
ISSN: 1401-5617

Infinite-dimensional homology and

multibump solutions

Wojciech Kryszewski

Andrzej Szulkin

Research Reports in Mathematics

Number 4, 2008

Department of Mathematics

Stockholm University



Electronic versions of this document are available at
http://www.math.su.se/reports/2008/4

Date of publication: December 23, 2008

Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.math.su.se/
info@math.su.se



Infinite-dimensional homology and multibump

solutions

Wojciech Kryszewski∗

Department of Mathematics, Nicholas Copernicus University

Chopina 12/18

87 100 Toruń, Poland
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Abstract

We start by introducing a Čech homology with compact supports which we then use in order
to construct an infinite-dimensional homology theory. Next we show that under appropriate
conditions on the nonlinearity there exists a ground state solution for a semilinear Schrödinger
equation with strongly indefinite linear part. To this solution there corresponds a nontrivial
critical group, defined in terms of the infinite-dimensional homology mentioned above. Finally
we employ this fact in order to construct solutions of multibump type. Although our main
purpose is to survey certain homological methods in critical point theory, we also include some
new results.
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1 Introduction

The first topic we consider in this paper is a homology theory of Čech type which satisfies all the

Eilenberg-Steenrod axioms and the strong excision property. Such a construction, although known

to algebraic topologists, see [24], does not seem to be well known to analysts. The advantages of

this theory are that homology is often considered as more geometric and intuitive than cohomology

and that strong excision is very convenient in applications – in fact the weaker excision property

which holds for singular homology is a source of certain technical difficulties in critical point theory
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in infinite-dimensional spaces. Unlike for the Čech (or Alexander-Spanier) cohomology, the original

Čech homology construction leads to a theory which is not exact unless it is restricted to compact

pairs and coefficients in a field [16]. As we shall see, this deficiency can be removed by introducing

a theory with compact supports.

Next we construct an infinite-dimensional homology theory which is suitable for so-called

strongly indefinite problems and parallels the cohomology of [19]. An infinite-dimensional co-

homology which (like our theory) satisfies all the Eilenberg-Steenrod axioms except the dimension

axiom has been first time introduced by Gȩba and Granas, see [17] and the references there.

Then we turn our attention to the Schrödinger equation

−∆u+ V (x)u = f(x, u), u ∈ H1(RN ),

where V and f are periodic in x1, . . . , xN and 0 is in a gap of the spectrum of −∆ + V in L2(RN ).

Under appropriate assumptions on f it has been proved in [29] that this equation has a ground state

solution u0. We show that this solution, if isolated, must necessarily have a nontrivial critical group

(in the sense of Morse theory). This gives rise to the existence of so-called multibump solutions

which are obtained by gluing together translates of u0 in a suitable way (see Section 6 for a more

rigorous definition). The idea of using variational methods in order to find such solutions goes back

to the work of Séré [27, 28] and Coti Zelati and Rabinowitz [12, 13].

The paper is organized as follows. In Section 2 we introduce the Čech homology Ȟ∗(P,Q) for

compact metric pairs, with coefficients in a field. Our approach is different from the usual one and

– we hope – more appealing to geometric intuition. Instead of taking inverse limits of the simplicial

homology for nerves of coverings we take inverse limits of the singular homology for neighborhoods

of (P,Q) in an ambient space. Then we define a homology with compact supports Ȟc
∗(X,A) for all

metric pairs as the direct limits of Ȟ∗(P,Q) with respect to all compact (P,Q) ⊂ (X,A). As we have

already mentioned, the theories Ȟ∗ and Ȟc
∗ satisfy all the Eilenberg-Steenrod axioms including the

strong excision, see Theorems 2.6 and 2.9. The reader who wishes to do so may omit the details of

the construction and the proofs. In Section 3 we introduce an infinite-dimensional homology, define

the notion of critical group (in terms of this homology) and summarize its pertinent properties.

The proofs are essentially the same as in [19] and are omitted or briefly outlined. However, since

the arguments in [19] concern cohomology, some simple adaptation (mainly “reversing the arrows”)

is necessary. In Section 4 we consider the Schrödinger equation mentioned above and sketch the

procedure which has been employed in [29] in order to obtain a ground state for f of subcritical

growth (i.e., |f(x, u)| 6 a(1 + |u|p−1), 2 < p < 2∗, where 2∗ := 2N/(N − 2) is the critical Sobolev

exponent). Then, combining a result in [8] with the method of [29], we show that the ground state

exists also when f(x, u) = |u|2∗−2u. Section 5 is concerned with the proof that the ground state

solution has a nontrivial critical group. In Section 6 we discuss multibump solutions. Since the

details of the multibump construction are rather tedious, we first describe the main ideas which

are in fact rather simple, and then in Section 7 we provide the technical details.

Although our primary goal in this paper is to survey certain homological methods in critical

point theory for strongly indefinite functionals, we also include some results which have not been

published earlier. In particular, in Theorems 5.3 and 5.4 an infinite-dimensional homology com-

putation is performed for a strongly indefinite functional which does not satisfy the Palais-Smale

2



condition, and in Theorem 6.3 multibump solutions are found for a Schrödinger equation with

strongly indefinite linear part and critical Sobolev exponent. We also believe that our approach to

the Čech homology in Section 2 may be of independent interest.

Notation: In what follows Bρ(x), Bρ(x) and Sρ(x) will respectively denote the open ball,

the closed ball and the sphere centered at x and having radius ρ. The symbol “⇀ ” denotes weak

convergence, “int” and “cl” are respectively the interior and the closure of a set, and R
+ := [0,+∞).

We also use the customary notation Φc := {u ∈ E : Φ(u) 6 c}, where Φ is a functional defined in

a Banach space E and c ∈ R.

2 Čech homology with compact supports

In order to construct an infinite-dimensional homology theory we shall need an appropriate ordinary

homology. The most commonly used singular homology theory Hs
∗(·, ·;G) (with coefficients in an

abelian group G) is defined for arbitrary topological pairs and satisfies all the Eilenberg-Steenrod

axioms. However, in singular theory there exist certain pathological examples which may not be

desirable. For instance, there are connected spaces (like the so-called Warsaw circle, see Remark 2.7

below) which admit homotopically nontrivial maps into the circle but have trivial 1-dimensional

singular homology, and there are compact subsets of R
3 having nontrivial homology groups in

arbitrarily high dimensions (see e.g. [6]). Moreover, the singular homology does not satisfy the

strong excision axiom but only the weaker one saying that given a topological pair (X,B) and a set

A ⊂ X such that intA∪ intB = X, the inclusion j : (A,A ∩B)→ (X,B) induces an isomorphism

j∗ : Hs
∗(A,A ∩B;G)→ Hs

∗(X,B;G).

In [16, Chap. IX], the Čech homology Ȟ∗(X,A;G) with coefficients in an abelian group G for

an arbitrary pair (X,A) of topological pairs has been defined. However, in this general situation the

exactness axiom is not always satisfied. It holds if G is a field (or a compact group) and (X,A) a

compact pair. In this latter case the setting presented in [16] is complete and satisfactory although

not intuitive from the geometric viewpoint. Therefore we propose a different approach.

Let (P,Q), where Q ⊂ P , be a pair of compact metric spaces. It is well known that P can be

emebedded in the Hilbert cube and hence in any infinite-dimensional normed space E (in other

words, we can consider P and Q as compact subsets of E).

Let F be a fixed field and Ȟ∗(P,Q) := {Ȟq(P,Q)}q∈Z the graded vector space defined by

(2.1) Ȟq(P,Q) := lim←−{H
s
q (U, V ) : (U, V ) ∈ U}, q ∈ Z,

where U stands for the family of all (pairs of) neighborhoods of (P,Q) in E directed by the inverse

inclusion andHs
∗(U, V ) = Hs

∗(U, V ;F) denotes the singular homology of (U, V ) ∈ U with coefficients

in F . In other words, Ȟq(P,Q) is the inverse limit of the inverse system {Hs
q (U, V )}(U,V )∈U of

vector spaces together with homomorphisms induced by the inclusions (U, V ) →֒ (U ′, V ′). In what

follows we shall make repeated use of standard properties of inverse and direct limits, see e.g. [24,

Appendix].
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Remark 2.1 Observe that if a family U ′ of neighborhoods of the pair (P,Q) is cofinal in U , then

Ȟ∗(P,Q) = lim←−{H
s
∗(U, V ) : (U, V ) ∈ U ′}.

In particular, U ′ may consist of all pairs of open neighborhoods of (P,Q) in E.

Lemma 2.2 Definition (2.1) is correct, i.e., it does not depend on the choice of a normed space

E.

Proof To see this, suppose that E1, E2 are normed spaces and let Q1 ⊂ P1 ⊂ E1, Q2 ⊂ P2 ⊂ E2

be homeomorphic copies of the pair (P,Q) embedded into E1 and E2, respectively. Thus there

is a homeomorphism h′ : (P1, Q1) → (P2, Q2). Let E := E1 × E2 and let ji : Ei → E, i = 1, 2,

be inclusions given by j1(x1) = (x1, 0) and j2(x2) = (0, x2) for x1 ∈ E1 and x2 ∈ E2. In view of

Lemma (2.4) from [18], there is a homeomorphism h : E → E such that hj1|P1 = j2h
′.

For i = 1, 2, let Ui be the family of all neighborhoods of the pair (Pi, Qi) in Ei and let Ũi be

the family of all neighborhoods of the pair (ji(Pi), ji(Qi)) in E. Since h is a homeomorphism, we

easily see that Ũ2 = {(h(U), h(V )) : (U, V ) ∈ Ũ1}. This shows that

lim←−{H
s
∗(U, V ) : (U, V ) ∈ Ũ1} = lim←−{H

s
∗(U, V ) : (U, V ) ∈ Ũ2}.

On the other hand, given a neighborhood (U, V ) of the pair (j1(P1), j1(Q1)) in E, there are

(U1, V1) ∈ U1 and an integer n > 1 such that U1 × B1/n(0) ⊂ U and V1 × B1/n(0) ⊂ V , where

B1/n(0) is a ball in E2. In other words, the family {(U1, V1) × B1/n(0) : (U1, V1) ∈ U1, n > 1} is

cofinal in Ũ1. Since Hs
∗((U1, V1)×B1/n(0)) ∼= Hs

∗(U1, V1), we see that

lim←−{H
s
∗(U1, V1) : (U1, V1) ∈ U1} ∼= lim←−{H

s
∗(U, V ) : (U, V ) ∈ Ũ1}.

Similarly one shows that

lim←−{H
s
∗(U2, V2) : (U2, V2) ∈ U2} ∼= lim←−{H

s
∗(U, V ) : (U, V ) ∈ Ũ2}.

2

Let f : (P,Q)→ (P ′, Q′) be a continuous map of compact metric pairs and assume that P ⊂ E,

P ′ ⊂ E′, where E and E′ are normed spaces. In order to define the induced homomorphism

f∗ : Ȟ∗(P,Q) → Ȟ∗(P
′, Q′), let f ′ : E → E′ be an arbitrary (continuous) extension of f which

exists in view of the Dugundji theorem. For each (U ′, V ′) ∈ U ′, where U ′ stands for the family of all

neighborhoods of the pair (P ′, Q′) in E′, consider the homomorphism f ′∗ : Hs
∗(f

′−1(U ′), f ′−1(V ′))→
Hs

∗(U
′, V ′) induced by f ′|f ′−1(U). It is easy to see that the family {f ′∗ : (U ′, V ′) ∈ U ′} forms a

transformation of the inverse system {Hs
∗(U, V ) : (U, V ) ∈ U} into the inverse system {Hs

∗(U
′, V ′) :

(U ′, V ′) ∈ U ′} and therefore determines a homomorphism

(2.2) f∗ := lim←−{f
′
∗ : (U ′, V ′) ∈ U ′} : Ȟ∗(P,Q)→ Ȟ∗(P

′, Q′).

Lemma 2.3 Definition (2.2) is correct, i.e., it does not depend on the choice of an extension f ′

of f .
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Proof Suppose that f ′′ : E → E′ is another extension of f . Define a map h : (E × {0, 1}) ∪ (P ×
[0, 1])→ E′ by

h(x, t) :=





f ′(x) for x ∈ E, t = 0;
f(x) for x ∈ P, t ∈ [0, 1];
f ′′(x) for x ∈ E, t = 1.

As before, h admits an extension h′ : E× [0, 1]→ E′. If (U ′, V ′) ∈ U ′, then there is a pair (U, V ) of

neighborhoods of P and Q respectively, such that U × [0, 1] ⊂ h′−1(U ′) and V × [0, 1] ⊂ h′−1(V ′);

in particular, U ⊂ f ′−1(U ′) ∩ f ′′−1(U ′) and V ⊂ f ′−1(V ′) ∩ f ′′−1(V ′). Since the maps f ′|(U,V ) and

f ′′|(U,V ) are homotopic in (U ′, V ′), they induce the same homomorphism Hs
∗(U, V ) → Hs

∗(U
′, V ′).

This completes the proof. 2

In order to define the boundary operator ∂ : Ȟ∗(P,Q) → Ȟ∗−1(Q) and show the exactness of

the homology sequence of (P,Q) we need some preparations. First observe that given a compact

subset P of a normed space E and a neighborhood U of P in E, there is an integer n > 1 such

that, for any x ∈ P , B1/n(x) ⊂ U . Since P is compact, there are points x1, . . . , xk ∈ P such that

P ⊂ ⋃k
i=1B1/n(xi) ⊂ U .

In other words, we see that the family U0 of pairs of open sets (U, V ), where U (resp. V ) is the

finite union of balls centered at points of P (resp. Q) and of radius 1/n, where n > 1, is cofinal in

the family of all neighborhoods of (P,Q).

Lemma 2.4 If X ⊂ E is a finite union of open convex sets, then for any q ∈ Z, the vector space

Hs
q (X) is finite-dimensional.

Proof We shall proceed by induction on the number of open convex sets covering X. If X is open

convex, then Hs
0(X) = F and Hs

q (X) = 0 for q 6= 0. Suppose that, for any q ∈ Z, dimHs
q (X ′) <∞

whenever X ′ is the union of k open convex sets. Let X =
⋃k+1

i=1 Ci where Ci is open convex in E,

i = 1, ..., k + 1, and put X ′ :=
⋃k

i=1 Ci; then X = X ′ ∪ Ci+1.

Since the pair {X ′, Ci+1} is excisive, the Mayer-Vietoris sequence

... −→ Hs
q (X ′ ∩ Ci+1)

α1−→ Hs
q (X

′)⊕Hs
q (Ci+1)

α2−→ Hs
q (X

′ ∪Ci+1)
α3−→ Hs

q−1(X
′ ∩ Ci+1)

α4−→ Hs
q−1(X

′)⊕Hs
q−1(Ci+1) −→ ...

is exact. In view of the induction hypothesis, the spaces Hs
q (X

′ ∩ Ci+1) and Hs
q (X ′) ⊕ Hs

q (Ci+1)

are finite-dimensional for all q (note that X ′ ∩ Ci+1 is the union of at most k convex open sets).

Passing to subspaces and quotient spaces we see that the following sequence

0 −→ coker(α1)
α′

2−→ Hs
q (X ′ ∪ Ci+1)

α3−→ ker(α4) −→ 0

is exact. Since the above terms are vector spaces, this sequence is split and

Hs
q (X) = Hs

q (X ′ ∪ Ci+1) = coker(α1)⊕ ker(α4);

hence Hs
q (X) is finite-dimensional. 2

The above lemma implies that if (U, V ) ∈ U0, then the vector spaces Hs
q (U), Hs

q (V ) are finite-

dimensional for all q, and therefore so are Hs
q (U, V ) in view of the homology sequence of (U, V ).
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Let (P,Q) be a compact pair in a normed space E. Since the family U0 is cofinal in the family

of all neighborhoods of (P,Q), we have

Ȟ∗(P,Q) = lim←−{H
s
∗(U, V ) : (U, V ) ∈ U0}.

Let q ∈ Z and consider the inverse system of exact sequences

... −→ Hs
q (V ) −→ Hs

q (U) −→ Hs
q (U, V )

∂−→ Hs
q−1(V ) −→ Hs

q−1(U) −→ ...,

where (U, V ) ∈ U0 (∂ : Hs
q (U, V ) → Hs

q−1(V ) is the connecting homomorphism). Since all terms

in these sequences belong to the category of finite-dimensional vector spaces, in view of Theorem

VIII.5.7 from [16], we conclude that the limit sequence

... −→ Ȟq(Q) −→ Ȟq(P ) −→ Ȟq(P,Q)
∂−→ Ȟq−1(Q) −→ Ȟq−1(U) −→ ...

is exact.

Remark 2.5 It is important that we deal with finite-dimensional vector spaces since in general

the inverse limit of an inverse system of exact sequences consisting of arbitrary groups is not exact;

this is the reason why the Čech homology for arbitrary topological pairs with coefficients in an

arbitrary group is not exact.

It is easy to see that the inverse limit homomorphism ∂ := lim←−{∂ : Hs
q (U, V ) → Hs

q−1(V ) :

(U, V ) ∈ U0}) is in fact the desired boundary operator for the pair (P,Q): if f : (P,Q) → (P ′, Q′)

is a continuous map of compact pairs, then ∂f∗ = (f |Q)∗∂ because inverse limits preserve commu-

tativity.

Theorem 2.6 The above defined Čech homology Ȟ∗ is a functor on the category of compact metric

pairs which satisfies the following Eilenberg-Steenrod axioms:

(i) (Functoriality) If id is the identity map on a compact metric pair (P,Q), then id∗ is the

identity on Ȟ∗(P,Q); if f : (P,Q) → (P ′, Q′) and g : (P ′, Q′) → (P ′′, Q′′) are continuous maps of

compact metric pairs, then (g ◦ f)∗ = g∗ ◦ f∗.
(ii) (Naturality of ∂) If f : (P,Q)→ (P ′, Q′) is a continuous map of compact metric pairs, then

Ȟq(P,Q)
∂

//

f∗
��

Ȟq−1(Q)

(f |Q)∗
��

Ȟq(P
′, Q′)

∂
// Ȟq−1(Q

′)

(iii) (Exactness) For a compact metric pair (P,Q), let i : Q →֒ P and j : P →֒ (P,Q) be the

inclusions. Then, for any q ∈ Z, the homology sequence

... −→ Ȟq(Q)
i∗−→ Ȟq(P )

j∗−→ Ȟq(P,Q)
∂−→ Ȟq−1(Q) −→ ...
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is exact.

(iv) (Strong excision) If P,Q are compact metric spaces, then the inclusion (P,P ∩ Q) →֒
(P ∪Q,Q) induces the excision isomorphism

Ȟ∗(P,P ∩Q)
exc∼= Ȟ∗(P ∪Q,Q).

(v) (Homotopy invariance) If two continuous maps f, g : (P,Q) → (P ′, Q′) of compact metric

pairs are homotopic, then f∗ = g∗.

(vi) (Dimension) If ∗ is a one-point space, then

Ȟq(∗) =

{
F for q = 0;
0 otherwise.

Proof The functoriality of Ȟ∗ is easy to see. Using arguments similar to those from the proof

of Lemma 2.3, we show the homotopy invariance axiom (this time we extend the homotopy h :

P × [0, 1] → P ′ to h′ : E × [0, 1] → E′). It is clear that the dimension axiom is satisfied. The

naturality of ∂ and the exactness axiom have been discussed above.

To show the excision property we may assume that P and Q are compact subsets of a normed

space E. Given neighborhoods U , V of P and Q respectively, the excision axiom for the singular

theory implies that the inclusion i : (U,U ∩V )→ (U ∪V, V ) induces an isomorphism i∗ : Hs
∗(U,U ∩

V )→ Hs
∗(U ∪ V, V ). Since the family U1 (resp. U2) of neighborhoods of the form (U,U ∩ V ) (resp.

(U ∪ V, V )), where U is a neighborhood of P and V a neighborhood of Q, is cofinal in the family

of all neighborhoods the pair (P,P ∩Q) (resp. (P ∪Q,Q)), we obtain that

Ȟ∗(P,P ∩Q) = lim←−{H
s
∗(U,U ∩ V ) : P ⊂ U, Q ⊂ V } ∼=−→

lim←−{H
s
∗(U ∪ V, V ) : P ⊂ U, Q ⊂ V } = Ȟ∗(P ∪Q,Q),

where the isomorphism is induced as above by the inclusion, i.e., it is given as the inverse limit

map

lim←−{i∗ : Hs
∗(U,U ∩ V )→ Hs

∗(U ∪ V, V ) : P ⊂ U, Q ⊂ V }

(remember the that the inverse limit of isomorphisms is an isomorphism). 2

Remark 2.7 Recall that the Warsaw circle X is the union of two sets A and B such that A

is the closure of {(x, y) ∈ R
2 : y = sin(π/x), 0 < x < 1} and B is an arc in R

2 which meets

A only at (0,−1) and (1, 0). It is easy to see that each map S1 → X is homotopically trivial,

hence Hs
1(X) = 0. However, there exists a nested sequence of open annuli Un ⊃ X such that⋂∞

n=1 Un = X. It follows that Ȟ1(X) = lim←−H
s
1(Un) = F .

Remark 2.8 (i) Mardesič [22] (see also [23]) shows that our definition (2.1) coincides with the

definition of the Čech homology introduced in [16]. Moreover, it can be shown (cf. [22], [23]) that

if a compact space P is locally contractible (or – more generally – homologically locally connected,

see e.g. [24]), then Ȟ∗(P ) ∼= Hs
∗(P ;F); therefore, if Q ⊂ P is also locally contractible, then

Ȟ∗(P,Q) ∼= Hs
∗(P,Q;F). In particular, if (P,Q) is a pair of compact metric absolute neighborhood

7



retracts, then Ȟ∗(P,Q) ∼= Hs
∗(P,Q;F).

(ii) Another construction of a Čech type homology theory for compact pairs, with coefficients

in an arbitrary group G, which satisfies the Eilenberg-Steenrod axioms including the exactness and

the strong excision axioms, was provided in Massey [24]. The main advantage of his theory is that

it is valid for arbitrary (not necessarily metric) compact pairs and coefficient groups. If G is a field,

then the Massey and the Čech theories coincide. The disadvantage of the Massey approach is that

it is less intuitive, especially in contrast to the formula (2.1) above.

The Čech homology Ȟ∗ introduced above is not sufficient for our purposes because it is defined

on compact pairs only. Now we extend it to a more general situation.

Let (X,A) be an arbitrary pair of metric spaces. It easy to see that the family C(X,A) of

all compact pairs (P,Q) ⊂ (X,A) is directed by inclusion. The family {Ȟ∗(P,Q)}(P,Q)∈C(X,A)

together with the family Ȟ∗(P,Q)→ Ȟ∗(P
′, Q′) of homomorphisms induced by inclusions (P,Q) ⊂

(P ′, Q′) ∈ C(X,A) form a direct system of vector spaces. Following [16, Chap. IX, Exercise D]

(comp. [24, Chap. 9]), we define the Čech homology with compact supports and coefficients in F
by setting

Ȟc
∗(X,A) := lim−→

(P,Q)∈C(X,A)

Ȟ∗(P,Q).

Given a continuous map f : (X,A)→ (Y,B), the family {Ȟ∗(P,Q)→ Ȟ∗(f(P ), f(Q))}(P,Q)∈C(X,A)

of homomorphisms induced by f determines a map of the system {Ȟ∗(P,Q)}(P,Q)∈C(X,A) to the

direct system {Ȟ∗(P
′, Q′)}(P ′,Q′)∈C(Y,B). Therefore f determines a unique (graded) homomorphism

f∗ : Ȟc
∗(X,A)→ Ȟc

∗(Y,B).

In a similar manner one checks that given a pair (X,A), the family {∂ : Ȟ∗(P,Q)→ Ȟ∗−1(Q)}
of boundary homomorphisms in the Čech theory determines a map between the direct systems

{Ȟ∗(P,Q)}(P,Q)∈C(X,A) and {Ȟ∗−1(Q)}Q∈C(A) and therefore defines the boundary homomorphism

∂ : Ȟc
∗(X,A)→ Ȟc

∗−1(A).

The Čech homology Ȟc
∗ with compact supports and coefficients in F on the category of arbitrary

metric pairs satisfies all the Eilenberg-Steenrod axioms. This follows from the properties of the

direct limit and the respective properties of Ȟ∗. In particular, the exactness of the sequence

... −→ Ȟc
∗(A)

i∗−→ Ȟc
∗(X)

j∗−→ Ȟc
∗(X,A)

∂−→ Ȟc
∗−1(A) −→ ...

is a consequence of the exactness of the functor of direct limit (see [24, Theorem A.7]). More

precisely, the following holds true:

Theorem 2.9 The Čech homology with compact supports Ȟc
∗ is a functor on the category of metric

pairs which satisfies the Eilenberg-Steenrod axioms (i)-(iii) and (v),(vi) stated in Theorem 2.6.

Axiom (iv) is satisfied for closed pairs, i.e., if X = A ∪ B, where A,B are closed in X, then the

inclusion (A,A ∩B) →֒ (X,B) induces the isomorphism

Ȟc
∗(A,A ∩B)

exc∼= Ȟc
∗(X,B).
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Only the excision axiom requires some explanation. It is easy to see that the families of pairs

(P,P ∩ Q) and (P ∪ Q,Q), where P ⊂ A, Q ⊂ B are compact, are cofinal in the families of all

compact subsets of respectively (A,A ∩B) and (A∪B,B). Indeed, if R ⊂ A∪B is compact, then

so are R ∩A := P and R ∩B := Q (because A,B are closed), and if R ⊂ A ∩B, then we can take

P = Q = R. Hence passing to the direct limit in the isomorphisms Ȟ∗(P,P ∩ Q)∼=Ȟ∗(P ∪ Q,Q)

gives the conclusion.

Remark 2.10 If a metric pair (X,A) is compact, then Ȟc
∗(X,A) = Ȟ∗(X,A). In view of the results

of [22], if a metric space is locally compact and locally contractible, then Ȟc
∗(X) ∼= Hs

∗(X;F). If

A ⊂ X is closed and locally contractible, then Ȟc
∗(X,A) ∼= Hs

∗(X,A;F).

3 Infinite-dimensional homology theory

Let E be a Hilbert space and Φ a functional of class C1. In critical point theory one introduces

the notion of critical groups of Φ at an isolated critical point x0 by setting cq(Φ, x0) := Hs
q (Φ

c ∩
U, (Φc ∩U) \ {x0}) (q ∈ Z), where c = Φ(x0) and U is a neighborhood of x0, see e.g. [10]. Suppose

E = E+⊕E− is an orthogonal decomposition and consider the functional Φ(x) := ‖x+‖2−‖x−‖2,
x± ∈ E±. Then 0 is a critical point of Φ and one can show that cq(Φ, 0) = Hs

q (D−, S−), where D−

and S− are respectively the unit closed ball and the unit sphere in E−. So cq(Φ, 0) 6= 0 if and only

if q = M−(Φ′′(0)), the Morse index of Φ′′(0). Hence if M−(Φ′′(0)) = dimE− =∞, cq(Φ, 0) = 0 for

all q. Our purpose in this section is to construct a theory which will give a nontrivial homological

information (and a finite Morse index) in this case.

In what follows (E, ‖ · ‖) is a real Banach space. By a filtration of E we mean an increasing

sequence (En)∞n=1 of closed subspaces of E such that E = cl
⋃∞

n=1En. Given a filtration (En) of

E and X ⊂ E, let Xn := X ∩ En. If A ⊂ X ⊂ E and B ⊂ Y ⊂ E, then a (continuous) map

f : (X,A) → (Y,B) is said to be filtration-preserving if f(Xn) ⊂ En for almost all n. A homotopy

h : (X,A) × [0, 1]→ (Y,B) is filtration-preserving if h(Xn × [0, 1]) ⊂ En for almost all n.

In order to introduce a homology theory of spaces with filtration we will need some preliminaries.

Let (Gn)∞n=1 be a sequence of abelian groups. We define the asymptotic group [(Gn)∞n=1] by the

formula

[(Gn)∞n=1] :=
∞∏

n=1

Gn

/ ∞⊕

n=1

Gn.

In other words, in the direct product
∏∞

n=1 Gn := {(ξn)∞n=1 : ξn ∈ Gn} we introduce an equivalence

relation: (ξn) ∼ (ηn) if and only if ξn = ηn for almost all n > 1. So

[(Gn)∞n=1] =
∞∏

n=1

Gn/ ∼ .

The equivalence class of (ξn) ∈∏∞
n=1 Gn is denoted by [(ξn)∞n=1]. If Gn = G for almost all n, then we

write G instead of [(Gn)∞n=1]. It is clear that the above construction of asymptotic groups generalizes

immediately to modules and vector spaces.
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Let (En)∞n=1 be a filtration of E. Suppose that a sequence (dn)∞n=1 of nonnegative integers is

given and let E := (En, dn)∞n=1. If F is a field and (X,A) a pair of subsets of E, then for any integer

q ∈ Z, we define the q-th E-homology group with coefficients in F by the formula

HE
q (X,A) := [(Ȟc

q+dn
(Xn, An))∞n=1].

Consequently, HE
∗ (X,A) := {HE

q (X,A)}q∈Z. Note that unlike in the usual homology, HE
q (X,A)

need not be 0 if q < 0.

As admissible morphisms in the category of pairs in E we take all continuous maps f : (X,A)→
(Y,B) which preserve the filtration (En)∞n=1, and as admissible homotopies we take those which

preserve this filtration. It is clear that each admissible f induces a (graded group) homomorphism

f∗ : HE
∗ (X,A)→ HE

∗ (Y,B) given by the formula f∗ = [fn∗] or, more precisely,

f∗[(ξn)∞n=1] := [(fn∗(ξn))∞n=1],

where fn := f |(Xn,An) : (Xn, An)→ (Yn, Bn) and ξn ∈ Ȟc
∗+dn

(Xn, An).

The boundary homomorphism ∂ = ∂(X,A) : HE
∗ (X,A)→ HE

∗−1(A) is defined by setting ∂ := [∂n],

i.e.,

∂[(ξn)∞n=1] = [(∂n(ξn))∞n=1],

where ∂n : Ȟc
∗+dn

(Xn, An) → Ȟc
∗+dn−1(An) is the boundary homomorphism for Ȟc

∗ and ξn ∈
Ȟc

∗+dn
(Xn, An).

It is easy to see that HE
∗ is a functor from the category of pairs of subsets of E together with

admissible maps of such pairs into the category of vector spaces over F . More precisely, we have

the following:

Proposition 3.1 (i) (Functoriality) If id is the identity map on (X,A), then id∗ is the identity

on HE
∗ (X,A); if the maps f : (X,A) → (Y,B) and g : (Y,B) → (Z,C) are admissible, then

(g ◦ f)∗ = g∗ ◦ f∗.
(ii) (Naturality of ∂) If f : (X,A)→ (Y,B) is admissible, then ∂f∗ = (f |A)∗∂.

(iii) (Exactness) For each pair (X,A) in E, let i : A →֒ X and j : X →֒ (X,A) be the inclusions.

Then, for any q ∈ Z, the homology sequence

... −→ HE
q (A)

i∗−→ HE
q (X)

j∗−→ HE
q (X,A)

∂(X,A)

−→ HE
q−1(A) −→ ...

is exact.

(iv) (Strong excision) If A,B are closed subsets of X ⊂ E such that A ∪ B = X, then the

inclusion (A,A ∩B) →֒ (X,B) induces the excision isomorphism

HE
∗ (A,A ∩B)

exc∼= HE
∗ (X,B).

(v) (Homotopy invariance) If f, g : (X,A)→ (Y,B) are homotopic by an admissible homotopy,

then f∗ = g∗.

(vi) (Exact homology sequence of a triple) For a triple (X,A,B) in E, i.e. B ⊂ A ⊂ X ⊂ E and
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inclusions i : (A,B) →֒ (X,B), j : (X,B) →֒ (X,A), there is a homomorphism ∆ : HE
∗ (X,A) →

HE
∗−1(A,B) such that, for each q ∈ Z, the sequence

... −→ HE
q (A,B)

i∗−→ HE
q (X,B)

j∗−→ HE
q (X,A)

∆−→ HE
q−1(A,B) −→ ...

is exact.

The proofs of (i)–(v) follow immediately from the definition HE
∗ and the respective properties of

the homology Ȟc
∗. Property (vi) follows from (iii) upon taking ∆ = k∗ ◦∂(X,A), where k∗ is induced

by the inclusion k : A →֒ (A,B), see e.g. [15, III.3.4 and III.3.5].

Proposition 3.1 states thatHE
∗ satisfies all of the Eilenberg-Steenrod axioms for homology theory

except for the dimension axiom which is satisfied only in the trivial case En = E and dn = 0 for

almost all n > 1. Instead of the dimension axiom we have the following basic example:

Example 3.2 Suppose that F is a closed subspace of E and kn := dim(F ∩ En). Suppose that

d := limn→∞(kn − dn) exists, d ∈ Z ∪ {±∞}. Given p ∈ F and r > ‖p‖, let D := Br(p) ∩ F and

S := Sr(p) ∩ F . For each n > 1, Dn := D ∩ En is a closed ball with boundary Sn := S ∩ En and

dimDn = kn. If d = ±∞, then Ȟc
q+dn

(Dn, Sn) = 0 for large n; hence HE
q (D,S) = 0 for all q ∈ Z.

If d 6= ±∞, then q + dn = q + kn − d for almost all n and

HE
q (D,S) =

{
F for q = d
0 otherwise.

Since HE
∗ (D) = 0 for all q ∈ Z, by the exactness of the homology sequence for (D,S) we infer that

HE
q (S) =

{
F for q = d− 1
0 otherwise.

Let (En)∞n=1 be a filtration of E and suppose that Φ ∈ C1(E,R). For each n ∈ N, let Φn :=

Φ|En . It is clear that Φn ∈ C1(En,R) and Φ′
n(x) ∈ E∗

n for x ∈ En. Moreover, for u ∈ En,

〈Φ′
n(x), u〉 = 〈Φ′(x), u〉; here and below 〈· , ·〉 denotes the duality pairing in En (or in E).

Let N ⊂ E. We say that a sequence (yj)
∞
j=1 in N is a (PS)∗-sequence (with respect to (En))

if yj ∈ Enj
, where nj → ∞, (Φ(yj)) is bounded and ‖Φ′

nj
(yj)‖ → 0 as j → ∞. If every (PS)∗-

sequence in N has a convergent subsequence, then Φ is said to verify the (PS)∗-condition (with

respect to (En)) on N .

The (PS)∗-condition (in a slightly different form) has been introduced by Bahri and Berestycki

[4], [5], and Li and Liu [21]. Note that if Φ satisfies the (PS)∗-condition on N , then each convergent

(PS)∗-sequence (yj) in N tends to a critical point of Φ. Indeed, suppose that yj → y and take

ε > 0. For large j, ‖Φ′
nj

(yj)‖ < ε and ‖Φ′(yj)− Φ′(y)‖ < ε. Let u ∈ ⋃∞
n=1En, ‖u‖ 6 1. Then, for

large j, we have u ∈ Enj
and

|〈Φ′(y), u〉| 6 |〈Φ′(y)− Φ′(yj), u〉| + |〈Φ′
nj

(yj), u〉| < 2ε.

Therefore Φ′(y) = 0.
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If Φ satisfies (PS)∗, then Φ satisfies the usual (PS)-condition as well. Given a sequence (xj) such

that (Φ(xj)) is bounded and Φ′(xj)→ 0, then for each j there is yj ∈ Enj
such that |Φ(xj)−Φ(yj)| <

1, ‖xj − yj‖ < j−1 and ‖Φ′(xj)−Φ′(yj)‖ < j−1; moreover, we may asume nj < nj+1. So if u ∈ Enj

and ‖u‖ 6 1, then

|〈Φ′
nj

(yj), u〉| = |〈Φ′(yj), u〉| 6 ‖Φ′(yj)‖;
hence (yj) is a (PS)∗ sequence. Thus (yj), and therefore also (xj), has a convergent subsequence.

Definition 3.3 Let N ⊂ E \K, where K is the critical set of Φ. A map V : N → E is called a

gradient-like vector field for Φ on N if:

(i) V is locally Lipschitz continuous;

(ii) ‖V (x)‖ 6 1 for all x ∈ N ;

(iii) there is a function β : N → R+ such that 〈Φ′(x), V (x)〉 > β(x) on N and if Z ⊂ N is bounded

away from K and supZ |Φ| <∞, then infz∈Z β(z) > 0.

We say that a gradient-like vector field V for Φ on N is related to (En) provided V |Z preserves this

filtration on any set Z ⊂ N which is bounded away from K and such that supZ |Φ| <∞.

Lemma 3.4 Let N ⊂ E be open. If Φ satisfies the (PS)∗-condition on N , then there exists a

gradient-like vector field V for Φ on N \K related to (En).

For the proof, see [19, Lemma 2.2]. In [19] it was assumed that E is a Hilbert space; however,

it is easy to see that the argument goes through for Banach spaces as well. The same remark also

applies to Proposition 3.6 below.

Next we define the notion of admissible pair. It is a suitable adaptation of a Gromoll-Meyer pair

to our situation (an extra requirement we need here is that there exists a vector field V satisfying

the conditions of Definition 3.3). A detailed study of the classical Gromoll-Meyer theory may be

found e.g. in [10].

Definition 3.5 Let A be an isolated compact subset of K. A pair (W,W−) of closed subsets of

E is said to be an admissible pair for Φ and A with respect to (En) provided:

(i) W is bounded away from K \A, W− ⊂ ∂W , A ⊂ intW and Φ|W is bounded;

(ii) there is a neighborhood N of W and a gradient-like vector field V for Φ on N \A, related to

(En);

(iii) W− is the union of finitely many (possibly intersecting) closed sets each of which lies on a

C1-manifold of codimension 1, V is transversal to each of these manifolds at points of W−,

the flow η of −V can leave W only via W− and if x ∈W−, then η(t, x) 6∈W for any t > 0.

A gradient-like vector field V , corresponding to (W,W−) in the above sense, will be called an

admissible field.

In what follows we will usually omit the expressions ‘related to the filtration’ and ‘with respect

to the filtration’. In view of [19, Proposition 2.6], for each isolated critical point p of Φ there exists

an admissible pair (W,W−). More precisely, the following holds true:
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Proposition 3.6 Suppose that Φ ∈ C1(E,R) satisfies the (PS)∗-condition in a neighborhood N of

an isolated critical point p of Φ. For each open neighborhood U ⊂ N of p, there exists an admissible

pair (W,W−) for Φ and p such that W ⊂ U and Φ|W− < c := Φ(p). Moreover, there is a δ1 > 0

such that Bδ1(p) ⊂ intW and if x ∈ Sδ1(p) ∩Φc, then η(t, x) ∈W− for some t > 0.

For the reader’s convenience we sketch the construction of (W,W−). Without loss of generality

we may assume that N ∩ K = {p}. Let δ > 0 be such that Bδ(p) ⊂ U and Φ(x) > c − ε for all

x ∈ Bδ(p) (ε > 0 small enough). Let V be a gradient-like field for Φ on N \ {p} and consider the

Cauchy problem
dσ

dt
= −ω(σ)V (σ), σ(0, x) = x,

where ω is a cutoff function such that ω = 0 in a neighborhood of p and ω = 1 in N \Bδ1(p). Then

it can be shown that the pair (W,W−) defined by

W = {σ(t, x) : t > 0, x ∈ Bδ(p), Φ(σ(t, x)) > c− ε}, W− = W ∩ Φ−1(c− ε)

satisfies the properties stated in Proposition 3.6.

For the rest of this section suppose that a sequence (dn) of integers is given and let E =

(En, dn)∞n=1. Let p be an isolated critical point of a functional Φ ∈ C1(E,R) satisfying the (PS)∗-

condition in a neighborhood N of p and let (W,W−) be an admissible pair for Φ and p such that

W ⊂ N . For any q ∈ Z we define the q-th critical group of Φ at p with respect to E by setting

cEq (Φ, p) := HE
q (W,W−).

Proposition 3.6 asserts the existence of an admissible pair (W,W−) for Φ and p in N . Exactly as

in [19, Proposition 2.7] one shows that the critical groups cEq (Φ, p) are well-defined, i.e., they do

not depend on the choice of an admissible pair: if the pairs (Wi,W
−
i ), i = 1, 2, are admissible for

Φ and p, then the groups HE
q (W1,W

−
1 ) and HE

q (W2,W
−
2 ) are isomorphic for all q ∈ Z.

The proof of this fact is rather technical and employs the strong excision property in an essential

way. The rough idea is to find an admissible pair (W0,W
−
0 ) such that W0 ⊂ intW1 ∩ intW2

(which exists by Proposition 3.6) and construct a number of deformations by cutting off the flow

σ constructed above. These deformations and excision show that HE
∗ (W0,W

−
0 ) ∼= HE

∗ (Wi,W
−
i ).

Let now E be a Hilbert space with an inner product 〈. , .〉, let Φ ∈ C2(U,R), where U ⊂ E is

a neighborhood of an isolated critical point p, and set L := Φ′′(p). In what follows we assume via

duality that Φ′(x) ∈ E for all x and L ∈ L(E,E).

Suppose that L = A + B, where A ∈ L(E,E) is a self-adjoint Fredholm operator of index

0 such that A(En) ⊂ En for almost all n and B ∈ L(E,E) is self-adjoint compact. It is then

clear that L is a self-adjoint Fredholm operator of index 0, and in particular, dimN(L) < ∞
and N(L) ⊕ R(L) = E. Hence any point x ∈ E admits a unique representation x = p + z + y,

where z ∈ N(L) and y ∈ R(L). Assume further that there exists k ∈ Z such that the Morse

index M−(A|En) = dn + k and let Qn : R(L) → R(L) ∩ En be the orthogonal projection of R(L)

on R(L) ∩ En. One shows (see Corollary 4.4 in [19]) that, for each x ∈ R(L), Qnx → x; hence
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(R(L) ∩ En)∞n=1 is a filtration of R(L). Moreover, in view of Proposition 5.2 in [19], the E-Morse

index

M−
E (L) := lim

n→∞
(M−(QnL|R(L)∩En

)− dn)

is well-defined and finite.

Since Φ is a C2-functional, we have the representation

Φ(x) = Φ(p) +
1

2
〈Ly, y〉+ ψ(x),

where ψ ∈ C2(U,R), ψ(p) = 0, ψ′(p) = 0 and ψ′′(p) = 0. Denote the orthogonal projection of E

on R(L) by Q. Then

(3.1) Φ′(p+ z + y) = Ly + ψ′(p + z + y).

The invertibility of L|R(L) and the implicit function theorem imply that there is δ > 0 and a

C1-function y = α(z) : Bδ(0) ∩N(L)→ R(L) such that Bδ(p) ⊂ U , α(0) = 0, α′(0) = 0 and

(3.2) QΦ′(p+ z + α(z)) = 0 for z ∈ Bδ(0) ∩N(L).

Define ϕ : Bδ(0) ∩N(L)→ R by

(3.3) ϕ(z) := Φ(p+ z + α(z)) − Φ(p) =
1

2
〈Lα(z), α(z)〉 + ψ(p + z + α(z)), ‖z‖ < δ.

It is clear that 0 is an isolated critical point of ϕ. The next result shows the relationship between

the critical groups cE∗ (Φ, p) and c∗(ϕ, 0) := Ȟc
∗(W̃ , W̃−), where (W̃ , W̃−) is an admissible pair for

ϕ and 0 in N(L) (with respect to the trivial filtration of N(L)).

Theorem 3.7 (cf. Theorem 5.4 in [19]) Under the above assumptions, for all q ∈ Z, cEq (Φ, p) =

cq−M−

E
(L)(ϕ, 0).

We sketch the argument which is rather tedious and consists of several steps. By the continuity

property of critical groups [19, Corollary 2.10], we may assume without loss of generality that p = 0

and Φ(p) = 0. Next one shows using a certain homotopy which goes back to [14] that cE∗ (Φ, 0) =

cE∗ (Φ1, 0), where Φ1(z+ y) = 1
2〈Ly, y〉+ϕ(z), z+ y ∈ (N(L)⊕R(L))∩Bδ(0). Then one constructs

admissible pairs, respectively (W1,W
−
1 ) for 〈Ly, y〉 in R(L) and (W̃ , W̃−) for ϕ in Bδ(0) ∩ N(L),

and shows that (W1,W
−
1 ) × (W̃ , W̃−) is topologically equivalent to an admissible pair (W,W−)

for Φ1 and 0 (here we use the customary notation (A,B)× (C,D) = (A×B, (A×D) ∪ (B × C)).

The pair (W1 ∩ En,W
−
1 ∩ En) turns out to be homotopy equivalent to (B, ∂B), where B is the

closed unit ball of dimension mn := M−
E (L) + dn (n large). We may assume (W̃ , W̃−) is a pair of

compact ANR’s [14] (in [14] this is shown for Gromoll-Meyer and not for admissible pairs; however,

on finite-dimensional spaces these two notions coincide). Hence by the Künneth formula in singular

homology [15, Corollary VI.12.12],

Ȟc
q+dn

((W1 ∩ En,W
−
1 ∩ En)× (W̃ , W̃−)) ∼= Ȟq+dn((B, ∂B)× (W̃ , W̃−))

∼=
(
Ȟ∗(B, ∂B)⊗ Ȟ∗(W̃ , W̃−)

)
q+dn

∼= Ȟq+dn−mn(W̃ , W̃−) = Ȟq−M−

E
(L)(W̃ , W̃−).
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Here we have used that Ȟc
∗ = Ȟ∗ = Hs

∗ and the excision requirement of the Künneth formula for

Hs
∗ holds on pairs of compact ANR’s. The first fact is a consequence of Remarks 2.8, 2.10 and

the second one (which is well known) can be immediately deduced from the strong excision axiom

for Ȟ∗ as long as Ȟ∗ = Hs
∗ . It follows that HE

q (W,W−) = Ȟq−M−

E
(L)(W̃ , W̃−) and the proof is

complete.

4 Ground states for a Schrödinger equation

In this section we sketch a proof of the existence of a ground state for the Schrödinger equation

(4.1) −∆u+ V (x)u = f(x, u), u ∈ H1(RN ),

where as usual, H1(RN ) denotes the Sobolev space of functions u ∈ L2(RN ) such that ∇u ∈
L2(RN ,RN ). Denote the spectrum of −∆+V in L2(RN ) by σ(−∆+V ), let F (x, u) :=

∫ u
0 f(x, s) ds

and 2∗ := 2N/(N − 2) if N > 3, 2∗ := +∞ if N = 1 or 2. We make the following assumptions on

V and f :

(S1) V is continuous, 1-periodic in x1, . . . , xN , σ(−∆ + V ) ∩ (−∞, 0) 6= ∅ and 0 /∈ σ(−∆ + V ),

(S2) f is continuous, 1-periodic in x1, . . . , xN and |f(x, u)| 6 a(1 + |u|p−1) for some a > 0 and

p ∈ (2, 2∗),

(S3) f(x, u) = o(u) uniformly in x as u→ 0,

(S4) F (x, u)/u2 →∞ uniformly in x as |u| → ∞,

(S5) u 7→ f(x, u)/|u| is strictly increasing on (−∞, 0) and on (0,∞).

Although the results of this section also hold if σ(−∆+V ) ⊂ (0,∞) (see the discussion in [29]), we

only consider the more difficult case where σ(−∆ + V ) ∩ (−∞, 0) 6= ∅. Recall (see e.g. [20]) that

periodicity of V implies σ(−∆ + V ) is absolutely continuous, bounded below but not above, and

consists of a finite number (> 1) of disjoint closed intervals. We also remark that in Sections 5–7

condition (S2) will be replaced by a stronger condition (S′
2).

Let

(4.2) Φ(u) :=
1

2

∫

RN

(|∇u|2 + V (x)u2) dx−
∫

RN

F (x, u) dx.

It is well known [30, 31] that Φ ∈ C1(H1(RN ),R) and Φ′(u) = 0 if and only if u is a weak solution

of (4.1). Since 0 /∈ σ(−∆ + V ), the quadratic form in (4.2) is non-degenerate, so there exist an

equivalent inner product 〈. , .〉 and a corresponding norm ‖.‖ in E := H1(RN ) such that

(4.3) Φ(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫

RN

F (x, u) dx.

Here u = u+ + u−, u± ∈ E±, E = E+ ⊕ E− and E± are the orthogonal invariant subspaces

corresponding to the positive and the negative part of the spectrum of −∆ + V . By the absolute

continuity of σ(−∆ + V ) and (S1), dimE± = +∞.
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Let

M := {u ∈ E \ E− : 〈Φ′(u), u〉 = 〈Φ′(u), v〉 = 0 for all v ∈ E−}.

Recall from Section 3 that we identify (via duality) Φ′(u) ∈ E∗ with an element of E. The set

M has been introduced by Pankov in [25]. He has proved that under stronger conditions M is

a C1-manifold, see also a comment at the end of Section 6. Here we shall outline an argument

showing that under our hypotheses there is a natural homeomorphism between the unit sphere in

E+ andM. Note that if Φ′(u) = 0 and u 6= 0, then u ∈M.

For u ∈ E \ E−, we define

(4.4) E(u) := E− ⊕ Ru ≡ E− ⊕ Ru+ and Ê(u) := E− ⊕ R
+u.

Theorem 4.1 Suppose (S1)–(S5) are satisfied and let c := infu∈M Φ(u). Then c is attained, c > 0

and if u0 ∈M satisfies Φ(u0) = c, then u0 is a solution of (4.1).

Since c is the lowest level of Φ at which there exists a nontrivial solution, u0 will be called a

ground state. We shall also show that c has the following minimax characterization:

(4.5) c = inf
w∈E+\{0}

max
u∈ bE(w)

Φ(u).

We sketch the main steps in the proof of Theorem 4.1 and refer to [29] for the details.

Proposition 4.2 If u ∈M, then Φ(u+w) < Φ(u) for all w 6= 0 such that u+w ∈ Ê(u). In other

words, if u ∈M, then u is the unique global maximum of Φ| bE(u)
.

Note that u+w ∈ Ê(u) if and only if w = su+v, where s > −1 and v ∈ E−. The key step in the

proof of this proposition is the following inequality which is a consequence of (S5): Let u, s, v ∈ R,

s > −1 and w := su+ v 6= 0. Then

f(x, u) [s(s/2 + 1)u+ (1 + s)v] + F (x, u)− F (x, u+ w) < 0.

The proof, although elementary, is not straightforward, see [29].

Proposition 4.3 For each u ∈ E \ E−, the set M∩ Ê(u) consists of exactly one point which is

the (unique) global maximum of Φ| bE(u)
.

Proof (outline) Since Ê(u) = Ê(u+/‖u+‖), we may assume without loss of generality that u ∈
S+ := E+ ∩ S1(0). By (S3), there exist α, ρ > 0 (independent of u ∈ S+) such that Φ(ρu) > α.

It follows from (S4) that Φ 6 0 on Ê(u) \ BR(0) for a sufficiently large R > 0 (R depends on the

choice of u). Hence α 6 sup bE(u) Φ <∞. Since Ê(u)∩E+ = R
+u and F > 0 (by (S5)), it is easy to

see from (4.3) and Fatou’s lemma that Φ| bE(u)
is weakly upper semicontinuous. So Φ| bE(u)

attains

its supremum at some ū 6= 0. Clearly, Φ 6 0 on E− and therefore ū is a critical point of Φ| bE(u).

16



In particular, 〈Φ′(ū), ū〉 = 〈Φ′(ū), v〉 = 0 for all v ∈ E−, that is, ū ∈ M. Finally, Proposition 4.2

implies that M∩ Ê(u) = {ū}. 2

It follows from the above proof that

c = inf
u∈M

Φ(u) > inf
u∈E+∩Sρ(0)

Φ(u) > α,

so c > 0. For w ∈ E+ \{0}, denote the unique point at which Φ| bE(w)
attains its maximum by m̂(w)

and set

Ψ̂(w) := Φ(m̂(w)).

It can be shown that m̂ is continuous and, somewhat surprisingly, Ψ ∈ C1(E+ \ {0},R), with

〈Ψ̂′(w), z〉 =
‖m̂(w)+‖
‖w‖ 〈Φ′(m̂(w)), z〉, w ∈ E+ \ {0}, z ∈ E+.

Now it is not too difficult to see that m̂|S+ : S+ →M is a homeomorphism, with the inverse given

by m̂−1(u) = u+/‖u+‖, and (wm) is a Palais-Smale sequence for Ψ := Ψ̂|S+ if and only if (m̂(wm))

is a Palais-Smale sequence for Φ on M. Moreover, w is a critical point of Ψ if and only if m̂(w) is

a critical point of Φ. Clearly,

inf
S+

Ψ = inf
M

Φ = c,

and since Ê(w) = Ê(w/‖w‖) for w ∈ E+ \ {0} and Φ(m̂(w)) = max bE(w) Φ, c has the minimax

characterization (4.5).

Proposition 4.4 The functional Φ is coercive on M, i.e., Φ(u)→∞ as ‖u‖ → ∞, u ∈M.

Proof We shall show that each sequence (um) such that c 6 Φ(um) 6 d for some d > c is bounded.

Suppose ‖um‖ → ∞ and let vm := um/‖um‖. Then, after passing to a subsequence, vm ⇀ v in E

and vm → v a.e. in R
N . Clearly, ‖v+

m‖2 + ‖v−m‖2 = 1 and

0 < c 6 Φ(um) =
1

2
(‖u+

m‖2 − ‖um‖2)−
∫

RN

F (x, um) dx 6
1

2
(‖u+

m‖2 − ‖u−m‖2),

hence ‖v+
m‖2 − ‖v−m‖2 > 0 and therefore ‖v+

m‖2 >
1
2 . For any m > 1 there is ym ∈ R

N such that

∫

B1(ym)
(v+

m)2 dx = max
y∈RN

∫

B1(y)
(v+

m)2 dx.

Since Φ and M are invariant under translations of the form u(x) 7→ u(x − y), y ∈ Z
N (by the

periodicity of V and f), we may assume without loss of generality that the sequence (ym) is

bounded. Suppose

(4.6)

∫

B1(ym)
(v+

m)2 dx→ 0.
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Then, according to P.L. Lions’ lemma [30, Lemma 1.21], v+
m → 0 in Lp(RN ). Since sv+

m ∈ Ê(um)

for each s > 0, it follows that

(4.7) d > Φ(um) > Φ(sv+
m) =

s2

2
‖v+

m‖2 −
∫

RN

F (x, sv+
m) dx >

s2

4
−
∫

RN

F (x, sv+
m) dx→ s2

4
,

a contradiction if s >
√

4d. Hence the integral in (4.6) is bounded away from 0 and since v+
m → v+

in L2
loc(R

N ), v+ 6= 0 and therefore v 6= 0. So by (S4) and Fatou’s lemma,

1

‖um‖2
∫

RN

F (x, um) dx =

∫

RN

F (x, um)

u2
m

v2
m dx→∞

and thus

0 6
Φ(um)

‖um‖2
=

1

2
(‖v+

m‖2 − ‖v−m‖2)−
1

‖um‖2
∫

RN

F (x, um) dx→ −∞.

This contradiction completes the proof. 2

Proof of Theorem 4.1 (outline) By Ekeland’s variational principle [30], there exists a Palais-

Smale sequence (wm) ⊂ S+ for Ψ such that Ψ(wm) → c. Set um := m̂(wm). Then (um) ⊂ M is

a Palais-Smale sequence for Φ and Φ(um) → c. By Proposition 4.4, Φ is coercive on M. Hence

(um) is bounded, so um ⇀ u in E and um → u in L2
loc(R

N ) after passing to a subsequence. Since

Φ′(u) = 0, u ∈M or u = 0. Let (ym) ⊂ R
N be a sequence such that

∫

B1(ym)
u2

m dx = max
y∈RN

∫

B1(y)
u2

m dx.

Using the translation invariance of Φ andM by elements of Z
N , we may assume as in the preceding

proof that the sequence (ym) is bounded in R
N . If u = 0, then

(4.8)

∫

B1(ym)
u2

m dx→ 0 as m→∞

and it follows from P.L. Lions’ lemma [30, Lemma 1.21] again that um → 0 in Lp(RN ). Hence

using (S2), (S3) and the Hölder and Sobolev inequalities, we obtain

o(1) = 〈Φ′(um), u+
m〉 = ‖u+

m‖2 −
∫

RN

f(x, um)u+
m dx = ‖u+

m‖2 + o(1).

So u+
m → 0 and c 6 0 by (4.3). It follows that u 6= 0 and u ∈M. Obviously, Φ(u) > c and it remains

to show that the reverse inequality holds. It is easy to see from (S5) that 1
2f(x, u)u > F (x, u),

hence by Fatou’s lemma and since (um) is bounded,

c+ o(1) = Φ(um)− 1

2
〈Φ′(um), um〉 =

∫

RN

(
1
2f(x, um)um − F (x, um)

)
dx(4.9)

>

∫

RN

(
1
2f(x, u)u− F (x, u)

)
dx+ o(1) = Φ(u)− 1

2
〈Φ′(u), u〉 + o(1) = Φ(u) + o(1).

So Φ(u) 6 c. 2
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Theorem 4.5 Suppose N > 4, (S1) is satisfied and f(x, u) = |u|2∗−2u. Then the conclusion of

Theorem 4.1 remains valid.

Let

S := inf
u∈E\{0}

‖∇u‖22
‖u‖22∗

.

The proof of Theorem 4.5 will follow from the lemma below which is essentially a reformulation of

some statements contained in [8]. The main result of [8] asserts that (4.1) has a solution u0 6= 0;

however, no claim has been made there that u0 is a ground state.

Lemma 4.6 The following is true under the conditions of Theorem 4.5:

(i) each Palais-Smale sequence is bounded;

(ii) there exists a Palais-Smale sequence (um) such that Φ(um)→ c̃ < SN/2/N ;

(iii) each Palais-Smale sequence (um) such that Φ(um) → c̃ < SN/2/N has a subsequence which,

possibly after translation by elements of Z
N , converges weakly to a solution u 6= 0 of (4.1) such that

Φ(u) 6 c̃.

Proof (i) is (essentially) Proposition 3.3 in [8]. For (ii), see Propositions 3.2 and 4.2 there. Finally,

Proposition 4.1 in [8] implies that (4.8) cannot hold if c̃ < SN/2/N . Hence for a (translated)

subsequence we have that um ⇀ u 6= 0 and Φ′(u) = 0. That Φ(u) 6 c̃ follows from (4.9) with

f(x, u) = |u|2∗−2u and c replaced by c̃. 2

Proof of Theorem 4.5 One sees by inspection of our arguments above and of [29] thatM, m̂ and

Ψ have the same properties as before except that we do not claim Φ is coercive on M. As in the

proof of Theorem 4.1, let (wm) be a minimizing sequence which we may assume is Palais-Smale.

Hence so is (um), where um := m̂(wm). By Lemma 4.6, c < SN/2/N and there exists a solution u0

with Φ(u0) = c. 2

5 Critical groups for a ground state solution

In Theorems 4.1 and 4.5 it has been shown that (4.1) has a ground state solution u0. We shall

now compute the critical groups of u0 under the assumption that it is an isolated solution, i.e., an

isolated critical point of the functional Φ given by (4.2). We consider subcritical f first and at the

end of this section we discuss the case of f(x, u) = |u|2∗−2u.

We shall need the following stronger form of (S2):

(S′
2) f and f ′u are continuous and, for some ā > 0 and each x ∈ R

N , u ∈ R,

|f ′u(x, u)| 6 ā(1 + |u|p−2).

Condition (S′
2) implies that Φ ∈ C2(E,R); moreover, for any u, v ∈ E,

Φ′′(u)v = v+ − v− −B(u)v,
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where

〈B(u)v,w〉 :=

∫

RN

f ′u(x, u)vw dx.

We claim that for each u ∈ E, B(u) : E → E is a compact linear operator. Indeed, suppose

‖w‖ 6 1, vj ⇀ 0 and let ε > 0 be given. By (S′
2) and (S3), |f ′u(x, u)| 6 ε + āε|u|p−2. Since u is

fixed, there exists R = Rε > 0 such that, for some constant d independent of ε and w,

(5.1)

∫

|x|>R
|f ′u(x, u)vjw| dx 6 ε

∫

RN

|vj ||w| dx + āε

∫

|x|>R
|u|p−2|vj ||w| dx 6 dε

(we have used the Hölder and Sobolev inequalities). Now the conclusion follows because vj → 0 in

Lq(BR(0)), 1 6 q < 2∗.

Let E = E+ ⊕ E− be as in the preceding section and put L := Φ′′(u0). Then Lv = v+ − v− −
B(u0)v; thus L is a Fredholm operator of index 0 and E = N(L)⊕R(L). Choose a filtration (Em)

such that E±
1 := Ru±0 , Em = E+

m ⊕ E−
m, where E±

m ⊂ E± and dimE±
m = m (so dimEm = 2m).

Assume without loss of generality that N(L) ⊂ Em for almost all m and let Pm : E → Em be the

orthogonal projection.

Lemma 5.1 There are α > 0 and m0 > 1 such that, for m > m0 and u ∈ R(L) ∩ Em, ‖PmLu‖ >

α‖u‖.

Proof Arguing by contradiction, for each j there exist mj and vj ∈ R(L)∩Emj
such that mj →∞,

‖vj‖ = 1, vj ⇀ v and

Pmj
Lvj = v+

j − v−j − Pmj
B(u0)vj → 0

(recall Pmj
E± ⊂ E±). Since B(u0) is compact, Pmj

B(u0)vj → B(u0)v. Hence v±j → v±; therefore

vj → v and Lv = v+ − v− −B(u0)v = 0. This is impossible because v ∈ R(L) and v 6= 0. 2

Since Φ ∈ C2(E,R), we have the representations

Φ(u) = Φ(u0) +
1

2
〈L(u− u0), u− u0〉+ ψ(u), Φ′(u) = L(u− u0) + ψ′(u),

where ψ ∈ C2(E,R), ψ(u0) = 0, ψ′(u0) = 0 and ψ′′(u0) = 0. Let Q : E → R(L) be the orthogonal

projection. Then any u ∈ E has a unique representation u = u0 + n + v, where n ∈ N(L) and

v ∈ R(L). As in Section 3 (comp. (3.1) and (3.2)) we see that there are ρ > 0 and a C1-function

v : Bρ(0) ∩N(L)→ R(L) such that u0 is the only critical point of Φ in Bρ(u0), v(0) = 0, v′(0) = 0

and, for n+ v ∈ Bρ(0),

(5.2) Lv +Qψ′(u0 + n+ v) = QΦ′(u0 + n+ v) = 0 if and only if v = v(n).

Lemma 5.2 Φ satisfies the (PS)∗-condition (with respect to (Em)) on Bρ(u0).

Proof Let (uj) be a (PS)∗-sequence in Bρ(u0), i.e., uj ∈ Emj
, mj → ∞ and Pmj

Φ′(uj) → 0 as

j →∞. Since dimN(L) <∞, (I−Q)Φ′(uj) is strongly convergent to some z ∈ N(L) after passing

to a subsequence, hence also Pmj
(I −Q)Φ′(uj)→ z (note that Pm → I uniformly on compact sets
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as m → ∞). It follows that Pmj
QΦ′(uj) → −z ∈ R(L). So z ∈ N(L) ∩ R(L) = {0}, i.e., z = 0.

Putting uj = u0 + nj + vj , where nj ∈ N(L) and vj ∈ R(L), we have in particular

wj := Pmj
QΦ′(uj) = Pmj

Lvj + Pmj
Qψ′(u0 + nj + vj)→ 0 as j →∞.

Note that u0, uj , nj ∈ Emj
, hence vj ∈ Emj

as well. Set hj := vj − v(nj). Then

wj = Pmj
Lv(nj) + Pmj

Lhj + Pmj
Qψ′(u0 + nj + v(nj) + hj).

By (5.2), Lv(nj) +Qψ′(u0 + nj + v(nj)) = 0; hence

(5.3) wj = Pmj
Lhj + Pmj

Q[ψ′(u0 + nj + v(nj) + hj)− ψ′(u0 + nj + v(nj))].

Passing to a subsequence, nj → n, and it follows that Pmj
v(nj) → v(n) and hj − Pmj

hj =

v(nj)− Pmj
v(nj)→ 0. Using this and Lemma 5.1, we have

‖Pmj
Lhj‖ > ‖Pmj

LPmj
hj‖+ o(1) > α‖Pmj

hj‖+ o(1) = α‖hj‖+ o(1)

for almost all j. Since ψ ∈ C2 and ψ′′(u0) = 0, taking ρ smaller if necessary we see from (5.3) that

α‖hj‖+ o(1) 6 ‖Pmj
Lhj‖ 6 ‖wj‖+ ‖ψ′(u0 + nj + v(nj) + hj)− ψ′(u0 + nj + v(nj))‖

6 ‖wj‖+
α

2
‖hj‖.

Hence hj → 0 and we see that

uj = u0 + nj + v(nj) + hj → u0 + n+ v(n) as j →∞.

This completes the proof. 2

For m > 1, let dm := m and E := (Em, dm)∞m=1.

Theorem 5.3 If the ground state u0 is an isolated critical point of Φ, then cE1 (Φ, u0) 6= 0.

Proof There is ρ > 0 such that u0 is the only critical point of Φ in Bρ(u0) and Φ satisfies the

(PS)∗-condition with respect to the filtration (Em) on Bρ(u0).

Recall from Section 4 that m̂ : S+ → M is a homeomorphism and m̂(w) = tw + v for some

t > α > 0 (α independent of w ∈ S+) and v ∈ E−. Furthermore, m̂−1(u) = u+/‖u+‖ for any

u ∈ M. Hence w0 := m̂−1(u0) ∈ Em for all m > 1 and E(u0) ≡ E− ⊕ Ru0 = E(w0) (cf. (4.4)).

Given δ > 0, let

Eδ(w) := {u ∈ E(w) : ‖u− m̂(w)‖ < δ}

and

Uδ :=
⋃

w∈Bδ(w0)∩S+

Eδ(w).

It is easy to see that if δ is small enough (in particular, δ < ρ), then Uδ is an open neighborhood

of u0 and Uδ ⊂ Bρ(u0). Hence according to Proposition 3.6, there is an admissible pair (W,W−)

21



for Φ and u0 such that W ⊂ Uδ and supW− Φ < c = Φ(u0). Moreover, there is δ1 ∈ (0, δ) such that

Bδ1(u0) ⊂ intW and, for some t > 0, η(t, u) ∈ W− provided u ∈ Sδ1(u0) ∩ Φc; as before η is the

flow of −V , where V is an admissible gradient-like vector field corresponding to (W,W−).

Set

S := Sδ1(u0) ∩E(u0), D := B̄δ1(u0) ∩ E(u0)

and

A := {η(t, u) ∈W : t > 0, u ∈ S}.
In view of Proposition 4.2, Φ(u) < c for u ∈ S. Hence, for each u ∈ A, Φ(u) < c and there is

a unique t(u) > 0 such that η(t(u), u) ∈ W−. According to (iii) of Definition 3.5, t(u) depends

continuously on u; thus the map γ : (W− ∪A)× [0, 1]→W− given by

γ(u, λ) :=

{
η(λt(u), u) if u ∈ A, λ ∈ [0, 1],
u if u ∈W−, λ ∈ [0, 1],

provides a filtration-preserving strong deformation retraction of W−
A := W− ∪ A onto W−. The

exactness of the homology sequence of the triple (W,W−
A ,W

−) implies that

HE
∗ (W,W−) ∼= HE

∗ (W,W−
A ).

Since E(u0) ∩ Em = E−
m ⊕E+

1 , dim(D ∩ Em) = m+ 1. In view of Example 3.2,

HE
q (D,S) = HE

q−1(S) =

{
F if q = 1;
0 otherwise

and ∂ : HE
1 (D,S)→ HE

0 (S) is an isomorphism. Consider the diagram

HE
1 (D,S)

��

∂
// HE

0 (S)

��

HE
1 (W,W−

A )
∂

// HE
0 (W−

A )

where the vertical arrows are induced by the respective inclusions. It is clear that in order to prove

that HE
1 (W,W−) ∼= HE

1 (W,W−
A ) 6= 0 it is sufficient to show that the homomorphism i∗ : HE

0 (S)→
HE

0 (W−
A ), induced by the inclusion i : S →֒W−

A , is nontrivial.

Let π : Uδ → E(u0) be the map given by

π(tw + v) := (t− t(w) + t(w0))w0 + (v − v(w) + v(w0)),

where u = tw + v ∈ Uδ, w ∈ Bδ(w0) ∩ S+, v ∈ E− and m̂(w) = t(w)w + v(w), m̂(w0) =

t(w0)w0 + v(w0). It is easy to see that π is continuous and since u ∈ Uδ ∩Em if and only if w ∈ E+
m

and v ∈ E−
m, π is filtration-preserving. Moreover, π|S is the identity map on S and π(u) = u0 if and

only if u = m̂(w) ∈M∩Uδ. Hence π : (W−
A , S)→ (E(u0) \ {u0}, S) and we have the commutative

diagram

HE
1 (W−

A , S)
∂

//

π

��

HE
0 (S)

π ∼=
��

i∗
// HE

0 (W−
A )

HE
1 (E(u0) \ {u0}, S)

∂
// HE

0 (S)
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where the lower left element is 0 because E(u0) \ {u0} can be radially deformation retracted onto

S. Therefore ∂ = ∂(W−

A ,S) is trivial and it follows that i∗ is a monomorphism. In particular, i∗ is

nontrivial. This completes the proof. 2

Theorem 5.4 Suppose N > 4, (S1) is satisfied and f(x, u) = |u|2∗−2u. Then the conclusion of

Theorem 5.3 remains valid.

Proof Let

〈B(u)v,w〉 := (2∗ − 1)

∫

RN

|u|2∗−2vw dx.

B(u) is no longer a compact operator for all u, however, B(u0) is compact. Indeed, for R large

enough (5.1) still holds; however, in the middle term ε should be replaced by 0, p by 2∗ and āε

by 2∗ − 1. Since u0 ∈ L∞(RN ) (see [9]) and vj → 0 in L2(BR(0)),
∫
BR(0) |u0|2∗−2vjw dx → 0

uniformly in w, ‖w‖ 6 1. Taking this into account, the arguments of Lemmas 5.1 and 5.2 go

through unchanged and so does the argument of Theorem 5.3. 2

6 Multibump solutions

Let θ = (ξ1, . . . , ξN ) ∈ R
N and

(θ ∗ u)(x) := u(x− θ).

If u ∈ E ≡ H1(RN ) is a solution of (4.1), then so is θ ∗ u for any θ ∈ Z
N as follows from the

periodicity of V and f . Suppose now u0 is a minimizer of Φ on M. Then u0 solves (4.1) and we

will be interested in solutions which are of the form

ū = θ1 ∗ u0 + · · ·+ θk ∗ u0 + v,

where θj ∈ Z
N , |θi − θj| are large enough for i 6= j and v is suitably small. Such ū will be called a

k-bump solution.

Theorem 6.1 Suppose the hypotheses (S1), (S′
2), (S3)-(S5) are satisfied and u0 is a ground state

solution of (4.1), isolated in the set of critical points of Φ. For each k > 2 and δ0 > 0 there exists

a ∈ N with the property that if θ1, θ2, . . . , θk ∈ Z
N and |θi − θj | > a for all i 6= j, then there is

v ∈ E such that ‖v‖ 6 δ0 and ū = θ1 ∗ u0 + · · ·+ θk ∗ u0 + v is a solution of (4.1).

Remark 6.2 (i) A similar result, with a independent of k, has been obtained in [3] (see Theorem

6.1 there). However, while here 0 is in a gap of the spectrum of −∆+V , in [3] σ(−∆+V ) ⊂ (0,∞).

Also the assumptions on f are somewhat different. Although we believe that under the assumptions

above it should still be possible to obtain a k-independent lower bound for a, there are some

technical difficulties which we make no attempt to resolve.

(ii) In two recent papers [1, 11] results similar to our Theorem 6.1 have been proved. In [1]

the assumptions corresponding to (S′
2) and (S4) are stronger ((S4) is replaced by the Ambrosetti-

Rabinowitz superlinearity condition). Using a version of (S5), the functional is reduced to another

one (on E+) which has the mountain pass geometry, and a degree-theoretical argument is then
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employed in order to construct multibumps. In [11] no assumption like (S5) has been made. On

the other hand, the condition corresponding to (S′
2) is somewhat stronger there and the Ambrosetti-

Rabinowitz condition replaces our (S4). Moreover, our argument is more direct (it does not use

periodic approximations like in [11]).

(iii) In Theorem 6.3 below we formulate an analogue of Theorem 6.1 for the critical Sobolev

exponent. This result seems to be new.

Theorem 6.3 Suppose N > 4, (S1) is satisfied and f(x, u) = |u|2∗−2u. Then the conclusion of

Theorem 6.1 remains valid.

Below we describe the main ideas of the proofs of Theorems 6.1 and 6.3 and postpone the

technical details to the next section. We assume that the kernel N(L) of L = Φ′′(u0) is nontrivial. If

N(L) = {0}, then u0 is a nondegenerate critical point of Φ and the argument becomes considerably

simpler (cf. Remark 2.13 in [3]). Moreover, a stronger conclusion is then known to hold [2].

Let v = v(n), n ∈ N(L), be as in (5.2) and set ϕ(n) := Φ(u0 + n + v(n)) − Φ(u0), ‖n‖ 6 δ

(δ > 0 small enough), cf. (3.3). Then ϕ′(n) = 0 if and only if Φ′(u0 + n + v(n)) = 0 and we may

assume choosing a smaller δ if necessary that ϕ′(n) = 0 if and only if n = 0. By Theorems 5.3 and

5.4, cE1 (Φ, u0) 6= 0, hence cr(ϕ, 0) 6= 0 for some r > 0 according to Theorem 3.7.

Given a > 0, let

Θa
k := {θ = (θ1, . . . , θk) ∈ Z

Nk : |θi − θj| > a if i 6= j}

and

(6.1) ‖u‖2 :=

∫

RN

(|∇u|2 + u2) dx.

We emphasize that here we use the original H1(RN )-norm and not the one introduced in Section

4. Hence in particular, (4.3) does not hold. The reason for choosing this norm is that it has certain

local properties which will be needed in Section 7.

Let ω ∈ C∞
0 (R, [0, 1]) be a (cutoff) function such that ω(t) = 1 for |t| 6 1/8 and ω(t) = 0 for

|t| > 1/4. Put

ua(x) := ω(|x|/a)u(x) (a > 0),

and for θ0 ∈ Z
N and a set S ⊂ E,

Sa := {ua : u ∈ S}, θ0 ∗ S := {θ0 ∗ u : u ∈ S}.

We see that if θ ∈ Θa
k, then θi ∗ ua and θj ∗ ua have disjoint supports unless i = j.

Let θ = (θ1, . . . , θk) ∈ Θa
k and

Va = Va(θ) :=

(
k⊕

i=1

θi ∗N(L)a

)⊥

, Pa = Pa(θ) : E → Va,

where Pa is the orthogonal projection on Va. The direct sum above is indeed well defined since

the functions corresponding to different indices i have disjoint supports. Put z = (n1, . . . , nk) ∈
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N(L)k. Using some technical estimates (see Lemmas 7.1, 7.2) and the contraction mapping principle

(Lemma 7.3) it is shown in Corollary 7.4 that if δ is sufficiently small, a1 ∈ N sufficiently large,

a ∈ N, a > a1 and ‖ni‖ 6 δ, then there is a unique w = w(θ, z) ∈ Va such that ‖w(θ, z)‖ 6 δ and

(6.2) PaΦ
′

(
k∑

i=1

θi ∗ (u0 + ni + v(ni))
a + w(θ, z)

)
= 0.

Here a1 depends on δ but not on the particular choice of θ and z. Set ζ :=
∑k

i=1 θi ∗ (u0 + ni +

v(ni))
a + w(θ, z) and

(6.3) ϕ̃(z) := Φ(ζ).

Using (6.2) one shows (Lemma 7.5) that ϕ̃′(z) = 0 if and only if Φ′(ζ) = 0 provided δ is small

enough. If z is a critical point of ϕ̃, then ū = ζ is a solution of (4.1) which has the required form,

i.e.,

ū =

k∑

i=1

θi ∗ (u0 + ni + v(ni))
a +w(θ, z) ≡

k∑

i=1

θi ∗ u0 + v,

where

v =

k∑

i=1

θi ∗ (ua
0 − u0) +

k∑

i=1

θi ∗ (ni + v(ni))
a + w(θ, z).

Since ua
0 → u0 in E as a→∞, the first sum above can be made as small as we wish. The same is

true of the second sum because ‖ni‖ 6 δ, v(0) = 0 and ‖ua‖ 6 c‖u‖ for all u, where the constant c

is independent of u ∈ E and a > a1. Finally, ‖w(θ, z)‖ 6 δ and it follows that ‖v‖ 6 δ0 provided δ

is small and a1 large enough.

It remains to show that ϕ̃ indeed has a critical point. If δ is small enough, then 0 is the only

critical point of ϕ in the set ‖n‖ 6 δ and we can find an admissible pair (W,W−) for ϕ and 0.

Moreover, we may assume (W,W−) is a pair of ANR’s, see [14] and the end of Section 3. Let

(W̃ , W̃−) := (W,W−)k = (W,W−)× · · · × (W,W−)︸ ︷︷ ︸
k times

(recall that (A,C)× (B,D) := (A×B,A×D∪C×B)). We shall show in Lemma 7.6 that choosing

a larger a1 if necessary, (W̃ , W̃−) is an admissible pair for ϕ̃ and the (possibly empty) set K of

critical points contained in the interior of W̃ . By Künneth’s formula [15, Corollary VI.12.12] (cf.

the argument at the end of Section 3),

Hs
∗(W̃ , W̃−) = Hs

∗(W,W
−)⊗ · · · ⊗Hs

∗(W,W
−).

Since cr(ϕ, 0) 6= 0, Hs
kr(W̃ , W̃−) 6= 0 and it follows that K 6= ∅ (otherwise W̃− is a strong defor-

mation retract of W̃ by a standard argument, hence Hs
∗(W̃ , W̃−) = 0).

We remark that if (S5) is replaced by the somewhat stronger condition f ′(u)u2 > f(u)u > 0

for all u 6= 0 (which is certainly satisfied if f(x, u) = |u|2∗−2u), then it can be shown thatM ∈ C1

and it is easy to see that N(L) ⊂ Tu0M and M−
E (L) = 1. So c0(ϕ, 0) 6= 0, hence 0 is the minimum

of ϕ and W− = ∅. Since we make no use of this fact, we leave out the details.
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7 Details of proofs of Theorems 6.1 and 6.3

The arguments we provide below are taken from the proof of Theorem 1.1 in [3] but are simpler

because we allow a to be dependent of k. We also make use of some ideas which may be found in

[7]. Recall that the norm in E we use here is given by (6.1). We first consider f satisfying (S2)-(S5)

and at the end of the section we point out what needs to be changed if f(x, u) = |u|2∗−2u.

Let L̃ : E → E be the operator defined by

〈L̃w, v〉 =

∫

RN

(∇w · ∇v + V (x)wv) dx

and note that

〈Lw, v〉 = 〈Φ′′(u0)w, v〉 = 〈L̃w, v〉 −
∫

RN

f ′u(x, u0)wv dx.

For notational convenience we let k = 2; the case of k > 2 is treated in the same way.

Lemma 7.1 There exist c > 0, δ > 0 and a0 ∈ N such that

(7.1) ‖PaΦ
′′(θ1 ∗ ua

0 + θ2 ∗ ua
0 + u)w‖ > c‖w‖

for all a ∈ N, a > a0, θ ∈ Θa
2, w ∈ Va and u ∈ E, ‖u‖ 6 δ.

Proof We first show that

(7.2) ‖Φ′′(θ1 ∗ ua
0 + θ2 ∗ ua

0 + u)w‖ > c‖w‖.

Arguing by contradiction, we can find am → ∞, θm = (θm
1 , θ

m
2 ) ∈ Θam

2 , um ∈ E and wm ∈ Vam

such that um → 0, ‖wm‖ = 1 and

(7.3) Φ′′(θm
1 ∗ uam

0 + θm
2 ∗ uam

0 + um)wm → 0 as m→∞.

By the Z
N -invariance of Φ we may assume θm

1 = 0 for all m. Then Vam is orthogonal to N(L)am ,

so passing to a subsequence, wm ⇀ w and

0 = 〈wm, z
am〉 → 〈w, z〉 for all z ∈ N(L).

Thus w ∈ R(L). Since

(7.4) 〈Φ′′(uam

0 + θm
2 ∗ uam

0 + um)wm, v〉 = 〈L̃wm, v〉 −
∫

RN

f ′u(x, uam

0 + θm
2 ∗ uam

0 + um)wmv dx,

|θm
2 | → ∞ and um → 0, we see letting m→∞ that

〈Lw, v〉 = 〈L̃w, v〉 −
∫

RN

f ′u(x, u0)wv dx = 0 for all v ∈ C∞
0 (RN ).

Hence w = 0 and wm ⇀ 0. Replacing wm by −θm
2 ∗wm we see passing to a subsequence once more

that also −θm
2 ∗ wm ⇀ 0. Next we show that

(7.5)

∫

RN

f ′u(x, uam
0 + θm

2 ∗ uam
0 + um)wmvm dx→ 0,
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where vm := L̃wm. Since wm ⇀ 0 and −θm
2 ∗ wm ⇀ 0 in E, wm → 0 and −θm

2 ∗ wm → 0 in

Lq(BR(0)) for any R > 0 and 1 6 q < 2∗. It follows that
∫

BR(0)∪BR(θm
2 )
f ′u(x, uam

0 + θm
2 ∗ uam

0 + um)wmvm dx→ 0.

Let Q := R
N \(BR(0)∪BR(θm

2 )). It is well known that u0(x)→ 0 as |x| → ∞ (in fact exponentially,

see e.g. [26]). By (S′
2) and (S3), for each ε0 > 0 we can find āε0 such that |f ′u(x, u)| 6 ε0 + āε0|u|p−2

(cf. (5.1)). Hence we see from the Hölder and Sobolev inequalities that given ε > 0, there exists

R > 0 for which
∫

Q
|f ′u(x, uam

0 + θm
2 ∗ uam

0 + um)wmvm| dx

6

∫

Q
(ε0 + āε0 |uam

0 + θm
2 ∗ uam

0 + um|p−2)|wm| |vm| dx 6 ε‖wm‖2 = ε.

Now by (7.3)-(7.5) and since ‖L̃wm‖ > c̃‖wm‖ for some c̃ > 0 (recall L̃ is invertible), we obtain

c̃2 = c̃2‖wm‖2 6 〈L̃wm, L̃wm〉 → 0,

a contradiction. Hence (7.2) is satisfied.

Since c may be replaced by 2c in (7.2), the conclusion will follow once we prove that if a0 is

large and δ small enough, then

‖(I − Pa)Φ
′′(θ1 ∗ ua

0 + θ2 ∗ ua
0 + u)w‖ 6 c‖w‖ for all w ∈ E.

Let ‖w‖ = 1 and set (I−Pa)Φ
′′(θ1 ∗ua

0 +θ2 ∗ua
0 +u)w =: z = za

1 +za
2 , where zi ∈ θi ∗N(L), i = 1, 2.

Assume without loss of generality that θ1 = 0. Then

‖za
1‖2 = 〈z, za

1 〉 =
〈(

Φ′′(ua
0 + θ2 ∗ ua

0 + u)− Φ′′(u0)
)
w, za

1

〉
+ 〈Φ′′(u0)w, z

a
1 〉(7.6)

= −
∫

RN

(
f ′u(x, ua

0 + θ2 ∗ ua
0 + u)− f ′u(x, u0)

)
wza

1 dx+ 〈Φ′′(u0)w, z
a
1 〉.

Let ε > 0 be given. Since Φ′′(u0)z1 = 0, the second term on the right-hand side above can be made

6 ε‖za
1‖ by letting a be sufficiently large. Since supp (θ2 ∗ ua

0) ∩ supp za
1 = ∅,

∣∣∣∣
∫

RN

(
f ′u(x, ua

0 + θ2 ∗ ua
0 + u)− f ′u(x, u0)

)
wza

1 dx

∣∣∣∣ 6

∫

RN

∣∣f ′u(x, ua
0 + u)− f ′u(x, u0)

∣∣ |w||za
1 | dx.

The function f ′u is uniformly continuous on sets of the form {(x, u) : |u| 6 A}, hence choosing ε0
sufficiently small and a sufficiently large, we obtain

∫

|u|6ε0

∣∣f ′u(x, ua
0 + u)− f ′u(x, u0)

∣∣ |w||za
1 | dx 6 ε‖za

1‖.

Furthermore, using (S′
2), the fact that u0(x)→ 0 as |x| → ∞ and the Hölder and Sobolev inequal-

ities, we have
∫

|u|>ε0

∣∣f ′u(x, ua
0 + u)− f ′u(x, u0)

∣∣ |w||za
1 | dx 6 c1

∫

|u|>ε0

(1 + |u0|p−2 + |u|p−2)|w||za
1 | dx

6 c2‖za
1‖µ(|u| > ε0)

(2∗−p)/2∗ ,
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where µ denotes the measure. Since µ(|u| > ε0) → 0 as ‖u‖ → 0, the right-hand side above is

6 ε‖za
1‖ whenever ‖u‖ 6 δ and δ is small enough. It follows therefore from (7.6) that ‖za

1‖ 6 3ε.

Since the same argument applies to za
2 , we obtain the conclusion. 2

Denote the space of bounded linear operators on E by L(E).

Lemma 7.2 For each k > 2 the map PaΦ
′′ : E → L(E) is uniformly continuous and uniformly

bounded on bounded sets. Moreover, the modulus of continuity and the uniform bound are indepen-

dent of a.

Proof We have

(7.7)
∣∣〈(Φ′′(u)−Φ′′(ũ))w, v〉

∣∣ 6

∫

RN

∣∣f ′u(x, u)− f ′u(x, ũ)
∣∣ |w||v| dx.

Suppose ‖u‖, ‖ũ‖ 6 c1, ‖w‖, ‖v‖ 6 1 and let ε > 0 be given. By (S′
2) and the Hölder and Sobolev

inequalities,
∫

|u|>A

∣∣f ′u(x, u)− f ′u(x, ũ)
∣∣ |w||v| dx 6 c3

∫

|u|>A
(1 + |u|p−2 + |ũ|p−2)|w||v| dx(7.8)

6 c4 µ(|u| > A)(2
∗−p)/2∗ ,

where c3, c4 are independent of A. Hence the right-hand side above can be made 6 ε by taking

A large enough, and the same inequality holds on the set |ũ| > A. By the uniform continuity of

f ′u, there exists δ0 > 0 such that the integral on the right-hand side of (7.7), taken over the set

|u|, |ũ| 6 A, |u− ũ| 6 δ0, is 6 ε. (7.8) still holds with |u| > A replaced by |u|, |ũ| 6 A, |u− ũ| > δ0
and the right-hand side will be 6 ε if ‖u−ũ‖ 6 δ and δ is small enough (because µ(|u−ũ| > δ0)→ 0

as ‖u − ũ‖ → 0). Hence ‖Φ′′(u) − Φ′′(ũ)‖L(E) 6 4ε whenever ‖u − ũ‖ 6 δ and Φ′′ is uniformly

continuous on bounded sets. That Φ′′ is uniformly bounded can now be easily seen by considering

〈(Φ′′(u)− Φ′′(0))w, v〉.
Since ‖Pa‖L(E) = 1, the same conclusions hold for PaΦ

′′. 2

Let z = (n1, n2) ∈ N(L)×N(L), θ = (θ1, θ2) ∈ Θa
2, w ∈ Va and

F (θ, z, w) := PaΦ
′ (θ1 ∗ (u0 + n1 + v(n1))

a + θ2 ∗ (u0 + n2 + v(n2))
a + w) ,

where v(ni) are given by (5.2). Then w 7→ F (θ, z, w) : Va → Va and

Fw(θ, z, 0) = PaΦ
′′ (θ1 ∗ (u0 + n1 + v(n1))

a + θ2 ∗ (u0 + n2 + v(n2))
a) .

Since v(ni) → 0 as ni → 0 and Fw(θ, z, 0) is self-adjoint, it follows from Lemma 7.1 that if a is

large enough and ‖ni‖ small enough, then Fw(θ, z, 0) is invertible and

(7.9) ‖Fw(θ, z, 0)−1v‖ 6 c0‖v‖,

where c0 is independent of θ and z. Set

(7.10) R(z,w) := w − Fw(θ, z, 0)−1F (θ, z, w);
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then R(z,w) = w if and only if F (θ, z, w) = 0. We shall show that this equation can be uniquely

solved for w. Our proof follows the usual argument of the implicit function theorem, however, we

include it because we need estimates which are uniform with respect to the choice of θ and z.

Lemma 7.3 Given k > 2 and δ0 > 0, there exist a1 ∈ N and δ ∈ (0, δ0) such that if ‖ni‖ 6 δ

(i = 1, 2), a > a1 and θ ∈ Θa
2, then R(z, ·) is a contraction on the ball ‖w‖ 6 δ.

Proof By Lemma 7.2, if ‖w‖ 6 δ, and δ is small enough, then

(7.11) ‖Fw(θ, z, w) − Fw(θ, z, 0)‖L(E) 6
1

3c0
.

Since

F (θ, z, 0) = PaΦ
′ (θ1 ∗ (u0 + n1 + v(n1))

a) + PaΦ
′ (θ2 ∗ (u0 + n2 + v(n2))

a) ,

Va = [θ1 ∗ N(L)a]⊥ ∩ [θ2 ∗ N(L)a]⊥ and QΦ′((u0 + n + v(n))a) → 0 uniformly in n (‖n‖ 6 δ) as

a→∞, it is easy to see that F (θ, z, 0) → 0 uniformly in θ, z as a→∞. We may therefore choose

a1 so that

(7.12) ‖F (θ, z, 0)‖ 6
δ

3c0

whenever a > a1. Since

R(z,w) = −Fw(θ, z, 0)−1F (θ, z, 0) − Fw(θ, z, 0)−1 (F (θ, z, w) − F (θ, z, 0) − Fw(θ, z, 0)w) ,

it follows from (7.9) and (7.11), (7.12) that

‖R(z,w)‖ 6 ‖Fw(θ, z, 0)−1‖L(Va) ‖F (θ, z, 0)‖
+ ‖Fw(θ, z, 0)−1‖L(Va) ‖F (θ, z, w) − F (θ, z, 0) − Fw(θ, z, 0)w‖

6
δ

3
+ c0

∫ 1

0
‖Fw(θ, z, sw) − Fw(θ, z, 0)‖L(Va) ‖w‖ ds 6

δ

3
+ c0

δ

3c0
.

Hence R maps the ball ‖w‖ 6 δ into itself. Also, for w, w̃ in this ball,

‖R(z,w) −R(z, w̃)‖ 6 ‖Fw(θ, z, 0)−1‖L(Va) ‖F (θ, z, w) − F (θ, z, w̃)− Fw(θ, z, 0)(w − w̃)‖(7.13)

6 c0

∫ 1

0
‖Fw(θ, z, sw + (1− s)w̃)− Fw(θ, z, 0)‖L(Va) ‖w − w̃‖ ds

6
1

3
‖w − w̃‖.

It follows that R(z, ·) is a contraction as claimed. 2

Corollary 7.4 Given k > 2 and δ0 > 0, there exist a1 ∈ N and δ ∈ (0, δ0) such that if ‖ni‖ 6 δ

(i = 1, 2), a > a1 and θ ∈ Θa
2, then there is a unique w = w(θ, z) ∈ Va such that F (θ, z, w(θ, z)) = 0

and ‖w(θ, z)‖ 6 δ. Moreover, w(θ, z) is of class C1 and w(θ, z)→ 0 uniformly in θ, z as a→∞.
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Proof In view of the preceding lemma, existence and uniqueness of w follow from the contraction

mapping principle. Moreover, Fw(θ, z, w) is invertible according to (7.9) and (7.11), hence z 7→
w(θ, z) is of class C1 by the implicit function theorem.

Let w = w(θ, z) and w̃ = 0 in (7.13). Then ‖w‖ = ‖R(z,w)‖ 6 ‖R(z, 0)‖+ 1
3‖w‖ and by (7.10),

‖w‖ 6
3

2
‖R(z, 0)‖ 6

3

2
‖Fw(θ, z, 0)−1‖L(Va)‖F (θ, z, 0)‖ → 0 as a→∞.

2

Set Dδ := {z = (n1, n2) ∈ N(L)×N(L) : ‖ni‖ 6 δ} and (cf. (6.3))

ϕ̃(z) := Φ(ζ), where ζ := θ1 ∗ (u0 + n1 + v(n1))
a + θ2 ∗ (u0 + n2 + v(n2))

a + w(θ, z).

Lemma 7.5 Given k > 2 and δ0 > 0, there exist a1 ∈ N and δ ∈ (0, δ0) such that whenever a > a1,

θ ∈ Θa
2 and z ∈ Dδ, then ϕ̃′(z) = 0 if and only if Φ′(ζ) = 0.

Proof Since PaΦ
′(ζ) = F (θ, z, w(θ, z)) = 0 and w′(θ, z) maps N(L) × N(L) into Va, for each

y = (m1,m2) ∈ N(L)×N(L) we have

ϕ̃′(z) · y =
〈
Φ′(ζ), θ1 ∗ (m1 + v′(n1)m1)

a + θ2 ∗ (m2 + v′(n2)m2)
a + w′(θ, z)y

〉
(7.14)

=
〈
(I − Pa)Φ

′(ζ), θ1 ∗ (m1 + v′(n1)m1)
a + θ2 ∗ (m2 + v′(n2)m2)

a
〉
.

Clearly, if Φ′(ζ) = 0, then ϕ̃′(z) = 0.

Suppose ϕ̃′(z) = 0 and let (I − Pa)Φ
′(ζ) = ξa

1 + ξa
2 , where ξi ∈ θi ∗N(L). Choosing y = (ξ1, 0)

and assuming without loss of generality θ1 = 0, we obtain

0 = ϕ̃′(z) · y = 〈ξa
1 + ξa

2 , (ξ1 + v′(n1)ξ1)
a〉 = ‖ξa

1‖2 + 〈ξa
1 , (v

′(n1)ξ1)
a〉.

Since v′(n1)ξ1 ∈ R(L), 〈ξa
1 , (v

′(n1)ξ1)
a〉 > −1

2‖ξa
1‖2 provided a is large enough. Hence ξa

1 = 0 and

similarly, ξa
2 = 0. 2

Let Y be a pseudo-gradient vector field for ϕ and (W,W−) a corresponding Gromoll-Meyer

pair contained in the ball ‖n‖ < δ (recall that Gromoll-Meyer and admissible pairs coincide in

finite-dimensional spaces).

Lemma 7.6 There exist a2 > a1 and δ1 < δ0 such that if a > a2 and 0 < δ < δ1, then (W̃ , W̃−) :=

(W,W−)×(W,W−) is a Gromoll-Meyer pair for ϕ̃ and the (possibly empty) set K of critical points

contained in the interior of W̃ .

Proof Clearly, W̃ ⊂ Dδ. Let η be the flow given by

dη

dt
= −χ(η)Y (η), η(0, n) = n,

where n ∈ N(L) ∩ Bδ(0), χ ∈ C∞(Bδ(0), [0, 1]) and χ = 0 close to n = 0, χ = 1 close to the

boundary of W . Further, let z = (n1, n2) ∈ N(L) ×N(L) and Ỹ (z) = (χ(n1)Y (n1), χ(n2)Y (n2)).

The flow of −Ỹ is

η̃(s, z) = (η(s, n1), η(s, n2)).
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It is clear that η̃ can leave W̃ only through W̃− and s 7→ η(s, z) is transversal to W̃−. Also, Ỹ is

bounded. We shall show that ϕ̃′(z) · Ỹ (z) > ε for some ε > 0 if z is close to the boundary of W̃ .

This will complete the proof because using partition of unity, Y can be modified in the interior of

W̃ so that it becomes a pseudo-gradient field in W̃ \K.

Let y = (m1, 0) ∈ N(L) × N(L) and assume without loss of generality that θ1 = 0. Since

PaΦ
′(ζ) = 0 and the supports of θ2 ∗ (n2 + v(n2))

a and (m1 + v′(n1)m1)
a are disjoint, it follows

from (7.14) that

ϕ̃′(z) · y = 〈Φ′(ζ), (m1 + v′(n1)m1)
a〉 = 〈Φ′((u0 + n1 + v(n1))

a), (m1 + v′(n1)m1)
a〉

+ 〈Φ′((u0 + n1 + v(n1))
a + w(θ, z)) −Φ′((u0 + n1 + v(n1))

a), (m1 + v′(n1)m1)
a〉.

Take m1 = χ(n1)Y (n1). Since ua → u uniformly on compact sets as a → ∞, v′(0) = 0 and

ϕ(n1) = Φ(u0 + n1 + v(n1)) − Φ(u0), it is easy to see that the first term on the right-hand side

above is larger than or equal to 2εχ(n1) for some ε > 0 provided a is large and δ small (a > a2,

0 < δ < δ1). Since w(θ, z) → 0 as a → ∞, the second term can be made smaller than ε/2. The

same argument applies to y = (0,m2), hence

ϕ̃′(z) · Ỹ (z) = ϕ̃′(z) · (χ(n1)Y (n1), χ(n2)Y (n2)) > ε

for z close to the boundary of W̃ because χ(n1) + χ(n2) > 1 there. 2

Finally we describe the changes that need to be made in the arguments above if f(x, u) =

|u|2∗−2u.

In Lemma 7.1 the arguments of (7.5) and (7.6) require some modifications. Since uam
0 +um → u0

and wm ⇀ 0 as m→∞, it is easy to see that

∫

BR(0)
|uam

0 + θm
2 ∗ uam

0 + um|2
∗−2wmvm dx =

∫

BR(0)
|uam

0 + um|2
∗−2wmvm dx→ 0

and
∫

BR(θm
2 )
|uam

0 + θm
2 ∗ uam

0 + um|2
∗−2wmvm dx =

∫

BR(0)
|uam

0 + ũm|2
∗−2w̃mṽm dx→ 0,

where tilde denotes translation by −θm
2 . We complete the proof of (7.5) by noting that

∫

Q
|uam

0 + θm
2 ∗ uam

0 + um|2
∗−2|wm||vm| dx 6 ε‖wm‖2 = ε

for R large enough because u0(x) → 0 as |x| → ∞ (see [9]). In (7.6) it suffices to show that for

each ε > 0 there are δ and a0 such that

(2∗ − 2)

∫

RN

∣∣∣|ua
0 + θ2 ∗ ua

0 + u|2∗−2 − |ua
0|2

∗−2
∣∣∣ |w||za

1 | dx

= (2∗ − 2)

∫

RN

∣∣∣|ua
0 + u|2∗−2 − |ua

0|2
∗−2
∣∣∣ |w||za

1 | dx 6 ε‖za
1‖
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whenever ‖u‖ 6 δ and a > a0. However, this follows easily from the calculus inequality

∣∣∣|ua
0 + u|2∗−2 − |ua

0|2
∗−2
∣∣∣ 6 C(1 + |ua

0|+ |u|)2
∗−2−α|u|α

which holds for some α ∈ (0, 1] and C > 0 (one can e.g. choose α = 2∗ − 2 if 2∗ < 3 and α = 1

otherwise).

In Lemma 7.2 we must modify the proof of (7.7) which is easily done by applying the inequality

above. Indeed,

∫

RN

∣∣∣|u|2∗−2 − |ũ|2∗−2
∣∣∣ |w||v| dx 6 C

∫

RN

(1 + |u|+ |ũ|)2∗−2−α|u− ũ|α|w||v| dx,

and if ‖u‖, ‖ũ‖ 6 c1, ‖w‖, ‖v‖ 6 1, then the right-hand side above can be made arbitrarily small

by letting ‖u− ũ‖ be small enough.

Since no other modifications are necessary, this completes the argument.
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