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0.1 General introduction

0.1.1 Outline of the thesis

This thesis consists of two separate parts.

The first part, Chapter 1, deals with the theory of amoebas and coamoebas
and their connection to hypergeometric functions. In the introduction we give
some motivation for this study by discussing Gauss’ classical hypergeometric
function and describing how this function can be related to some combinatorics
of very simple polytopes and amoebas. We then treat the general several variable
case for hypergeometric series in Section 1.3. We prove a Proposition stating
the exact number of series generated by a certain simplex in the GKZ-method.
We also give a Theorem defining the exact convergence domains for these series.
In Section 1.5 we discuss the Mellin-Barnes integral representation of hypergeo-
metric functions and describe the exact convergence domains for these integrals.
In Section 1.6 we do some more explicit calculations of series, integrals, amoebas
and coamoebas.

Chapter 2 deals with infinite dimensional complex analysis, and the possibil-
ity of obtaining integral representations formulas valid on an infinite dimensional
space. We first give some background information about holomorphic func-
tions in infinitely many variables, topologies, fully nuclear spaces, and Gaussian
(pro)measures. We then in Section 2.6 show that we can extend an integral
representation formula known for holomorphic functions in finite dimensions in
Fischer-Fock space to the case of entire functions of exponential type on infinite
dimensional spaces that are fully nuclear with a basis.

0.1.2 Notation and prerequisites

We will use the following standard notation: By N, Z, R and C we denote
respectively, the set of natural numbers, the set of integers, the set of real
numbers and the set of complex numbers, where C* = C \ {0}, and N is the
set of n-tuples of natural numbers. The space of Laurent polynomials with
monomials in some generating set A will be denoted by C4. Ay is the amoeba
of the polynomial f, A’ is the coamoeba of f, and Ny the Newton polytope
of f. We will use Pochammer symbol (a)r = I'(a + k)I'(«) where I'(2) is the
classical Gamma-function. E4 will denote the generalized resultant called the
principal A-determinant.

We will denote by E a locally convex Hausdorff space, where E* is the
algebraic dual space and E’ is the topological dual. E’B is the strong dual, i.e.
the dual space equipped with the strong topology 5.



0.1.3 Acknowledgments

I would like to thank my supervisor Mikael Passare for his support and inspi-
ration. The first part of this thesis is based on joint work with Mikael Passare
and August Tsikh, with whom I also had many interesting discussions.

I would also like to thank Sedn Dineen for his hospitality during my time at
University College Dublin, and for our joint work on which Chapter 2 of this
thesis is based.






Chapter 1

Hypergeometric series and
integrals

Summary

We give a brief and accessible introduction to the general theory of A-hyper-
geometric functions, and we prove two new theorems on the domains of con-
vergence for A-hypergeometric series and for the associated Mellin-Barnes type
integrals. The exact convergence domains are described in terms of the (co-
Jamoebas of the corresponding principal A-determinants.

1.1 Introduction

The classical Gauss hypergeometric function

F(z) = 2Fi(a, Bi7;2) = ) "=

|
= () !
is a solution to the second order differential equation

2z-1DF"+[1+a+B)z—7]F +afF=0.

It is an important function in many contexts in mathematics and mathemat-
ical physics. Several well known functions in mathematical physics such as the
Legendre polynomials, the Chebyshev polynomials, the Jacobi polynomials, the
Rieman P-series and complete elliptic integrals can all be expressed in terms of
2F1.

There are numerous generalizations of the Gauss functions, also to the case
of several variables. This has, among others, been done by Jacob Horn , who in



1889 gave the following definition of a hypergeometric function in two variables:
The double power series

S
Z Am,nxmyn

m,n=0

is hypergeometric if the quotients Ay,41.n/Am.n and Ay, n41/Am n are rational
functions of the indices m and n. He also constructed a list of the 34 distinct
convergent series of order 2 and their convergence domains, se [5] or [3]. The
order of a series is the highest degree of the denominator and numerator of
Amitin/Amn and Ay ni1/Am.n. We will in this paper consider generalizations
of the hypergeometric functions to n variables consistent with the definition
used by Horn.

In a seminal series of papers during the 1980’s Gelfand, Kapranov, Zelevin-
sky (GKZ) and their collaborators developed a new fruitful approach to the
general theory of hypergeometric functions. It has connections to toric geome-
try, combinatorics of polytopes and a number of other fields.

We will assume the values of the parameters «a, (3, v to be generic, that is,
not integer valued or differing from each other by integer values. This means
we can without restriction use formulas such as the Second Functional Equation
for manipulating the I' functions that occur. We remind you that the Second
Functional Equation is given by

™

)1 -2) =

sinTz

Using this will enable us to move the I'-functions between numerator and de-
nominator.

The basic idea of the GKZ-approach is to cleverly introduce extra variables,
one for each parameter in the hypergeometric series. Their main observation
was that the new function (of many variables) thus obtained will satisfy a very
simple (binomial) system of differential equations with constant coefficients.

Let us illustrate the GKZ-method in the case of the classical gauss function

F:
The function
a= b Pt cd
o 7ba 7d = (_)
(@.bed) = s ra =)’ \ab
can also be written (as a more universal I'-series)
a— v bfﬁfu C*l+'y+v dv

®(a,b,c,d) = Z

veN

(—a =) (—f=v) (=1+y+v) !’

and therefore obviously satisfies the differential equation @, = ®q.



The fact that ® is essentially a one-variable function is reflected by three
supplementary homogeneity equations:

ab, +dd; = —ad,

{ a®, + 0Py + cP.+dPy = (—a—03-1+7)0,
b®y, + dPy

—ad.

More generally, any shifted I'-series formally will satisfy these kind of equa-
tions and it is not dependent of the representation used. By a shifted I'-series
we mean a series obtained by replacing the indice v by a linear translation of it.
The reason is the symmetric form of the terms over which we are summing.

Notice that ®(1,1,1, z) = C F(z) for some constant C.
It is natural to make a shift by —1 + v and thus to consider also the new

function

—a—1+y—v —B—14+~v—v v 1—y+v
a b cv d

q)/(a’b’c’d):llezN(—04—1—}—7—1/)!(—6—1+7—V)!7!(1—7+V)!’

which satisfies the same equations.
One then has ®'(1,1,1, z) = CF’(z), where

Fl(z) =2z F(a+1 =78+ 1-7%2-72).
Again we can in ® make the shift v — 1 — 8 — v which gives the series

a—oz-l—ﬁ-i—u b c—l+v—B—V d—ﬁ—u
—a+ B+ (—1+y—B—v) (=3 —v)’

" (a,b,c,d) = Z (

veEN
where ®”(1,1,1,2) = C'F"(z) for some constant C’ and
F'(z) =2"%Fi(a—B,2=8,1-7+6,27).
A final shift in ® with v — —a — v gives

a’ bfﬁJraJru C*lJr’yfafu d—o—v
W (=B+a+t)(-l+y—a—v) (—a—v)"

" (a,b,c,d) =Y

veN

Letting a,b and ¢ equal to 1 gives ®"(1,1,1,2) = C"F"'(z), for some constant
C"" where we see that

F"(2)=2"%F2—-a,f—a,1—y+a,z ).

According to the theory of GKZ we can relate some combinatorics to these se-
ries. We consider the configuration of the four points {(0, 0), (1,0), (0,1), (1,1)} €
7?2 and form the matrix



N

Il
OO =
[ e
—_ O =
— =

of the corresponding projective vectors whose columns are the points above.
If the matrix B is the integer basis of the kernel of the linear mapping A : Z* —
Z3, then B is the following matrix

Note that the entries in the B-matrix equal the coefficients for v in ® and
®’, whereas the coefficients for v in ®” and ®" coincides with the entries of the
negative B-matrix. We now draw the convex hull of {(0,0), (1,0), (0,1),(1,1)} €
Z2. This is called the Newton polygon of the polynomial f where f is the
polynomial with exponent vectors described by {(0,0),(1,0),(0,1),(1,1)}, i.e.
f=a+bzr+ cy—+ dry.

-
-

a b
FIGURE 1. Newton polygon of the polynomial f.

There are two different triangulations of the Newton polygon.

a b a b
FIGURE 2. The triangulations of the Newton polygon.



We will see that choosing one of the four simplices in Figure 2 and letting
the complex variables related to the vertices of this simplex equal to 1 will
correspond to choosing exactly one of the four shifted I'-series ¢1, @2, ¢3 and ¢4.
The principal A-determinant of the matrix A, which is the discriminant of the
polynomial f, is

Ex(a,b,c,d) = abed(—ab + cd).

It is homogeneous of degree 6, and if we take the dehomogenized polynomial, let-
ting three of the variables equal to 1, this gives us the one-variable polynomials
Ea(1,1,1,d) =d(—14d), Ea(1,1,¢,1) = ¢(—1 + ¢) and so on.

The amoeba of the algebraic set {E4(1,1,1,2) = 0} is defined to be its
image under the mapping Log : « — log |z|. Taking the amoeba of E4(1,1,1, z),
Ea(1,1,2,1), Ea(1,2,1,1), Ez(x,1,1,1) will in each case give simply the set
{z = 0} in logarithmic coordinates.

FIGURE 3. The amoeba of the principal A-determinant Ea(z).

Obviously this amoeba has two connected components in its complement. It
turns out that the convergence domain for our four series will coincide with these
complement components. ® and ®’ will converge in the component {x < 0} and
®” and @ in the component {x > 0}. In fact the convergence domain of each
series will correspond to that particular complement component which contains
the normal cone at the selected vertex of the Newton polygon of the principal
A-determinant polynomial.

FIGURE 4. The Secondary polytope of f and the normal cones at the vertices.

The function 9 F; may also be represented as the following integral that was
introduced by E. W. Barnes in 1908



2 Fi(a, By; 2)

I(y) /“"O Plat+ B 0S) (yegs (11)

" 20 D(@)L(B) J_ioe T(y+5)

where |arg(—z)| < m and where the path of integration is indented if nec-
essary in such a manner as to separate the poles at s = 0,1,2,... from the
poles at s = —a—n, s=—-F-n (n=0,1,2,...) of the integrand. It is
always possible to find such a path of integration provided that both a and
is different from 0,—1,-2,...

The proof of (1.1) follows by classical calculus of residues as the sum of
residues of the integrand at the poles s =0,1,2,....

Now calculating the coamoeba i.e. the image of the mapping Arg : = +—
arg(z), of the principal A-determinant E4(x) we get the set {x = 0}.

FIGURE 5. The coamoeba of the A-discriminant Ea(x).

Note that the argument is periodic, meaning —m is identified with 7, so the
coamoeba in Figure 5 has in fact one complement component. The convergence
domain of the integral is easily seen to coincide with the complement of the
coamoeba under the inverse logarithmic mapping.

In this paper we will give a thorough study of this situation generalized to
hypergeometric series in several variables.

10



1.2 Basic definitions

We start by introducing some background information and give some notation
and definitions that will be needed througout Chapter 1. Terminology and
notation of less overall importance will be defined later on in the specific context
in which it is used.

We let f be a (Laurent) polynomial in n variables, f(z1,22,...,2,) =
Y wezk Gw. An important characteristic of f is its Newton polytope of f,
Ny defined as follows

Definition 1 The Newton polytope Ny is the convex hull in R™ of the set {w :
a, # 0}.

We denote by Z; the hypersurface determined by the equation f = 0, and
introduce the logarithmic mapping (C*)™ — R"™ given by

LOg : (Ilv'er s 7x’n«) = (1Og|1171|,10g|l’2|, SRR log|:cn|)
Using this mapping we define the amoeba Ay of the polynomial f.
Definition 2 Ay :=Log(Zy)

All components in the complement of the amoeba will be convex. Further-
more if we consider the Laurent expansions of the rational function 1/f these
will be in bijective correspondence with the amoeba complement components.
In fact the same can be said about the vertices of the Newton polytope, these are
also in bijective correspondence with the amoeba complement components. This
should motivate that these are all indeed very natural geometric constructions
to make.

Similarily we define the coamoeba A}» using the argument mapping Arg :
(C*)™ — R™ given by

Arg : (Ila T2,... 7x’n«) = (arg|x1|, arg|x2|, s ,arg|xn|).
Definition 3 = Arg(Zy)

In order to study the singularities of the function f we introduce a generalised
version of the ordinary resultant R4 (see [4]), which we call the principal A-
determinant. We define this in terms of R4 as follows

Definition 4 Let A C Z"! be a finite subset which affinely generates 7" 1
over Z. For any f = f(z1,...2,_1) € C*, where C* denotes the space of Lau-
rent polynomials with monomials from A, we define the principal A-determinant,

Ba(f) = Ra(m 2 i p).

— ey Tyl
8171 n-l 8:177171

Note that this make sense since all x;(0f/0z;) belongs to CA. Furthermore

E 4 is clearly a polynomial function in coefficients of f. We will in this paper be

concerned primarily with amoebas of such principal A-determinant polynomials.

These have some pleasant properties such as always being solid, a result by
Passare, Tsikh and Sadykov [7].

11



1.3 A-hypergeometric series

Consider a finite set 2 = {aq,...,an} C Z"! and compose the following

n X N-matrix
A_< 1 1 ... 1 >7
o1 Q2 ... ON

where the «;:s are column vectors with n — 1 entries. Assume that the
columns of A generate the lattice Z™. We shall denote by B the Gale transform
for A, that is, the N x (N — n)-matrix which annihilates the matrix A, in the
sense that AB = 0, and contains a unit matrix Ex_, of size N — n. More
precisely, there should be a subset J C {1,..., N} with |J| = N — n such that
the rows in B with numbers from J together form a unit matrix. Notice that J
also gives a subset of N —n columns from A. We shall write I = {1,..., N}\ J,
so that |I| = n. We then have a collection {c;}ics of points in Z"~1, and this
collection determines a simplex o = o of full dimension n — 1 with vertices in
the points oy, @ € I. This simplex oy lies in the polytope @ which is the convex
hull (in R"71) of the original set 2. Let us now associate with each o; € A
a complex variable a;, i = 1,..., N. To simplify the notation we shall assume
that I = (1,2,...,n).

Definition 5 A general A-hypergeometric function we define, for every Gale
transform B of the matriz A, or equivalently, for every (n — 1)-dimensional
simplex o C Q with vertices in A, to be the following power series

qYH(B:k)

[[= Ty +(Bj, k) + 1) k!’

#(a) = dpla) = Y

keNN—n

(1)

where the B; denote the rows in the matriz B, and k! = k! - ky_pn!.

Using the notation a = (a’,a”) € (C\ {0})" x (C\ {0})N¥ " we see that the
numerator in (1) can be written (a’){B"* . (a”)¥, since the matrix B is of the
form (B'| Ex—n)". Note that the series (1) is a Puiseux series (since B’ is a
rational matrix) multiplied by the monomial (a’)Y. We shall assume that the
exponent vector v € C" is in general position.

In fact, for fixed v the expression (1) may represent several series (corre-
sponding to different branches of a multivalued function), and we will prove
below that the number of different series obtained is equal to the normalized
volume A of the simplex o;.

Proposition 1 Let A be a matriz of size n x N, n < N with integer entries.
Then the following claims are equivalent:

(i) the column span of A is the entire lattice Z™;

(1) the maximal minors of A are relatively prime;

(iii) there is a unimodular matric M of size N X N such that AM = (E,|0)
(the unity matriz of size n X n enlarged by adding zeros to a n X N-matriz);
(iv) there is a completion A which, is unimodular, i.e. we can enlarge A to a
N x N integer square matriz A with det A = 1.

12



Proof (i) = (ii) Given the condition(i), there exists an integer N X n-matrix
C with the property that AC is equal to the unit matrix F, of size n x n. From
this it follows that all the maximal minors of the matrix A are relatively prime,
since by the well known Binet-Cauchy formula ([1]) the determinant of AC
equals the sum of the maximal minors of A multiplied with the corresponding
minors of C.
(i1) = (it3) By the invariant factor theorem ([1]) it follows that there exist
unimodular integer matrices D and F' of size n and N respectively, such that
DAF = (4]0) where ¢ is a diagonal n x n-matrix with integers €1, ..., €, on the
diagonal, and 0 is the zero-matix of size n x (N —n). From the representation
A = D7Y(5]0)F~! it is now easy to see that in fact § = E,,, because some ¢;
being different from 1 would contradict the fact that the maximal minors of A
are relatively prime.

(#91) = (iv) By (iii) we have
A=DYE,0)F~ ! = (D '0)F !,

and the desired enlargement of A may be taken to be

e D_l 0 —1
A= (g

(iv) = (¢) This is obvious.

O

Proposition 2 For a given nx N-matriz A whose columns constitute a basis of
7™, and a chosen simplex o C Q of normalized volume A, there will be precisely
A distinct A-hypergeometric series, which are linearly independent.

Proof Let A’ denote the n x n-submatrix in A with columns corresponding
to the simplex ¢. By the asssumption made before Definition 1 this means that
A’ consists of the n first columns in A. So we can write A in the block form
(A”| A”) with A” being the n x (N —n)-matrix of the last N —n columns in A.
Along with the annihilator B that was introduced above, we shall also consider
an integer valued annihilator R, which is also a matrix of size N —n x N, and
whose columns constitute a basis for the relation lattice between the columns
of the original matrix A. We write also this matrix R in block form

R/

Now since the columns of A generate Z" it follows from Proposition (1) that
there is a unimodular completion A of A, which, recalling that A = (A’ | A”),
we write in the block form

_ / "
i- ( A4 ) |
* |

13



Let us consider the corresponding block composition of the inverse matrix :

~ x| R
A1_<*R//)a

with R’ and R” of size nx (N —n) and (N —n) x (N —n) respectively. According
to Jacobi’s formula ([1]) one has det A’/ det R = (det A)N="=1 = +1 and
hence | det R”| = | det A’|. Since | det A’| equals the normalized volume A of the
simplex spanned by the vectors in A’, we conclude that

A =|det A'| =|det R"].

In the lattice Z we consider the sublattice L = A~1(0) whose rank is N —n.
It is clear that it is generated by the columns of the matrix R. The columns of
the matrix B generate another lattice M of rank N — n, which contains L as
a sublattice. By the invariant factor theorem there are unimodular matrices X
and Y, such that the new bases for the lattices L and M given by

R=R-X, B=B-Y

have the property that the basis R is expressed in the basis B by means of a
diagonal integer matrix:

R=EB- , 0; €EZ.
5N—n
In other words, if 7#!,... 7N ™ denote the column vectors of INE, then
7*:1 fon
M—{—sl—i-...—i- an} .
61 5N—n SezN—n

From this it is easily seen that the series (1) can be re-written in the powers

(a5 sy (a5 sy

Clearly, the index M : L is equal to A = |det R”| = |61 - - dn—n| and by choos-

ing various radicals (a”™)Y/% we obtain A different, and lincarly independent
series.

1.4 Domains of convergence for A-hypergeometric
series

We want to construct a triangulation of (Q,%), i.e. a triangulation on @ with
the set of vertices on A. We do this in the following way. Take any function

14



Y : A — R and consider in the space R®*! = R™ x R the union of the vertical
half-lines

{(w,y) e AXxR:y <P(w)}.

Let Gy be the convex hull of all these half-lines. This is an unbounded poly-
hedron projecting onto (). The faces of G which do not contain vertical half-
lines(i.e. are bounded) form the bounded part of the boundary of G, which
we call the upper boundary of G. Clearly the upper boundary projects bijec-
tively onto Q). If the function % is chosen to be generic enough, then all the
bounded faces of Gy are simplices and therefore their projections to @ form a
triangulation of (Q, ).

Let T be an arbitrary triangulation of (Q,%(), and let ) : A — R be any
function. Then there is a unique T-piecewise-linear function g, r : @ — R such
that gy r(w) = ¥(w) when w is a vertex of the triangulation 7. The function
gy, T is obtained by affine interpolation of ) inside each simplex. Note that the
values of ¢ at points that are not vertices of any simplex of T' does not affect
the function gy 7.

Definition 6 Let T be a triangulation of (Q,2d). For each simplex o of this
triangulation we shall denote by C(o) the cone in R® consisting of functions
¥ A — R with the following properties:

(a) the function gy : Q — R is concave.

(b) for any w € A which is not a vertex of the simplex o in the triangulation T,
we have gy 1r(w) > P(w).

Now, let 2 C Z™~! be a finite subset, and @ the convex hull of & as before.
We assume that dim(Q) = n — 1. Fix a translation invariant volume form Vol
on R™. Let T be a triangulation of (@, A). By the characteristic function of T'
we shall mean the function pr(w) : A — R defined as follows:

or(w) = Z Vol(d),

d:weVert(d)

where the summation is over all (maximal) simplices § of T' for which w is a
vertex. In particular, pr(w) = 0 if w is not a vertex of any simplex of T'. Let
R4 denote the space of all functions A — R.

Definition 7 The secondary polytope X(2) is the convex hull in the space R*
of the vectors pr for all the triangulations T of (Q,21).

The normal cone to £(2) at every o7 will be called N, X(2) and consists
of all linear forms 1) on R* such that

Y(pr) = e ().

The point @ is a vertex of ¥(A) if and only if the interior of this cone is
non-empty. The union of the normal cones Ny, X(A),..., Ny, X(A) where

15



T,..., Tk are all the triangulations of (Q,2l) that contains the simplex o will
be called the normal cone N, ().

Let C*® be the space of Laurent polynomials f(zi,...,7,) = Y e GwT®
with monomials from . Now for f(z1,...,2,) € C® we have the principal
A-determinant

of of
E :R( 9 , )
ala) = Ra "5 Tn-1g f
where Ry is the so called A-resultant of polynomials 56159—;1, ... ,xn,lagga—{l, f

with supports in 2, compare [4]. Note that F4(a) is a polynomial in the coeffi-
cients of f. Using this construction we formulate the following theorem.

Theorem 1 The domain of convergence D, of the series ¢(1,a”) in (1) is
a complete Reinhardt domain with the property that the corresponding convex
domain Log(D,) contains all the connected components of the amoeba comple-
ment R"™ \ Ay, where Ay is the amoeba of E4(1,a"), that are associated with
the triangulations of (Q, A) that contain the simplex o, i.e. are associated with
a certain vertex in the secondary polytope X(A), while it is disjoint from all the
other components.

Proof: We know from the implicit function theorem that D, is not empty, and
Abel’s lemma tells us that whenever a point a belongs to D,,, then so does the full
polydisc centered at a. Therefore D, is indeed a complete Reinhardt domain |,
and the corresponding domain Log(D, ) will contain the negative orthant —Rf_‘l
in the corresponding cone C(o).

In fact, we will show that C(o) is the negative orthant. This we can see
by letting the function ¢ = 0 on all the points a; in the simplex o. This
corresponds to chosing exactly this simplex o. (We could choose 9 equal to
anything at the points in 0.) Now C(c¢) consists of functions ¢ : A — R such
that gy 7 is concave and gy r(w) < ¥(w) for all w which are not vertices in o.
Hence t(w) < 0 for all w and all functons ¢, and thus C(o) is equal to the
negative orthant Rfﬁl.

Let E be a connected component of R"~! \ A, that intersects the domain
Log(D,). Then we claim that we actually have an inclusion E C Log(D,).

Accepting this, it follows, from what we have prooved so far, that the domain
Log(D,) cannot intersect any component of the amoeba complement R"~1\ A,
whose cone C(o) is not in the negative orthant. On the other hand every con-
nected component of R"~1\ A, with the corresponding cone C(c) contained in
R’} will necessarily intersect, and hence be contained in , the domain Log(D,).
The following proposition therefore suffices to make the proof of Theorem 1 com-
plete.

O
Proposition 3 The normal cone N, () at a vertex of the secondary polytope
Y(A) is contained in the negative orthant —R:’L_l if and only if the corresponding

triangulation of @ contains the simplex o. In fact the union of such normal
cones Ny, £(A) is equal to —R’} .
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Proof: We will prove this proposition by proving that the normal cone N,_X(A)
coincides with the cone C'(c). We get at once from the definitions of ¢ and
gy, T, and the fact that the integral of an affine-linear function g over a simplex
o is equal to the arithmetic mean of values of g at the vertices of o times the
volume of o, the following:

($r07) = /{D2 9o (@)dz. (1.2)

We now fix 1) € R*. The upper boundary of Gy can be regarded as the graph
of a piecewise-linear function gy : @ — R.

gy(x) = max{y : (z,y) € Gy }.

We can furthermore state about the function gy the following:

(a) gy is concave.

(b) For any triangulation T of (Q), A) we have gy(x) > gy.7v(z),Vz € Q.

(c)We have

max (v.) =n [ gu(o)de (13)
Q

pEL(A)

(a) follows by construction. To varify (b), it suffices to consider = varying
in some fixed simplex o of T. By definition, gy r is affine-linear over o and
gy(w) > Y(w) = gy, 7 for any vertex w € o. Hence the inequality is valid over o.
The maximum in (1.3) can be taken over the set of the pr for all triangulations
T of (Q,A), since X(A) is defined as the convex hull of these pr. Hence part
(b) together with (1.2) imply that the left hand side of (1.3) is greater than
or equal to the right hand side. To show the equality, it suffices to exhibit a
triangulation T for which g4 = gy,7. To do this, we consider the projections
of the bounded faces of the polyhedron Gy into Q). These are polytopes with
vertices in A. Take a generic ¢’ close to ®. Then the bounded faces of the
polyhedron g;/, give a triangulation T of (@), A) which induces a triangulation of
each of the above polytopes. Hence gy is T-piecewise-linear and coincides with
gy, 7. This proves (1.3). Hence the cones coincide.

O

Remark. Theorem 1 was proven for the special case n = 2 in [9].

Remark. The discriminant set is not always a hypersurface set. There are
cases of higher codimension. For example whenn n > 2 for any general linear
polynomial ap+aj 21+ - -+anz, we get the discriminant set {aq = - - - = a,, = 0},
hich is not a hypersurface set. Another example is when p = g(21,...,2n-1) +
az, where ¢ is a non trivial polynomial. Here the discriminant set is of type
{a = 0,A’” = 0}, where A’ is the discriminant of g with respect to variables
Z1yeeyln-
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A-hypergeometric series and integrals Lisa Nilsson, Mikael Passare and Au-
gust Tsikh

1.5 The Mellin-Barnes integral

By the multiple Mellin-Barnes integral we mean the integral

1 [T T((45,2) +¢)
@mi)" Jspimn [1ie T((Br, 2) + di)

where all parameters A;, B, € R", ¢j,d;, € R are real and dz = dz; ...dz,. The
vector § € R™ is chosen so that the integration subspace § +iR" is disjoint from
the poles of the gamma-functions in the numerator.

For brevity we rewrite (1.4) as

Bj(t) = Atz (14)

1

B5(t) = G /5 s (1.5)

denoting by F'(z) the ratio of the products of gamma-functions, and ¢t~* denotes
the product t; ** - - - ¢, *». We suppose that the variable ¢ varies in the complex
torus T™ = (C \ 0)™ and that

t 5 =e logty |argt,| < m,
and introduce the following notations:
z, = Rez,, y,=Imz,, v=1,...,n.

Let x and y be the vectors in R” with coordinates z, and y,, correspondingly.
Denote by Vi,...,Vp4q all the hyperplanes (A;,y) = 0, (Bg,y) = 0 in R™.
By all nonempty intersections V;; N---NV;,, these hyperplanes define a conic
polyhedron which we will denote by K. Let vy, ..., vq be the unit vectors of the
one-dimensional cones of K. Finally denote § = argt = (argty,...,argt,), so

one has for any t € T" the representation t = (2,6) € R’} x T, where T" is the
real n-dimensional torus.

Theorem 2 The convergence domain of the Mellin-Barnes integral (1.4) is
equal to R} x P° with P° being the interior of the polytope

P={0eT": (1,0 < Zg(v), 1=1,....d}

where
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Proof: Since the asymptotic equality |y|*~/2 ~ (|Jy| + 1)*71/2 as |y| — oo is
valid for every fixed z € R, Stirling’s formula implies that there are constants
c1 and co such that

Cullyl + 1" 2e 50 < D2 + iy)| < Co(ly| + 1)~/ %e 20, (1.6)

where ¢ € K € R\ {0,—-1,-2,...} (K is a compact set), y € R, and the
constants Cy and Cs depend only on the choice of K. Using (1.6), and our
notation y, = Imz;, we can make the following estimate for the integrand in

(1.5):

P < ntgk%g exo {[(9.0) - Zo(0)} (17)

where
7y = (A )| + DADV2 g = (B, )| + 1) Brn 12,

and g(y) was defined above. Moreover, (1.7) holds for all y € R™ and all z in
compact subsets of R disjoint from the polar hyperplanes

{{4j,2) +¢; = —v}, {(Bp,x)+dp=-v}, v=0,1,2,...;

in particular, (1.7) is valid for x = §. It follows from (1.7) that, for each
0 = argt, provided on R™ \ {0} the inequality

|<y,9>|<§<Z|<Aj,y>|—z|<3k,y>|>, (19)

k=1

the integrand in (1.5) decreases exponentially as ||y|| — oo. Therefore the
integral (1.5) converges absolutely. By homogeneity, (1.8) is valid for all y €
R™\ {0} whenever it holds for y on the sphere {y : ||y|| = 1}. It means that this
integral converges for all 6 = argt from the intersection of strips:

U= () {0:1(.0)] < F9)}.

llyll=1

Furthermore, it is clear that the integral (1.5) does not converge for § = argt
outside of the closure of U, since the estimate in (1.6) implies not only (1.7),
but for some other constant the reversed inequality:

H§:1 7j

HZ:1 &k

Thus if § € T™\U we have an inequality (6, y)| > Zg(y) for some y on the sphere
llyll = 1. By (1.9) it means that the integrand will have a positive exponent,
and therefore is not integrable.

Hence the domain of convergence U consists of such ¢ for which § = argt
satisfy for y # 0 the inequality (1.8), i.e. [(0,y)| < Sg(y). Of course, U C P°.

[F(2)t| > const exp {](5.0)| = F9()}- (1.9)
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Let us explain why any point § € P° belongs to U. Indeed ¢(y) is a piece-wise

linear function whose graph has corners only over the hyperplanes (4;,y) = 0
and (By,y) = 0. Correspondingly, the function Uy(y) := % is a piece-

wise fractional linear function with respect to the variable y. Consequently all
extremal points of the function Wy(y) = Wy(y) lie on the vertices of the

llyll=1
polyhedron P N {|ly|| = 1}. Therefore § € P° implies § € U.

Remark. Some partial results on the domains of convergence for integral (1.4)
were obtained in [10].
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1.6 Examples

We will consider the polytope @ which is the convex hull of the set {«;,i =
1,...,5} in R? where a3 = (0,0),a2 = (1,0),a3 = (0,1),a4 = (1,1), a5 =
(0,2)’, that is the Newton polytope of the polynomial f = a+bx+cy+dzy+ey?
in two variables.

FIGURE 6 . Newton polytope of f = a + bx + cy + dry + ey?.

There will be 5 different coherent triangulations of the polytope @ where
some simplices will occur once, and others in several of the triangulations. In
total we will get 9 different simplices.

FIGURE 7. The 5 triangulations of Q.

According to the theory described in Section 1.3 each simplex of normal-
ized volume will correspond to one hypergeometric series, while a simplex of
larger volume will correspond to several series. Some of these series will also
be representable as integrals. We can to the polytope @ relate several different
A-matrices depending on how we order the points «;. We will to the points
a1, e, a3, a4 and as relate the variables a, b, ¢, d, e in this order. In deciding
the order of the «;:s we also make the selection of the particular simplex who’s
vertice variables are set to one, and hence determine the variables in the hy-
pergeometric series, all according to the description in the beginning of Section
1.3. This is the procedier used in the first section of examples.

21



In the second section we will instead select a particular amoeba, keep the
variables fixed, and relate all the series from the first section of examples to this
amoeba.

1.6.1 Taylor series

We formulate the A-matrix

11 1 1 1
A = ( ! ! ! ! ! > = 1 01 0 O
Qg Q3 Q04 O5 Q7 0 1 1 2 0

Now the first three a;:s, which we will denote by {«a, 3,7}, in this case

{ag, 3,4}, determines the simplex o, that is the simplex with corners in
(1,0),(0,1) and (1,1).

FI1GURE 8. The simplex selected in Ay .

We calculate the principal A-determinant for this matrix, or rather the prin-
cipal A-determinant of the polynomial f = e + ax + by + cxy + dy?.
Ea,(a,b,c,d,e) = abede(b? — 4de)(abe — a*d + ce),

where a, b, ¢, d, e is the complex variables that we associate with the vertices in
Q.

We determine a B-matrix corresponding to our matrix A;.

1-1

-1 -1
B=1]-11
1 0

0 1

Note that there is a large number of A-matrices that could generate the same
B-matrix, and that the B-matrix is uniquely determined by the choice of A and
a the choice of simplex only up to the order of the columns. This gives the
following hypergeometric series

a+m—npB—m—n y—m+n
a b c o

(bl:222F(a—i—m—n—l—I)F(ﬁ—m—i-l)F(’y—m—l—n—i—l)m!n!d ¢

+
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This can be reformulated into the classical form used by Horn [5], as follows

al —m-+n / m-+n ! m—n

¢1 — CZ ( ) + (fn?n'ﬁ- (’7) (Sl)m(t1>n;
2
where s; = ab~lc tdand t; = a~'b~Lce, the constant C = —72a*b? AT (—a)T(—B)(—7),
and we use the notation (o) :=I'(a + k)I'(a), and o = —a.

Now taking the complex hull of a, 3, v we get a simplex of normalized volume
1. We let the complex variables a, b, ¢ correlated to these points, be equal to
1, which gives us a hypergeometric series in 2 complex variables. We draw
the Newton polytope of the principal A-determinant E4,(1,1,1,d,e) = de(1 —
4de)(1 — d — e), this is also called the secondary polytope of f.

FIGURE 9. Secondary polytope of f = e + ax + by + cxy + dy?.

According to the theory of GKZ there is a bijective correspondence be-
tween the coherent triangulations and the vertex monomials in the principal
A-determinant. The vertices of each non unit variable will be a vertice in one
or more simlices in each triangulation. This bijection is described by for each
variable calculating this number of simplices, multiplying it with the normalized
volume of the simplex, and put the resulting number as the vector of exponents
applied to our vector of variables. That is, in our case we get that the triangu-
lation in Figure 6 will be associated with the term d'e! by this bijection, which
is the furthest down to the left point in the secondary polytope. We draw the
polytope again, together with the normal cone at this particular point.
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FIGURE 10 . Secondary polytope of and normal cone at (1,1).

We draw the amoeba of the dehomogenized principal A-determinant E4, =
de(1 —4de)(1 —d —e).

FIGURE 11. Amoeba of the principal A-determinant E 4, .

The statement of Theorem 1 is that the convergence domain of the series ¢;
is exactly the amoeba complement component in which we can fit the normal
cone in Figure 10. We highlight the convergence domain (or its image under
the logatrithmic mapping) in the following picture.

24



FIGURE 12. Convergence domain of ¢1.

That the convergence domain in this simple case should be in the third
quadrant is of course natural since the series ¢; can be recognized as a Taylor
series.

Permutating A; we get a new matrix As and hence a new choice of simplex.
Note that our polytope @ is the same as before. We let Ay be as follows.

11
As=1| 0 1
11

N O =
o O =
O = =

This time our selected simplex appears in two triangulations.

FI1cURE 13. The two triangulations in which the simplex occurs.

We choose the B-matrix

Bs

I
O = = O N
—_ O = =
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The corresponding series is

a—2m—nbﬂ—n Y+m+n

¢2=3 - - ame,
g FNa—-2m—-n+1)I(B-—n+1)T'(y+m+n+1)

+

or,

¢2 _ CZ 2m+n ) Sgntg,

m+nm'n'

where ss = a"2cd, and ty = a_lb_lce.
The principal A-determinant is

Ea,(a,b, ¢, d,e) = abede(4ed — a®) (b2d — abe + ce?),
and dehomogenized
Fa,(1,1,1,d,e) = de(4d —1)(d— e+ e?) = 4d® — 4d*e* + 4d°e® — d*e + de? — de®.

We draw the Newton polytope of E4,(1,1,1,d,e) with the normal cones in
the vertices in bijective correspondence with the two triangulations in Figure
13.

7

/ |

FIGURE 14. Secondary polytope and normal cones.

We draw the amoeba of the principal A-determinant E4,(1,1,1,d,¢).
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FIGURE 15. Amoeba of the principal A-determinant E4,.

We see that the two normal cones fit into the two amoeba complement com-
ponents in the third quadrant. Hence according to Theorem 1 the convergence
domain of ¢ will be the domain Log™ (D) where D is the convex domain that
contains both the complement components in the third quadrants in Figure 15.

In this case we can obtain an analytic continuation of the series ¢2 by means
of a Mellin-Barnes integral, using residue calculus:

Z (@)2mtn (B )n (52)™(t2)" = I'(y) 3 L@ +2m+n)0(B + 1)

= o
(V) m4nm!n! INCRINED) = L'+ +m + n)m!n! S2t2

T(z1)T(22)T(c — 221 — 22)T(B' — 22 . .
B R L TR SRS T

c / T(z1)T(22)T( — 221 — 22)T(F' — 22)
(2mi)? 5+iR2 L(y" =21 — 22)

(=82) " (—t2) ™dz

Hence we have the integral representation of the hypergeometric function as
follows

Ds(w) (1.10)

__K eI (22 — 2o+ (=22 +0) oo ys
| (r) ™ (~wn) .

F(—Zl — 29 + ’7/)
Here K = —T'(7)a®bP T (—a)T(—=B) (=) /(T (a)T'(B)7?), and w = (w1, ws) =

(a=%cd,a b~ 1ce). We assume that o/, > 0 are real, positive and that
8 = (61,02) € R™ is any point of the polygon {(x1,22) € R? : 71 > 0,0 <
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x2 < fB,2x1 + 2 < a}. For any other choice of parameters o/, 3’ € C one has
to make a deformation of the contour § + iR2.

We draw the coamoeba of the principal A-determinant with the variables
corresponding to the points a, 3,7 set to 1, Fa,(1,1,1,d,e).

—T

FIGURE 16. Coamoeba of the A-discriminant E 4, .

Note that there is really just two complement components of the coamoeba
in Figure 16, since the argument is periodic. We draw the coamoeba again and
mark the complement component that corresponds to the convergence domain
of the integral (1.10). To make this clear we draw the shifted coamoeba.

™

| |~

FIGURE 17. Convergence domain of the integral (1.10).
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We permutate the A-matrix again and consider the simplex with corners
(0,0),(0,2) and (1,0).

1 1 1 1 1
A3=1 0 0 1 0 1
2 0 0 1 1
We select a B-matrix
~—1 -1
-1 1
Bs=| 0-2
2 0
0 2

This simplex has normalized volume 2.

FIGURE 18. Simplex of volume 2.

Since the chosen simplex has volume two we get two series, her given in both
our notations, namely

aa—m/2—n/2bﬁ—m/2+n/2c'y—n
¢3=> d™e”
o Nla—m/2—n/2+1DT(B-—m/2+n/2+1)[(y—n+1)

+

2 man
533,

_ Z (a/)%er%n(ﬁl)%mfln(’yl)n
72

m!n!

and

afm/an/Zbﬁfm/ZJrn/Q y—n
p= (-ymtn - c dme”
MNa—m/2—n/24+1DT(B—-—m/2+n/2+1)[(y—n+1)

2
z3

=Y (=ymte (@) 3mt1n(B)3m—3n(V)n

man
Sq't
m!n! 373

where s3 = d/v/ab and t3 = (Vabe)/ac
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We have the principal A-determinant
Ea,(a,b,c,d,e) = abce(4ab — d*)(e*b — cde + ac?).

We draw the secondary polytope of the principal A-determinant with the vari-
ables corresponding to the points «, 3, set to 1,

Fa,(1,1,1,d,e) = e(4 — d?*)(e® — de + 1) = 4¢€® — 4de® + 4e — d*e® — d3e? — d%e.

FIGURE 19. Secondary polytope and normal cone.

We draw the amoeba of the principal A-determinant with the variables cor-
responding to the points a, 8,7 set to 1, Ea,(1,1,1,d,e).

FIGURE 20. Amoeba of the principal A-determinant E4,.

Hence both series ¢3 and ¢4 converges in the domain corresponding to the
complement component in the third quadrant in the picture.

So we have seen how rearranging the points «; corresponds to choosing a
certain simplex in the polytope . To complete this example we will give the
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hypergeometric functions and draw the amoebas for the remaining 6 simplices
(there are 9 in total). In the figure below we have numbered the simplices in
the same order as we have numbered the series and the amoebas.

» DR

FIGURE 21. The five different triangulations of the polytope Q.

1 1 1 1 1
Ay=1 0 1 0 1 0
0 01 1 2
We select a B-matrix
1 1
-1 0
By=|-1-2
1 0
0 1

We have the principal A-determinant
Ea,(a,b,c,d,e) = abede(4ae — ¢*)(ad® — cbd + b3e),
and the same dehomogenized becomes
Ea,(1,1,1,d,e) = de(4e—1)(d* —d+e) = 4d*e® —4d?e? +4de® — d*e+d*e — de?.
The generated series is

aochernbﬁfmC'yfmon

¢4:;I‘(Q—I—m—i-n—l—1)I‘(ﬂ—m+1)1"(7—m—2n+1)

+

dmn

~ /T tn
o) mpnm!in! 474

ﬂ/m /m2nm
-5 O,
72

where s4 = ab~le71d and t4 = ac”%e.

We draw the amoeba of the principal A-determinant E4,(1,1,1,¢,d). The
series converges in the convex set corresponding to the two complement compo-
nents in the third quadrant (under the inverse logarithmic mapping).

31



FIGURE 22. Amoeba of the principal A-determinant E4,.

We obtain an analytic continuation of the series ¢4 as a integral ®,, (¢) and
draw the coamoeba.

s, (w)
_ c / F(Zl)F(ZQ)F(—Zl + BI)F(—Zl — 229 + ’)//)
5+iR2

(27Ti)2 F(—Zl — 2+ O/) (_wl)_zl(_WQ)_Z2dZ-

Here ¢ = T'(7/)/T'(a/)T(B'), and w = (w1,w2) = (a"2ed,a b~ ce). We assume
that o/, 3/ > 0 are real, positive and that §’ = (§;,d2) € R™ is any point of the
polygon {(z1,22) € R? : 21 > 0,0 < 22 < 3,211 + 72 < a}. For any other

choice of parameters o, 3’ € C one has to make a deformation of the contour
6 +iR2.
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FIGURE 23. Coamoeba of the principal A-determinant Ea4,.

11111
As=(11 0 1 0 O
001 21

We select a B-matrix

Bs

Il
|
O~ N =N
|
— O R

This gives the series

aa+2m+nb,@—m—nc'y—2m—n

¢5:ZzzF(a~|—2m~|—n+1)F(ﬂ—m—n~|—1)l“(7—2m—n~l—1)

d™me"”

Z m+n 2m+n mtn
- 7
2m+nm'n'

2

where s¢ = a b~ led and tg = ac%e.

The principal A-determinant is given by

Ea,(a,b,c,d,e) = abede(4bd — €?)(bc? — ace + a*d).4
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We draw the correlated amoeba and coamoeba of the dehomogenized principal
A-determinant,

Fa,(1,1,1,d,e) = de(4d—e?)(1 —e+d) = 4d%e — 4d*e* +4d3e — de® + de* — d?e?.

FIGURE 24. Amoeba of the principal A-determinant E 4.

111 1 1
Ag=| 1 1 0 0 0
01 2 10
We select a B-matrix
~1 -2
1 2
Bg=|-1-1
10
0 1

This gives the series

aa+m+nb,8—mc'y—m—2n o

¢6:ZF(a—l—m+n—|—1)1“(ﬁ—m+1)F(7—m+2n+1)d ¢

z3
m+2n m+n mt
- E 59
m+2nm'n'

where s5 = a " 'bc™1d and t5 = a " 2b%c " Le.
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We get the principal A-determinant
Ea,(a,b,c,d,e) = abce(4ce — d?)(b*e — abd + a*c).
We draw the correlated amoeba and coamoeba of the dehomogenized A-determinant

Fa,(1,1,1,d,e) = e(de — d*)(e — d + 1) = 4¢3 — 4de® + 4e* — d*e* 4 de — d’e.

FIGURE 25. Amoeba of the principal A-determinant E 4.
1 1 1 1 1
A= 0 1 0 1 0
01 1 0 2
We select a B-matrix

By

Il

O ===
|

= o N O =

This gives the series

(b _ Z aa—m—i—nbﬁ—mc'y—l-m—Zn
T Na—m+n+1DI'BE-—m+1I'(y+m—2n+1)

2
zy

d™e”

_ Z (a )m—n(/@m?'r:ﬁ('y )—m+2n s,

z3

where s7 = a b~ led and t7 = ac%e.
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We have the principal A-determinant
Ea, = abede(4ae — ¢*)(ab® — bed + d?e).

We draw the correlated amoeba and coamoeba of the principal A-determinant
with the variables corresponding to the points «a, 3,7 set to 1,

Fa,(1,1,1,¢,d) = de(4e—1)(1—d+d?%e) = 4de?® —4d*e?* +-4d>e® —de+d?e — d>e?.

FIGURE 26. Amoeba of the principal A-determinant E4,.

11111
As=|1 0 0 1 0 1
21 0 01
We select a B-matrix
1-1
-2 1
Bg=| 0-1
10
01
This gives the series
aa+m—nbﬁ—2m+nc'y—n
¢s = ZF(a~|—m—n~|—1)F(ﬁ—m+1)f‘(fy—n~|—1)dmen
z3
_ Z (@) —mtn(B)2m=n(V)n
= Sg g,
m!n!
z3
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where sg = ab~2d and ts = a~lbc Le.
We have the principal A-determinant

Ea, = abede(4ad — b?)(de? — bee + ac?).

We draw the correlated amoeba and coamoeba of the principal A-determinant
with the variables corresponding to the points «a, 3,7 set to 1,

FEa,(1,1,1,d,¢) = de(4d — 1)(de* — e + 1).

FIGURE 27. Amoeba of the principal A-determinant E 4.

We permutate the vectors in A one last time and get

11 1 1 1
Ag=1 0 0 1 1 0
02 1 0 1
We select a B-matrix
1 -1
1-1
Byg=1|-2 0
2 0
0 2
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This gives the series

a 2 T2
e dm’l’L
%o ZF(O(—%—%—Fl)F(,@%—ﬂ—ﬂ%—l)F(’y—m%—l) ¢

23

and

A _1m+n a 2 2 d™me”
h=2_(-1) Ta-Z -2+ DB+ 2-2+0)I(y—m+1)" *

where sg = sy = Vbd?/vVac? and tg = tj = e/\/ab. We have the principal
A-determinant
E ., = abcd(4ab — €?)(ac® — cde + bd?).

We draw the correlated amoeba and coamoeba of the A-discriminant with the
variables corresponding to the points «, 3,y set to 1,

Ea,(1,1,1,d,e) = d(4 — e*)(1 — de + d*) = 4d — 4d*e + 4d> — de* + d*e® — de?.

FIGURE 28. Amoeba of the principal A-determinant E 4, .
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1.6.2 Laurent-Puiseux series

Let us again consider a particular amoeba, for example the one generated by
the A-discriminant E4,, that we picture again below in Figure 11. In this case
we had the polynomial f = d + ex + ay + bxy + cy®>. We draw again the New-
ton polytope of this polynomial and write out explicitely to each triangulation
the vertex monomial in the principal A determinant that the triangulation is

bijectively linked to.
c
a b
d e

FIGURE 29. The Newton polytope and the complex variables a,b, c,d,e.

de? d®e de?

FIGURE 30. The bijective correspondence between the triangulations of the Newton polytope
and the vertex monomials in the principal A-determinant E4,.

d%e d?ed

We draw the secondary polytope, with all its integer points and all the
normal cones at the vortex points.
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FIGURE 31. Secondary polytope for Q.

As we have seen, each hypergeometric series is associated with a certain
simplex occuring in one or several of the triangulations of the polytope @. The
conclusion of Theorem 1 is that the convergence domain for a hypergoemetric
series is, under the invers logaritmic mapping, the components of the amoeba
complement that contain the normal cones at the vertices in the secondary
polytope, that are associated with the triangulations that contain this simplex.
We illustrate this by the picture in Figure 32.
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FIGURE 32. Amoeba and the triangulations of Q placed in the correlated
components of the amoeba complement.

We list the Laurent-Puiseux series below. The convergence domain of the
series &; is the complement componenent related to the simplex numbered 4
under the invers logarithmic mapping. See Figure 32 and Figure 21.

aﬁ m—n b'y—m+n cm o dn eoz-l—m—n
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Z —mtn (B )man(Y )m—n ST

m!n!
where s; = a~'b~lce and t; = a~'bde~!, and the constant C = —73a“b?cT(—a)T(—B)T(—7).
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where so = a 2cd, and ty = a b lce
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where s3 = a/Ved and t3 = (bV/d)/(ey/c).
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where sy = bda"le 'd and t4 = a"2cd.
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z3

where sg = sy = v/ce/(V/db) and tg =t = a/v/cd, and K is some constant
term.
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Chapter 2

Integral representation of
holomorphic mappings on
fully nuclear spaces

Summary

We obtain the following integral representation

f(2) = [E e (f 0 D)(w)dpuy (w)

!
B

for all z € E, a fully nuclear space with basis, where 1 and + belong to Eé,
n/v € {1, f is a holomorphic function of n-exponential type on E, p- is a
Gaussian measure on Eﬁ,, and D is a densely defined diagonal mapping from E;,
into E.

2.1 Introduction

The Cauchy integral representation formula has no true analogue in infinite
dimensions. We will find in this paper a generalization of a related formula to
certain infinite dimensional spaces.

It is known that for functions in Fischer-Fock space of entire functions

(rem@): [ IfPau< o),
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where dy = 7~ "e~1?”d)\ and A denotes Lebesgue measure, one has the integral
representation formula

n

flzy=="" f(w)ez'w_‘w‘2d)\ = w_"/ e f(w)dp.
(C’n
Clearly, entire functions of exponential type, i.e. satisfying
f(2)] < AePIIFl

for constants A and B and some norm || - ||, belong to Fischer-Fock space.
We will see that for holomorphic functions of n-exponential type this integral
representation is possible to extend to being valid in infinite dimensional spaces
of a certain kind; the so called fully nuclear spaces with a basis.

The same formula has been generalized to Banach spaces by Pinasco and
Zalduendo [6, 5], using Gaussian measures and abstract Wiener space exten-
sions of Hilbert spaces. The approach used in this paper will be much inspired
by the one in [6, 5] although in dealing with fully nuclear spaces we will need a
different method for extending Gaussian promeasures to a measure on infinite
dimensional space. The necessary method is found in Minlo’s Fourier transfor-
mation characterization of Gaussian measures, see [1].

2.2 Holomorphic functions on infinite dimensional
space

We first define the concept of holomorphic functions in an infinite dimensional
space.

Definition 8 A function f : U C E — F where U is a finitely open subset
of a vector space E over C and F is locally conver space, is Gateaux or G-
holomorphic if for each £ € U,n € E and ¢ € F' the C-valued function of one
complex variable

A= @o f(E+ An)

is holomorphic on some neighborhood of 0 in C. We let Hq(U; F) denote the
set of all G-holomorphic mappings from U into F and write Hg(U) in place of
He(U;C)

The concept of Gateaux-holomorphic functions will not always be enough
to satisfy our needs. Note that in the definition above we did not use any
locally convex structure on the domain. Doing so now, we define holomorphic,
or Fréchet-holomorphic functions.
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Definition 9 If E and F are locally convexr spaces over C, and U is an open
subset of E then f : U — F is holomorphic if f € Hg(U; F') and f is continuous.
We let H(U; F) denote the set of all holomorphic mappings from U into F and
write H(U) in place of H(U;C)

In other words a function f is holomorphic if it is continuous and its re-
striction to each finite dimensional subspace is holomorphic in the traditional
sense.

In this paper we will exclusively deal with entire function f : £ — C in
which case we can somewhat simplify the more general notation above. The
function ¢ in Definition 8 will then be superfluous.

2.3 Topology on spaces of holomorphic mappings

Throughout this paper by a locally convex space is meant a topological vector
space over R that is Hausdorff and locally convex. The topological dual of
a locally convex space E will be denoted by E’, and the algebraic dual by
E*. Furthermore we denote by Ej = (E', B(E', E)) the strong dual, the dual
equipped with the strong topology 3.

Definition 10 Let U denote an open subset of a locally convex space E and let
F be a locally convex space. The compact open topology (the topology of uniform
convergence on the compact subsets of U ) is the locally convex topology generated
by the semi-norms

Pa, i (f) := || flla,x = sup a(f(x))
reK
where K ranges over the compact subsets of U and o over the continuous semi-
norms on F. We denote this topology by 9.

Definition 11 Let U be an open subset of a locally convex space E and let F
be a normed linear space. A seminorm p on H(U; F) is carried by the compact
subset K of U if for every open set V, K CV C U, there exists ¢(V) > 0 such
that

p(f) < cW)IIfllv

for all f € HWU; F). The 7, topology on H(U; F) is the topology generated by
the semi-norms carried by the compact subsets of U.

Definition 12 Let U be an open subset of a locally convex space E and let F
denote a normed linear space. A semi-norm P on H(U; F) is 75 continuous if
for each increasing countable open cover of U, (V)52 ,, there exists a positive
integer ng and ¢ > 0 such that

p(f) < dlflva,
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forevery f € H(U; F). The 1s topology on H(U; F) is the locally convex topology
generated by the T5 continuous semi-norms.

Now if E and F' are locally convex spaces and U an open subset of F, we
have on H(U; F)
T0o < Tw S Ts-

Definition 13 Let U denote an open subset of a locally convex space E and
let F be a complete locally convex space. The [-topology on H(U;F) is the
topology of uniform convergence on the bounded subsets of G(U) = {¢ € H(U)* :
@ is 9 continuous on the locally bounded subsets of H(U)}.

Clearly
0 < B < 7.

Again these definitions are given in a more general context than what will be
used in this paper, since we mainly deal with entire functions on a locally convex
space into C. Furthermore we will mainly be concerned here with the topologies
used on the dual of a fully nuclear space. The topologies 75 and 7, is only used
on H(U; F). Conveniently, since we are dealing with fully nuclear spaces where
a closed bounded set is compact, the topology 7y and the strong topology will
coincide. We will further discuss the topologies on fully nuclear spaces with
a basis in the next section and also continuously specify what topology we
consider.

2.4 Nuclear and fully nuclear spaces

Nuclear mappings were first considered by R. Schatten and J.Von Neumann
in investigating the question of which continuous linear mappings of a Hilbert
space determine a meaningful trace. The extension of these ideas to Banach
spaces led A. Grothendieck to defining the concept of nuclear mappings. He
also later introduced the notion of nuclear locally convex spaces.

Definition 14 A barrelled locally convex space is a space satisfying one of the
following equivalent conditions.

(i) If W is a closed convex balanced absorbing (if x € E there exists X > 0 such
that \x € W) subset of E then W is a neighborhood of zero.

(13) All lower semi-continuous semi-norms on E are continuous,

(131) The point-wise bounded subsets of E' are locally bounded or equicontinuous.

Fréchet spaces are barrelled (but not all metrizable locally convex spaces).
Arbitrary inductive limits of barrelled spaces are barrelled.
In particular (P("E, F), 1, ), the space of all n-homogeneous polynomials equipped
with the carried topology, is barrelled when FE is any locally convex space and
F' is a Banach space.
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Definition 15 An infrabarrelled locally convex space is a space satisfying one
of the following equivalent conditions.

(1) Every closed convex balanced subset of E which absorbs bounded subset is a
neighborhood of zero.

(11) Strongly bounded, i.e. B(FE’, E)-bounded, subsets of E' are equicontinuous.

Barrelled spaces are infrabarrelled.

Definition 16 Let E and F be locally convez spaces.

a) L € L("E; F) is called a nuclear n-linear mapping from E into F if there exist
a conver balanced zero neighborhood U in E, a bounded subset B of F', (A)72, €
I and sequences ¢35, i=1,...,n and (yx);2, where (¢;x) € U’ for all i and
k and yi, € B for all k such that L(z1,...,%n) = > peq Me1,k(21) - o . e (20) Y
for all (z1,...,2,) € E™.

We let Ly("E, F) denote the space of all nuclear n-linear mappings from E
into F.

b) P € P("E,F) is called a nuclear n homogeneous polynomial if there ex-
ists a convexr balanced zero meighborhood U in E, a bounded subset B of F,
(Me)P2, € Ui and sequences ()™ C U’ and (yx)72, € B such that P(x) =
ey Adr (2)ys for every x € E™.

Taking n = 1 in Definition 16 a) we obtain the definition of nuclear linear
mapping between locally convex spaces.

Definition 17 A locally convexr space is nuclear if L(E;F) = Ly(E;F) for
every locally convezx space F, where L(E; F) are all the continuous linear map-

pings from E to F, and Ly(E; F) are all the nuclear linear mappings from E
to F.

Definition 18 A locally convex space E is fully nuclear if E and E;, are both
complete infrabarrelled nuclear spaces.

Definition 19 A sequence of subspaces {Ey}y of a locally convex space E is a
Schauder composition of E if
(a) for each x in E there exists a unique sequence of vectors (Tp)n, Tn € Eyn for

all n, such that
o0 m
T = an = 77}E}mooz:lcn
n=1 n=1

(b) the projections (un)S2, defined by

oo

um(z Tp) = Z T,

are continuous.
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A Schauder decomposition {E,}, of E is an absolute decomposition if for each

p € cs(E) . N
Q(Z xn) = ZP(CCn)

defines a semi-norm on E. If each E, is one-dimensional and {F,}, is a
Schauder decomposition of E we say that E has a Schauder basis. In this
case any sequence (T, )n, T, # 0 and x,, € E,, is a Schauder basis for E.

Let E be a fully nuclear space with a Schauder basis (e,),. Then E can in
fact be identified with a sequence space A(P) where P is a collection of weights
(non-negative sequences), i.e.

o0

A(P) = {(zn)n eC": Z |zn|om < oo for all (an)n € P}.

n=1
The topology of A(P) is generated by the semi-norms

oo

[(@n)nlla,1 = Z |Zn |an,
n=1
where (z,,)n, € A(P) and o := (an), € P. In identifying F with A(P) we

may take P to be {(p(en))n} 5 According to the Grothendieck-Pietsch
pecs(E

criterion for nuclearity A(P) is nuclear if and only if for each (o), € P there

exists a (3,)n such that 3, > a, for all n and }_ a0 %—" < 00. When A(P)

is nuclear its topology is generated by the semi-norms

I[(z)n] |a,oo := sup |Tn|op.
n

Subsets of A(P) of the form
{(zn)n € A(P) : sup |2,|8, < 1|}

or

{(zn)n € A(P) : S:plznlﬂn <1[}

is called polydiscs. If E = A(P) is a fully nuclear space with basis then the
dual (also a fully nuclear space with basis) Ej is identified with A(P’) where

P = {(lann}(acn)nGA(P)'
The most important spaces in the category of nuclear locally convex spaces
are spaces of infinitely differentiable functions. In fact when A. Grothendieck

first introduced the concept of nuclear spaces this originated from the study of
the spaces £ and D, see the examples below.

Some examples of fully nuclear spaces with basis are the following. The
topology considered is the usual topology of uniform convergence on compact
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sets.

Fréchet nuclear spaces with basis and their duals are fully nuclear spaces

1) H(C™), i.e. the space of entire functions on C".

As we have mentioned fully nuclear spaces are reflexive, hence another example
would be the dual space: H'(C™), the space of analytic functionals.

2) S(R™), the space of all rapidly decreasing complex-valued C* functions on
R™.

S’'(R™) the space of tempered distributions.

3) E(R™), the space of all complex-valued C*° functions on R™.

E'(R™), the space of distributions with compact support.

4) D(R™),and the space of all complex-valued C'*° functions with compact sup-
port.

D'(R™), the space of distributions.

Furthermore the set of fully nuclear spaces are also closed under countable prod-
ucts and direct sums. Here we get of course the complex analogue of the real
spaces above by complexifying them, i.e. S(R™) +iS(R") ete.

Whereas the most important non-Banach spaces that arise naturally are fully
nuclear spaces, note that the only nuclear Banach spaces are finite dimensional
spaces.

2.5 Promeasures and measures on a locally con-
vex space

Lebesgue measure plays a fundamental role in integration theory in R™. Recall
that this is uniquely defined by the following conditions:

a) Tt assigns finite values to bounded Borel sets and positive numbers to non-
empty open sets.

b) It is translation invariant.

In trying to apply Lebesgue measure to infinite dimensional spaces we will im-
mediately face some difficulties. The Borel field on R™ is the o-field generated
by all open (or closed) subsets of R™. In going to infinite dimensions we will
find it necessary to instead make use of a smaller o-field and we will therefore
introduce the o-field of cylindrical Borel sets. Still, restricting ourselves to this
o-algebra, it can be shown for any measure that b) will fail to be satisfied. Hence
extending Legesgue measure to infinite dimensional spaces fails.

Given E a locally convex space we let F(E) denote the set of all closed
subspaces of E of finite codimension. Hence V' € F(FE) if V is a closed subspace
of Eand E = V @&V for some finite dimensional subspace V of E. V is not
unique but the dimension of any such Vis uniquely determined. If V € F(E)
then E/V is finite dimensional and isomorphic to V.Letpy : E— E /V denote
the canonical mapping into the quotient space. The Borel sets in E/V, B(E/V)
are generated by the open subsets of the finite dimensional space E/V.
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Definition 20 The collection of all (p;/l(B))VeF(E),BeB(E/V) are called the
cylindrical Borel subsets of E.We denote this collection by Be(E).

We state the following:

1) Be(E) is a field of subsets of E.
2) B¢(E) is a o-field < dim(E) < co.

We place a partial order on F'(E) by using set inclusion. If V and W are two
elements in F'(F) such that W C W, we denote by pyw the mapping of E/W
into £/V deduced from the identity mapping of E by passage to the quotients.
We have the following diagram.

E—2% B/W

\QL&W

EJV

By an inverse system of topological spaces we mean a family (T3, p;;) indexed
by the nonempty set I equipped with the preorder relation ¢ < j, where T; is a
topological space and p;; is a continuous mapping of T} into T; for ¢ < j. Let
I’ = (T3, pi;) be an inverse system of topological spaces indexed by I. One calls
inverse system of measures on I a family (p;);c; where p; is a bounded measure
on T; for all ¢ € T; for all i € I, and where p; = p;;(p;) for i < j.
With this notation the family £(F) = (E/V,pyw) is an inverse system of
locally convex spaces, indexed by F(E). We call it the inverse system of finite-
dimensional quotients of E.

Definition 21 One calls a promeasure on E every inverse system of measures
on the inverse system of finite dimensional quotients of E.

Now let A be a bounded measure on E. For every V € F(E), let us denote by
Av the image of V' under the canonical mapping py of F onto E/V. It is easy
to see that the family A= (XV)VGF(E) is a promeasure on FE. We say that A
is the promeasure associated with the measure A\. Also A and A has the same
mass.

Let E be a locally convex space and 1 = (uv)vep(g) @ promeasure on E.
For every continuous linear form z’ on E we denote by p,s the measure on R
that is the image under 2’ of the promeasure p on E. The Fourier transform of
i is the function Fu on E’ defined by

Fue) = [ e
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Let A be a bounded measure on E. The Fourier transform of ) is the function
on E’ defined by
(FN () = / ¢ gA(2).
E
Let p be the promeasure associated with X\. For every 2’ € FE the measure

iz on R is the image under 2’ : E — R of the measure A on E. We deduces
immediately that Fu = FA.

Proposition 4 Let E be a locally convexr space . For every positive quadratic
form Q on E' there exists one and only one promeasure I'q on E such that
Flg = e~Q/2. The total mass of I'g is equal to 1.

Definition 22 Let E be a locally convex space. For every positive quadratic
form Q on E', the promeasure on E whose Fourier transform is equal to e~ %@/?
is called the Gaussian promeasure on E whose Fourier transform with variance
Q, and is denoted I'g. A promeasure i on E is said to be Gaussian if there
exists a positive quadratic form Q on E' such that p=Tqg

Theorem 3 (Minlo’s) Let E be a fully nuclear space with basis. If (uv)ver ()

is a promeasure on I then (v )yep(g) is a measure if and only if F(pv)ver(p)
18 continuous.

2.6 The integral formula

We let
o0 oo o0
/ _
<E Zn€n, E wpe,) = g ZnWn,
n=1 n=1 n=1

denote the dual pairing between F and E/B We may also use this dual pairing
to define a fundamental system of semi-norms on Ej if 33, Be;, € Ej; then
Yoo Znen € E — 307 | |Bnzy| defines a continuous semi-norm on E and if
we consider all such semi-norms we obtain a fundamental system of semi-norms.
We shall always suppose that E is a complex space and denote by Egr the space
E with its underlying real structure. If we let e,. = ie,, where i = /=1, then
it is easily seen that (e, €ms)nm=1 15 an absolute basis for Er. Moreover, the
complexification of Eg is isomorphic to £ x E. If fo:l Znen € E then there
exists Y07 | 2l e, € E such that (|z,]/]2,])52, € 4.

By [3] the monomials form an absolute basis for H(E), the entire functions
on E, with respect to any of the usual topologies, including the compact open
topology 79, whenever E is a fully nuclear space with basis. If § := (,,)22; and
z = (2zn)pe, are sequences of complex numbers we let

0o
Izlle = lzal - 16n] = [16]-
n=1
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We refer to [3] for further detail on fully nuclear spaces with basis and the theory
of holomorphic functions on these spaces.

A holomorphic mapping f € H(E) which satisfies any of the equivalent
conditions in the following proposition is said to be of n-exponential type.

Proposition 5 If E is a fully nuclear space with basis, n, > 0 for all n, and
S e € Ej then the following are equivalent conditions on f € H(E):

(a) f(z) == 3 enom amz™ € H(E) satisfies |ap| < ab™n™/ml for some
a,b>0 and all m e N,

(b) f = Zflo:o P, where P, is a continuous n-homogeneous polynomial for
eachn and | P, (2)| < cd"[|z|[/n! for alln and all z € E and some ¢,d > 0,

(c) |f(2)] < AeBIzlln for all 2 € E where A, B are positive constants.
Proof. If (a) holds then for all n

|Pn(2)] < Yo laml- 127

meNM |m|=n

< ab™ Z n™|z™|/m!

meNWM |m|=n

ab™ ||zl /nt.

and (a) implies (b). If (b) holds then

oo % 4nl 2|
FEI< D IPaz) < e il ,H" < cellln
n:
n=0 n=0

and (b) implies (c).

Suppose (c) holds. For any sequence of positive scalars («;)$2; the set
D = {(z)" : |z| = ai/mi,i = 1,...,n} is the distinguished boundary of
the compact polydisc {(z;)i; : |z:| < a;/miyi=1,...,n} and

sup{||z|l, : z € D} = sup{>_ |ziln; : |z = ai/mi} =D .

i=1 i=1

If m = (ma,...,my) € N then, using Cauchy estimates, we have
a™ n
—am| = llamz"lzepy < [1f(2)ll(zepy < AeP5Plllzln=El} < geB 2izi o,
n
Hence
eBOt»;
m
ol <207 T )
1<i<n ?
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and on letting a; = m;/B we obtain

Be)™i Be)mi
lam| < An™ H (m")% < An™ H % < A(Be)l™ly™ /m).
1<i<n i 1<i<n v

Hence (c¢) implies (a) and this completes the proof.
O

Let E denote a fully nuclear space with basis over C. We identify, we;- =
(z + iy)e; € Ej with ze + yel, € (Ej)r and ze; := (u + iv)e; € E with
ue; +vjej. € Eg for z,y,u and v in R. If Q : Erp — R is a positive, that is
Q(z) > 0 for all z € Eg, continuous quadratic form then by a result of Minlo,
see Proposition 4, p.76, and Corollaire p.92 in [1], there is a Gaussian probability

measure £ on Ej such that for all z € E

FOIE) = [ e du(u) = e

The mapping F(u) is called the Fourier transform of p.

Lemma 1 If (e,)2; is an absolute basis for the fully nuclear space E and
(Yn)52q is a sequence of non-negatwe scalars such that Y, | ynel, € Ej then

QO i Tnen + D Ymems) = D omey V2 (22 + y2) defines a continuous posi-
tive quadratic form on Er. Moreover, if ., is the Gaussian measure on (ER)Q,

such that F(py) = e~Q/2 then for any cylindrical Borel set B with base in the

subspace of (ERr)j; spanned by (€ €hne)k iy we have

1 _ sk ThtvR
(B = e [T dndy - dad
B
ik _ k \wn\2
= m/e =toan d’wldmld’LdeEk
R B

Proof. Since ~, > 0 for all n, @ is a positive quadratic form. If > 7 | y,el, € Ej
then, by nuclearity, we can find a sequence of positive real numbers (4,,)5; such
that 327 1/0, < oo and >, dpyne;, € Ejy. By duality V:= {3777 | znen €
E :sup,, [0nYnzn| < 1} is a neighborhood of zero in E. Since

Z sup{y2(z2 +42) : Z Tnen € KV, Z YmEms € KV} < 2k2 Z 6,2 < o0
n=1 n=1 m=1 n=1

for all positive integers k, @ is the limit, uniformly over kV, of the sequence of
continuous positive quadratic forms

00 00 l
Ql(z Tpen + Z YmCmsx) = Z Vi(xi + yi)
n=1 m=1 n=1
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Hence @ is continuous and by the result of Minlos, quoted above, there ex-
ists a Gaussian probability measure p such that F(u) = e~@/2. The proof is
completed by noting that dzdy = idzdz/2.

With the above notation we have the following result.

Lemma 2 Let Y| yme, € Ejy where v, > 0 for all n. Let (0,)52, denote a
sequence of real numbers and suppose 1 < p < co. If Y7 | |0, ]y, < oo then the
mapping Ej > S0 wyel, — ellvlle belongs to £P ().

oo

Proof. We have |ell“llo|p = P 2nzi [0nl-lwnl Tf g, Eysw=73"" wne, —

ePXn=1l0nllwnl then the sequence (gi)52, is increasing and it suffices by the
Monotone Convergence Theorem to show limy_,oo [ g 9kdpiy is finite. On let-
5

ting ¢ = p/2 we have

ik k \wn\z
? k . - n=
[ i) = oy [ erTha bl S g, - i,
E, @m)E (- w)? Jor
k . [wp |2
- H v /ePI(’nI'Iwnl*#dw dw
- 2 n n
o 2™ Je
k. 210, 1242 2
ieq 10nl v, — 2 (Jwn|—q|6n]y2
= T [ ) gy,
o 2mm Je

1

k 00 2\ 2
= 62’::.:1 q2|0n|273 H LQ / QSe_ﬁ (S—qwnh’n) ds
n—=1 Tn Jo

k 2 2.2 k o0 2
I > SN H/ oo (r=alnlr)” 4.
n=1"0
We now consider the integral

f(a) :=/ 2re= (=) gy
0

as a function of & > 0 on the interval [0, 1]. We have f(0) = 1 and, by the Mean
Value Theorem, for 0 < o < 1 and r > 0,

where r — a < r, < r. Hence

,r2

e—(r—a)2 _ 6—7‘2
—‘ = 2rpe "«

(r—a)—r

2a ifo<r<i

7(7“70()2_ 2 < —
e e < 2ag(r): { 2are==D* ifr>1
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and

[f(a) = f(O)] < /000 QT‘e_(T_O‘)2 - e_r2‘dr < da /OOO rg(r)dr.

As the function r — rg(r) is integrable, the constant C := 4f000 rg

finite and | f(a) — f(0)] < Ca for 0 < o < 1. This implies

D 1 (@lOnlrm) = FO)] < Cq Y [0ulyn < o0
n=1

n=1

and hence [])7, (1 + (f(gl0n]ym) — £(0))) < co. We now have

. Sr ol TT [ are (r-altnn)’
lim grdpy = esn=1%11"n %H 2re T
k—o0 EIB n=170
oo
=) 2 2.2
< eEn:lq 10717, H f(Q|9n|’7n)
n=1
< o0.

This completes the proof.

We shall also need the following result (see Lemma 2.1 in [6]).

Lemma 3 ) .

e _ mIy difm=m

/E/ W dpy = { 0 otherwise

5

Proof. If m = (m1,...,my) and m’ = (m/,...,m},) then
m m/d Zk m=—m' _Ek 1 \wg\Qd d_
w™w L wwme TN R dwidw
/Elg o (2m)" (y1 -+ - yx)? /@c o

o7

(r)dr is

- - dwy dwy,



and this is 0 if m # m/. If m = m’ then

/ W™ dp, =
5

|w|2m"e Wn dwd_

[N}
3=
T
S—

m2+y2

(z2 +y>)™re R dady

2

ane W2

T rdr

oo
/ u™ e "du
0

Il
= u,':]?r =
| o
O\ \

3
Il

Il
—
2
[V
3
3

n=1
= A2mpl
O
The following is the main result in this paper.
Proposition 6 Let E denote a fully nuclear space with basis (e,)22, strong

dual E' and dual basis (e),)p>q. Let 30" nae), belong to B, 77" >0 for all n,
and suppose f € H(E) is of n-exponential type. Let 3" | yne;, € Ef, yn >0
all n, be chosen so that Y o> | Mn/Vn < 0. If D : Ej; — E denotes the densely
defined linear operator D(30° | wpel) = > o0 ¥p wnen and p, denotes the
measure on E’B that we have previously associated with v then

£ = [ e (f o D)) ) (21)

B

forall z € E.

Proof. Let f(z) = >, cnyon amz™ for all z € E. By our hypothesis there
exist a > 0 and b > 0 such that |a,,| < ab™n™/m! for all m € NV, Since

Yo laml - (D@)™] < a Y oy (w72 /ml (2.2)

meN®) meN®)
b|m\ 2\m
- Z |w|77’Y )
meNM)
— geblwl,,—2
and
o0
pOICCIR S
n=1 Tn n=1 In



Lemma(2) implies that the mapping
foD:E; —C
w — Z A - (D(w))™

meN®)

converges pointwise to an element in £P(p) for all p > 1.

If |z == 3007 |znlen € E and w:= 3777 | wpe;, € Ej then

-
|57 20w

< X laallunl = §° M _ ollwller (23)

m:

meN®)
and, since Y o2 | |zn| - n < 00, Lemma 2 implies that the mapping w € By —
eXn=11znl[@nl helongs to LP () for all p,1 < p < oco.
By Hoélder’s inequality the mapping
Ej 5w e - (f o D)(w)
is integrable and, by (2.2) and (2.3), we may integrate term by term to obtain,

using Lemma 3,

’ ’

/ e(z,w) . (f o D)(w)du.y(w) — / Z Zmi?'am(D(w))md,UfY
% 5 m/ ,meN® "

’

m
Am 2 _ e
E -y 2m wmwm dlufv
m" ’

m/ ,meN®m) ) 8

m
am?z —2m 2m

= 2 o mb
m.

This proves (1) and completes the proof.
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