
ISSN: 1401-5617

An explicit calculation of the Ronkin

function

Johannes Lundqvist

Research Reports in Mathematics

Number 1, 2010

Department of Mathematics

Stockholm University



Electronic versions of this document are available at
http://www.math.su.se/reports/2010/1

Date of publication: June 9, 2010
2000 Mathematics Subject Classification: Primary 32A60, Secondary 33C75.
Keywords: Ronkin function, Ronkin measure, Amoebas, Mahler measure, Hypergeo-
metric functions, Elliptic integrals.

Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.math.su.se/
info@math.su.se



An explicit calculation of the Ronkin function

Johannes Lundqvist

Dissertation presented to Stockholm University in partial fulfillment of the
requirements for the Degree of Licentiate of Philosophy (Filosofie licentia-
texamen), to be presented on June 18, 2010 at 10:00 in Room 306, Building
6, Department of Mathematics, Stockholm University (Kräftriket).
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Abstract

We calculate the second order derivatives of the Ronkin function
in the case of an affine linear polynomial in three variables and give
an expression of them in terms of complete elliptic integrals and hy-
pergeometric functions. This gives a semi-explicit expression of the
associated Monge-Ampère measure, the Ronkin measure.
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1 Introduction

Amoebas are certain projections of sets in Cn to Rn that are connected to
several areas in mathematics such as complex analysis, tropical geometry,
real algebraic geometry, special functions and combinatorics to name a few.
The term amoeba was first defined by Gelfand, Kapranov and Zelevinsky
in [8] and these objects were later studied by several other authors like
Mikhalkin, Passare, Rullg̊ard and Tsikh. The Ronkin function of a polyno-
mial is closely connected to the amoeba. The main result in this thesis is
an explicit calculation of the second order derivatives of the Ronkin func-
tion in the case of an affine linear polynomial L in three dimensions, thus
giving an explicit expression of the so called Ronkin measure associated to L.

Assume that f is a Laurent polynomial in n variables over C. This means
that

f(z) =
∑

α∈A

aαz
α

for some finite set A ⊂ Zn. The convex hull of the points α ∈ A for which
aα 6= 0 is called the Newton polytope of f and is denoted by ∆f . In order
to define the amoeba of f (and the compactified amoeba of f) we need to
introduce the two mappings Log : (C∗)n → Rn and νf : (C∗)n → ∆f defined
by

Log(z1, . . . , zn) = (log |z1|, . . . , log |zn|), and

ν(z1, . . . , zn) =

∑

α∈A |zα| · α
∑

α∈A |zα|

respectively.

Definition 1.1. (Gelfand, Kapranov, Zelevinsky) Let f(z) be a Laurent
polynomial in n variables over C. The amoeba of f , denoted by Af , and the
compactified amoeba of f , denoted by Āf , are defined as the image of the
zero set f−1(0) under the maps Log and ν respectively.

We have the following commutative diagram

(C∗)n
Log

//

ν

$$J

J

J

J

J

J

J

J

J

Rn

γ

��

int(∆f )

where

γ(x) =

∑

α∈A e
〈α,x〉 · α

∑

α∈A e
〈α,x〉

is a diffeomorphism.
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To understand the structure of the amoeba of a Laurent polynomial one
needs to take a closer look at the concept of duality between convex subdi-
visions of convex sets in Rn.

Definition 1.2. Let K be a convex set in Rn and let T be a collection of
closed convex subsets of K. Then T is said to be a convex subdivision if it
satisfies all of the following three conditions.

1. The union of all sets in K is equal to K.

2. A nonempty intersection of two sets in K belongs to K.

3. A subset τ of a set σ in K belongs to K if and only if τ is a face of σ.

For two convex sets σ and τ such that τ ⊂ σ one can define the convex cone
cone(τ, σ) according to

cone(τ, σ) = {t(x− y);x ∈ σ, y ∈ τ, t ≥ 0}.
The dual cone C∨ of a convex cone C is defined to be

C∨ = {ξ ∈ Rn; 〈ξ, x〉 ≤ 0,∀x ∈ C}.
Definition 1.3. Let T and T ′ be two convex subdivisions of the sets K and
K ′ respectively. Then T and T ′ are said to be dual to each other if there
exist a bijective mapping from T to T ′, σ → σ∗, such that the following two
conditions are satisfied for all sets τ, σ ∈ T .

1. τ ⊂ σ if and only if σ∗ ⊂ τ∗.

2. The cone cone(τ, σ) is dual to cone(σ*, τ*).

The amoeba of a Laurent polynomial f has the following properties:

1. The connected components of the complement of the amoeba are con-
vex and these complement components are in a bijective correspon-
dence with the different Laurent series expansion of 1/f

2. The number of complement components is at least equal to the number
of vertices in ∆f ∩ Zn and at most equal to the number of points in
∆f ∩ Zn

3. The amoeba can be retracted to a subdivision T of Rn and there exist
a triangulation T ′ of the Newton polytope of f such that T and T ′ are
dual to each other.

The first property is not hard to prove, see for example [18]. The other
properties can be proved by a construction of an injective function from the
set of connected components of Rn \ Af to ∆ ∩ Zn and a certain tropical
polynomial with its tropical hypersurface inside the amoeba. Both of these
constructions can be done using the so called Ronkin function first studied
by Ronkin, see [22].
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Definition 1.4. Let f(z) be a Laurent polynomial over C. The Ronkin
function of f , denoted by Nf , is defined by

Nf (x) =

(

1

2πi

)n ∫

Log−1(x)
log |f(z)|dz

z

The Ronkin function of a product of two polynomials is obviously the sum
of the Ronkin function of those two polynomials. It is also easy to see that
the Ronkin function of a monomial azα ∈ C[z1, . . . , zn] is an affine linear
polynomial in R[x1, . . . , xn], i.e. if f(z) = azα1

1 . . . zαn
n then

Nf = log |a| + α1x1 + α2x2 + . . . αnxn. (1)

The function Nf is convex on Rn and it is affine linear on an open connected
set Ω ⊂ Rn if and only if Ω ⊂ Rn \Af . In fact the gradient of Nf at a point
outside the amoeba is a point in ∆∩ Zn, and thus we have a mapping from
the set of complement components to the set of points in A. This mapping
was proved to be injective in [7]. Moreover, it is easy to see that the amoeba
always has components corresponding to the vertices in ∆ ∩ Zn, and thus
we get property 2 above.

Example. Let f(z) = a0 +a1z+a2z
2 + . . . anz

n = (z−b1) . . . (z−bn) where
a0 6= 0 and b1 ≤ b2 < . . . ≤ bn. Then for x such that bm < ex < bm+1 we
have

Nf (x) =

∫ 2π

0
log |f(ex+iφ)|dφ = log |a0| +

m
∑

k=1

log

(

ex

|bk|

)

=

= log |a0| −
m
∑

k=1

log |bk| +mx.

by Jensen’s formula and we see that Nf is a convex piecewise affine linear
function, singular at log |bk|, k = 1, . . . , n.

Since we have an injective function from the complement components of
the amoeba to ∆f ∩ Zn we can define the concept of an order to every
complement component of Af in the obvious way. Let Ã be the subset of
Zn such that α belongs to Ã if and only if Af has a component of order α.
for every α in Ã, define the real number cα by

cα = Nf (x) − 〈α, x〉
where x is any point in the complement component of order α and let

S(x) = max
α∈Ã

(cα + 〈α, x〉).
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Then S(x) is a convex piecewise affine linear function that agrees with Nf

on the complement of the amoeba. The function S(x) is a so called tropical
polynomial and its tropical hypersurface, i.e. the corner locus of the function
S(x) is called the spine of the amoeba of f and is denoted by Sf . In [18]
the authors prove the following theorem.

Theorem 1.1. (Passare, Rullg̊ard) The spine Sf is a deformation retract
of Af and there exist dual subdivisions T of Rn and T ′ of Ã such that Sf is
the union of the cells in T of dimension less than n. Moreover, the cell of
T dual to the point α ∈ Ã contains the complement component of order α.

Another important subset of the amoeba is the so called contour. This
set will play an important role in Section 4.

Definition 1.5. The set of critical values of the mapping Log restricted to
f−1(0) is called the contour of Af and is denoted by C.

The contour is a real analytic hypersurface of Rn and the boundary of the
amoeba is always included in the contour. The following map is closely
connected with the contour of an amoeba.

Definition 1.6. Let Z be an algebraic hypersurface with defining polynomial
f . The logarithmic Gauss-map γ : Z → CPn−1 is defined by

γ(z1, . . . zn) = [z1
∂

∂z1
f(z1, . . . , zn) : . . . : zn

∂

∂zn
f(z1, . . . , zn)].

This map can be geometrically described as follows. Take a regular point
z ∈ Z. Take a small neighborhood U of z and map that neighborhood with
the complex logarithm and choose a branch. Now take the normal direction
of log(z) and you get γ(z). Note that this is the Gauss map composed with
the complex logarithm, hence the name. The next proposition gives a nice
way to describe the contour in terms of the logarithmic Gauss map.

Proposition 1.1. Mikhalkin) Let f be a Laurent polynomial. The criti-
cal points of the map Log are exactly the ones that are mapped to the real
subspace RPn−1 ⊂ CPn−1. That is

C = Log(γ−1(RPn−1))

The proof can be found in [14].
Closely related to the Ronkin function is the Mahler measure that was

introduced by Mahler in [12]. He made the following definition

Definition 1.7. Let f be a polynomial in n variables with real or complex
coefficients. The number

M(f) =

{

exp
(

1
2πi

)n ∫

Log−1(0) log |f(z)|dz
z if f 6≡ 0

0 if f ≡ 0

is called the Mahler measure of f .
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Figure 1: The amoeba and spine of f(z,w) = 1 + 2zw + z3 + w3

and its contour.

Figure 2: The amoeba and spine of f(z,w) = 2 + 2z2 + 2w2 + 3z2w + zw2

and its contour.

We see that the logarithm of the Mahler measure, m(f), is the Ronkin
function evaluated in the origin. On the other hand if f(z) =

∑

α∈A aαz
α

then we have the following equality:

Nf (x) = m

(

∑

α∈A

aαe
〈α,x〉zα

)

.

In particular, if f(z1, . . . , zn) = 1 + z1 + . . . + zn we have

Nf (x1, . . . , xn) = m(1 + ex1z1 + . . . + exnzn).

Thus if one can give an explicit expression of the Mahler measure of f =
a0 + a1z1 + . . . + anzn for aj > 0 one also has an explicit expression of the
Ronkin function of f = 1 + z1 + . . . + zn and vice versa. In the case of two
variables such an expression is known, see [24], but in higher dimensions it
is not.
The Mahler measure had been considered before Mahler by Lehmer, [10], in
1933 but then only in the one variable case. Lehmer made the conjecture
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that if f is a non-cyclotomic polynomial with integer coefficients then

M(f) ≥M(f0) = 1.17628 . . .

where
f0(z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1.

This is still an open question. In [1] Boyd proved that the Mahler measure
of several variable polynomials is the same as a certain limit of a sequence
of Mahler measures of one variable polynomials. In this way one could try
to find small values by calculating the Mahler measure in say two variables
and maybe disprove the conjecture of Lehmer. Such calculations where done
numerically by Boyd and the example

M((x+ 1)y2 + (x2 + x+ 1)y + x(x+ 1)) = 1.25542 . . .

is still the smallest value of a two variable polynomial one has found. At
the same time the first results on explicit expressions of Mahler measures in
several variables was obtained by Smyth [24]. One of his formulas take the
following form in terms of the Ronkin function.

Theorem 1.2. (Smyth) Let f = 1 + z + w. Then

Nf (0, 0) =
3
√

3

4π
L(χ−3, 2)

where

L(χ−3, s) =

∞
∑

k=1

χ−3(k)

ks
and χ−3(k) =







1 if k ≡ 1 mod 3
−1 if k ≡ −1 mod 3
0 if k ≡ 0 mod 3

Almost 20 years later Maillot generalized the theorem of Smyth by giving
an explicit expression for the Ronkin function at every point in R2, see [13].
The expression involves the so called Block-Wigner dilogarithm, denoted
D(z) and defined as

D(z) = Im(Li2(z) + log |z| log(1 − z))

for z ∈ Cn \ {0, 1}.

Theorem 1.3. (Maillot) Let f = 1 + z + w. Then

Nf (x, y) =







α
πx+ β

πy + 1
πD(e−x+iβ) if (x, y) ∈ Af

π logmax{1, ex, ey} otherwise

where α and β are defined in Figure 3 below.
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Figure 3:

Interestingly, the partial derivatives of this Ronkin function are very easy to
describe.

Lemma 1.1. Let f(z,w) = 1 + z + w. Then

∂

∂x
Nf =

α

π
,

∂

∂y
Nf =

β

π

where α and β is described in Figure 3.

Proof. A differentiation under the integral sign gives

∂

∂x
Nf (x, y) =

∂

∂x

(

1

2πi

)2 ∫

Log−1(x,y)
log |1 + z + w|dz

z

dw

w
=

=

(

1

2πi

)2 ∫

Log−1(x,y)

dz

(1 + z + w)

dw

w
=

=

(

1

2πi

)
∫

|w|=ey

(

(

1

2πi

)
∫

|z|=ex

dz

z − (−1 − w)

)

dw

w
.

Now, the inner integral is 1 when |z| = ex < |1 + w| and 0 when |z| = ex >
|1+w| and since dw/w is the volume measure on the torus |w| = ey we have
that Nf equals the ratio

λ
(

{φ ∈ [0, 2π]; ex < |1 + ey+iφ|}
)

λ ([0, 2π])
,

where λ is the Lebesgue measure, and this expression is obviously equal to
α/π. The second part is proved analogously.

For more about the Mahler measure, see [11].

The Ronkin function of f will give rise to a measure, called the Ronkin
measure, with support on the amoeba of f . For every smooth convex func-
tion f on Rn, the Hessian matrix of f

Hess(f) =

(

∂2f

∂xi∂xj

)
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is a positive definite matrix. The determinant of the Hessian times the
Lebesgue measure is called the real Monge-Ampère measure of f and is
denoted by M(f). If we define the gradient at a point x0 of a convex function
defined in a domain Ω as

grad f(x0) = {y ∈ Rn; f(x) − f(x0) ≥ 〈y, x− x0〉 ,∀x ∈ Ω}
then the Monge-Ampère measure can be extended to all convex functions f
by letting

M(f)(E) = λ(grad f(E))

where λ is the Lebesgue measure and

grad f(E) =
⋃

x∈E

gradu(x).

The Monge-Ampère measure is a positive Borel measure for any convex
function, see [20]. We are now ready to define the Ronkin measure.

Definition 1.8. Let f be a Laurent polynomial. The real Monge-Ampère
measure of Nf is called the Ronkin measure associated to f and is denoted
µf .

SinceNf is affine linear outside the amoeba of f we have that µf has support
on the amoeba. Moreover, Passare and Rullg̊ard proved that µf has finite
total mass and that the total mass equals the volume of the Newton polytope
of f [18]. They also proved the following theorem about the area of amoebas
in two variables.

Theorem 1.4. (Passare, Rullg̊ard) In the two variable case the area of the
amoeba of f is bounded by π2 times the area of the Newton polytope of f .

There is no hope of finding a similar theorem in more than two variables
because in that situation the volume of the Newton polytope is almost always
infinite (see the example on page 11). The inequality in Theorem 1.4 is sharp
in the sense that there is a set of Laurent polynomials that have amoebas
with maximal area, i.e. with area equal to π2 times the area of the Newton
polytope. This set turns out to be equal to the ones defining so called simple
Harnack curves. This especially means that the real part of the zero-set of
f have the maximal number of component (1 + g) where g is equal to the
number of points in A. More about this can be read in [15].

Theorem 1.5. (Mikhalkin, Rullg̊ard) The polynomials in two variables as-
sociated to amoebas with maximal area are exactly those that define Harnack
curves. In other words, the polynomials such that there exist non-zero com-
plex numbers ǫj such that ǫ0f(ǫ1z, ǫ2w) has real coefficients and for each
x ∈ Af the real torus Log−1(x) intersects the zero locus of f in at most two
points.

Remark 1.1. Figures 1 and 2 appeared in [19] and were included here by
kind permission of the authors of that paper.
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2 Hyperplane amoebas

The Newton polytope of a hyperplane amoeba in n variables has n + 1
integer points and all of them are vertices. This implies that the amoeba
has exactly n+1 complement components according to property 3 on page 3.
By Theorem 1.1 we also know that the amoeba is solid, i.e. has no bounded
complement component. The compactified hyperplane amoebas turns out
to be particularly easy to express. They are in fact polytopes.

Proposition 2.1. (Forsberg, Passare, Tsikh) Let f be the affine linear poly-
nomial a0 + a1z1 + a2z2 + . . .+ anzn and assume that |aj |+ |ak| 6= 0 for all
j and k. Then Āf is the convex hull of the points vjk = (t1, . . . , tn), j 6= k,
where either

tj =
|a0|

|aj | + |a0|
, tl = 0 for l 6= j , or

tj =
|ak|

|aj | + |ak|
, tk =

|aj |
|ak| + |aj|

, tl = 0 for l 6= j, k.

Figure 4: The compactified amoebas of f(z,w) = 1 + z + w and
f(z,w) = 2 + z + 3w

The fact that hyperplane amoebas are solid makes the spine rather easy
to express explicitly.

Proposition 2.2. Let f(z) = a0 + a1z1 + . . . + anzn. Then S(x) is the
hypersurface of the tropical polynomial

S(x1, . . . , xn) = max
j=0,1...,n

(log |aj| + xj).

where x0 is defined to be 0.

An analogous theorem actually holds true for all amoebas that are solid and
there are no real differences in the proof. Note that the spine coincide with
the tropicalization of f .

Proof. We only need to prove that

cej
= log |aj | where {e1, . . . , en} is the standard basis in Rn and e0 = 0.
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Let x be in the complement component of order ej , where j 6= 0. Then

cej
= Nf (x) − xj =

(

1

2π

)n ∫

Log−1(x)
log |a0 + a1z1 + . . .+ anzn|

dz

z
− xj =

=

(

1

2π

)n ∫

Log−1(x)
log

( |a0 + a1z1 + . . .+ anzn|
|zj |

)

dz1 . . . dzn
z1z2 . . . zn

.

Now, since x belongs to the complement component of order ej we can take
the limit when xj → ∞ and we get that the integral equals log |aj |. When
j = 0 we can take the limit when xj → −∞ for all j = 1, . . . , n and we get
the result in the proposition.

In Section 1 we saw that the area of an amoeba in two variables is finite.
That is not true in higher dimension as we see in the example below.

Example. Let f = 1+z+w+ t. According to Proposition 2.2 we have that
the spine of Af is the corner set of max(0, x, y, u). Thus the spine contains
the ray (0, 0, t) for t ∈ [−∞, 0]. Actually a whole cylinder containing that
ray is contained in the amoeba. This can be seen in the following way.
Consider the annulus

U = {1 + r1e
iϕ + r2e

iθ;ϕ, θ ∈ [0, 2π],
2

3
≤ r1, r2 ≤ 4

3
}.

If C is a circle with center at the origin and with radius r ≤ 1 then it is
obvious that C ∩ U 6= ∅. This means that a point (x, y, u ∈ R3) lies in the
amoeba of f if x, y ∈ [log |2/3|, log |4/3|] and u ∈ (−∞, 0] thus the amoeba
of f contains a set that obviously has infinite volume.

The affine linear polynomials in two variables are examples of Harnack
curves and the Ronkin measures associated to these polynomials conse-
quently have the constant density 1/π2 on the amoeba by Theorem 1.5.
In this case we have such an easy expression of the partial derivatives of Nf

that it is easy to verify directly. In the case of three variables this kind of
calculation is harder and will be done in Section 4. The following lemma
will simplify some of the calculations because it reduces the problem to the
case where all the coefficients are equal to 1.

Lemma 2.1. If

f(z) = 1 + z1 + . . .+ zn and

fa(z) = a0 + a1z1 + . . .+ anzn

Then
Nfa

(x1, . . . xn) = Nf (x1 + log |a1|, . . . , xn + log |an|).

Proof. Do the obvious change of variables.
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The contour of the hyperplane amoeba in three variables is easy to de-
scribe and it divides the amoeba into eight parts. An easy calculation (or
Proposition 1.1) gives that the contour for the amoeba of f = 1 + z +w+ t
is given by the set of points (x, y, u) ∈ R3 that satisfy one of the following
equalities:







































1 + ex = ey + eu

1 + ey = ex + eu

1 + eu = ex + ey

1 = ex + ey + eu

ex = 1 + ey + eu

ey = 1 + ex + ey

eu = 1 + ex + ey

Corollary 2.1. Let f(z,w, t) = 1 + z + w + t. The compactified amoeba of
f is a octahedron and the contour divides it into eight convex chambers. In
fact, the part of the contour that is not on the boundary is the union of the
three squares naturally defined by the octahedron. See figure 5.

Proof. The first part is just applying Proposition 2.1. Consider the points
on the contour that satisfy 1 + ex = ey + ey. These points are mapped to
the compactified amoeba by the map γ in Definition 1.1 to points

(t, s, 1 + t− s)

2(1 + t)
.

Now, since the sum of the second and third coordinate is equal to 1/2
we have that the image is equal to the square with vertices in the points
(0, 0, 1/2), (0, 1/2, 0), (1/2, 1/2, 0), (1/2, 0, 1/2). The other parts of the con-
tour is done analogously.

Figure 5: The contour minus the boundary of Āf when
f = 1 + z + w + t is the union of three squares.

Let x be a point in the compactified amoeba that is not on the contour.
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Then x satisfies three inequalities, for example






1 + ex > ey + eu

1 + ey > ex + eu

1 + eu > ex + ey.
(2)

If the inequality goes in the direction > we associate a + to it and if it goes
in the other direction we associate a − to it. In this way we get a triple with
minus or plus signs for every point in the amoeba and thus a numbering
of the eight chambers. For example, a point x satisfy (2) if and only if x
belongs to chamber (+,+,+).

3 Fibers over hyperplane amoebas and linkages

Instead of considering the image of f−1(0) under the map Log it is also
natural to look at the image of the argument map Arg defined by

Arg : (C∗)n → Tn = S1 × . . . × S1

Arg(z1, . . . , zn) = (arg(z1), . . . , arg(zn)).

This image is called the coamoeba of f , denoted A′
f and was first introduced

by Passare and Tsikh in 2005. The coamoeba is a set in T but sometimes
it is also viewed as a set in Rn. In the physics literature coamoebas are
sometimes called algae. A reference for coamoebas is [17]. In this section
we will consider a certain set in the coamoeba of a polynomial f that we
call the fiber over a point in the amoeba.

Definition 3.1. Assume that f is a polynomial in n variables over C and
let x ∈ Af . The image in Tn of Log−1(x) ∩ f−1(0) under the map Arg is
called the fiber over the point x.

The fibers over the amoeba are closely connected to so called polygon link-
ages. Consider a closed mechanical linkage, i.e., n+ 1 bars with length l1 to
ln+1 attached with revolving joints so that the last bar is connected to the
first. Let us ask ourselves what possible shapes the linkage can have. One
trivial observation is that it does not matter if we rotate the whole linkage
thus we can assume that one of the bars is fixed. Mathematically speaking,
given a vector of positive numbers (l1, . . . , ln+1) ∈ Rn+1 we are interested in
the configuration space Ml defined as

Ml : = {(p1, . . . , pn+1) ∈ (R2)n+1; |p2 − p1| = l1, |p3 − p2| = l2,

. . . , |pn+1 − pn| = ln, |p1 − pn+1| = ln+1, p1 = (0, 0), p2 = (l1, 0)} ∼=

∼= {(ϕ1, . . . , ϕn) ∈ Tn; l0 +

n
∑

j=1

lje
iϕn = 0}.
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Assume that f is on the form 1 + a1z1 + . . . + anzn and pick a point x =
(x1, . . . , xn) on the amoeba of f . Then there exist a point ϕ = (ϕ1, . . . , ϕn) ∈
Tn such that f(ex+iϕ) = 0. Thus we have a planar polygon linkage with
n+ 1 bars l0, . . . , ln where |l0| = 1 and |ak| = exk for 1 ≤ k ≤ n. The fibers
over a given point x in the amoeba is exactly Ml, where l0=1 and lj = exj

for 1 ≤ j ≤ n.

Figure 6: A linkage with four bars with l0 = l1 = l3 = 1 and l2 = 1/2
together with the work space of the arm of the bars with length l1, l2, l3.

Several people have worked with spaces like Ml and there is a good under-
standing of the topology of such spaces. It is our understanding however
that nobody has made the connection to amoebas before. Let us therefore
say something about the fibers in the general case, when f is an affine linear
polynomial in arbitrary dimension, and then take a closer look at the case
in three dimensions. In the three dimensional case we will use arguments
similar to some that is used in [16].

In order to get a good understanding of the topology of the configuration
space of a planar polygon linkage with n+ 1 bars l0, . . . , ln it is common to
introduce a bigger space called the workspace of the arm l0 +

∑n
j=1 lne

ϕj .
The workspace is denoted by W and is defined by

W := {(p1, . . . , pn) ∈ (R2)n; |p1| = l1, |p2 − p1| = l2, . . . ,

|pn − pn−1| = ln−1, |pn| = x, x 6= 0}

Consider the function dist : W → R given by

dist(p1, . . . , pn) = x.

ThenMl = dist−1(ln). Now, the point is that one can show that the function
dist is a so called Morse function, i.e. the Hessian matrix is non singular.
This means that one can use Morse theory to describe the topology of the
level sets. More about this can be found in the entertaining paper [23].
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Proposition 3.1. The fiber over a generic point in a hyperplane amoeba
in Rn is a closed smooth manifold of dimension n − 2. In the non-generic
case the fiber is a compact manifold of the same dimension but with finitely
many singular points.

Proof. If x is a generic point, i.e., lies outside C, this follows from the fact
that Log is a proper submersion in a neighborhood of Log−1(x) and the
implicit function theorem. For the nonsingular case, see [23].

It should be noted that if the polynomial f is not affine linear the conclusion
in Proposition 3.1 need not be true. One counterexample is given by the
the polynomial f(z,w) = a+ z +w+ zw where a < 0. It was shown in [18]
that the preimage of a point x in the amoeba of f consist of two points ex-
cept for the point (log |a|, log |a|)/2 where the preimage contains a real curve.

Consider the polynomial f = 1 + z + w + t. We are interested in the fibers
over points (x, y, u) ∈ Af . The workspace of the arm 1 + ey+iβ + eu+iγ is
an annulus with radius ey and eu and center in (1, 0). In order for a point
(β, γ) ∈ T2 to be in Ml it must satisfy |1 + ey+iβ + eu+iγ | = l1. Figures 7-12
show the workspace and the circle with radius ex and center in the origin
in the generic cases togeher with its chamber, and Figures 13-15 shows the
singular cases.

Figure 7:
(+,+,+)

Figure 8:
(−,+,+)

Figure 9:
(−,−,+), (−,+,−)

Figure 10:
(+,−,+), (+,+,−)

Figure 11:
(+,−,−)

Figure 12:
(−,−,−)

15



Figure 13:
On exactly one wall

Figure 14:
On exactly two walls

Figure 15:
The origin

Denote by (α, β, γ) the points in in the configuration space of the linkage
we get from f = 1+ z+w+ t. If the intersection W∩∂D(0, ex) is an arc we
have two end points where either β = γ or β = π+γ. In either case the arm
1+ey+iβ +eu+iγ can go from one endpoint to the other in two different ways
by bending it in different directions. Since α is uniquely determined by β
and γ we have that the possible angles (α, β, γ) ∈ T such that the linkage is
closed form a topological circle, i.e., Ml = S1. This means that the fibers in
chambers (+,+,+), (−,−,+), (−,+,−) and (+,−,−) topologically are S1.
In chambers (+,−,+) and (+,+,−) we have that W ∩ ∂D(0, ex) consists
of two arcs and the same argument as above gives that the fibers in these
chambers topologically are S1⊔S1. For the chambers (−,+,+) and (−,−,−)
we have that W ∩ ∂D(0, ex) is a full circle. This circle has no point where
β = γ or β = π + γ so every point on the circle gives rise to two points on
the fiber that are not connected by any curve in the fiber. This means that
the fibers in these chambers topologically are S1 ⊔ S1.

We have three different singular cases.

1. The point lies on a wall between two different chambers.

2. The point lies on the intersection of two walls.

3. The point lies on the intersection of all three walls, i.e. the origin.

The geometry of the different cases can be seen in Figures 13-15. In
the first case W ∩ ∂D(0, ex) is an arc with one special point ξ such that
β = π + γ. ξ plays the same role as an end point in the generic cases, and
thus the arc from ξ to one of the end points gives rise to a circle and so does
the arc from ξ to the other end point. Thus the fiber is two circles with
one common point, (S1 ⊔ S1) ∼1. In the second case W ∩ ∂D(0, ex) is a full
circle with two special points ξ1 and ξ2. There are two arcs from ξ1 to ξ2
and each arc gives rise to a circle. In other words, the fiber is (S1 ⊔ S1) ∼2.
In case 3, the intersection W ∩ ∂D(0, ex) is a full circle with two special
points ξ and η = (1, 0). Now,η gives rise to a circle by itself, namely the
circle {(0, β, π − β) ∈ T3; 0 ≤ β ≤ 2π}. The two points (0, 0, π) and (0, π, 0)
on that circle can be connected with the point (π, π, π) in two different ways
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respectively (simply by letting β go from 0 to π or −π) thus the fiber is
(S1 ⊔ S1) ∼3. We have now proved the following proposition.

Proposition 3.2. Outside of C the fibers over a hyperplane amoeba in 3-
space is either a topological circle or two disjoint topological circles. Over
points on C the fiber can be a point (the boundary), two circles with a common
point, two circles with two common points or two circles with three common
points. Points that lie in the same chamber have fibers with the same topology
and different chambers that share a face have fibers with different topology.
The different topology of the fiber can be seen in the table below.

Chamber Topology of the fibers

(+,+,+) S1

(−,+,+) S1 ⊔ S1

(−,−,+) S1

(+,−,+) S1 ⊔ S1

(+,−,−) S1

(+,+,−) S1 ⊔ S1

(−,+,−) S1

(−,−,−) S1 ⊔ S1

In [6] Faber and Schütz proves a useful theorem making it quite easy to
decide the topology of the fiber over a given point in the amoeba. In order
to state the theorem we need to introduce the notion of short and medium
subsets of the set {1, 2, . . . , n}.
Definition 3.2. Given a collection of positive natural numbers l1, . . . ln, a
subset J ⊂ {1, . . . , n} is called short if

∑

i∈J

li <
∑

i/∈J

li

and median if the above inequality is an equality.

Theorem 3.1. Fix a link with maximal length li. Define the numbers ak

and bk as the number of short and median subsets of {1, 2, . . . , n} with k+1
elements containing i. Then the Poincaré polynomial

p(t) =
n−3
∑

k=0

dimHk(Ml; Q)tk

of Ml is equal to the following polynomial

q(t) + tn−3q(t−1) + r(t)

where

q(t) =

n−3
∑

k=0

akt
k, r(t) =

n−3
∑

k=0

bkt
k.
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Example. Let l1 = 1, l2 = 1, l3 = 3, l4 = 4. The moduli space Ml will
correspond to the fiber over the point x = (0, log |3|, log |4|) in the amoeba
of f(z,w, t) = 1+ z+w+ t. The point x belongs to chamber (−,−,+), and
thus it has the topology of a circle. Let us prove this fact using Theorem 3.1.
The number of short subsets of {1, 2, 3, 4} containing 4 with one element is
1 and the number of short subsets containing 4 with two elements is equal
to 0 in this case. The number of median sets containing 4 with one and two
elements is equal to zero. Thus a0 = 1 and a1 = b0 = b1 = 0. According to
Theorem 3.1 the Poincaré polynomial is

p(t) = 1 + t

and thus the fiber is a connected curve with genus 1.
Now let l1 = 1, l2 = 1, l3 = 1, l4 = 1. Then Ml corresponds to the fiber over
the origin of the same polynomial as above. This time a0 = 1, a1 = 0, b0 = 0
and b1 =

(3
2

)

= 3. We get the Poincaré polynomial

P (t) = 1 + t+ 3t = 1 + 4t

which is what we expect since Ml topologically is (S1 ⊔ S1) ∼3.

We have seen that the origin is a singular point in the case of a hyperplane
amoeba in three variables. In four variables however this is no longer true.
The fiber over the origin in that case is a smooth surface of genus 4.

In this thesis we have only considered the case where the linkage is a
closed polygon since it corresponds to hyperplane amoebas. Other more
complicated linkages have been studied by many people, for example in pa-
per [4], Cruickshank and McLaughlin studied so called series parallel link-
ages which in the world of the amoebas correspond to fibers over amoebas
of certain linear hypersurfaces of higher codimension.

4 The Ronkin measure in the case of a hyperplane

in three variables

As we saw in Section 1 the Ronkin measure for polynomials in two variables
is rather well understood. In particular we saw that the measure of an
affine linear polynomial in two variables is identically equal to 1/π2 times
the Lebesgue measure on the amoeba. Not much is known in the case of
three variable polynomials. A first step is to look at the case where f is a
linear polynomial, i.e., f = a+ bz + cw+ dt where a, b, c and d are complex
numbers. Now, because of Lemma 2.1 we only need to consider the case
where a, b, c and d all equal 1. To this end let N(x, y, u) be the Ronkin
function of the hyperplane 1 + z +w + t in 3-space.
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4.1 The derivatives

We have that

∂N(x, y, u)

∂x
=

∂

∂x

(

1

2πi

)3 ∫

Log−1(x,y,u)
log |1 + z +w + t|dzdwdt

wt
=

=

(

1

2πi

)3 ∫

Log−1(x,y,u)

1

1 + z + w + t

dzdwdt

wt
=

=

(

1

2πi

)2
(

(

1

2πi

)
∫

Log−1(x,y,u)

dz

z − (−1 − w − t)

)

dzdwdt

wt
.

Remember the function dist from Section 3. In this case we have that
dist(ϕ, θ) = |1 + ey+iϕ + eu+iθ|, thus (∂/∂x)N is equal to the area of the set
T divided by (2π)2 where

T = {(ϕ, θ) ∈ T2; dist(ϕ, θ) < ex}.

Note that T is equal to the area enclosed by the curve that is the projection
of the fiber over the point (x, y, u) onto the ϕθ plane.

Proposition 4.1. Outside the contour we have

π2 ∂N(x, y, u)

∂x
=

= −
∫ r1

r0

arccos

(

1 + r2 − e2x

2r

)

d

dr
arccos

(

r2 − e2y − e2u

2ey+u

)

dr (3)

where r0 and r1 depends on which chamber the point (x, y, u) belongs to
according to the following table:

Chamber r0 r1
(+,+,+) 1 − ex ey + eu

(−,+,+) 1 − ex 1 + ex

(−,−,+) eu − ey 1 + ex

(+,−,+) eu − ey ey + eu

(+,−,−) ex − 1 ey + eu

(+,+,−) ey − eu ey + eu

(−,+,−) ey − eu 1 + ex

(−,−,−) ex − 1 1 + ex

The chambers are defined at the end of Section 2.

Proof. We need to calculate the area of T and divide by the area of T2. Let
Lγ be the line in the torus defined by {γ = ϕ− θ;−π < ϕ, θ < π}. Consider
the function Armϕ,θ : Af → C given by

Armϕ,θ(x, y, u) = 1 + ey+iϕ + eu+iθ.
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A straight forward calculation gives that the Jacobian of that function is
constant along Lγ . This means that we have

Length(Lγ ∩A)

Length(Lγ)
=

Length(Armϕ,θ(Lγ) ∩ T )

Length(Armϕ,θ(Lγ))
=

=
Length(∂D(1, r) ∩D(0, ex))

Length(∂D(1, r))
=
α

π

where α is the angle that w+t must have to precisely hit D(0, ex) and where
r = |w + t|. By integrating this over γ when 0 ≤ γ ≤ π we get

∂N

∂x
=

1

2π2

∫ 2π

0
α(γ)dγ =

1

π2

∫ π

0
α(γ)dγ

for symmetry reasons. Now, rewrite α and γ in terms of r just by solving
the triangles in Figure 16.

ey

ex
eu

r

Α
Θ

Γ

Π-Γ

Figure 16:

This gives

α = arccos

(

1 + r2 − e2x

2r

)

and

γ = arccos

(

r2 − e2y − e2u

2ey+u

)

.

The only thing left to do is to figure out what the integration limits should
be. This is not hard and is easy to see for example in Figures 7 - 12. Note
that the minus sign comes from the fact that the integration limits should
change places to get the ones in the theorem.

Remark 4.1. It should be remarked that the integral (3), and hence the
derivatives, is continuous inside the amoeba, even at the contour. This can
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be seen from the fact that the integral in (3) can be written on the form
∫ r2

1

r2

0

α(x, y, u, s)
√

−(s− (ey + eu)2)(s − (ey − eu)2)
ds

and that this integral is bounded in the closure of each chamber.

Let

φ(r, x, y, u) := arccos

(

1 + r2 − e2x

2r

)

and (4)

ψ(r, x, y, u) := arccos

(

r2 − e2y − e2u

2ey+u

)

. (5)

Then even though x and y appear in the integration limits r0 and r1 we
have the following lemma.

Lemma 4.1. Outside of the contour and for r0 and r1 as above we have
that

∂

∂x

∫ r1

r0

φ
d

dr
ψdr =

∫ r1

r0

∂

∂x
φ
d

dr
ψdr and

∂

∂y

∫ r1

r0

φ
d

dr
ψdr = −

∫ r1

r0

∂

∂y
ψ
d

dr
φdr.

where φ and ψ are defined by (4) and (5).

Proof. We prove the second part of the lemma. The first part is proved
along the same lines. If r1 and r0 do not depend on y we have nothing to
show so we can assume that both depend on y, i.e.

r1 = ex + ey, r0 = ±ey − eu

We first note that

ey
∂

∂y
φ(r1) =

(

d

dr
φ

)

(r1) and (6)

−ey ∂
∂y
φ(r0) = ±

(

d

dr
φ

)

(r0). (7)

We want to prove that

∂

∂y

∫ r1

r0

φ
d

dr
ψdr +

∫ r1

r0

∂

∂y
ψ
d

dr
φdr = 0

By using integration by parts and the definition of derivatives we get

∂

∂y

(

[φψ]r1

r0
−
∫ r1

r0

ψ
d

dr
φdr

)

+

∫ r1

r0

∂

∂y
ψ
d

dr
φdr =

∂

∂y
[ψφ]r1

r0
− lim

h→0

(

1

h

∫ r1(y+h)

r0(y+h)
ψ(y + h)

d

dr
φdr − 1

h

∫ r1(y)

r0(y)
ψ(y)

d

dr
φdr

)

+

∫ r1(y)

r0(y)
lim
h→0

ψ(y + h) − ψ(y)

h

d

dr
φdr.
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By linearity this is equal to

∂

∂y
[φψ]r1

r0
+ lim

h→0

1

h

∫ r0(y+h)

r0(y)
ψ(y + h)

d

dr
φdr −

lim
h→0

1

h

∫ r1(y+h)

r1(y)
ψ(y + h)

d

dr
φdr.

and since ψ is bounded we get that this is equal to

∂

∂y
[φψ]r1

r0
+ lim

h→0

1

h
(r0(y + h) − r0(y))ψ

(

d

dr
φ

)
∣

∣

∣

∣

r0

−

lim
h→0

1

h
(r1(y + h) − r1(y))ψ

(

d

dr
φ

)
∣

∣

∣

∣

r1

.

Now, we have that

1
h(r1(y + h) − r1(y)) = 1

h(ey(eh − 1)) → ey when h→ 0 and
1
h(r0(y + h) − r0(y)) = ± 1

h(ey(eh − 1)) → ±ey when h→ 0

thus we only need to show that

∂

∂y
[φψ]r1

r0
± eyψ

(

d

dr
φ

)
∣

∣

∣

∣

r0

− eyψ

(

d

dr
φ

)
∣

∣

∣

∣

r1

= 0,

but this is true because of (6) and (7) and we are done.

Lemma 4.1 will be useful to calculate the second order derivatives of N .

Lemma 4.2. For (x, y, u) ∈ Af \ C and with r0 and r1 as above we have

∂2N

∂x2
=

2ex

π2

∫ r2

1

r2

0

1
√

(s −A)(s −B)(s− C)(s−D))
ds and (8)

∂2N

∂x∂y
=

1

2π2

∫ r2

1

r2

0

s2 + P1s+ P2

s
√

(s−A)(s −B)(s− C)(s−D))
ds (9)

where

A = (1 + ex)2, B = (ey + eu)2,

C = (1 − ex)2, D = (ey − eu)2

and

P1 = (e2x + e2y − 1 − e2u), P2 = (1 + ex)(1 − ex)(ey + eu)(eu − ey).
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Proof. We start with the first equality. By Proposition 4.1 and Lemma 4.1
we have

∂2N

∂x2
= − 1

π2

∫ r1

r0

∂

∂x
arccos

(

1 + r2 − e2x

2r

)

d

dr
arccos

(

r2 − e2y − e2u

2ey+u

)

dr.

An easy calculation shows that we have

∂

∂x
arccos

(

1 + r2 − e2x

2r

)

= − 2ex
√

4r2 − (1 + r2 − e2x)2
,

d

dr
arccos

(

r2 − e2y − e2u

2ey+u

)

=
2r

√

4e2(y+u) − (r2 − e2y − e2u)2
.

Now, do the change of variables s = r2 and make use of the formula

4a2b2 − (c2 − a2 − b2)2 = −(a2 − (b+ c)2)(a2 − (b− c)2)

= −(b2 − (a+ c)2)(b2 − (a− c)2)

= −(c2 − (a+ b)2)(c2 − (a− b)2)

that is valid for all a and b. The first equation in the lemma is thereby
proved. The second equation is proved in a similar way.

Note that r21 is either A or B and r20 is either C or D. We see that integrals in
(8) and (9) depend on x, y and u in a smooth manner except at the singular
points where A = B,C = D,B = C and possibly when r0 = 0, i.e when
1 = ex or when ey = eu. The good thing is that P2 = 0 at the points where
1 = ex or when ey = eu thus there might be that the integral converges
anyway. That is actually the case. To see this it is enough to realize that

lim
ǫ→0

∫ M

ǫ

ǫ

s
√
s− ǫ

ds = 0.

for some constant M 6= 0. But that is true because

lim
ǫ→0

∫ M

ǫ

ǫ

s
√
s− ǫ

ds = lim
ǫ→0

√
ǫ

∫ M/ǫ

1

1

s
√
s− 1

ds.

Now, a similar argument give that ∂2N/∂x∂y not only is continuous but also
smooth at the points where 1 = ex and ey = eu. Note that the equations
B = C is true exactly on the boundary of the amoeba and that the equations
A = B and C = D are true exactly on the other part of the contour. We
therefore have the following proposition.

Proposition 4.2. Let f = 1 + z + w + t. Then µf is smooth outside the
contour of the amoeba of f .
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4.2 Connections to elliptic integrals

Elliptic integrals naturally comes up in many situations. For example when
calculating the arc length of an ellipse (hence the name). Lemma 4.2 says
that the second order derivatives of the three dimensional Ronkin function
in the affine linear case are complete elliptic integrals.

Definition 4.1. An elliptic integral is an integral on the form
∫

R(s,
√

P (s))
where P is a polynomial of degree 3 or 4 with no multiple roots and R is a
rational function of s and

√
P . It is always possible to express the elliptic

integrals as linear combinations in terms of elementary functions and the
following three integrals.

K(ϕ, k) :=

∫ ϕ

0

dθ
√

1 − k2 sin2 θ
=

∫ t

0

ds
√

(1 − s2)(1 − k2s2)
,

E(ϕ, k) :=

∫ ϕ

0

√

1 − k2 sin2 θdθ =

∫ t

0

√

1 − k2s2

1 − s2
ds,

Π(ϕ,α2, k) :=

∫ ϕ

0

dθ

(1 − α2 sin2 θ)
√

1 − k2 sin2 θ
=

=

∫ t

0

ds

(1 − α2s2)
√

(1 − s2)(1 − k2s2)
.

The integrals above are said to be on normal form or on Legendre form.
If ϕ = π

2 we say that the integrals are complete and we denote the three
complete integrals on normal form by K(k), E(k) and Π(α2, k) respectively.

Lemma 4.3. Assume a > b > c > d. Then
∫ b
c

sjds√
(s−a)(s−b)(s−c)(s−d)

, j =

−1, 0, 1 transforms into the following complete elliptic integrals on normal
form:

gK(k) if j = 0

dgK(k) + g(c− d)Π(α2, k) if j = 1

g

d
K(k) + g(

1

c
− 1

d
)Π(α2 d

c
, k) if j = −1

where

k2 =
(b− c)(a − d)

(a− c)(b − d)
, α2 =

b− c

b− d
, g =

2
√

(a− c)(b − d)
.

These results are well-known, see for example [3], but we will give a proof
of the case when j = 0 to show the general idea.
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Proof. Let k be as in the lemma and define the functions h(t) and u(t) by

h(t) =

√

(b− d)(t− c)

(b− c)(t− d)
and

u(t) =

∫ h(t)

0

dτ√
1 − τ2

√
1 − k2τ2

.

Note that h(b) = 1 and h(c) = 0. A straight forward calculation shows that

du

dt
=

√

(a− c)(b− d)

2
√

(t− a)(t− b)(t− c)(t− d)
.

Thus

∫ 1

0

dτ√
1 − τ2

√
1 − k2τ2

=

∫ b

c

du

dt
dt = g−1

∫ b

c

dt
√

(t− a)(t− b)(t− c)(t− d)
.

Lemmas 4.2 and 4.3 make it possible to express the second order deriva-
tives of N in terms of complete elliptic integrals of the first and third kind.
The only thing one has to do is to determine how A,B,C,D in Lemma 4.2
are ordered. In chamber (+,+,+) we have A > B > C > D for example.
Doing this gives us the following expressions of the second order derivatives
in the different chambers.

Proposition 4.3. Let f = 1+ z+ e+ t. The second order derivatives of the
Ronkin function N can be expressed in terms of complete elliptic integrals
of the first and third kind in the following way.

∂2Nf

∂x2
=

2gex

π2
K(k),

∂2Nf

∂x∂y
=

g

2π2
(Q1 K(k) +Q2Π(α1, k) +Q3Π(α2, k))

where k2, α2
1α

2
2, g

2, Q1, Q2 and Q3 are rational functions in ex, ey and eu and
depend on what chamber (x, y, u) lies in. With the quantity ξ defined as

(1 + ex + ey − eu)(1 + ex − ey + eu)(1 − ex + ey + eu)(−1 + ex + ey + eu)

these functions will take the form according to the following.
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In the chambers (+,+,+) and (+,−,−):

g =
1

2
√
ex+y+u

k2 =
ξ

16ex+y+u
,

Q1 = 2
ey(e2x + e2y + e2u − 1 − 2ey+u)

(ey − eu)
,

Q2 = (1 − ex + ey − eu)(1 − ex − ey + eu),

Q3 =
(eu + ey)(1 − ex + ey − eu)(1 + ex)(1 − ex − ey + eu)

(eu − ey)(ex − 1)
,

α2
1 =

(1 − ex + ey + eu)(−1 + ex + ey + eu)

4ey+u
,

α2
2 = α1

(ey − eu)2

(1 − ex)2
.

In the chambers (−,+,+) and (−,−,−):

g =
2√
ξ

k2 =
16ex+y+u

ξ
,

Q1 = 2
ey(e2x + e2y + e2u − 1 − 2ey+u)

(ey − eu)
,

Q2 = (1 − ex + ey − eu)(1 − ex − ey + eu),

Q3 =
(eu + ey)(1 − ex + ey − eu)(1 + ex)(1 − ex − ey + eu)

(eu − ey)(ex − 1)
,

α2
1 =

4ex

(1 + ex + ey − eu)(1 + ex − ey + eu)
,

α2
2 = α1

(ey − eu)2

(1 − ex)2
.

26



In the chambers (−,−,+) and (−,+,−):

g =
1

2
√
ex+y+u

k2 =
ξ

16ex+y+u
,

Q1 = 2
ex(e2x + e2y − e2u + 1 − 2ex)

(ex − 1)
,

Q2 = −(1 − ex + ey − eu)(1 − ex − ey + eu),

Q3 = −(eu + ey)(1 − ex + ey − eu)(1 + ex)(1 − ex − ey + eu)

(eu − ey)(ex − 1)
,

α2
1 =

(1 + ex − ey + eu)(1 + ex + ey − eu)

4ex
,

α2
2 = α1

(ex − 1)2

(ey − eu)2
.

In the chambers (+,−,+) and (+,+,−):

g =
2√
ξ

k2 =
16ex+y+u

ξ
,

Q1 = −2
ex(e2x + e2y − e2u + 1 − 2ex)

(1 − ex)
,

Q2 = −(1 − ex + ey − eu)(1 − ex − ey + eu),

Q3 = −(eu + ey)(1 − ex + ey − eu)(1 + ex)(1 − ex − ey + eu)

(eu − ey)(ex − 1)
,

α2
1 =

4ey+u

(1 − ex + ey + eu)(−1 + ex + ey + eu)
,

α2
2 = α1

(1 − ex)2

(ey − eu)2
.

Even though it appears that the mixed second order derivative of N is sin-
gular at the points (x, y, u) ∈ R3 where ex = 1 or ey = eu we saw that P2 in
Lemma 4.2 vanishes at those points. This means that Q3 = 0 and that Q1

take the form of g(1 + ex)(1 − ex), and thus is not singular.

A priori we know that the Hessian matrix will be symmetric in every cham-
ber. This gives us several relations between elliptic integrals of the first and
third kind that as far as we know can not be explained by the known relations
that are to be found in the literature. There might thus be some interesting
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hidden relations in the following equation that we get by considering the
case of chamber (+,+,+).

For a, b, c > 0 that satisfy the inequalities 1 + a > b + c, 1 + b >
a+ c, 1 + c > a+ b we have that

2
(1 + a+ b− c)(1 − a− b+ c)(a− b)c

(a− c)(c− b)
K(k) +

+(1 − a− b+ c)(1 − a+ b− c) Π
(

α2
1, k
)

+

+(1 − a− b+ c)(1 + a− b− c) Π
(

α2
3, k
)

+

+
(1 + a)(b+ c)(1 − a− b+ c)(1 − a+ b− c)

(1 − a)(b− c)
Π
(

α2
2, k
)

+

+
(1 + b)(a+ c)(1 − a− b+ c)(1 + a− b− c)

(1 − b)(a− c)
Π
(

α2
4, k
)

≡ 0

with

k2 =
(1 + a+ b− c)(1 + a− b+ c)(1 − a+ b+ c)(−1 + a+ b+ c)

16abc
,

α2
1 =

(1 − a+ b+ c)(−1 + a+ b+ c)

4bc
,

α2
2 =

(1 + a− b+ c)(−1 + a+ b+ c)

4ac
,

α2
3 =

(1 − a+ b− c)(−1 + a+ b+ c)(b − c)2

4bc(1 − a)2
,

α2
4 =

(1 + a− b+ c)(−1 + a+ b+ c)(a − c)2

4ac(1 − b)2
.

4.3 Connections to hypergeometric functions

The elliptic integrals are connected to so called hypergeometric functions.
In fact the former are special cases of the latter. Hypegeometric functions
are very important in the field of special functions and mathematical physics.

The Gauss hypergeometric function 2F1 is defined by the series

2F1(a, b; c; z) =

∞
∑

n=0

(a)n(b)n
(c)n

zn

n!
(10)

where (λ)n denotes the Pochhammer symbol defined as (λ)n = Γ(λ+n)/Γ(λ)
and Γ is the gamma function. The parameter c is assumed not to be a non-
positive integer. The radius of convergence for 2F1 is 1 if not a or b is a
non-positive integer. In that case the radius of convergence is infinite (the
series is finite). The Gauss hypergeometric function is a solution to the
following linear differential equation

z(z − 1)
d2y

dz2
+ ((a+ b+ 1)z − c)

dy

dz
+ aby = 0. (11)
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The equation (11) has regular singularities at the points 0, 1 and ∞. In fact,
every second order linear differential equation with three regular singularities
can be reduced to (11) by a change of variables.

The series (10) can be written as the integral (see for example [5])

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−adt (c > b > 0).

Now, if we choose a = b = 1/2 and c = 1 the equation above becomes

2F1(1/2, 1/2; 1; z) =
1

π

∫ 1

0

1√
t
√

1 − t
√

1 − tz
dt =

=
2

π

∫ 1

0

1√
1 − s2

√
1 − s2z

ds.

Thus in view of Definition 4.1 we got the following relation between the
elliptic integrals of the first kind and Gauss hypergeometric function.

K(k) =
π

2
2F1(1/2, 1/2; 1; k

2). (12)

There are many ways to generalize the function 2F1. One way is to
simply allow more Pochhammer symbols in the series (10). We then get the
functions pFq defined by taking p Pochhammer symbols in the numerator
and q of them in the denominator. Another way is to try to generalize the
hypergeometric functions to several variables. Appell was one of the first
who did this. He defined four series in two variables that are known as the
Appell’s double hypergeometric functions.

Definition 4.2. The four functions F1,F2,F3 and F4 is defined by

F1(a, b, b
′; c; z;w) =

∞
∑

m,n=0

(a)m+n(b)m(b′)n
(c)m+n

zmwn

m!n!
,

F2(a, b, b
′; c, c′; z;w) =

∞
∑

m,n=0

(a)m+n(b)m(b′)n
(c)m(c′)n

zmwn

m!n!
,

F3(a, a
′, b, b′; c, ; z;w) =

∞
∑

m,n=0

(a)m(a′)n(b)m(b′)n
(c)m+n

zmwn

m!n!
,

F4(a, b, ; c, c
′; z;w) =

∞
∑

m,n=0

(a)m+n(b)m+n

(c)m(c′)n

zmwn

m!n!
.

The series F1 and F3 converges for |z| < 1 and |w| < 1, F2 converges
for |z| + |w| < 1 and the series F4 converges for

√
z +

√
w < 1. Appell’s

functions have integral formulas as Gauss’ function has. In addition to some
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two variable integrals Picard gave the following representation of the Appell
double hypergeometric function F1, see [5].

F1(a, b, b
′; c; z,w) =

=
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1 − t)c−a−1(1 − tz)−b(1 − tw)−b′dt,

for Re(a),Re(c − a) > 0. If we choose the parameters a = b′ = 1/2 and
b = c = 1 the above integral representation gives

F1(1/2, 1, 1/2; 1; z,w) =
1

π

∫ 1

0

1√
t
√

(1 − t)(1 − tz)
√

(1 − tw)
dt =

=
2

π

∫ 1

0

1
√

(1 − s2)(1 − s2z)
√

(1 − s2w)
ds.

Thus we get the following relation between the elliptic integrals of the third
kind and Appell’s double hypergeometric series F1.

Π(α2, k) =
π

2
F1(1/2; 1, 1/2; 1;α

2 , k2). (13)

Gelfand, Kapranov and Zelevinsky revolutionized the theory of hyperge-
ometric functions by considering a system of differential equations in several
variables [9]. The solutions to that specific system, called GKZ-system, have
certain homogeneities and they are defined to be A-hypergeometric or GKZ-
hypergeometric functions. By dehomogenizing these functions one can get

2F1 and Appell’s functions and many other generalizations of Gauss’ func-
tion.
Following [17], given a (n×N)-matrix A on the form

A =

(

1 1 . . . 1
α1 α2 . . . αN

)

such that the maximal minors are relatively prime we consider the (N×N−
n)-matrix B such that AB = 0. Moreover, B should be such that the rows
in B span ZN−n and such that it is on the form (B′, Em)tr where Em is the
unit (N−n×N−n)-matrix. Let CA be the vector space consisting of vectors
(aα)α∈A and write a = (a1, . . . , aN ). Let b1, . . . , bN−n be the columns in B.
The differential operators �i and Ei on CA are defined by

�i =
∏

j:bi
j>0

(∂/∂aj)
bi
j −

∏

j:bi
j<0

(∂/∂aj)
−bi

j (14)

and

Ei =

N
∑

j=1

αj
iaj(∂/∂aj), i = 1, . . . , n. (15)
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where αi
j is the entry in A on row i and column j.

Definition 4.3. For every complex vector γ = (γ1, . . . , γn), we define the
GKZ-system with parameters γ as the following system of linear differential
equations on functions Φ on CA.

�iΦ(a) = 0, EjΦ = γjΦ, i = 1, . . . ,N − n, j = 1, . . . , n. (16)

The holomorphic solutions to the system (16) are called A-hypergeometric
functions. A formal explicit solution to the system (16) is given by

Φ(a) =
∑

k∈ZN−n

aγ+〈B,k〉

∏n
j=1 Γ (γj + 〈Bj , k〉 + 1) k!

(17)

where Bj denotes the rows in the matrix B and γn+1, . . . , γN = 0.
Remember the formula

Γ(s)Γ(1 − s) = π/ sin(πs). (18)

In the generic case (noninteger parameters) the formula (18) directly gives
us the following formula making it possible to move the gamma functions in
(17) from the denominator to the numerator.

Γ(s+ n)

Γ(s)
= (−1)n

Γ(1 − s)

Γ(1 − n− s)
(19)

We can now relate the functions 2F1 and Φ.

2F1(a, b; c; z) =
∞
∑

n=0

(a)n(b)n
(c)n

zn

n!
=

∞
∑

n=0

Γ(a+ n)Γ(b+ n)Γ(c)

Γ(c+ n)Γ(a)Γ(b)

zn

n!
=

=

∞
∑

n=0

Γ(1 − a)Γ(1 − b)Γ(c)

Γ(1 − n− a)Γ(1 − n− b)Γ(c + n)

zn

n!
=

= Γ(1 − a)Γ(1 − b)Γ(c)Φ(1, 1, 1, z).

with
γ = (−a,−b, c− 1) and B = (−1,−1, 1, 1)tr .

The above equation together with (12) make it possible for us to express the
complete elliptic integral of the first kind as an A-hypergeometric function
as follows.

K(k) =
π2

2
Φ(1, 1, 1, z). (20)

with
γ = (−1/2,−1/2, 0) and B = (−1,−1, 1, 1)tr .
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We can do the same procedure for the Appell hypergeometric function
F1 but we have to modify the function Φ a bit because we have a non generic
parameter in the numerator. We therefore introduce the series Φ̃ defined by

Φ̃(a) =
∑

k∈ZN−n

(−1)〈B1,k〉Γ (−γ1 − 〈B1, k〉) aγ+〈B,k〉

∏n
j=2 Γ (γj + 〈Bj, k〉 + 1) k!

. (21)

The series Φ̃ should be regarded as a meromorphic function with removable
singularities (the k! in the denominator take care of the possible singularities
of the gamma function in the numerator). Note that for generic parame-
ters we can use (19) to move the gamma function in the numerator to the
denominator and we get

Φ̃ = Γ(1 + γ1)Γ(−γ1)Φ.

We can now do the same reasoning as in the case of the Gauss hypergeo-
metric function and use (13) to get

Π(α2, k) =
π2

2
Φ̃(1, 1, 1, 1, α2 , k2) (22)

with

γ = (−1, 0,−1/2,−1/2) and B =

(

−1 1 0 −1 1 0
0 1 −1 −1 0 1

)tr

.

If we combine (20) and (22) with Proposition 4.3 we get an expression of the
second order derivative of the Ronkin function of an affine linear polynomial
in three variables in terms of A-hypergeometric functions.

Proposition 4.4. Let f = 1 + z + e+ t and set

γ1 = (−1/2,−1/2, 0), γ2 = (−1, 0,−1/2,−1/2), B = (−1,−1, 1, 1)tr ,

B2 =

(

−1 1 0 −1 1 0
0 1 −1 −1 0 1

)tr

.

Then the second order derivatives of the Ronkin function Nf can be expressed
in terms of A-hypergeometric functions in the following way.

∂2Nf

∂x2
= gexΦ(1, 1, 1, k2),

∂2Nf

∂x∂y
=
g

4

(

Q1Φ(1, 1, 1, k2) +Q2Φ̃(1, 1, 1, 1, α2
1 , k

2) +Q3Φ̃(1, 1, 1, 1, α2
2 , k

2)
)

with parameters γ1, γ2 and matrices B1, B2. The functions and parameters
k2, α2

1α
2
2, g

2, Q1, Q2 and Q3 are defined in Proposition 4.3.
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5 The logarithmic Mahler measure

Recall the definition of the Mahler measure.

Definition 5.1. Given a Laurent polynomial f the logarithmic Mahler mea-
sure of f is defined by

m(f) :=

(

1

2πi

)n ∫

Log−1(0)
log |f(z)|dz

z

In Section 1 we saw that semi-explicit expressions of the Mahler mea-
sure of an affine linear polynomial give us an semi-explicit expression of the
Ronkin function of affine linear polynomial and vice versa. This is because
of the relation

Nf (x1, . . . , xn) = m(1 + ex1z1 + . . .+ exnzn)

for f = 1 + z+ . . .+ zn. In [24] Smyth proved a formula for the affine linear
case in the three variables case but this only gives the values of the Ronkin
function at points where four of the chambers meet.

Theorem 5.1. (Smyth)

m(1 + z + aw + at) =

{

2
π2 (Li3(a) − Li3(−a)) if a ≤ 1
log(a) + 2

π2

(

Li3(a
−1) − Li3(−a−1)

)

if a ≥ 1

where Li3 is the trilogarithm defined as

Li3(z) =

∞
∑

k=1

zk

k3
.

No more general formula has been proved so far. It is possible that the
fact that we can express the second order derivatives of the Ronkin function
can be of some help. The theorem by Smyth and formula 3 give us the
following formula for ex < 1.

Li2(−ex)−Li2(e
x) =

∫ 1+ex

1−ex

arccos

(

1 + r2 − e2x

2r

)

d

dr
arccos

(

r2 − 1 − e2x

2ex

)

dr

Maybe there is a similar kind of relation in the more general expression of
(3)?

It seems to be of interest to estimate affine linear polynomials in n vari-
ables, both for fixed n or when letting n tend to infinity. In [25] the author
proves that there exists an analytic function F such that the Mahler mea-
sure of the linear form z1 + . . . + zn up to an explicit constant is equal to
F (1/n). There is also an recursive expression of that analytic function in
terms of Laguerre polynomials and Bessel functions. Note that this corre-
sponds to the Ronkin function evaluated at the origin. In the paper [21] the

33



authors estimate the growth of the Mahler measure in the linear case when
the number of variables goes to infinity and also establish a lower and upper
bound in terms of the norm of the coefficient vector. The reason for the
interest in these kind of estimates is that it is hard numerically to calculate
the Mahler measure and numerical calculations are of interest when looking
for relations between the Mahler measure and special values of L-functions.
Several such relations has been conjectured by Boyd, see [2]. We have not
calculated the actual Ronkin function but all the second order derivatives.
Note that the Ronkin function of f = 1 + z + w + t is determined by its
second order derivatives up to a polynomial on the form a+ b(x+ y + u).
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