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Abstract

As a model for continuous curves in digital geometry, we study the
Khalimsky-continuous functions defined on the integers and with val-
ues in the set of integers or the set of natural numbers. We determine
the number of such functions on a given interval. It turns out that
these numbers are related to the Delannoy and Schröder arrays, and
a relation between these numbers is established.
Key words: Digital geometry, Khalimsky topology, Khalimsky plane,
Khalimsky-continuous function.

1. Introduction

After the advent of computers, Euclidean geometry is no longer suitable
for image processing: all fundamental concepts such as lines, curves and
surfaces have to be redefined. A new kind of geometry, taking into account
the discrete nature of the pixels building up the images, has to be created—
digital geometry is being built up to solve this problem. However, there is in
general no unique solution to the problems we face.

Just like the set of all functions R → R is not a good model for curves
in Euclidean geometry, the set of all functions Z → Z is not a good model
for the curves we want to study in digital geometry. We need some kind of
restriction, analogous to continuity or smoothness in the real case.

A suitable model are the continuous functions Z → Z, provided we can
define a reasonable topology on the set Z of integers. In this paper we shall
do so, choosing the Khalimsky topology, which makes the digital space Z

n

connected; see Khalimsky et al. [5].
We shall define the Khalimsky topology on Z

n in subsection 1.1 in a simple
way, by just defining open subsets of Z and then going to higher dimensions
using the product topology. After equipping the discrete space Z

n with a
topology, we are able to speak about a continuous function. We will review
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the definition of Khalimsky-continuous function in subsection 1.2. For more
information in these subjects see Kiselman [6] and Melin [12, 10].

Some combinatorial work has already been done in digital geometry. We
can mention here the pioneering work on the number of discrete segments of
slope 0 6 α 6 1 and length L which was done by Berenstein and Lavine [2].
Work on the number of digital straight line segments was done by Bédaride et
al. [1] and they went on to determine the number of digital segments of given
length and height. More information about digital straight line segments can
be found in Kiselman [6], Klette and Rosenfeld [8, 9], Melin [11, 10], and
Samieinia [13].

Another combinatorial theme in digital geometry is digital curves. One
of the articles on this topic is the one by Huxley and Zunić [4], who studied
the number of different digital discs consisting of N points and showed an
upper bound for it. In earlier papers, Samieinia [13, 14], we have studied
the Khalimsky-continuous functions from a combinatorial point of view. We
went on to show that these functions, when they have two points in their
codomain, yield a new example of the classical Fibonacci sequence. For the
case of three or four points in their codomain, some new sequences were
presented.

In this paper we shall first determine the number of Khalimsky-continuous
functions with codomain Z and show that it has the same recursion relation
as the Pell numbers, but with different initial values. This enumeration gives
also an example of Delannoy numbers. Then we shall determine the number
of Khalimsky-continuous functions with codomain N. In this case we obtain
a sequence by summing up of two consecutive numbers of other sequences.
We note as a byproduct some relations between the Schröder numbers; see
Corollary 3.5. It turns out that there is a relation between the Delannoy and
Schröder numbers, studied in section 3. We review the definition of Delannoy
and Schröder numbers as well as some of their properties in subsection 1.3.

1.1. The Khalimsky topology

We present the Khalimsky topology using a topological basis. For every even
integer m, the set {m − 1, m, m + 1} is open, and for every odd integer n,
the singleton set {n} is open. A basis is given by

{{2n + 1}, {2n − 1, 2n, 2n + 1}; n ∈ Z}.

It follows that even points are closed. A digital interval [a, b]Z = [a, b] ∩ Z

with the subspace topology is called a Khalimsky interval. On the digital
plane Z

2, the Khalimsky topology is given by the product topology. A point
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with both coordinates odd is open. If both coordinates are even, the point is
closed. These types of points are called pure. Points with one even and one
odd coordinate are neither open nor closed; these are called mixed. By the
Khalimsky topology we can see easily that the mixed point m = (m1, m2) is
connected to its four neighbors,

(m1 ± 1, m2) and (m1, m2 ± 1),

whereas the pure point p = (p1, p2) is connected to all 8-neighbors,

(p1 ± 1, p2), (p1, p2 ± 1), (p1 + 1, p2 ± 1) and (p1 − 1, p2 ± 1).

More information on the Khalimsky plane and the Khalimsky topology can
find in the Lecture notes which written by Kiselman [6]. Erik Melin has
worked and developed it in the various directions [10].

1.2. Khalimsky-continuous function

When we equip Z with the Khalimsky topology, we may speak of continuous
functions Z → Z, i.e., functions for which the inverse image of open sets
are open. It is easily proved that a continuous function f is Lipschitz with
constant 1. This is however not sufficient for continuity. It is not hard to
prove that f : Z → Z is continuous if and only if (i) f is Lipschitz with
constant 1 and (ii) for every x, x 6≡ f(x) (mod 2) implies f(x ± 1) = f(x).
For more information see [12].

We observe that the following functions are continuous:
(1) Z ∋ x → a ∈ Z, where a is constant;
(2) Z ∋ x ∋ x → ±x + c ∈ Z, where c is an even constant;
(3) max(f, g) and min(f, g) if f and g are continuous.

Actually every continuous function on a bounded Khalimsky interval can
be obtained by a finite succession of the rules (1), (2), (3); see Kiselman [6].

1.3. Delannoy and Schröder numbers

The Delannoy numbers di,j were introduced by Henri Delannoy [3]. They
satisfy

di,j = di−1,j + di,j−1 + di−1,j−1,

with conditions d0,0 = 1 and di,j = 0 for i < 0 or j < 0. The num-
bers (di,i)i≥0 = (1, 3, 13, 63, 321, 1683, 8989, 48639, . . .) (the sequence number
A001850 in Sloane [16]) are known as the central Delannoy numbers. In sec-
tion 2 we shall show that the number of Khalimsky-continuous functions with
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codomain Z can give an example of Delannoy numbers. If we consider instead
such functions with codomain N then we get an example of the other numbers
which are called the Schröder numbers, named for Ernst Schröder. He found
these numbers while enumerating unrestricted bracketings of words. We de-
fine these numbers by the array ri,j such that ri,j = ri−1,j + ri,j−1 + ri−1,j−1

with conditions r0,0 = 1 and ri,j = 0 if j < 0 or i < j. The numbers
(ri,i)i≥0 = 1, 2, 6, 22, 90, . . . are known as the large Schröder numbers.

Sulanke [17] presented the relation between the central Delannoy numbers

and the Schröder numbers as dn,n =
∑

i

ri,2n−i. It means that the central

Delannoy number dn,n is the sum of the 2n + 1-st diagonal of the Schröder
numbers. We will see also another relation between these two numbers in
section 3 which is di,j = ri,j + ri+1,j−1 + · · · + rn,0 for i ≥ j.

The other work that deals with the relation between the Delannoy and
the Schröder numbers was studied by Joachim Schröder [15]. He introduced
generalized Schröder numbers Schr(i, j, l) as the number of lattice paths from
(0, 0) to (i, j) with unit steps (1, 0), (0, 1) and (1, 1), which never go below
the line y = lx. He showed that Schr(i, j, l) = di,j − ldi+1,j−1 − (l − 1)di,j−1.

We shall see in sections 2 and 3 that how these two kind of numbers
appear in enumerating of digital continuous curves.

2. Continuous curves with codomain Z

There are connections between many matematical problems and the Delan-
noy numbers. Sulanke (2003) listed 29 different contexts where the central
Delannoy numbers appear. A classical example is the number of paths from
(0, 0) to (n, n) using the steps (0, 1), (1, 0), and (1, 1). The 30th example
was mentioned in Kiselman [7]. We present this example in details in the
following theorem.

Theorem 2.1. Let f s
n, |s| ≤ n, be the number of Khalimsky-continuous

functions f : [0, n]Z → Z such that f(0) = 0 and f(n) = s, and di,j be

the Delannoy numbers. Then we have that f s
n = di,j for i = 1

2
(n + s) and

j = 1
2
(n − s) where n + s ∈ 2Z.

Proof. We shall use induction to prove the result. It is easy to see that
f 0

0 = 1 = d0,0, f 1
1 = 1 = d1,0, f−1

1 = 1 = d0,1 and f 0
2 = 3 = d1,1. Suppose

that the formula is true for t < 2k. We shall show that the result is true for
t = 2k. We consider s such that 2k + s ∈ 2Z; hence s is an even number.
For |s| 6= 2k, the properties of the Khalimsky topology imply

f s
2k = f s−1

2k−1 + f s
2k−2 + f s+1

2k−1. (2.1)
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By the statement we have

f s−1
2k−1 + f s

2k−2 + f s+1
2k−1 = di−1,j + di−1,j−1 + di,j−1, (2.2)

where
2k + s

2
= i and

2k − s

2
= j (2.3)

Thus by (2.1), (2.2) and (2.3), we get the result. Suppose now |s|02k. With-
out loss of generality we may assume that s is positive. Using the properties
of the Khalimsky topology and the statement we get f s

2k = f s−1
2k−1 = d2k−1,0.

We can see easily that d2k−1,0 = d2k,0. Hence we have the result in this case.
The proof for t = 2k + 1 can be done in the same way.

The following table shows the values of f s
n and fn for 1 ≤ n ≤ 10.

9 1
8 1 1
7 1 1 17
6 1 1 15 15
5 1 1 13 13 113
4 1 1 11 11 85 85
3 1 1 9 9 61 61 377
2 1 1 7 7 41 41 231 231
1 1 1 5 5 25 25 129 129 681
0 1 1 3 3 13 13 63 63 321 321

−1 1 1 5 5 25 25 129 129 681
−2 1 1 7 7 41 41 231 231
−3 1 1 9 9 61 61 377
−4 1 1 11 11 85 85
−5 1 1 13 13 113
−6 1 1 15 15
−7 1 1 17
−8 1 1
−9 1

fn 1 3 7 17 41 99 239 577 1393 3363

Theorem 2.2. Let fn be the number of Khalimsky-continuous functions

f : [0, n]Z 7→ Z such that f(0) = 0. Then

fn = 2fn−1 + fn−2 for n ≥ 2. (2.4)
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Proof. Let f s
n be the number of Khalimsky-continuous function f : [0, n]Z →

Z such that f(0) = 0 and f(n) = s. We have fn =
∑n

s=−n f s
n, but with

Khalimsky topology we can conclude that we have symmetry for f s
n, that is,

f s
n = f−s

n for s = 1, . . . , n. Therefore we can consider another formulation for
fn, i.e.,

fn = f 0
n + 2

n
∑

s=1

f s
n. (2.5)

Moreover, using properties of the Khalimsky topology, we see that

f s
2k =























f s−1
2k−1 + f s

2k−1 + f s+1
2k−1, s = 2t for t = 1, . . . , k − 1,

f s
2k−1, s = 2t − 1 for t = 1, . . . , k,

f 2k−1
2k−1 , s = 2k,

f 0
2k−1 + 2f 1

2k−1, s = 0,

(2.6)

and

f s
2k+1 =











f s−1
2k + f s

2k + f s+1
2k , s = 2t − 1 for t = 1, . . . , k − 1,

f s
2k, s = 2t for t = 0, . . . , k,

f 2k
2k , s = 2k + 1.

(2.7)

We shall show the formula for n = 2k + 1.

f2k+1 = f 0
2k+1+2

2k+1
∑

s=1

f s
2k+1 = f 0

2k+1+2f 2k+1
2k+1 +2

k
∑

t=1

f 2t
2k+1+2

k
∑

t=1

f 2t−1
2k+1. (2.8)

Equation (2.8) comes from (2.5) and the simple separation of odd and even
indices. Plugging equations (2.7) into (2.8) gives us

f2k+1 = f 0
2k + 2f 2k

2k + 2

k
∑

t=1

f 2t
2k + 2

k
∑

t=1

(

f 2t−2
2k + f 2t−1

2k + f 2t
2k

)

,

and then with a simple calculation,

f2k+1 = f 0
2k + 2f 2k

2k + 2
k

∑

t=1

f 2t
2k + 2

k
∑

t=1

f 2t−2
2k + 2

k
∑

t=1

f 2t−1
2k + 2

k
∑

t=1

f 2t
2k. (2.9)

We have

2

k
∑

t=1

f 2t−2
2k = 2f 0

2k + 2

k
∑

t=2

f 2t−2
2k = 2f 0

2k + 2

k−1
∑

t=1

f 2t
2k. (2.10)
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Therefore, by putting (2.10) in (2.9) and using (2.5);

f2k+1 = 2f2k + 2f 2k
2k + f 0

2k + 2

k−1
∑

t=1

f 2t
2k − 2

k
∑

t=1

f 2t−1
2k . (2.11)

Inserting (2.6) into (2.11) gives us

f2k+1 = 2f2k + 2f 2k−1
2k−1 + f 0

2k−1 + 2f 1
2k−1 + 2

k−1
∑

t=1

f 2t−1
2k−1

+ 2
k−1
∑

t=1

f 2t
2k−1 + 2

k−1
∑

t=1

f 2t+1
2k−1 − 2

k
∑

t=1

f 2t−1
2k−1.

(2.12)

By a simple calculation we have the two followings equations,

2f 2k−1
2k−1 + 2

k−1
∑

t=1

f 2t−1
2k−1 − 2

k
∑

t=1

f 2t−1
2k−1 = 0, (2.13)

and

2f 1
2k−1 + 2

k−1
∑

t=1

f 2t+1
2k−1 = 2

k
∑

t=1

f 2t−1
2k−1. (2.14)

Finally, by putting (2.13) and (2.14) into (2.12) and by using (2.5), we obtain
the desired formula.

The sequence in Theorem 2.2 is a well-known sequence, and appears as
sequence number A078057 in Sloane’s Encyclopedia. It is given by the ex-

plicit formula fn = 1
2

[

(

1 +
√

2
)n

+
(

1 −
√

2
)n

]

. Actually fn has the same

recursion formula as the Pell numbers Pn, but with different initial values.
The sequence (Pn) is defined as

Pn =







0, n = 0,
1, n = 1,
2Pn−1 + Pn−2, n ≥ 2.

The reader can find more information about this sequence in item (A000129)
of the encyclopedia.

From Theorem 2.2 we can easily conclude that fn tends to the Silver
Ratio 1 +

√
2 as n tends to infinity.

Corollary 2.3. Let fn be the number of Khalimsky-continuous functions

f : [0, n]Z 7→ Z such that f(0) = 0. Then fn/fn−1 → 1 +
√

2 as n → ∞.

7



Proof. We define the sequence (tn) by the equation tn = fnγ
−n for n ≥ 1.

By using (2.4) we have

γ2tn = 2γtn−1 + tn−2,

thus

tn − tn−1 =

(

2

γ
− 1

)

tn−1 +
1

γ2
tn−2. (2.15)

We are interested in having the sum of the two coefficients in (2.15) to be
zero. Hence, we conclude that γ is the positive solution of the equation
γ2 − 2γ − 1 = 0. Thus, γ = 1 +

√
2.

|tn − tn−1| = γ−2|tn−1 − tn−2| = γ−2(n−2)|t2 − t1|.

The sequence (tn) is a Cauchy sequence and hence it converges. Thus

fn

fn−1
=

tn
tn−1

γ → 1 +
√

2 as n → ∞.

3. Continuous curves with codomain N

In the next theorem we shall see how Schröder numbers appear in the nu-
meration of Khalimsky-continuous functions with codomain N.

Theorem 3.1. Let gs
n = card{g : [0, n] → N; g(0) = 0, g(n) = s} for s ∈ N

and s ≤ n, and ri,j be the Schröder numbers. Then we have that gs
n = ri,j

for i = 1
2
(n + s) and j = 1

2
(n − s), where n + s ∈ 2N.

Proof. We shall use induction. The result for n = 1, 2 can be obtained easily,
i.e., g0

0 = r0,0 and g1
1 = r1,0. Suppose that the formula is true for t < 2k.

We shall show the result for t = 2k. We consider s such that 2k + s ∈ 2N,
hence s is an even number. Using properties of the Khalimsky topology, we
see that

gs
2k =

{

gs−1
2k−1 + gs

2k−2 + gs+1
2k−1, s 6= 0 and s is even;

g0
2k−2 + g1

2k−1, s = 0.
(3.1)

Let s 6= 0. By the statement we have

gs
2k = ri−1,j + ri,j−1 + ri−1,j−1 where i =

2k + s

2
, j =

2k − s

2
. (3.2)
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Thus for the case s 6= 0 we are done.
Suppose now s = 0. Using (3.1) and the statement imply that

g0
2k = g0

2k−2 + g1
2k−1 = ri−1,j−1 + ri,j−1 where i =

2k

2
, j =

2k

2
. (3.3)

Since i−1 < j, we have ri−1,j = 0. Thus by adding it to the equation (3.3) we
get the result in this case. The proof for t = 2k+1 can be done similarly.

In the following theorem, we see that the Delannoy numbers appears
also in the enumerating of continuous curves with codomain N. Then by
Theorems 3.2 and 3.1, we conclude a relation between the Delannoy and
Schröder arrays.

Theorem 3.2. Let gs
n be the number of Khalimsky-continuous functions

g : [0, n] → N such that g(0) = 0 and g(n) = s for s ∈ N and s ≤ n.

Let pt,n =

n−t

2
∑

i=0

gt+2i
n where 0 ≤ t ≤ n and n + t ∈ 2N. Then pt,n = di,j where

i = n+t
2

, j = n−t
2

and di,j is Delannoy numbers.

Proof. We use induction to prove. For t = n = 0 and t = n = 1 the result
is clear. First we consider that n = 2k and the formula in the statement is
true for n < 2k. By the statement we have

pt,2k = gt
2k + gt+2

2k + · · · + g2k−2
2k + g2k

2k .

Let t 6= 0. The properties of the Khalimsky topology imply that

pt,2k = gt−1
2k−1 + gt+1

2k−1 + gt
2k−2

+gt+1
2k−1 + gt+3

2k−1 + gt+2
2k−2 + . . .

+g2k−3
2k−1 + g2k−1

2k−1 + g2k−2
2k−2

+g2k−1
2k−1.

(3.4)

The definition of pt,n and equation (3.4) lead us to

pt,2k = pt−1,2k−1 + pt+1,2k−1 + pt,2k−2. (3.5)

By the statement and (3.5) we have

pt,2k = di−1,j + di,j−1 + di−1,j−1 for i =
n + t

2
and j =

n − t

2
.

That is the result for n = 2k and when t 6= 0. We can prove similarly for the
other cases.
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Corollary 3.3. Let ri,j and di,j be the Schröder numbers and Delannoy num-

bers, respectively. Then di,j =

j
∑

l=0

ri+l,j−l for i ≥ j.

Proof. Theorem 3.2 leads us to the following equation for 0 ≤ t ≤ n and
n + t ∈ 2N;

di,j = gt
n + gt+2

n + · · ·+ gn
n where i =

n + t

2
and j =

n − t

2
. (3.6)

By Theorem 3.1 and equation (3.6) we have

di,j = ri,j + ri+1,j−1 + · · ·+ rn,0,

which is equal to

j
∑

l=0

ri+l,j−l.

The following table shows the values of pt,n and consequently we can see
the relation between these numbers and the Delannoy numbers.

t \ n 0 1 2 3 4 5 6 7 8 9
0 1 3 13 63 321
1 1 5 25 129 681
2 1 7 41 231
3 1 9 61 377
4 1 11 85
5 1 13 113
6 1 15
7 1 17
8 1
9 1

Proposition 3.4. Let gs
n be the number of Khalimsky-continuous functions

g : [0, n]Z → N such that g(0) = 0 and g(n) = s for s ∈ N and s ≤ n. Then

g0
2k = 2

k
∑

i=1

gi−1
2k−i−1;

g1
2k+1 = 2

k
∑

i=1

(

gi−1
2k−i−1 + gi

2k−i

)

;

gs
2k+s = 2

k
∑

i=1

s
∑

j=0

gi+j−1
2k−i+j−1, 2k + s ∈ 2N.
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Proof. The proof steps consist of an induction. First we prove the result for
g0
2k. Using properties of the Khalimsky topology imply that

g0
2k = g0

2k−2 + g1
2k−1

= g0
2k−2 + (g0

2k−2 + g1
2k−3 + g2

2k−2)

= 2g0
2k−2 + g1

2k−3 + g2
2k−2.

(3.7)

From the properties of the Khalimsky topology we see that

g2
2k−2 = g1

2k−3 + g2
2k−4 + g3

2k−3. (3.8)

We insert (3.7) into (3.8) to get

g0
2k = 2g0

2k−2 + 2g1
2k−3 + g2

2k−4 + g3
2k−3. (3.9)

We can continue in the same way to get

g0
2k = 2g0

2k−2 + · · ·+ 2gk−3
k+1 + 2gk−2

k + 2gk−1
k−1

= 2
∑k

i=1 gi−1
2k−i−1.

(3.10)

We now prove the statement for s while we assume that the formula is correct
for the natural numbers less than s.

The properties of the Khalimsky topology and the induction assumption
imply that

gs
2k+s = gs−1

2k+s−1 + gs
2k+s−2 + gs+1

2k+s−1

= 2

k
∑

i=1

s−1
∑

j=0

gi+j−1
2k−i+j−1 + gs

2k+s−2 + gs+1
2k+s−1.

(3.11)

Using again the properties of the Khalimsky topology we get

gs+1
2k+s−1 = gs

2k+s−2 + gs+1
2k+s−3 + gs+2

2k+s−2. (3.12)

If we insert (3.12) into (3.11), we get

gs
2k+s = 2

k
∑

i=1

s−1
∑

j=0

gi+j−1
2k−i+j−1 + 2gs

2k+s−2 + gs+1
2k+s−3 + gs+2

2k+s−2.

If we go on until we have gk+s−1
k+s+1, then we get

gs
2k+s = 2

k
∑

i=1

s−1
∑

j=0

gi+j−1
2k−i+j−1+2gs

2k+s−2+· · ·+2gk+s−3
k+s+1+gk+s−2

k+s +gk+s−1
k+s+1. (3.13)
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By properties of the Khalimsky topology

gk+s−1
k+s+1 = gk+s−2

k+s + gk+s−1
k+s−1 + gk+s

k+s. (3.14)

We need just to observe the equations (3.13) and (3.14) to get the following
equation

gs
2k+s = 2

k
∑

i=1

s−1
∑

j=0

gi+j−1
2k−i+j−1 + 2gs

2k+s−2 + · · ·+ 2gk+s−2
k+s + gk+s−1

k+s−1 + gk+s
k+s.

The definition of gs
n imply that gk+s−1

k+s−1 = gk+s
k+s. Therefore

gs
2k+s = 2

k
∑

i=1

s
∑

j=0

gi+j−1
2k−i+j−1.

As a consequence of Proposition 3.4 and Theorem 3.1 we see some relation
between the Schröder numbers, which we show them as follows:

Corollary 3.5. Let ri,j be the Schröder numbers. Then

rk,k = 2
k

∑

i=1

rk−1,k−i;

rk+1,k = 2

k
∑

i=1

(rk−1,k−i + rk,k−i) ;

rk+s,k = 2

k
∑

i=1

s
∑

j=0

rk+j−1,k−i.

The results in Corollaries 3.3 and 3.5 can of course also be obtained by
simple inductions. Here they were obtained as a byproduct of our study of
digital curves.

In the following theorem we will see that the number of Khalimsky-
continuous functions with codomain N can obtain by summing up of two
consecutive numbers of other sequences.

Theorem 3.6. Let gn be the number of Khalimsky-continuous functions

g : [0, n] → N such that g(0) = 0. Let pn = p0,n for n even and pn = p1,n for

n odd, where pt,n are the numbers defined in Theorem 3.2. Then

gn = pn + pn−1. (3.15)
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Proof. Let gs
n = card{g : [0, n] → N; g(0) = 0 and g(s) = n}. Therefore it is

clear that

gn =
n

∑

s=0

gs
n. (3.16)

Moreover, by using the properties of the Khalimsky topology we obtain

gs
2k =















gs−1
2k−1 + gs

2k−1 + gs+1
2k−1, s = 2t for t = 1, . . . , k − 1

g0
2k−1 + g1

2k−1, s = 0
g2k−1
2k−1, s = 2k

gs
2k−1, s = 2t − 1 for t = 1, . . . , k

(3.17)

and

gs
2k+1 =







gs−1
2k + gs

2k + gs+1
2k , s = 2t − 1 for t = 1, . . . , k

gs
2k, s = 2t for t = 0, . . . , k

g2k
2k , s = 2k + 1

(3.18)

Suppose that n = 2k. By (3.16) we have

g2k =

k
∑

t=0

g2t
2k +

k
∑

t=1

g2t−1
2k . (3.19)

By the definition of the sequence pn we have

g2k = p2k + p2k−1. (3.20)

The proof for n = 2k + 1 can be obtained in the same way.

In the following table we can see the values of gs
n, gn and pn.

s\n 0 1 2 3 4 5 6 7 8 9 10

0 1 1 2 2 6 6 22 22 90 90 394
1 0 1 1 4 4 16 16 68 68 304 304
2 0 0 1 1 6 6 30 30 146 146 714
3 0 0 0 1 1 8 8 48 48 264 264
4 0 0 0 0 1 1 10 10 70 70 430
5 0 0 0 0 0 1 1 12 12 96 96
6 0 0 0 0 0 0 1 1 14 14 126
7 0 0 0 0 0 0 0 1 1 16 16
8 0 0 0 0 0 0 0 0 1 1 18
9 0 0 0 0 0 0 0 0 0 1 1

10 0 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0

gn 1 2 4 8 18 38 88 192 450 1002 2364

pn 1 1 3 5 13 25 63 129 321 681 1683
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