1. The coalgebra structure is given by

∆(v) = v ⊗ 1 + 1⊗ v

for an element v in g. It is extended to elements of higher degree such that ∆ is an
homomorphism of algebras. The algebra structure of S̄(g[1]), and hence S̄(g[1])⊗S̄(g[1]),
is given by the tensor product.

As we are going to see, an L∞-structure is also given by a coalgebra differential and
coderivation Q on S̄(g[1]), that is, a degree 1 map Q : S̄(g[1]) → S̄(g[1]) such that
Q2 = 0 and Q is a coderivation, i.e.,

∆ ◦Q = (Q⊗Q) ◦∆. (2.3)

The differential Q is determined by maps Sng[1] → S̄(g[1]) for every n. Because Q is a
coderivation, these maps are in turn determined by their composition with the projection
S̄(g[1]) → g[1]. Hence a differential Q on the symmetric coalgebra S̄(g[1]) is determined
by degree 1 maps

Qn : Sng[1]→ g[1].

They correspond to degree 2− n maps

Qn :
∧ng → g.

The condition Q2 = 0 translates to the conditions (2.2) on the Qn and vice versa.
Hence, we see that an L∞-algebra structure on a graded vector space g can be given

as skew-symmetric maps
Qn :

∧ng → g

12



satisfying condition (2.2), or alternatively as a coderivation Q of the symmetric coalgebra
S̄(g[1]) satisfying Q2 = 0. In the following, we then say that (g,Q) is an L∞-algebra.

The second definition makes it easier to define the notion of an L∞-morphism. Let
(g,Q) and (h,R) be L∞-algebras. Then an L∞-morphism from (g,Q) to (h,R) is given
by a coalgebra morphism

Φ : S̄(g[1]) → S̄(h[1])

that commutes with Q and R, which means that

Φ ◦Q = R ◦ Φ.

In a similar way as an L∞-algebra structure, an L∞-morphism Φ : S̄(g[1]) → S̄(h[1])
is uniquely determined by its composition with the projection S̄(h[1])→ h[1]. Hence an
L∞-morphism Φ can also be given by linear maps

Φn :
∧ng → h

satisfying compatibility conditions coming from the fact that Φ respects the L∞-structures
Q and R.

We turn to the topic of twisting L∞-algebras and L∞-morphisms with a so-called
Maurer-Cartan element. For a more detailed introduction, see [6, 18]. In a graded Lie
algebra, a Maurer-Cartan element is an element λ such that [λ, λ] is zero. In an L∞-
algebra (g,Q), a Maurer-Cartan element is an element π of g that satisfies

∞
∑

i=1

1

i!
Qi(π, . . . , π) = 0.

Given a Maurer-Cartan element in an L∞-algebra, one can twist the L∞-algebra in the
following way:

Let (g,Q) and (h,R) be L∞-algebras as before, π an element of g[1] and Φ : (g,Q)→
(h,R) an L∞-morphism. Define exp(π) : S̄(g[1]) → S̄(g[1]) by

exp(π)(X) :=

∞
∑

i=0

1

i!
πiX

for X in S̄(g[1]). One checks that exp(−π) ◦ exp(π) = id.
Suppose that π is a Maurer-Cartan element. Then the map Qπ defined by

Qπ = exp(−π) ◦Q ◦ exp(π)

makes (g,Qπ) into an L∞-algebra. This is the twisting of (g,Q) with π. It may also be
given explicitly by the formula

Qπ(X) =

∞
∑

i=0

1

i!
Q(πiX).
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We can also twist the L∞-morphism Φ : (g,Q) → (h,R) with the Maurer-Cartan
element π of (g,Q). The first step is to find a corresponding Maurer-Cartan element in
(h,R). It is given by

ω =

∞
∑

i=1

1

i!
Φi(π

i). (2.4)

We can twist (g,Q) with π and (h,R) with ω and get the L∞-algebras (g,Qπ) and
(h,Rω). The twisted L∞-morphism Φπ between them is given by

Φπ = exp(−ω) ◦Q ◦ exp(π). (2.5)

An explicit formula for Φπ is given by

Φπ(X) =

∞
∑

i=0

1

i!
Φ(πiX). (2.6)

Now the reader should have the necessary prerequisites. The remainder of the thesis
consists of the proof of the main result.
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3 The construction of the globalized

morphism

3.1 Vertical polyvector fields

In this section, we define vertical polyvector fields and differential forms with values
in them. The idea is to work in the module of sections of a large vector bundle, with
fibers at any point on the manifold being isomorphic as R-vector spaces to Tpoly(R

d).
The Schouten bracket on Tpoly(R

d) extends fiberwise to a Lie bracket on the vertical
polyvector fields, the vertical Schouten bracket. In the same way, an L∞-morphism of
Tpoly(R

d) will extend to an L∞-morphism on the vertical polyvector fields. In practice,
this idea has to be modified in two ways: We have to consider polyvector fields on
the “thick point” R

d
formal, the formal completion of R

d along 0, instead of polyvector
fields on R

d. Furthermore, as already said, we will not only need polyvector fields, but
also differential forms with values in them. Summarizing, we are going to construct a
C∞(M)-module and Lie algebra whose elements in local coordinates are of the form

∑

k≥0

∑

l,m≥0

f b1...bla1...ak ,c1...cm
(x)ya1 . . . yak

∂

∂yb1
∧ . . . ∧

∂

∂ybl
dxc1 ∧ . . . ∧ dxcm. (3.1)

As first step, consider R
d
formal, the formal completion of R

d along 0. Roughly speak-
ing, this is the point 0 together with an infinitesimal neighborhood in R

d. We work
in local coordinates which we denote by x1 to xd. The “smooth functions“, i.e., the
global sections of the structure sheaf, of R

d
formal are the power series in d coordinates,

R[[x1, . . . , xd]]. The tangent vectors, i.e., global sections of the tangent sheaf, are the
derivations f i(x) ∂

∂xi where f i(x) is a formal power series with respect to the x1, . . . , xd.

Hence, the Schouten algebra Tpoly(R
d
formal) on R

d
formal is given by

Tpoly(R
d
formal) =

{

d
∑

n=0

f i1...in(x)
∂

∂xi1
∧ . . . ∧

∂

∂xin
| f i1...in(x) ∈ R[[x1, . . . , xd]]

}

,

with the Schouten bracket given by the same formula (2.1) as the usual Schouten bracket.
As next step, we are going to construct vertical polyvector fields. Let, as before, M be

a manifold of dimension d. The total space of the tangent bundle TM is a manifold of
dimension 2d. When we choose local coordinates on this manifold, we will denote them
by x1, . . . , xd, y1, . . . , yd, where the xi are coordinates on the original manifold M and
the yi coordinates on the fibers of the tangent bundle. We define the sheaf T̂ on TM as
the sections

f i(x, y)
∂

∂xi
+ gi(x, y)

∂

∂yi
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of the iterated tangent bundle T (TM) such that f i(x, y) and gi(x, y) are smooth with
respect to the x and formal power series with respect to the y. Observe that this
definition is independent of the choice of coordinates, as long as one chooses one set of
coordinates denoted by x for the original manifold M and one set denoted by y for the
fiber at the point x in M . The sheaf T̂ is a sheaf of modules over the formal structure
sheaf Ĉ defined by

Ĉ(U) :=

{f : U → R | f smooth with respect to x, formal power series with respect to y}.

Consider the projection π : TM →M . It induces a differential

dπ : T̂ (TM)→ π∗TM,

where π∗TM is the pullback of the tangent sheaf TM . In local coordinates, dπ is given
by

dπ

(

f i(x, y)
∂

∂xi
+ gi(x, y)

∂

∂yi

)

= f i(x, y)
∂

∂xi
.

Hence the kernel of dπ consists of those vector fields taking the form gi(x, y) ∂
∂yi with gi

smooth with respect to the x and formal power series with respect to the y. We define

T vert(M) := ker dπ(M).

Elements of T vert(M) are called vertical vector fields on the manifold M . The vertical
vector fields T vert(M) form both a C∞(M)-module and a Ĉ(TM)-module. The elements
of the exterior algebra of T vert(M) over Ĉ(TM) are the vertical polyvector fields. We
define

T vert
poly(M) :=

d
⊕

q=0

∧qT vert(M),

where we let
∧0 T vert(M) be Ĉ(TM) and the exterior algebra is over Ĉ(TM). In local

coordinates, a vertical polyvector field is of the form

gi1...in(x, y)
∂

∂yi1
∧ . . . ∧

∂

∂yin
,

where the gi1...in(x, y) are smooth with respect to the x and formal power series with
respect to the y. On a local patch U , we can hence identify T vert

poly(U) with the graded
commutative polynomial ring and formal power series

C∞(U)[[y1, . . . , yd]][ψ1, . . . , ψd],

where we set ψi = ∂
∂yi . The yi are of degree 0 and the ψi of degree 1.

Tensoring T vert
poly(M) with the de Rham algebra ΩM over M , we get differential forms

over M with values in vertical polyvector fields:

Ω(M,T vert
poly(M)) := T vert

poly(M)⊗C∞(M) ΩM.

16



In local coordinates, the elements of Ω(M,T vert
poly(M)) are of the form (3.1). On a local

patch U , we can hence identify Ω(M,T vert
poly(M)) with the graded commutative polynomial

ring and formal power series

C∞(U)[[y1, . . . , yd]][ψ1, . . . , ψd, η
1, . . . , ηd] (3.2)

where we set ηi = dxi with degree 1, and the ψi = ∂
∂yi as before. Hence Ω(M,T vert

poly(M))
is graded in the following way:

Ω(M,T vert
poly(M)) =

d
⊕

r=0

Ωr(M,T vert
poly(M)),

where
Ωr(M,T vert

poly(M)) =
⊕

p+q=r

T
vert,p
poly (M)⊗ Γ(

∧q(T ∗M))

and the elements of T vert,p
poly (M) have degree p with respect to the ∂

∂yi .

As last step, we will show that the Schouten bracket on Tpoly(R
d
formal) induces a Lie

algebra structure on both T vert
poly(M) and Ω(M,T vert

poly(M)). Consider the vector bundle

Ŝ(T ∗M)⊗
∧

TM , where Ŝ(T ∗M) is the completed symmetric algebra over the cotangent
bundle T ∗M ,

Ŝ(T ∗M) =

∞
∏

i=0

Si(T ∗M)

and
∧

TM the exterior algebra over the tangent bundle TM . It holds that

Γ
(

M, Ŝ(T ∗M)⊗
∧

TM
)

≃ T vert
poly(M)

as C∞(M)-modules, by the identification

∑

k,l≥0

f b1...bla1...ak
(x)dxa1 . . . dxak

∂

∂xb1
∧ . . . ∧

∂

∂xbl
7→

7→
∑

k,l≥0

f b1...bla1...ak
(x)ya1 . . . yak

∂

∂yb1
∧ . . . ∧

∂

∂ybl
.

Hence the C∞(M)-module of the global sections of Ŝ(T ∗M) ⊗
∧

TM is isomorphic to
T vert

poly(M). The fibers of the bundle Ŝ(T ∗M)⊗
∧

TM are isomorphic to Tpoly(R
d
formal) as

R-vector spaces. This induces a fiberwise Lie algebra structure on T vert
poly(M). Explicitly

and in local coordinates, it is given by

[f, g]vert = −

(

∂f

∂yi
∂g

∂ψi
+ (−1)|f |

∂f

∂ψi

∂g

∂yi

)

. (3.3)

Here f and g are elements of C∞(U)[[y1, . . . , yn]][ψ1, . . . , ψn], i.e., vertical polyvector
fields on a local patch U . We call this bracket the vertical Schouten bracket. It can be
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extended to Ω(M,T vert
poly(M)) and is given explicitly by the same formula (3.3) where the

f and g are elements of C∞(U)[[y1, . . . , yd]][ψ1, . . . , ψd, η
1, . . . , ηd], i.e., differential forms

with values in the vertical polyvector fields on a local patch U .
In a similar fashion as the construction of the vertical Schouten bracket, an L∞-

morphism on T vert
poly(M) induces a fiberwise L∞-morphism on Ω(M,T vert

poly(M)), see Sec-
tion 3.4.

We will also need a subalgebra of Ω(M,T vert
poly(M)), the Lie algebra T vert

poly(M)|y=0 of
vertical polyvector fields which are constant with respect to the y. Its elements are of
the form

gi1...in(x)
∂

∂yi1
∧ . . . ∧

∂

∂yin
.

It is not hard to see that T vert
poly(M)|y=0 is isomorphic to Tpoly(M) as C∞(M)-module

(but not as Lie algebra). So Tpoly(M) can be seen as submodule of Ω(M,T vert
poly(M)), a

fact that we are going to use soon.
Summarizing, we have proved the following lemma:

Lemma 1. The C∞(M)-module Ω(M,T vert
poly(M)) is a Lie algebra together with the ver-

tical Schouten bracket. An element of Ω(M,T vert
poly(M)) can locally be written in the form

∑

k≥0

∑

l,m≥0

f(x)b1...bla1...ak,c1...cm
ya1 . . . yak

∂

∂yb1
∧ . . . ∧

∂

∂ybl
dxc1 ∧ . . . ∧ dxcm. (3.4)

In local coordinates, Ω(M,T vert
poly(M)) can be identified with C∞(U)[[y1, . . . , yn]][ψ1, . . . , ψn]

and the vertical Schouten bracket is given by

[f, g]vert = −

(

∂f

∂yi
∂g

∂ψi
+ (−1)|f |

∂f

∂ψi

∂g

∂yi

)

. (3.5)

The submodules T vert
poly(M) and T vert

poly(M)|y=0 are subalgebras of Ω(M,T vert
poly(M)).

3.2 Resolution of Tpoly(M) via the Poincaré lemma

Using the Poincaré lemma, differential forms with values in the vertical polyvector fields
provide us with a resolution of Tpoly(M) as a C∞(M)-module. Consider the following
differential on Ω(M,T vert

poly(M)):

δ : Ωr(M,T vert
poly(M))→ Ωr+1(M,T vert

poly(M))

given in local coordinates by

δ(f) := [ηiψi, f ]vert = dxi
∂f

∂yi
.

This is well-defined since ηiψi = dxi ∂
∂yi is invariant under change of coordinates on M .

The differential δ is similar to the de Rham differential. In fact, we are going to use a
version of the proof of the Poincaré lemma in order to prove the following lemma:
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Lemma 2. As C∞(M)-module, the cohomology of Ω(M,T vert
poly(M)) with respect to δ is

given by

Hn(Ω(M,T vert
poly(M)), δ) ∼=

{

Tpoly(M) if n = 0,

0 otherwise.

Proof. We use a contracting homotopy δ∗. It is defined by

δ∗ : Ωr(M,T vert
poly(M))→ Ωr−1(M,T vert

poly(M))

with

δ∗(fI,J(x, ψ)yIηJ) =
1

p+ q
ya

∂

∂ηa
f(x, ψ)yIηJ ,

for f non-constant with respect to the y and η, where I and J are multi-indices of
degree p and q, respectively. For f constant with respect to the y and η, the contracting
homotopy δ∗ is given by δ∗(f) = 0 . Furthermore, there is a projection map

σ : Ω(M,T vert
poly(M))→ T vert

poly(M)|y=0 ⊂ Ω(M,T vert
poly(M))

given by

σ(
∑

k≥0

∑

l,m≥0

f b1...bla1...ak ,c1...cm
(x)ya1 . . . yak

∂

∂yb1
∧ . . . ∧

∂

∂ybl
dxc1 ∧ . . . ∧ dxcm )

=
∑

l≥0

f b1...bl(x)
∂

∂yb1
∧ . . . ∧

∂

∂ybl
.

One checks that
f = σf + δδ∗f + δ∗δf. (3.6)

Hence we have proved that the cohomology of Ω(M,T vert
poly(M)) is T vert

poly(M)|y=0. But

T vert
poly(M)|y=0 is isomorphic to Tpoly(M) as C∞(M)-module via ∂

∂yi 7→
∂
∂xi . This con-

cludes the proof.

3.3 The Fedosov resolution

The Poincaré resolution is a resolution of Tpoly(M) as a C∞(M)-module, but not as a Lie
algebra. Recall that Tpoly(M) is endowed with the Schouten bracket and Ω(M,T vert

poly(M))
with the vertical Schouten bracket. However, the resolution can be transformed into a
resolution of Lie algebras by the Fedosov trick, first applied in [8].

Choose a torsion-free connection on M and denote its Christoffel symbols by Γkij(x).
Then we are given a derivation ∇ of Ω(M,T vert

poly(M)) by

∇f = df + [Γ, f ]vert
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where

d = dxi
∂

∂xi
and

Γ = −ηiΓkij(x)y
jψk = −dxiΓkij(x)y

j ∂

∂yk
.

In general, ∇ is not a differential. Instead we have

∇2f = [R, f ]vert,

where

R = −
1

2
ηiηjRlkijy

kψl = −
1

2
dxidxjRlkijy

k ∂

∂yl

is given by the Riemann curvature tensor of the connection. It is not hard to check that

δ∇ +∇δ = 0.

We are going to twist the differential δ with ∇. As ∇ is not a differential, δ+∇ is not
a differential either. However, it can be made into one by adding an extra term. This is
the content of the following lemma:

Lemma 3. There exists an element A in Ω(M,T vert
poly(M)) such that δ∗A = 0 and

D := ∇− δ + [A, •]vert

is a differential. The element A has the form

A =

∞
∑

p=2

ηkA
j
k,i1...ip

(x)yi1 . . . yipψj =

∞
∑

p=2

dxkAjk,i1...ip(x)y
i1 . . . yip

∂

∂yj
.

Proof. The first observation is that D2 = 0 follows from

R+∇A+
1

2
[A,A]vert = δA. (3.7)

Furthermore, observe that the we are looking for an A such that δ∗A = 0 and σA = 0.
Hence, by using Equation (3.6),

A = σA+ δδ∗A+ δ∗δA = δ∗δA.

Together with (3.7) we get that A should satisfy

A = δ∗R+ δ∗
(

∇A+
1

2
[A,A]vert

)

.

This is a recurrence formula for A. Convergence follows from the fact that δ∗ increases
the degree with respect to the y. We now prove that D2 actually vanishes using the A
obtained from the recurrence. We write

C := R+∇A+
1

2
[A,A]vert − δA
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and prove that C = 0.
From the Bianchi identities for the Riemann curvature tensor we get

δR = ∇R = 0.

A consequence of this is that C lies in the kernel of D:

DC = ∇C − δC + [A,C]vert = 0. (3.8)

It holds that σ(C) = 0 and δ∗C = 0 by

δ∗(C) = δ∗
(

R+∇A+
1

2
[A,A]vert

)

− δ∗δA = A− δ∗δA = 0,

because A = δ∗δA. Using the contracting homotopy from the Poincaré lemma and
Equation (3.8) it follows that

C = σ(C) + δδ∗C + δ∗δC

= δ∗(∇C + [A,C]vert).

This recursion equation for C has the unique solution 0, because δ∗ increases the
degree with respect to the y. Hence C = 0, which proves the claim.

Twisting the differential does not change cohomology. Indeed, the following holds:

Proposition 1. As C∞(M)-module, the cohomology of Ω(M,T vert
poly(M)) with respect to

D is given by

Hn(Ω(M,T vert
poly(M)),D) ∼=

{

Tpoly(M) if n = 0,

0 otherwise.

Proof. We use recursion equations as in the foregoing proof.
At first, we consider elements f of Ωr(M,T vert

poly(M)) with r ≥ 1. Let Df = 0. We try

to find an element g in Ωr−1(M,T vert
poly(M)) with Dg = f and δ∗g = σ(g) = 0. Then g

satisfies
g = σg + δδ∗g + δ∗δg = δ∗δg

and Dg = ∇g − δg + [A, g]vert = f , so

δg = −f +∇g + [A, g]vert.

Hence g has to satisfy
g = −δ∗f + δ∗(∇g + [A, g]vert).

This is a recurrence equation for g. It converges and yields g such that σg = 0 and
δ∗g = 0. We prove that in fact Dg = f .

Consider the element h := Dg − f. It holds that

δ∗h = δ∗(Dg)− δ∗f = g − δ∗δg = 0
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because of the recurrence equation, and σh = 0 because h lies in Ωr(M,T vert
poly(M)), r ≥ 1.

By applying the contracting homotopy to h = Dg − f , and by the fact that Dh = 0, it
follows that

h = σh+ δδ∗h+ δ∗δh = δ∗(∇h+ [A,h]vert) (3.9)

because σh = δ∗h = 0. Since δ∗ increases the degree with respect to the y, zero is the only
solution of the recursion equation (3.9). Hence h = Df−g = 0 and (Ω(M,T vert

poly(M)),D)
is acyclic.

The second step is to find a bijection τ between T vert
poly|y=0 and the elements of

Ω0(T vert
poly(M)) that lie in ker(D). Let f0 be an element of T vert

poly|y=0. The aim is to

find an element f in Ω0(T vert
poly(M)) that satisfies

Df = 0,

σf = f0

and is unique with these properties. Observe that f ∈ Ω0(T vert
poly) implies that

δ∗f = 0.

Hence, such an f satisfies

f = σf + δδ∗f + δ∗δf

= f0 + δ∗δf

= f0 + δ∗(∇f + [A, f ]vert),

the latter because we want Df = 0. As δ∗ increases the degree with respect to the y,
this equation has a unique solution. We check that actually Df = 0. That σf = f0 is
clear. Denote Df by u. Then σu = 0 because u lies in the image of D and

δ∗u = −δ∗δf + δ∗(∇f + [A, f ]vert) = −δ∗δf + f − f0 = δδ∗f = 0

because δ∗f = 0. Hence

u = σu+ δδ∗u+ δ∗δu

= δ∗(∇u+ [A,u]vert), (3.10)

because Du = 0. Equation (3.10) has u = 0 as only solution, thus Df = 0.
This proves that H0(Ω(M,T vert

poly(M)),D) is isomorphic as a C∞(M)-module to

T vert
poly(M)|y=0. That it is isomorphic to Tpoly(M) is clear from before. This concludes

the proof.

The vertical Schouten bracket on Ω(M,T vert
poly(M)) commutes with the differential D,

that is,
D[f, g]vert = [Df, g] + (−1)|f |[f,Dg]vert.
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Indeed, D can be written as

D = dxi
∂

∂xi
+ [dxi

∂

∂yi
− Γ +A, •]vert.

One checks easily that dxi ∂
∂xi commutes with the bracket. From the Jacobi identity

for odd Lie brackets, it follows that [dxi ∂
∂yi − Γ + A, •]vert commutes with the vertical

Schouten bracket.
Hence, the vertical Schouten bracket induces a Lie bracket on the cohomology of

Ω(M,T vert
poly(M)) with respect to D, that means on Tpoly(M). We show that the induced

bracket coincides with the usual Schouten bracket on Tpoly(M).

Proposition 2. Consider the Lie algebra Tpoly(M) equipped with the Schouten bracket,
and the Lie algebra

H0(Ω(M,T vert
poly(M)),D)

equipped with the induced vertical Schouten bracket. The C∞(M)-module isomorphism

Tpoly(M)→ H0(Ω(M,T vert
poly(M)),D)

given by Proposition 1 is an isomorphism of Lie algebras.

Proof. We introduce the following notation: σ′ denotes the composition

Ω0(M,T vert
poly(M))

σ
−→ T vert

poly(M)|y=0
∼
−→ Tpoly(M)

and τ ′ denotes the composition

Ω0(M,T vert
poly(M))

τ
←− T vert

poly(M)|y=0
∼
←− Tpoly(M).

The morphism τ was defined in the proof of Proposition 1.
We have to show that

τ ′[f0, g0] = [τ ′f0, τ
′g0]

vert (3.11)

for f0, g0 ∈ Tpoly(M). We denote τ ′f0 by f and τ ′g0 by g. By the definition of τ ′, the
equation (3.11) for f0, g0 ∈ Tpoly(M) is equivalent to

[σ′f, σ′g] = σ′[f, g]vert

for f, g ∈ Ω0(T vert
poly(M)) with Df = Dg = 0.

From Df = 0 it follows that

dxi
∂f

∂yi
= dxi

∂f

∂xi
− dxiΓkij(x)ψk

∂f

∂ψj
+ dxi(terms containing y).

Hence, using that f lies in Ω0(T vert
poly(M)), we have

σ′(
∂f

∂yi
) = σ′(

∂f

∂xi
)− σ′(Γkij(x)ψk

∂f

∂ψj
).
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From the explicit formula for the vertical Schouten bracket (3.3), we obtain

σ′[f, g]vert = [σ′f, σ′f ]− σ′S

where

S = Γkij(x)ψk
∂f

∂ψj

∂g

∂ψi
+ (−1)|f |

∂f

∂ψi
Γkij(x)ψk

∂g

∂ψj

= 0

because Γkij is symmetric in the lower indices. This proves the claim.

3.4 The twisted automorphism

The Schouten algebra Tpoly(M) is isomorphic as a Lie algebra to the cohomology of
Ω(M,T vert

poly(M)) with respect to the Fedosov differential D, that is the content of Propo-

sition 2. It is quite straightforward to construct an L∞-automorphism of Ω(M,T vert
poly(M))

given an L∞-automorphism of Tpoly(R
n): one applies the given automorphism fiberwise.

However, we are looking for an L∞-automorphism of Ω(M,T vert
poly(M)) that commutes

with the differential D, so that it induces an L∞-automorphism on its cohomology, the
Schouten algebra. To accomplish this we have to twist the automorphism. We will see
that this twist is independent of the choice of coordinates if the original automorphism
of Tpoly(R

d) satisfies Condition 1.
More precisely, the last steps of the proof of the main result are the following: Let

F be an L∞-automorphism of Tpoly(R
d) as constructed in [15]. We construct an L∞-

automorphism F vert of Ω(M,T vert
poly(M)). Then we twist this automorphism with a certain

Maurer-Cartan element B which we define explicitly below and obtain a morphism F vert
B

that commutes with D. Finally, we show that this construction is independent of the
choice of coordinates if F satisfies Condition 1.

Assume, hence, that F is an L∞-automorphism of Tpoly(R
n) as in [15]. Its components

are defined as

Fn =

{

id n = 1,
∑

Γ CΓΦΓ n ≥ 2

where the summation runs over graphs Γ with n vertices and 2n − 2 directed edges.
The ΦΓ are polydifferential operators

⊗n Tpoly(R
n) → Tpoly(R

n). As we are working
over R

d, the Schouten algebra Tpoly(R
d) can be identified with the polynomial ring

C∞(Rd)[ϕ1, . . . , ϕd]. Hence, ΦΓ can be seen as a polydifferential operator

n
⊗

C∞(Rd)[ϕ1, . . . , ϕd]→ C∞(Rd)[ϕ1, . . . , ϕn].

The ΦΓ are defined by

ΦΓ(f1, . . . , fn) =

[

(

∏

e∈Edges(Γ)

∆e

)

f1(ϕ(1), x(1)) . . . fn(ϕ(n), x(n))

]

x(1)=...=x(n),ϕ(1)=...=ϕ(n)
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with

∆e :=

d
∑

a=1

∂2

∂xa(j)∂ϕ(i)a

where the edge e starts at the vertex labeled by i and ends at the vertex labeled by j.
For example, if

Γ =

•1

•2OO
,

then

ΦΓ(f1(x, ϕ), f2(x, ϕ)) =
∂f1

∂xi
(−1)|f1|

∂f2

∂ϕi
.

We aim to construct a morphism Φvert
Γ that works fiberwise on Ω(M,T vert

poly(M)). At

first, we choose a local patch U on M . Restricted to this patch, Ω(M,T vert
poly(M)) can be

identified with
C∞(U)[[y1, . . . , yd]][ψ1, . . . , ψd, η

1, . . . , ηd],

as in (3.2) in Section 3.1. We define Φvert
Γ on this patch as

Φvert
Γ (f1, . . . , fn) =

[

(

∏

e∈Edges(Γ)

∆e

)

f1(ψ(1), y(1)) . . . fn(ψ(n), y(n))

]

y(1)=...=y(n),ψ(1)=...=ψ(n)

with

∆e :=

d
∑

a=1

∂2

∂ya(j)∂ψ(i)a
.

Thus Φvert
Γ differentiates with respect to yi and ψi where ΦΓ differentiates with respect

to xi and ϕi. The difference is that Φvert
Γ is independent of the choice of the coordinates

x1, . . . , xd, whereas ΦΓ is not. We define F vert locally by

F vert
n =

∑

Γ

CΓΦvert
Γ (3.12)

where the summation runs over graphs Γ with n vertices and 2n− 2 edges as before. As
both the weights CΓ and Φvert

Γ are independent of the choice of coordinates, this formula
gives a global F vert, i.e.,

F vert
n :

⊗nΩ(M,T vert
poly(M))→ Ω(M,T vert

poly(M)).

In [15] it is proved that F is an L∞-morphism of Tpoly(R
d) equipped with the Schouten

bracket. The proof also holds for F vert with the vertical Schouten bracket. Hence we
have proved the following lemma:

Lemma 4. F vert as defined in (3.12) is an L∞-automorphism of Ω(M,T vert
poly(M)) with

respect to the vertical Schouten bracket.
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This automorphism F vert commutes with the differential d, but not with

D = d+ [Γ− ηiψi +A, •]vert.

We write

B = Γ−ηiψi+A = −dxiΓkij(x)y
j ∂

∂yk
−dxi

∂

∂yi
+

∞
∑

p=2

dxkAjk,i1...ip(x)y
i1 . . . yip

∂

∂yj
. (3.13)

We reformulate the above statement: F vert commutes with the differential d, but not
with D = d + [B,−]vert. This problem will be solved by twisting with the Maurer-
Cartan element B, a technique we explained in Section 2.2. That B is a Maurer-Cartan
element in the differential graded Lie algebra Ω(M,T vert

poly(M)) with differential d and
the vertical Schouten bracket is most easily seen backwards. Twisting this L∞-algebra
with B, we obtain Ω(M,T vert

poly(M)) with differential D = d+ [B,−]vert and the vertical
Schouten bracket. As this is a differential graded Lie algebra as well, it follows that B is
a Maurer-Cartan element. We will see later that B depends on the choice of coordinates.
Hence we start working on a local patch of M with fixed coordinate system.

Lemma 5. The twisted morphism F vert
B defined by

F vert
B := exp(−B) ◦ F vert ◦ exp(B)

on a local patch U of M is an L∞-automorphism of Ω(U, T vert
poly(U)) with respect to D

and the vertical Schouten bracket [−,−]vert.

Proof. We proceed as in Section 2.2. At first, we use (2.4) and compute

∞
∑

i=1

1

i!
Fi(B

i).

By the definition of F and the first part of Condition 1, this is B. Hence, in Equation
(2.5), we twist with the same Maurer-Cartan element from both sides. We get that
F vert
B = exp(−B)◦F vert◦exp(B) is an L∞-automorphism of Ω(M,T vert

poly(M)) with respect
to D, which concludes the proof.

Lemma 6. The twisted morphism F vert
B defined in Lemma 5 is independent of the choice

of coordinates. Hence it glues together to an L∞-automorphism of Ω(M,T vert
poly(M)) with

respect to D and the vertical Schouten bracket [−,−]vert.

Proof. We analyze how B transforms under change of coordinates. The terms dxi ∂
∂yi

and A are invariant under change of coordinates. The transformation of Γ is more com-
plicated due to the presence of the Christoffel symbols. We compute that B transforms
as

B′ = B + dxiHk
ij(x)y

j ∂

∂yk
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for some Hk
ij(x), where the exact form of Hk

ij(x) is not important.1

We have a closer look at the explicit formula for Φvert
B . By Equation (2.6) in Section

2.2, it holds that

F vert
B,n (X) =

∞
∑

i=0

1

i!
F vert
n+i (B

iX)

for X in
∧n Ω(M,T vert

poly(M)). However, F vert is zero on any summand of the form

dxiHk
ij(x)y

j ∂
∂yk by the second part of Condition 1. Hence F vert

B is independent of the
choice of coordinates, which concludes the proof.

Lemma 6 and Proposition 1 together result in the main theorem of this thesis.

Main Theorem. For a smooth d-dimensional manifold M and an L∞-morphism F of
Tpoly(R

d) satisfying Condition 1, the globalized morphism Fglob constructed above is an
L∞-morphism of Tpoly(M).

Proof. Because F vert
B commutes with D, it induces an L∞-automorphism F̃ vert

B on co-
homology H0(Ω(M,T vert

poly(M)),D). Together with the Lie algebra isomorphism τ ′ from

Tpoly(M) to H0(Ω(M,T vert
poly(M)),D) and its inverse τ ′−1 from H0(Ω(M,T vert

poly(M)),D)
to Tpoly(M) we get that

Fglob = τ ′−1 ◦ F̃ vert
B ◦ τ ′

is an L∞-automorphism of Tpoly(M).

3.5 The conditions on the local automorphism

In this section, we show that an L∞-automorphism of Tpoly(R
d) constructed as in [15]

that satisfies Condition 2 also satisfies Condition 1. Assume we are given such an
automorphism F . Recall that it is constructed as

Fn =

{

id n = 1,
∑

Γ CΓΦΓ n ≥ 2

where the summation runs over graphs Γ with n vertices and 2n−2 directed edges. The
ΦΓ are polydifferential operators

n
⊗

C∞(Rd)[ϕ1, . . . , ϕd]→ C∞(Rd)[ϕ1, . . . , ϕn]

defined by

ΦΓ(f1, . . . , fn) =

[

(

∏

e∈Edges(Γ)

∆e

)

f1(ϕ(1), x(1)) . . . fn(ϕ(n), x(n))

]

x(1)=...=x(n),ϕ(1)=...=ϕ(n)

1This step is taken directly from [7], see Equation (58).
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with

∆e :=

d
∑

a=1

∂2

∂xa(j)∂ϕ(i)a

where the edge e starts at the vertex labeled by i and ends at the vertex labeled by j.
We assume that F satisfies Condition 2, i.e., CΓ = 0 if Γ contains a vertex with at most
one outgoing and at most one ingoing edge.

At first, we show that
Fn(v1, . . . , vn) = 0

for vector fields v1, . . . , vn. The only polydifferential operators ΦΓ that are nonzero on
vector fields correspond to those graphs Γ in which every vertex has at most one outgoing
edge. As the number of edges is 2n − 2, this is satisfied only by the graph

Γ =

•

• WW

��
.

However, the weight CΓ for this graph is zero by Condition 2. Hence F is zero on vector
fields.

Finally we show that

Fn(γ1, . . . , l
i(x)

∂

∂xi
, . . . , γn) = 0,

for arbitrary polyvector fields γ1 till γn and a vector field li(x) ∂
∂xi where the li(x) are

linear in the coordinates x1, . . . , xd of R
d. A polydifferential operator ΦΓ does not vanish

on li(x) ∂
∂xi only if the graph Γ contains vertices with at most one ingoing and at most

one outgoing edge. The weight CΓ for these graphs is zero by Condition 2. Hence F
vanishes if one of the inputs is a vector field linear in the coordinates of R

d.
We conclude that Condition 2 implies Condition 1.
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Springer, 2007.

[18] A. Yekutieli. Continuous and twisted morphisms. Journal of Pure and Applied
Algebra, 207(3):575–606, 2006.

30


