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Notations

e We use the standard notation C for the field of complex numbers,Z
for the ring of integers and N for the set of natural numbers.

o A, =C<x1,....,2n,0z,, ..., 0y, >, the ring of differential operators of
the polynomial ring C[zq, ..., x,].

e For multi-indices a = (aq,...,a), 8 = (B1, ..., 3n) € N, by 2%9° we
mean :E‘f‘l...a:%"agll...@f;‘ and the degree of z9° is
deg(x®0%) = oy + ... + o + B1 + ... + u.

e For P = Ea,ﬁeNn aaﬁma(‘)ﬁ € A,, the degree of P is
degP = max{deg(x*9”) : a, 5 # 0}.



1 Introduction

Let o, ...,y be linear forms defined on C"™ and X = C"\ U™,V («;), where

V() = {p € C" : ;(P) = 0}. Then the coordinate ring Ox of X is
m

the localization C|x],, where & = ][] ;. The ring Ox is a holonomic A,,-
i=1

module, where A,, is the n-th Weyl algebra and since holonomic A,,-modules

have finite length, Ox has finite length. We consider a ”twisted” variant of

this A,-module. Defining MZ to be the free rank 1 Clx]q-module on the

generator o, where o = af Lo and the multi-index B= (01, 0m) €

C™, we can give it a structure as an A,-module in the following way. Define

the actions of the generators of A,, as follows:

e Lo _ TP s
a’ a’
fori=1,2,...,n and

p p p
aj'gaﬁzaj(g)a%rgaj(aﬁ)

where

(0% = >0 2 o
i=1 !

for j = 1,2, ...,n. Clearly these relations mean that o® behaves as the cor-
responding complex function is defined on the complement of the union of
the hyperplanes.

The Ap,-module M is a holonomic module (Theorem 1) and hence it has
finite length with decomposition factors that have support on the interse-
tion of the hyperplanes defined by the linear forms (Proposition 9). It seems
difficult to calculate the number of these decomposition factors in general.
It has been done for the case § € Z™, (see [5]) and our main result in this
paper is a computation in the case n = 2. Our methods are algebraic, in
particular we calculate the As-annihilator of a®. Along the way we prove
that the module is irreducible in the generic situation.

2 Preliminaries

2.1 Definition of the module M?
Let o; : C" — C, i = 1,2, ...,m such that,
Oéi(afl, ,.%'n) = Zaijxj,a,-j eC
j=1

be linear forms and H; be the hyperpane in C" defined by «;, that is,
H; ={P e C": o;(P) = 0}. If welet X = C™\ U", H;, then the coordinate



m
ring of X is the localization Clz1, ..., Zy]q, where a = [] «, that is, the ring

i=1
of rational functions of the form 2, where p is a polynomial in C[z, ..., zy].
Since rational functions are preserved by partial differentiation and multi-
plication by polynomials, C[z1,...,2,]s is an A,-module, where A,, is the
n-th Weyl Algebra. Consider for varying values of the complex parameters
0B1, ..., Bm, the function

of = afl...aﬁb’”.

Here = (1, ..., Bm) and we will throughout this paper use the above multi-
index notation. Also we will use C[z] instead of Clx1, ..., zy].

Definition 1. The module MY is the free rank 1 C[z]o-module on the
generator o’. We can give Mg a structure as an A,-module in the following
way. Define the actions of the generators of A,, as follows:

0 LB _ Tl
a’ a’

for i = 1,2, e and
p p p
Z?j [ ] —T()éﬁ = @(—T )aﬁ + —T(‘)](aﬁ)

where
(i)
(A8 — ) B
aj(a )—;ﬁz ]Oéi «

for j =1,2,...,n.

The verification that Mg is an A,,-module is left to the reader.
The problem which we consider in this paper, and solve in some cases is to
find the number of the decomposition factors of Mg . We will throughout
this paper use the notations DF(MQ) for the set of decomposition factors of
Mg and C(Mg ) for the number of decomposition factors of M§.

2.2 The simplest example

This is clearly the Aj-module M7 = C[z],2?, that is the case where m =
n = 1. We have the following result, which we do in detail as a preparation
for later results.

Proposition 1. (i) If 8 € Z, then ¢(MS) = 2.
(i) If B € C\ Z, then ME is an irreducible A;-module, so c(ME) =1.
Proof. By definition M/ = Clz]p2® = @iezCaPH.

(i) If B € Z, then clearly M{ = C[z],. Consider the submodule C[z]. First
we are going to show that C[z] is irreducible. Suppose 0 # f € C[z] and



consider the submodule A;f of Clz|. Let m be the degree of f and a be
its coefficient. Then 97" f = mla is a non-zero constant in the submodule
generated by f. Since a non-zero constant generates Cz], then Clz] C A;f.
But f was an arbitrary element. This means C[z] is irreducible. Again we
consider the Aj-module C|z],/Clz] and show that it is irreducible. Clearly
the module is generated as an Aj-module by the class of = modulo C[z].
Let 0 # g € C[z],/C[z]. Then we may assume that all the terms of g have
negative degree. Let h be such that —h is the minimum of the degrees of the
terms of g. Then 2"~'g = bx~!, where b is the coefficient of the term with
degree —h. Since bz~! generates Clxz],/C[z], then C[z],/C[z] C A1g. But g
was an arbitrary element. This means that C[z],/C|z] is irreducible. So we
have a composition series 0 C Clz] C Clz], of M¥, and hence ¢(MF) = 2.
This proves (i).

(i) Suppose § € C\ Z. We have the formula

(20, — (B + )2 = (j — )2

k .
If f =3 ;2P € MP where ay, # 0, then
=0

k—1

[1=0. — (B +i)f = arklz®*.

i=0
So the monomial z°t*% € A; f. Now use the formulas
Dtk = (B+Ek)..(B+ Kk —i)aPThi (2.1)

and
x’ixﬁ"rk — xﬁ'ﬁ‘k"‘r’i (22)

If now 3 € C\ Z, then the coefficient in (2.1) is non-zero for all ¢ > 0
and hence z8tF=% ¢ A, f. (2.2) gives that 20+tF+7 ¢ A, f for all i > 0, and
so MP ¢ Aif. But f was an arbitrary element. This means that ME is
irreducible. This concludes the proof. O

2.3 A basic property of the module M’

In the following proposition we are going to prove a basic property of the
module Mg, which we will use later on.

Proposition 2. (i) Ma = MY, if # = v (modZ™).

(ii) MB = C[x|q, if B € Z™.

Proof. (ii) is a special case of (i). Suppose that 3 =~ + 7, T € Z™.

Define 6 : M2 — MY by:

0(%@6) = ﬂrofoﬂ
a a



Clearly this is a 1-1, onto map and it is an easy exercise to show that it is
an A,-module homomorphism. O

2.4 M? is a holonomic module

We are now going to show that our module MPZ is a holonomic module
and hence has finite length. For this we need the following definitions and
results. For details see [4].

Definition 2. Let M be a left A,-module. A family I" = {I'; };>( of C-vector
spaces is a filtration of M with respect to the Bernstein filtration B of A,
if it satisfies:

e [yCcIhCc---CM,
o M = U;>ol'y,

e B;I'; C TI'y4;, where B; is the set of all operators of A, of degree less
than or equal to 7 and

e ['; is a finite dimensional vector space.

It is known that a finitely generated A,-module M has a filtration of the
above type such that gr' M is a finitely generated grBA,,-module.

Definition 3. The dimension of the A,-module M is
d(M) = dimgs,, gr' M

for any filtration I' such that gr' M is a finitely generated grfA,-module.
Similarly the multiplicity m (M) of M is the multiplicity of gr' M as gr®A,,-
module. The A,- module M is called holonomic if d(M) =n or M = 0.

Since gr®A,, is polynomial algebra on 2n variables, this means that the
dimension d(M) of M is less than or equal to 2n. Bernstein's inequality
says that there is also a lower bound: d(M) > n.

Example 1. Since the dimension of C[z] as A,,-module is n, it is a holonomic
module. The dimension of A, as a left A,-module is 2n, so A,, is not a
holonomic module.

Proposition 3 (]2, 4]). (i) Submodules, quotients and finite sums of holo-
nomic A, -modules are holonomic.
(ii) Holonomic modules are finitely generated and have finite length.

We will use the definition in the following form. The proof of the follow-
ing Lemma can be found in [4].



Lemma 1. Let M be a left A,-module with filtration I' with respect to the
Bernstein filtration B of A,,. Suppose that there exist constants c1,cy such
that for j == 0

. cj” n—1
dimel; < — +coj" .
n!

Then M is a holonomic A,-module whose multiplicity cannot exceed c1. In
particular M is finitely generated, and has finite length.

We are now in a position to prove that Maﬁ is a holonomic module.
Theorem 1. The A,,-module Mg 1s holonomic.

Proof. Let m be the degree of a.. Set

I = {-ra”: g € Cla], degq < (m + Dk}

We first check, in detail, that I' = {T'x }x> is a filtration for M2, Let 2
- (0%

be an element of Mg , and assume that ¢ has degree s. Then

S

4 p_ 9% B
aka _ak-l-sa'

But go® has degree s(m + 1) < (m + 1)(s + k), and hence

q

JQB S Ps+k.

It follows that Mg is the union of all ', for k£ > 0.

Next suppose that %aﬁ € I'y. Equivalently degq < (m + 1)k. Multiplying
by z; increases the degree of ¢ by 1. Thus

2 Lo = T8 T 6 | P (2.3)

ik ok pYas

On the other hand

q q q
e 0,(a) — hadi(a)
q aoi\g) — rqo; &
81(3)04'6 = ak+1 056. (25)

The numerator in (2.5) has degree less than or equal to (m—+1)k+(m—1) <
(m+1)(k+ 1), so that

di(p)a” € Dy (2.6)

On the other hand

q = q , Oi(a)
J&'(aﬁ) = Z Jﬁj ozj] o’
=1

9



Now consider

q , 0i(e) 4
28 ab.
k™
Then o) Bi(a) L
_qiaj 8 _ _inéjOél...Oéj...am 8
Bj ok a” = fj pNEE] a.

The numerator has degree less than or equal to (m + 1)k + (m — 1) <
(m+1)(k 4+ 1). This implies

%ﬁj%ﬁj)aﬁ € ki1
and then .
Z %53’ 32'(()[0‘4]')045 € Iky1
j=1 !
Hence

4q
a ai(oﬁ) € Trit (2.7)
So (2.7) together with (2.6) means that

q
82‘(@045) €l

if a—qkaﬁ € I'y. This may be summed up as: BiI'y C I'y41. Since B; = Bi,
we also have that B;I'y C I';j1 .

Finally, the dimension of I'; cannot exceed the dimension of the vector
space of polynomials of degree (m + 1)k. This concludes the proof that
I' = {T'; }x>0 is a filtration of ME and shows that

. (m+1Dk+n
dimely, < ( " .

Since the term of highest degree in k of this binomial number is (m+1)"k" /n!

it follows that
(m + 1)k

+ ekt
n!

dimcIly <

for very large values of k. By Lemma 1, MPE must be holonomic module of
multiplicity less than or equal to (m + 1)", and has finite length. O
2.5 External products

In this subsection we will give the definition of external product of modules
which we will use later. We will start by considering external product of
algebras. For more details and some of the proofs see [4].

10



2.5.1 External products of algebras

Let K be a field of characterstic zero and A, B be K-algebras. The extenal
product A®B is the tensor product A ® ¢ B on wich we define a multipli-
cation. For a,a’ € A and b,b" € B, let

(a®b)(d ®b)=ad @bb

It is easy to check that A ®x B with this product is a K-algebra Let
Klz] = k[z1,...,x,] and k[y] = Kly1,...,ym] be polynomial rings. Write
K|z, y| for the polynomial ring on x1, ..., Tn, Y1, ..., Ym- Let A, be the Weyl
algebra generated by x1,...,2p,0z,,...,0,, and A, the Weyl algebra gen-
erated by y1,...,Ym, Oy, , ..., Oy,,. Both are subalgebras of A,,;,, the Weyl
algebra generated by x1,...,Zpn, 0%, -, Oz, s Y1s oo Y, Oyy s -, Oy,,, . Then the
following isomorphisms are induced by the multiplication map:

o K[z]®Ky] = K[z,y],

o Am®An = Am+n-

2.5.2 External product of modules

LetK be a field of characterstic zero and A, B be K-algebras. Suppose that M
is a left A-module and N is a left B-module. Then we may turn the K-vector
space M @ N into an A® B-module M&N. The action of a ®b € AQB on
u®v € M Qg N is given by the formula

(a®b)(u®v)=au® bv.

Definition 4. The A®B-module M®N, which is defined above, is called
the external product of M and N.

We have the following Lemma on the dimension and multiplicity of ex-
ternal product of modules. The proof can be found [4].

Lemma 2. Let M be a finitely generated left A,,-module and N be a finitely
generated left A,-module. Then:

(i) M®N s finitely generated A®B-module

(i) dA(M&N) = d(M) + d(N)

(iii) m(M®N) < m(M)m(N)

(iv) If M is a holonomic A,,-module and N is a holonomic A, -module, then
M®N s a holonomic Aptn-module.

The proof of the second part of the following Lemma can be found [8].

Lemma 3. Let M be a simple A,-module.

(i) The set of endomorphisms Enda M is a skew field.
(ii) If ¢ € Enda, M, then ¢ is algebraic over C.

(i4i) Homa, (M, M) = C.

11



Proof. The first statement is Schur’s Lemma. For the second let A = C[¢],
the subalgebra of Enda, M generated by 1 and ¢. Assume that ¢ is tran-
scendent over C. Then A is identified with a polynomial algebra over C in
one variable.

Let D = A®c A,. Then there is a unique structure of D-module on M
such that (a ® u)m = aum = uam for a € A,u € A, and m € M. Choose
a non-zero element my € M. We have M = Dmyg since M is simple. Put
Dy, = A® By, and My, = Dymyg, where { By} is the Bernstein filtration of A,,.
The vector space grM = @M1 /My is a finitely generated (cyclic) module
over the graded algebra grD and grD is finitely generated over A. Hence by
[11, Theorem 24.1] there exists f € A — {0} such that grM ®4 Ay is free
over As. Since Ay is principal ring, every (My/Mj_1) ®4 Ay is free over Ay.
Hence M ®4 Ay is a successive extension of free A-modules and hence free
over Ay.

Now let a € A — {0} be an element that does not divide any powers of f.
Then the induced multiplication map Ay — Ay, (b — ab), is not surjective.
Using that M is free it follows that the induced mapping n7: M ®4 Ay —
M ®4 Ay is not surjective. We have n(m®b) = m®ab=am®b for m € M
and b € Ay. Since M is simple the mapping m + am of m is bijective
and we reach a contradiction. Hence ¢ is algebraic. Since C is algebraically
closed this implies (iii). O

The following proposition will be one of our main tools.

Proposition 4. Let M be an irreducible A, -module and N be an irreducible
A,,-module. Then M@N is an irreducible Apin-module.

Proof. Clearly M ®c N = {Zle aym; @n; :m; € M,n; € N,a; € C}. Now,
let f € M®N and f # 0. Then we want to show that A, ,f = MRN. We
will prove this in two steps.

Step I

Let f = mo®mng,mp € M \ {0},n9 € N\ {0}. We know that A,my =M
and A,,ng = N and if m1 ® ny € M ® N, then m; = amg and ny = bng for
some a € A,,b € A,,. This implies that

mi @ny = (amg) @ (bng) = ab(mo @ ny) € Aminf.

k

Ifg=> m;®n; € M ® N, then m; = a;mgy and n; = bing,a; € A, and
i=1

b; € A, and hence

k k k
g = Z a;mo ® bing = Z a;b;(mo ® no) = (Z aibi)mo X ng = cmg Q ng,
=1 =1 =1

12



k

where ¢ = > a;b; € Aptpn. This implies that ¢ € Ay f. Therefore
i=1

Apinf = M®N.

Step 11

Let f = E m; @n;,m; € M,n; € N. We will proceed by induction on k.

We already proved the result for £ = 1 in the preceding step. First we will
consider the case k = 2. Suppose f = mg®ng+mi®ni, where mo®ng # 0,
and m; ® ny # 0. We know that (a ®1)f = amg ® ng + ami @ ny. Suppose
amg = 0 and am; # 0. Then (a® 1)f = am; @ n; # 0. By the first case,
ami ®nq generates M ® N, and hence A, f = M @N. So we should check
if there are elements a € A,, such that amg = 0 but am; # 0.

Let us answer the question, do we have a € A, — {0} and amy = 0 and
amy # 07

Lemma 4. If M is an irreducible A,-module and m € M,m # 0, then
Ann(m) # 0.
Proof. Consider the map

¢o: A, — M

defined by ¢(a) = am € M. Since M is irreducible and m # 0, ¢ is a
surjective map. If Ker¢p = {a € A,, : am = 0} = 0, then A,, = M and hence
A, is irreducible which is a contradiction. Hence Ann(m) = Ker¢p # 0. O

Let us continue the proof of Proposition 4 step II. Let Jy = Ann(mg)
and J; = Ann(my). If J; € Jy , then we can apply the argument above. If
Jo € J1, then we can apply the first case, because we have a € A,, such that
amg = 0 and amy # 0 and hence

amg @ ng+am; @ny =am; ®ny #0

and Apin(amy @ny) = Apynf = M®N. So Jy = Ji is the only case which
the argument does not work. So suppose this is the case. Then consider the
isomorphisms

o ApfJog — M
a—+ Jo— amg

and
An/Jl — M

a—+ J — amg.

13



n

—1
We have M %% Ap/Jo(= J1) %L M. That is 7 = ¢10¢y". Then by Lemma 3,
n(m) = am for some o € C. This implies n(mg) = amy = m; and hence

f=mo®np+mi®@n1 = my®@no+amo®@ny = me@no+mo@an; = meR(not+ani) = me®na,

where no = ng ® anq. This implies f = mg ® no and then by the first case
above, Apinf = M ® N. The case k > 2 is treated in the same way. By

k
the above argument, if f = )" m; ® n;, either there exists a ® 1 such that

i=0
k=1
0# (a®1)f = > am; ® n; and hence by induction f generates M@N, or
i=0
k—1
we use Lemma 4 in the same way as above to see that f = > m; ® n; and
i=0
again by induction generates M®N. O

Proposition 5. Let M be an A,-module with a composition series
O=MyCcMiC..M, =M
and N be an irreducible A,,-module. Then
0= My®N C Mi®&N C ... C M,&N = M®&N
is a composition series of M®N.

Proof. 1t suffices to note that MZ@N/MZ-_l@N >~ M;/M;_4 @N is irreducible
by Proposition 4. O

2.6 Decomposition factors of modules

Let R be a ring and M be an R-module. If 0 = My C My C ... M, = M is
a composition series of M, then the set

DF(M) := {M;/Mj_1}{_,

of simple R-modules is the set of decomposition facors of M.
We have the following Proposition on the decomposition factors of R-modules.

Proposition 6. Let M be an R-module .
(i) Let N be a submodule of M. Consider the exact sequence of R-modules
Nc M% M/N. Then,
(a) DF(M) = DF(N) U DF(M/N) and
(b) ¢(M) = ¢(N) + ¢(M/N).
(ii) If M = My, D My_1 D ... D My is a sequence of R-modules, then

k

DF(M) = | J DF(M;/M;_y).
i=1

14



Proof. Once we have proved (i), (ii) can easily be proved by induction on k.
To prove (i) consider

MEM/N=F,>F_1>..5R>k=0
Then F; = M;/N, where M D M; = ¢~ (F};) for j =0,1,...,k. But
M;/Mj 1 = ¢~ (Fj) /¢~ (Fj—1) = M;j/N/M;_1/N = Fj/Fj ;.

Hence if Fj/Fj_; are irreducible, then M;/M;_; also are irreducible. Sup-
pose 0 = Ny C N1 C ... C Ny = N is a composition series of N. Then

NoCNiC..CNg=N=MyCcMyC..CMp,=M
is a composition series of M. Therefore
{N;/Nj—1}5—o U{Fi/Fio1 = M; /M1 Y
is the set of decomposition factors of M. O

Corollary 1. Let 0 = My C My C ... C My = M be a composition series of
an A, module M and 0 = Ny C N1 C ... C N; = N be a composition series
of an A,,-module N. Then

DF(M&N) = {M;/M;_1&N;/Nj1 1oy
and hence c(M®N) = ¢(M)c(N).

Proof. 1t is an easy consquence of Proposition 6. O

3 The module M?

o ?

where g € Z™

By Proposition 2, in the case where 3 € Z™, Mp =~ Clz]a. Our aim in this
section is to find the number of decomposition factors of C[z],. This will
turn out to be equivalent to analyzing expressions in partial fractions for
functions in C[z],. Let us proceed in the following way.

e To every subset
S:{Oéil,...,aid} C A= {al,...,am}

that consists of linearly independent forms, choose coordinates z44 1, . . .
such that «;,,...,,, 2d4+1,- .., 2, are linear coordinates in space.

e In order to simplify the notations let us denote o, = 21,k = 1,2, ...,d.

o Let Ag = Clzg41,...,2n] be the corresponding ring of polynomials.

15
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e Define Rg ={h € Clx], : h = %796145,771] >0,V5}.

j=1%j

e We will just use these modules for certain subsets S called no-broken
circuits defined below.

Consider the following sequence of A,-modules
0 C Ro(=Clz]) C Ry C -+ C Ry = Cl]a,

where r < n and Ry is the subspace of C[x], which is generated by monomi-
als in xl,...,xn,al_l,...,a;} such that at most k of aq, ..., ., have strictly
negative exponents. Clearly Ry is an A,-submodule of C[z],. The main
theorem in this section is the following.

Theorem 2.
Ri/Ri—1 = @w ®s Rs

where W runs over the subspaces of dimension k generated by elements of A
and S runs over certain subsets of k elements of /A (the so called no-broken
circuits, see definition below) which generate W.

The proof of Theorem 2 can be found in [5], whose exposition we follow.
We will indicate some parts of it below.

3.1 Basic Lemma

Lemma 5 ([5]). Let ag, g, ..., qr, apry be non-zero linear forms with oy =
k+1
> cjoj. Then we have
i=2
k+1
1
k—l—l Z € 2Tt k+1
H] 19 I e I =j+1 X
Proof.
k+1
1
k+1 - k+1 Z € k+1
H] 1% ang 2@ = alH] 2 O
O
Given non-zero linear forms aq, as, ..., my, let d be the dimension of the

vector space they generate.

Proposition 7 ([5]). Every expression —m—

H aij
i=1

- with o, qy, ..., a5, linearly indepen-

can be expressed as linear

combinations of expressions

dent and Z mj = z hi.
7j=1
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Proof. Let us apply reduction and an induction on the vector of exponents
(h1,...,hy) in the following way.

e Using the given ordering we can take the first linearly dependent ele-
ments that appear in the product with non-zero exponents.

e Using Lemma 5 we can substitute the product of these terms with a
sum in which developing the vector of exponents is increased in the
lexicographical order maintaining the same sum.

e In each term the space generated by the factors remains the same.

e Clearly this recursive procedure terminates after a finite number of
steps, when all the summands are of the required type.

O

3.2 No-broken circuits

We will systemize the procedure in the proof of the preceding proposition.

Definition 5. Let oy, ..., oy, be non-zero linear forms. Let oy, oy, .. .,
i1 < 19 < ... < ip be an ordered sublist of linearly independent elements. We
say that the sublist is a broken circuit if there exists an integer k < h and an
integer ¢ < 1) such that the elements oy, oy, , ..., oy, are linearly dependent,
otherwise it is called no-broken circuit.

is a broken circuit, then —— is a linear

1T .
=7

Lemma 6. If a;,,q;,,...,q;,

combination of expressions ml o
J

I1 o

Jj=1

ically bigger than the vector of exponents of

with the vector of exponents lexicograph-

1

h
jl;ll i
h
Proof. From the given hypothesis we have a; = cja;, with @ < ig. Let
j=k
us substitute and simplify:
1 _ o Gk + e+ CROyy,
h - h - h
Hj:l 7y Q; Hj:l Qi Q; Hj:l Qi
Simplifying every term in the numerator with the corresponding factor in
the denominator we get the desired expressions. O
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Theorem 3. Fvery erpession — can be expressed as a linear com-

a no-broken circuit and

bination of expressions —; ol with oy, ..., 04,
o
jl;ll K

d
2 my = > ey hi-
‘7:

Proof. The fact that an expression of the given type can be written as a lin-
ear combination of expressions relative to no-broken circuits can be proved
by induction on the lexicographic order of the vector exponents as in Propo-
sition 7 and repeatedly using Lemma 6. U

Corollary 2. The space Rg has basis the monomials ] z;” such that h; > 0
i=1
Vi>d, hy <0Vi<d and Clz], =) g Rs as S varies among the no-broken

circuits.

Proof. e The elements z1, 29, ..., z, are linear coordinates in space and
Rg is contained in the ring of Laurent polynomials in these variables.
These polynomials have as basis all the monomials in the variables
with integer exponents. The proposed monomials are thus part of
these basis and so linearly independent.

e From Theorem 3 it follows immediately that every function f in R can
be written as a linear combination of expessions

g
f==
1_1]':10%‘3-J
such that g € Clz], m; > 0, Vj and S = a5,...,q;
circuit.

, a no-broken

e We write f as a polynomial in the variables o, ,..., iy, 2441, .-+ 2n-
Simplify the «; that appear in the numerator and the denominator.
Thus with as easy induction we can prove that every element in R is

a sum of elements of the spaces Rg.
O

Corollary 3. The number of decomposition factors of C|x], equals the num-
ber of no-broken circuits.

3.3 The plane case

Consider the Ay-module M5 = C[z,y]o0, where
o = Py (x4 c3y)B..(x + cny)®. If B, ..., Bm € Z, then by Propo-
sition 2, MF = Cl2, yley 17 s (2+ciy)-  We have the following sequence of

As-modules
0 — Ro(=Clz,y]) C Ry C Ry = MP,
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where R is the subspace of Clz,yl,, 17y (z-+eiy) which is generated by the
monomials z'y*!, (z + c33)7Y, ..., (z + cmy) "' such that atmost one of

z,Y, & + 3y, ...,T + cpy has striclly negative exponent. Then
Rl/Ro = @;-n:lRSj,

where Rg, and Rg, isomorphic to the submodules generated by eg, = % and

es, = % modulo Ry respectively and st is isomorphic to the submodule

generated by eg; = Z% modulo Ry, where z; = z + ¢;y,7 = 3, ...,m and each
Rs;,j =1,...,m is irreducible. On the other hand

Rg/Rl = @ZTZQRS“

where Rg, is is isomorphic to the submodule generated by eg, = xiy modulo
Ri, Rg, for ¢ = 3,...,m is is isomorphic to the submodule generated by
es; = wizl modulo Ry, where 2; = 2 + ¢;y,% = 3,...,m and each Rg, is
irreducible. Hence ¢(Ry/R1) = m — 1, ¢(R1/Rog) = m and ¢(Rg) = 1. We
know that

DF(M?) = DF(Ro) U DF(R;/Ro) UDF(Ry/R1),

and
c(MP) = ¢(Ry) + ¢(R1/Ro) + ¢(R2/Ry).

Therefore c(Mg ) = 2m.

Remark 1. Observe that the set of no-broken circuits of the set
{z,y,x + 3y, ..., x + ¢y} of the linear forms is

{(D’ {$}’ {y}’ {$ + ng}, st {l‘ + Cmy}’ {:L'v y}’ {:L'v T+ C3y}v it {‘/L'v T+ Cmy}}

4 On the support of modules

Let X be a smooth affine algebraic variety. (X will be C™ or an open subset
of C™ which is the complement of a union of hyperplanes defined by forms).
We denote by Dy the ring of differential operators on X and if X = C" this is
the same as A,. If X is an affine open subset of C" defined by 0 # f € C[z],
then Dy = Clz]; ®c[y] An- We will use the notation Ox = Clx]; in this
case.

If M is a Dx-module then it can be viewed as an Ox-module and hence has
an annihilator, Anno, M.

Definition 6. V(Anno, M) is called the support of M, and is denoted by
SuppM. (With V(I) for an ideal I C Ox means the closed subvariety of
zeroes defined by I.)

We have the following examples.
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e For My = Clz,yl.y/(Clz,yl. + Clz, yly),
SuppM; = V(z,y) = (0,0).

e For M2 = (c[x;y]x/(c[x7y]7
SuppMz = V(z) = {(0,y) : y € C}.

o M3 = C[%Q]a
SuppM;3 = V(0) = C2.

4.1 Basic properties

Proposition 8. If M is an irreducible Dx-module and U C X an affine

open subset, then M‘U =: Oy ®oy M is an irreducible Dyr-module.
If N is a Dx-module, then c¢(N)y) < ¢(N).

’

Proof Suppose U = X — V(s) and 0 # f,g € M,,. Then f = SJ, g= g—k,
f g € M. By the assumption that M is 1rredu01ble there exists P € Dy

such that Pf = ¢'. This implies (s—*PsJ )( ) 2. This gives the result
since clearly s *Ps? € Dy. U

Proposition 9. Consider Maﬁ and a decomposition factor M;. It has sup-
port on an intersection of hyperplanes Hg for some S C {1,2,...,m} .

Hsg={peC":a;(p)=0,i € S}.
The proof of the proposition will be given below after some preliminaries.

Definition 7. Suppose that 6 is an automorphism of Dx. If M is a Dx-
module, 8*M is defined to be the Dyx-module which consists of the same
elements as M, but on which Dx acts by 0: if P € Dx, m € 6*M, then
Pm =0(P)m

The following Lemma is clear.

Lemma 7. If § : Dx — Dx is an automorphism such that it is the
identity on Ox and M has decomposition factors M;, i=1,...,I, then 0*M
has decomposition factors 0*M;, i = 1,...,1. In particular ¢(M) = c¢(6*M).
The support of 0* M; equals the support of M;.

We will apply this Lemma to the following Proposition.
Proposition 10. Suppose that U = X — V(ai,...,a;). Then C(Mg‘U) =
C(Mf,lw), where & = apq1...00n and 3 = (Bi41,s .o Bm)-
Proof. 1t is enough to assume by induction that U = X — V(al) Put o =
maﬁ, where & = as...ap, and 3 = (B2y vy Bm). Then MP alw = Clz ]aafl

and the point is that «y is invertible here. Now define 8 : Dy — Dy in the
following way.
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e If D € Derc(Clz]) C Dy, (D) =D + 51Da(10fl).
e If r € Oy, then 6(r) =r.

Extending this inductively gives an automorphism of Dy, since it has the

inverse 6! : D - D — 2120 e claim that the map

a1
p: H*Mg‘U — M£|U
defined by p : rad + ra? is a Dy-isomorphism. It suffices to check that

p(D(ra?)) = D(p(ra?), ie. p(@(D)(ra®)) = D(raP), if D € Derc(Clz])
and r € C[z],. But

Since D(ra?) = (31, M)raﬁ + D(r)a?, the statement is clear. Hence

(&%)
the proposition is clear by the preceeding lemma. O

Lemma 8. Let U C X be an affine open subset.

(i) SuppM; = U N SuppM.

(ii)M;, = 0 < SuppM C X — U =: Z.

(153 )If M is irreducible, then SuppM is irreducible as a variety.

Proof. (i) is clear by definition. Let I be the ideal of Z. For any Ox-module
M there exists an exact sequence

I'rMcM— M\U’

where I'zM = {m € M : 3r,I"m = 0}. If M|, =0, then I'zM = M and
this proves (ii) in one direction. The other direction is a consquence of (i)
and the fact that the only module with SuppM = 0 is the the zero module.
The proof of (iii) may be found in [2]. O

Corollary 4. (i) DF(M;;) = {M; € DF(M) : SuppM; N U # 0}.
(ii) (M) < c(M).

4.2 Proof of Proposition 9

We are going to prove the proposition in a more general setting, by letting
X be possibly the complement of a union of hyperplanes V(«;) i = 1,...,m.
So the statement to be proved is the following: consider MF as a Dx-
module, the the support of a decomposition factor is an intersection of some
of the hyperplanes V(«;) i = 1,...,m. Make induction on the number of
a;,1 =1, ...,m that are not invertible in Ox. Suppose these are a1, ..., m,
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and the ones which are invertible are aj,...,; . Then as in the proof of
Proposition 10,
8 o gl
My ="M, (4.1)

where o/ﬁ = alﬁ fr*ll ...ozg{", as Dx-modules. 0 being the identity on functions

preserves support, so it suffices to prove the proposition for M 5 .. If the

number of non-invertible «; is zero, then m = [, M 5 , =2 Ox and we are done
by Section 3 and Lemma 8 (i). Now for the induction step, assume that the
statement is known for m — [ = p. Assume first that X = C", and

MP =Clz, a7, ...,a;ll]o/ﬁ .
Let N be a decomposition factor of MP with SuppN = Z. Assume first
that Z is contained in all the hyperplanes V(«;), j=1,..,m. (They do not
have to intersect in the origin.) Then Z C N7, V(«a;) =: H. If H is the
origin we are done. Otherwise choose a decomposition C"* = C"t x C"?
with coordinates @1, ...,Zn,, Y1, ..., Yn, such that a;(x) = Z;il ol2j. This

is always possible, letting C*2 = H and C™ a complement. Then MP =~
C[g]@(@[i]i ;. All the decomposition factors of this module have the form

C[g)®N, (see Section 2) where N is a decomposition factor of (C[fn]i ;. Since
Supp((C[y]@N) = C™ x SuppN, we are reduced to proving the proposition

for (C[j]i ,. This means that we may assume WLOG that ﬂgle(ai) is the
origin. In that case there is some hyperplane, V(ay) say, which does not
contain Z = SuppN. Then N‘Ul, where U; = X — V(ay) is a non-trivial

decomposition factor of Mp I with support Uy N Z # 0. Hence, since
a1 is invertible on Uy, by induction Uy N Z is an intersection Hg N U; of
hyperplanes.

Since Z is irreducible, Z = Uy N Z = Hg, so the result follows.

It remains to see that the inductive hypothesis is true for an arbitrary X
that is a complement of a union of hyperplane sections. By the procedure
of (4.1) we may assume that MP = (Ox)a0?, ai, ..., ap,, for some m <
p + 1 are not invertible. Hence,(Ox)a0? = (Ocn)qa” , and the proposition
follows from Lemma 8 (i) and the preceding discussion for the case C", since

(Ox)ac? = Clz, a‘l]a‘ﬁx.

5 Normal Crossings

In this section, we restrict ourselves to the normal crossings, that is, all
the linear forms are some of the coordinate axes. Any module Mg where
Qq, ..., @y are linearly independent on C™ and m < n is isomorphic to such
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a module by change of coordinates. Let a3 = x1, ..., @y = Ty, m < n. Then
ME = Clz1, .o, T2y 2, &P, where of = azfl...x&”, B1, ey Bm € C. Recall
that, in section 2 of this paper, we considered the case m =n = 1. We are
going to start this section by considering the case m = n = 2 and then at
last we will treat the general case.

5.1 The module M”?, where n =m = 2

Clearly this is the module M, - (C[x,y]myxﬁlyﬁz. Then the multiplication
map induces the following isomorphism, C[z, ],y = C[z],2™ @C[y]yy52.

Theorem 4. (i) If 51,02 € C\ Z, then MP is an irreducible Ay-module.
(it) If B, B2 € Z, then c(Clx, ylzy) = 4.
(iii) If B € Z and B2 € C\ Z, then c(M5) = 2.

Proof. (i) By Proposition 1, if 81,32 € C\ Z, then C[z],2% is irreducible
C < z,0; >-module and (C[y]yyﬁ2 is an irreducible C < y,d, >-module.
Hence by Proposition 4, C[z],2**&C[y],y* = ME is irreducible Ay-module.

(ii) By Proposition 2, if 81,82 € Z, then Mp =~ Clz, ylay and Clz, ylgy =
C[2]+®Cly],. By Proposition 1, ¢(C[z],) = 2 and ¢(C[y],) = 2. Therefore
¢(M5) = ¢(Clx],).c(Cly],) = 2(2) = 4, this proves (ii).

(iii) If B1 € Z and B2 € C\Z, then Clz, yl,2"y? = Clz],2&C[y],y* and
Clz],2z% = Clz],. So we have ME =~ Cl2].®C[ylyy*. But ¢(Clz],) = 2
and C[y],y™* is an irreducible C < y,d, >-module. Therefore (M) =
¢(Clz],)e(Clylyy?) = 2(1) = 2. This completes the proof. O

5.2 The general case, m < n

The module is MP = C[:E]xlmwmx?l...x?nm. We are now going to consider the
module in the following cases.

e 5, cC—Zfori=1,..,m,

o B €Zfori=1,..,m and

e some of them are integers and some are not.
The following Theorem gives all the results.

Theorem 5. Let Mg = (C[x]aozﬁ,a =z1...Tm and m <n. Then:

(i) If B1, B2, ..., Bm € C\ Z, then MPE is irreducible.

(ii) If B, Ba, - .., Bm € Z, then c(M) = 2.

(iii) Suppose that k of the (1,02,...,0m are integers and the others are
elements of C\ Z, then ¢(MP) = 2.
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Proof. (i) If B, Ba, ..., Bm € C\ Z, then M = Clz]y, . 4,2} ..z and the
multiplication map induces the following isomorphisms,

(C[x]ml,,,mmzngl...xgg” > Clxy ..y a:m]mlmmma:fl...a:ﬁ;”@(@[:nm_ﬂ, ey Ty
and
Clzy, ... ,xm]xlmxmazfl b C[ml]xlel@...@C[mm]xmmim.
Bi

By Proposition 1, Cla;],,«;" is an irreducible C < z;,9; >-module. So, by
Proposition 4, (C[:El]mlel@ ... ®Clz e, o is an irreducible A,,-module.

On the other hand, Clxy,41, . . ., xy] is an irreducible C < 41, -+« s Ty Ot 1y -« - 5 Op >-
module, [4, Chapter 5, Proposition 1.2]. Since
Mg =~ Clay,. .. ,!Em]ml...xmfﬂfl . xf{"@@[ajmﬂ, ey Ty,
by Proposition 4, Mg is irreducible.
(ii) If B1,...,Bm € Z, then
Mg = Clz1, ..., Tn)z1..am = Clzy,. .. ,xm]xlmxm@@[xmﬂ, ey Tl
But Clz1,. .., Tmley..om = Clr1]e, @ ... &C[2m)s,, , With ¢(Clz;],,) = 2 and
Clm+1s - - -, Ty is an irreducible C < Zy41, - -+, Tny Ot - - -, O, >-module.
Hence by Corollary 1, ¢(M§) = 2.2..2 = 2™, This proves (ii).
m—copies
(iii) Suppose some of the (1, ..., 3, are integers and the others are elements
of C\Z. WLOG assume that f1,...,0; € Z and Bi41,...,0m € C\Z. Then
Mg > Clay,. .. ,xk]xl___xkxfl . xf’“@@[mkﬂ, e ,xn]ka”,x”Laziﬁl . a:g;”.
But
Clxy, ... ,azk]xl,,,xkxfl . azf" = Clzt, .-, Thlar . ay,
and Clzgy1, ... ,xn]hmf’fll ... 22 is an irreducible C < Tht 1y e ey Tyy Oft1y .-y On >-
module. But in (i7) above we have shown that ¢(Clz1, 2. ..., Tk]z,..0n) =
2% and hence
c(Mg) = c(Clz1,. .., 2kl .2, c(ClTgga, - - - ,xn]xk+1,,x7nmfﬁl .. xfnm) = 2'“(1) = 9k,
This completes the proof. [l

6 Blowup

6.1 Definition
The blowup of A? at the origin is the locus:

A2 = {(z,y), [Wo, W1]) : aW1 = yWy} C A% x P!
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together with the map B
7 A2 — A?

which is the restriction of the projection of A? x P! onto the first factor.
Let Uy C A? be the open subset given by Wy # 0. In terms of Euclidian
coordinates, wy = % We can write:

Uo = {(z,y), (w1)) : 2wy = y} = {(z, 2w, w1)} C A* x A",

From this description we see that Uy = A? with coordinates z,w;. The map
7 : Uy — A? is given by 7(z,w;) = (z, zw).

Let Uy C A2 be the open subset given by W; # 0. In terms of Euclidian
coordinates wg = %(1).

We can write: Up = {(z,9), (wo)) : = = ywo} = {(ywo,y,wo)} C A% x Al
From this description we see that U; = A? with coordinates y,wy. The
map 7 : Uy — A? is given by 7(y,wg) = (ywo,wp). This implies that
A2 = Uy UUy, so {Up, Uy} is an affine cover of A2 and also we can see that:
v, (2, ) = mi(z,y) = (z,2y) and my, (z,y) = m2(z,y) = (2y,y).

For these facts, as well as generalization see [9, 10].

6.2 Describing the pullback of the module in the blowup

We are now going to describe the module M, g Clz, ylayLs... Lmaﬁ , where
aP = x51y52L§3...L£{’L and L; = x4+ ¢y for ¢ = 3,..,m,c; # ¢; for i # j
pulled back to the affine blowup. Let us consider the polynomial map

79 : C2 — C2
defined by mo(z,w) = (2w, w). Then the homomorphism of rings,
ﬂg : Clz,y] — Clz, w]

defined by Wg( f) = fomg is called the comorphism of my. It gives an iso-
morphism Clz,y] & Clzw,w]. We have that Wg(oz) = o, where o’ =
wz(z + ¢3)...(2m + Cm)-

The inverse image of M4 by s is defined as a C|[z, w]-module by 7T§(M£ ) =
Clz, w] ®clzy MP , which implies that

ﬁ;(Mg) = (C[sz] ®(C[ac,y] (C[:an]aaﬁ = (C[sz]a"aﬁ'

Using the comorphism formally on o gives

a//ﬁ :7‘(‘5(04’6) :wzglﬁizﬁl(z—i—63)53...(z+cm)ﬁm,

and hence one would expect

Z
226

3 (Mf) = Clz, w]za
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as Aso-modules. This is indeed the case. The standard As-module structure
on the pullback is defined by using the chain rule:

0, — Y0,

and .
Ow 5896 + 0y

to induce actions of 9,9, on o and then extending. Hence it suffices to

see that 0,a” = 8204”6 and 9ol = E?wauﬁ which is an easy exercise. The
multiplication map gives the isomorphism,

1

Cle,wlyra’” = Cluyw BTl (o4

where 67 = 2 (24 e3)% (24 em)Pm and By = S| Bi. This is an external
product, and so we can obtain information on the number of its decomposi-
tion factors by the methods of section 2.

6.3 Composition series of the A;-module (C[z]ddﬁ

Let us consider the number of decomposition factors of Clw],w” as C <

w, Oy >-module and C[z]zngg(zﬂi)a/ﬁ as C < z,0, >-module separately.
We know , by Proposition 1, that if 3, € C\ Z, then C(C[w]wwﬁé) =1
and if 3, € Z ¢(C[w],w?) = 2. In this subsection, we will prove that the

Aj-module C[z]5&” is irreducible, if 31,033, ...,5n € C\ Z. We have the
following proposition.

Proposition 11. If 31,33, ..., Bm € C\ Z, then the Aj-module (C[z]d&ﬁ i8
irreducible.

Proof. We are going to prove the Proposition in two steps.

Step I

In this step we are going to show that (C[:E]ddB = Al(dg ).

Let P € C[z]4@®. Then P = mdﬁ, for r > ~0 and F € Clz].
But m can be written as ;irdﬁ + 3, —% a8 for some q, q; €

i=3 (z4c;)"
C(csy .oy m),t = 3,...,m and hence

So it suffices to show that =, — < € Al(dB), for r;s > 1 and some i €

27 (z4c;)®

{3,...,m}. By applying the argument successively on 3" = B — (k,0,...,0)
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and g = 8 — (0, .s, ...,~0) and using induction it suffices to prove that

ozﬁ € A(a%) an

(@%). This can be done as follows.

Let . .
ﬁ:[Hz—Fc, . Zﬂl H (z+¢j).
1=3 =3  j=3,j#i

Clearly D € A; and D(dﬁ) = %dﬁ' But

BilliZs(z+6i) 15 _ p ad
z

—_

c
Hence %dé € Al(dé).
Let

m
"

D :[H(z—l—cz)a —6121_[ zZ+¢j) Zﬂl H (z+¢j).

i=3 Jj=4 J=4,57#1

//( B _ ﬁgz H;i4(z + Cl)d’é
zZ+c3

But

Goallizaz*¢) o5 pap C 4
z+c3 Z+c3

for some R € C[z] and for some C', 0 # C" € C[es, ..., cx]. Therefore

1 " 3 1 3
— (D" —R)(@&") = i’
C ( )(a ) z+ C3a
and hence Z+c ad e Al(aﬁ) Since z 4 c3 was arbitrary, (leci)dB € Al(dB),

for some i = 3, ..., m.
Therefore, M g = A;(@%). This completes the proof of Part I.

Step 11

In this step we are going to prove that Al(dB ) is irreducible. It suffices to

~I!

show that A;(aV dﬁ) Ay (aﬁ) for some large N. But from above, M g

~I!

Al(oﬁ”), B =B+ N',N" € N ! and by Proposition 2, Mg = Mg )

Therefore Al(o?B ) = Al(dgu) and hence A4; (075 ) is irreducible. This con-
cludes the proof. O
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6.4 Composition series of the A,-module C[z,w] o

In this subsection we are going to prove the following Theorem.

173 1

Theorem 6. Let Mf,, = (C[z,w]aua”ﬁ , where ﬂl,ﬂé...,ﬂm €eC\Z, o =

1

zw(z + ¢3)...(z + ¢) and Q"7 = P (z + c3)...(2 + cp)Pm such that
¢ #c¢j fori#j.

(i) If By € C\ Z, then Mf,, is irreducible.

(ii) If By € Z, then (M7, ) = 2.

Proof. (i) From the previous section, we know that,

1

Clz, 2] o7 = (C[z]d&g&ﬁ(@[w]wwﬁ;

and by Proposition 11, (C[:g]ddé is irreducible C < 2,3, >-module, where
a = z[[["3(x + ¢) and = (B1,53,...,0m) and also by Proposition 1,
Clw],w? is irreducible C < w,d, >-module. Hence by Proposition 4,

11

M f » 1s irreducible As-module.

(ii) By Proposition 11, (C[z]&dB is irreducible C < 2,0, >-module and by
Proposition 1, ¢(C[w],w’) = 2. Therefore

/

(M%) = e(Clz]ad?)e(Clulyw®) = 2.

This completes the proof. O

7 The As;-module M’ in the plane case where all

In this section, we restrict ourselves to n=2, that is the plane case, and we
assume that §; € C\ Z, i=1,....m. Then c(Mg) is 1 or m — 1 according to
whether |3| = Y"1, ; € Z or not. Our module in this case is

Mg = (C[:E, y]aaﬁy

where o = zy [[125(z+ciy),0” = 291y (z+c3y)%...(x+cy)Pm and ¢; # ¢;
for ¢ # j. We generalize this result in the following theorem.

Theorem 7. Asuume that 5; € C\ Z, i=1,...,m.
(i) If |B] € C\ Z , then ¢(ME) = 1.
(ii) If | 8| € Z, then c(ME) =m — 1.

The proof will be done in several steps and we start by proving (7).
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7.1 Proof of the first part of Theorem 7

In this subsection we will prove (i) and this will be done in four steps. In
steps I-IIT we will prove, under the given assumption, that o generates the
module Mg and using this in step IV we will prove that Maﬁ is irreducible.
Let Q € MZ. Then

F
(zy [TiZs(x + ciy))”
for F' € C[z,y] and r > 0. Since by Theorem 3
(zy [TiZs(z + ciy))”

can be written as a linear combination of

Q= o’

)

LY F 8 F g
a a, .. o)
5148 7 n3 3 >t nh )
THRYT g™ (x + c3y)™2 (T + cpy)n2
where s1 + 82 = n3 +n3 = ... = n" +nJ = mr , it suffices to show that,
F ol — E b, F —af
51752 ’ xn{ (J} + ng)”g PR x”l (J} + cmy)n2

are all elements of Ag(aﬁ ). Let us proceed step by step.

Step I

In this step we are going to show that x—lkaﬁ € Ay(aP) for k > 1. By applying
the argument successively on 3 =  — (k,0,...,0) and using induction it
suffices to prove that %aﬁ € Az(a”). Let

1 m m
Dy = A —([[ + o chﬁg II @+l
L 1=3,i#£]

Clearly D1 € Ay and Dl(aﬁ) = Maﬁ. But

ozﬁ+HozB,

[Tz + ciy) of — dyym2
x T
for some H € Clz,y] and di =[]} 5 ¢;. Then we have

m—2

1
—(Dl—H)aB:y o’
1 T

On the other hand

m—2 _ m—3
aﬁ) = (B2 +m — 2)y ob _|_ Q’Laﬁ
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and

m—3 m—2 m—3
m—3 B By Jéi Biy 3
Oy
4 (o) T + ZZ:; T+ Ciya
This implies
—9 m—3
O (Dy — H) + 29,0 = =D
1

Iterating we find that
m—2 .
Da(a?) = [L57(8] ‘H)aﬁ
x

for some Dy € A,. Since |8] € C\ Z, we have 1o € Ay(a?).

Step 11
In this step we are going to show that x%ytaﬁ € Ay(aP) for k,t > 1. By

applying the argument successively on B 8—(0,t,...,0) and using induction
it suffices to prove that — ozﬁ € Ay(a®). From step I we know that w—l,cozﬁ €
Ay(a?). Let

3:%1_[517‘1’0@3/ chﬁj H $+Ciy))

1=3 1=3,i#]

Clearly D3 € Ay and

1 T+
Dy o) = Lol 20 0

xky
But L
iss@tey) s 2" 5. L s
xky xky
for some L € C[z,y]. This implies that
1 xm—2
D3 — L)(=a’) = A,
( 3 )(a;’fa ) xky o
On the other hand
M2 +m—2—k)zm3 " M2
aky aky = ahy(z + ciy)
and
_ 1 Boz™ 3 ¢ Bixm 3
m—3 B 8 1171 3
O, (— =
v v(GE ) zky * ; ok (z + cy)



This implies that

(18| +m —2 - k)am™=3 o,

1
m—3 _
(0:Dy + ay)(—xkaﬁ) = o

where Dy = D3 — L. Iterating we find that,
m—2 .
- —i—k
D5(Oé’6) — Hz:l (’ﬂk‘ ? )04’6
zky

for some D5 € As. Since |3| € C\ Z, we have ﬁaﬁ € Ay(af).

Step III

m@ﬁ S AQ(OZﬁ) for k’,t 2 1.
By using the coordinate function, £ = x and § = = + ¢y and step II, we
have

In this step we are going to show that

1 1
o =
Tyt ok (x + cy)t

o € Ay (o).

By the description of MP recalled at the begning of the proof, we have
MS = Ay(aP). Then it remains to show that Ay(a®) and hence M is
irreducible to conclude part (i) and we will prove that in the next step.

Step IV

In this step we are going to prove that As(a®) and hence Mg is irre-
ducible. But, it suffices to show that MS = Ay(aPN) for any N € N™
(See Lemma 12). By step III we know that ME = As(aP), if B € C\ Z
and |3| € C\ Z. Cleary, these conditions are satisfied for 5 + N, for any
for N € N™, as well. Hence MEN = Ay(aP+N). By Proposition 2 ,
Maﬁ o MgJFN, and hence Maﬁ = As(a’tN). Therefore Maﬁ is irreducible.
This completes the proof of (i) of Theorem 7.

It remains to prove (iz) of Theorem 7, but before that let us find the anni-
hilator of a” in the next section which we will use it in the prove of part

(ii).
7.2 The annihilator of of

In this subsection we are going to find the annihilator of o in the Weyl
algebra As.
Let

P = x0, +y0d, — (Zﬁz)

i=1

Q=y[[Lioy - B][Li-> 8y [[ L.
i=3 i=3 j=3

i=3,i#]

and
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where L; = x + ¢y, i=3,....,m and ¢; # c; for i # j. We use the following
graded reverse lexicographic order, letting y > = > 0, > 0y,

y'2I0Fol, > y' 27 0F 0,
if
i+j+k+l>0 +5 +k +1
or
i+j+k+l=4+j5 +k +1

and the last non-zero coordinate of (,7,k,1) — (i', 5,k ,I') is negative. The
most important point for us with this term order is that there is a normal form
algorithm, see [12, Chapter 1] and [7, Chapter 2], with respect to the set
{P,Q}. It inputs an element F' of the Weyl algebra and outputs an element
R such that there exist S and T in the Weyl algebra with F = SP+TQ+ R
where the initial term of R is not divisible by initial terms of P and Q). Since
the initial term of P is 20, and the initial term of @ is ym—lay, it follows
that
Ag :A2P+A2Q+N

where o
N = (@(i,j,k,l)eM)(cmZy]aﬁaé

and M C Zéo’ is the set
M = {(i,j,k,0) 1 ik = 0&Il £0 = j <m — 2}.
Hence ‘
Ag = AP + AsQ + (Di>1Ri(y, 0y)0;) + W,
where W = {3272y Si(x,9,) : Si(z,d,) € Clz,d,]}.

We have the following proposition about the annihilator of .
Proposition 12. Let Anny,(a”) = {D € Ay : D(a®) = 0}. Then
Annp, (@) = AoP + A»Q.

Proof. Since P(a®) = 0 and Q(a®) = 0, then AP + A2Q C Anng,(a?).
Let D € Anna,(a®). We want to show that D € AP + A2Q. We know
that D = H+ T + U, where H € AsP + A3Q, T = .o, Ri(y,0,)9" and
U =Y""71y"S(x,0,). Then D(a”) = 0 implies T(a”) + U(a”) = 0. Let
us now consider poles at z = 0. If m = r(z,y)a’® € M, define O,(m) to be
the greatest —k such that

m = (r_p(@ ) e (@, y)at)a?
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where r;(z,y),i = —k,—k +1,...s written as a reduced quotient of products
of irreducible polynomials containing no z. Then note that if R(y,d,) is a
polynomial in just y and 0y,

Oz (R(y, 0y)m) > Ox(m).

Returning to D, we know that

k

> Rily,0,)0. (") + U(a”) = 0. (7.1)
=1

By the above agruement O, (U(a?)) > 0. On the other hand

. —1)... —(i—1
9 (a?) = BB —1) x(zﬁl (i ))(aﬁ)JrT’
where O,(r) > —i and hence O,(0%(a®)) = —i by the assumption that
B1 ¢ Z. Consider the possible poles in (7.1) and assume that Ry(y,d,) # 0
and Ry (y,9y)a” # 0 . Then

Bi(Br —1)..(B1 — (k — 1)) Re(y, 9y)

rk

Ri(y, 9,)9; (o) = ( +r)a’,

where O,(ra®) > —k. For all other terms in (7.1) the contribution to
the poles at x = 0 will be of order greater than —k. This is a con-
tradiction. So Rk(y,ﬁy)aﬁ = 0. But Ry(y,0y) € C < z,y,0, > and
hence we made the desired reduction. In the next step we will prove that
this implies Rj(y,0,) = 0, which will be a contradiction to the assump-
tion than Ry(y,0y) # 0. Actually we will prove more generally that if
UeC<ua,y,0y > and U(a?) =0, then U = 0. So now we can assume that
U(a?) = 0 and argue in the same way by considering the poles at the other

lines. Write i

U= Z Pi(z, y)@é,

=0

where P, # 0. Consider U(a®) and the order of its pole at L, where L is one
of y, Ls, ..., L. Since Op(Pi(x,y)0.a") = OL(Pi(z,y)a”) — i, there must
be two indices 77 and 9 such that

OL(Py (x,y)a”) —i1 = OL(Py(w,y)a”) — iz < O(Pj(z,y)a”) — j

for all 0 < j7 < k. In particular there is i # k, such that Op(P;) — k >
Or(P;j) —i and hence Or(Py) > Or(P;) + k —i > 1. Repeating this for all
L implies that yLs...Ly, divides P;. This contradicts that deg, Py < m — 2.
Hence U=0. This completes. O
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7.3 Proof of the second part of Theorem 7
7.3.1 Preliminaries
For the proof of (ii) of Theorem 7 we need the following Lemmas.
Lemma 9. Letﬁ~ =0+ N, where N € Z™ and of = :Eglyg?...Lg@;” e ML,
Let |B] = > Bi- Then
Asx + AnnAzaB = Aox + Ao (yd, — (|6 + 1)) + Ag(y™™2).
(Recall that, we assumed (; € C —Z, i=1,...,m.)
Proof. By Proposition 12,

ADHAQQB = AP + AsQ,

where P = 28, +yd,—|3| and Q =y [T Lidy—Ba T Li=>7is By [[Z5,5 Li-
But Q = G.x+C(y™10,— Y1, Biy™?) for some G € Ay and C = [[[; ¢;.
Hence

J = Az + Anna,a” = Agx+ Ag(ydy — (1B +1)) +As(y" 10— fiy™2).
i=2

But 410, — 22, Ay — v wdy — (101 + 1) = (B + 1)y € J.
Since 1 4+ 1 # 0, by assumption, then y™ 2 € J. Hence

J = Asw + Az (ydy — (6] + 1)) + Aa(y™?).
O

Lemma 10. Let Ay =C < y,0y >. Let J = A1(y0, — ) + AyyF for k > 0.
Then we have the following.

(1) If v ¢ {—1,...,—k}, then J = A;.

(it) If =k <~ < =1, then J = A1 (y0y — ) + Ayl Purther more

A1/ J = Clyly/Cly]
and hence irreducible.
Proof. (i) If v ¢ {—1,...,—k}, then j+~ # 0, for j € {1,..., k}.
Ayy" — " oy — ) = (k+)y" .

Since k 4+ v # 0, then y*~! € J. Tterating we find that 1 € J, since by
assumption k+v # 0,k —14+~v#0,...,1 +~v # 0, and hence J = A;.

(i) If —k < 4 < —1, still it is clear that J = A;(yd, — ) + Ayl
A = T+ @%0C8; @ @17y, (7.2)

Let 6 : Ay — Clyl,/Cly] be the map defined by 6(P) = P(y”). Clearly
J C Kerf and 6 is surjective and it is a map onto a simple Aj-module. By
(7.2), J = Kerf. This concludes the proof. O
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Lemma 11. 3 3 }

Ay /(A + Annp,a”) =2 Aya? /Agxa®
is a simple Ay-module if and only if —(m —2) < |8]+1 < —1 and zero
otherwise.

Proof. By Lemma 9,

A JAyzal = Ay )(Asa + Ag(ydy, — (18] + 1)) + As(y™2)).
The last description makes it clear that the module is the external product
C<2,0; >/C<,0, >28C < y,9, > /C <y,d, >< yay—(|ﬁ~|+1),ym_2
Hence the result follows by Lemma 10 (ii) and Proposition 4. O

7.3.2 Proof

We are now in a position to prove the last part of Theorem 7. We use the
following Lemma as a starting point.

Lemma 12. (i)There exists Ny such that Nt generates ME.
(ii) There exists No > Ny such that AsaPN3 is a simple submodule if N3 €
Ny + N™,

Proof. The first follows directly from the fact that M = MP7 is a holonomic
module and hence cyclic see [4]. The second follows from the more difficult
fact that M7 contains a simple submodule L with support on C2?, the so
called Deligne module [3]. This means that M /L has to be torsion as Clx]-
module. Since by Proposition 9 all decomposition factors have support on
hyperplane intersetions it follows that any element 7 € M/L is annihilated
by a large enough power of o. Take n = a™*5 to be the generator of M/L,
from the first statement of the lemma and assume that ¥ o™ € N and
let No = N7 + N. |

Consider A5a+N1. Put 3 = B+ Ny. Since, if a®+N generates M2, also
7PN generates if n > 0, we may assume |3| < —(m—1). By Lemma 11,
if ]B[ is not one of —(m — 1),..., —2, we have that AgB/Agxﬁ = 0. Hence
AraP = Ayzal = ... = Aya® | where o' = 2" such that |3;]| = —(m —1).
Then by Lemma 11

Agoﬁl D AQ!EOégl D..D Agxm_2ozﬁ~1,

is a chain of strict submodules such that each factor is irreducible and has
support at (0,0). The last submodule, Asx™ 20 has the property (again
by applying the lemma to AsaN2™ 208 for N € N™ in succession), that it
equals Apa™ 2208 for all N € N™, and hence by Lemma 12 is simple.
Hence Mg has m — 2 decomposition factors with support at the origin, and
one with support on C2. This concludes the proof.
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8 Example

In this section we consider the As-module M, - C[:E,y]xy(ery)ozﬁ , where

o = 2P1yP2 (2 4 4)P and calculate C(Mg ) by considering different cases on
081, B2, B3. From section 3 and section 7 we know the following.

o If 31,32, B3 € Z, then (ML) = 6.

o If 01, B2, s, 1 + B2 + B3 € C\ Z, then c(M) = 1.

o If B1,82,33 € C\ Z and By + 2 + (3 € Z, then (M) = 2.
Hence it remains to consider the following two cases.

e Exactly one of 3y, 32,03 is in C\ Z.

e Exactly two of 31,32, 33 are in C\ Z.
We generalize the results in the following theorem.

Theorem 8. (i) If exactly one of 81, B2, B3 is in C\ Z, then c(Mg) = 3.
(i) If exactly two of By, B2, B3 are in C\ Z and 1 + B2 + B3 € C\ Z, then
o(MF)=2.

(iii) If exactly two of B1,02,Ps are in C\ Z and 1 + P2 + P3 € Z, then
o(MF)=3.

Proof. (i) WLOG assume (3; € C\ Z and [33,033 € Z. Then, by Proposi-
tion 2, MP ~ C[m,y]xy(ery)xﬁl. By Proposition 4, C[z, y],=” and

Clz,ylp(aty) 2™ /Clz,y]oa”" are irreducible Ag-modules. Consider the quo-
tient module N = (C[a:,y]xy(ery)mﬁl/C[m,y]m(ery)xﬁl. We want to show
that N is irreducible. Let P € N \ {0}. Assume that P = gxﬁl, where

k .
f=> a;x’,ar #0. That is

=0
k
Z Oéil‘ﬁl'H
p==
Y
We have the formula
(20; — (b1 + 1)) = (j —1) , (8.1)
This implies
[[(@0: — (81 + )P = oyk!

=0
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P11tk
Y

and since oy # 0 by assumption, € Ay P. Consider the following two

formulas:

Ptk pPr+k—i
oL S B+ k) (B +k—1)(B1 + Kk —1)

(8.2)

and ,
. Ptk P+

z’ = . 8.3
; ; (8.3)

Since 81 € C\ Z by assumption, the coefficient in (8.2) is non-zero for all
t > 0 which implies that 287 ¢ A,P. The formula (8.3) gives that

i RS AoP for all ¢ > 0. Hence N C AsP. Since P was arbitrary, this
means that N is irreducible. Therefore,

(C[:E,y]xgjﬁl C (C[:E’y]wy:Eﬁl - C[xay]:cy(:c+y)$ﬁl = Mg’

is a composition series of M} and hence c(Mg ) = 3. This completes the
proof of (i).

(77) WLOG (we can change basis) assume that 5y € Z and 1,05 € C\ Z.
By Proposition 2, M/ = (C[x,y]xy(ery)xﬁl (x 4+ y)% and by Proposition 4,
N = Cl[2,Y|u(z44) 2" (z + y)? is an irreducible submodule of ME. Let
M = MP /N be the quotient module. We are going to show that M is

irreducible. First let us prove that the module M is generated by the class
%aﬁ modulo N. Notice that

am(laﬁ) - (ﬁ_ki)oﬁ = (61 0 s )b = MaﬁmodN.

vy y(r+y) vy  z(r+y) Ty
(8.4)

Using the same decomposition as in (8.4) for k£ > 1 we have that
kL os L 5
ax(ga )= (B1+B3)(Br+ B3 —1)...(B1 + B3 — (k — 1))xTy04 €M. (85)

Since the coefficient in (8.5) is non-zero, by assumption, %aﬁ € Ag(%aﬁ )
for all £ > 0. On the other hand

1 -1 O3 O3
o —L s B _ 8
y($kya ) Ry 1y T R ()
and %aﬁ € N. This implies
o (——afy = —Lap B 8oaN
A LRy :
_ 1 k
Let Dy = [(61+63)---(51+ﬁ3—(k—1))]al" for k > 1. Then
1 1
(B3Dgy1 — Gka)(aaﬁ) = xk—y2a5modN
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and hence 1y2 a? e Ag(1 ). Following a similar argument one can easily
show that — y ( o) for k,m > 1 and hence M = Ag( ).

Next we are going to Show that M is irreducible. Let P € M \ {0}. By
simplifying as before, we can assume that

k .
> et

p==0 aP.

Y
Consider the following formulas
= klepak
[1@o. — (B + 85+ ) (P) = o’ e M (8.6)
j=0
and i
Oh(-a”) = (1+51+53)-..(k+51+53)§aﬁ cM (8.7)

Since the coefficient of %aﬁ in (8.7) is non-zero, by assumption, we have
that, M C A;(P). But P was an arbitrary element, so this means M is
irreducible. Therefore

Cla, ylaya™y™ < Cla,y] 2Py = M

zy(z+y)

is a composition series of M¢ and hence C(Mg )=2. This proves (7).

(7it1) WLOG assume that §, € Z and 31, 83 € C\ Z. By Proposition 2,

MP =~ Cl, y]xy(ery)xﬁl (z + y)? and by Proposition 4,

N = Clx, y]x(ﬁy)xﬁl (z+1)P is an irreducible submodule of ME. By Propo-
sition 2, assume that 81 + B2 + 03 = 0. Using the arguments in the proof of

(i7), one can easily show that the quotient module M = M /N is generated
by —aﬁ Clearly Ag( a?) is a submodule of M. First observe that,

1
a” = 0modN.

@§£r4m+@5§

We are now gomg to show that Ag( L1#) is a proper submodule of M. As-
sume that aﬁ € Ag( a?). Then xyaﬁ = D(g B), for some D € As,.
For suPﬁc1ently large m, 8;”D(%ozﬁ) = D,Om(%ozﬁ) for some D' € Ay and
D'9,(L ozﬁ) =0. But

m—1 1
H ﬁ1+ﬁ3—l ——a
=1 y

and

v=(B1+ 0= 1)(B1+ B3 —2)...(01 + B3 — (m — 1)) #0,
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which implies 8’” aﬁ = —yaﬁ # 0. This is a contradiction. Therefore

As(y Lof) is a proper submodule of M.

Next we want to show that Ag( o) is an irreducible submodule of M. Let
Q € As(= Oéﬁ) \ {0}. Then

koo
> ot

Q= =0 aﬁvak#o'

Using (8.6) and (8.7) we have that Ag( ) C A2Q. Since Q was arbitrary,
Ag(y) is irreducible.

It remains to show that M /Ag(é) is irreducible. Let R € M \ A2(§). Then

a” #0.
7J>1

We can assume that ¢ > j. This is possible because otherwise for sufficiently
large m, we can take J7'R. Let k be the maximum of all j such that

R=3 %o
xt ]
1,7>1 Yy

Then
Z 1
y* IR = E & a?),a, #0

and

i1
Y %(—aﬁ) _ 4B

Y Yy

Since a, # 0 and R was arbitrary, this implies that AoR = M /Ag(%) is
irreducible. This completes the proof. O

References

[1] Atiyah, M. F. and Macdonald, I. G., Introduction to commutative al-
gebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don
Mills, Ont., 1969.

[2] Bjork, J.-E., Rings of differential operators, North-Holland Publishing
Co., Amsterdam, 1979.

[3] Bjork, Jan-Erik, Analytic D-modules and applications, 247, Kluwer
Academic Publishers Group, Dordrecht, 1993.

39



[4]

Coutinho, S. C., A primer of algebraic D-modules, 33, Cambridge Uni-
versity Press, Cambridge, 1995.

C. De Concini and C. Procesi, The algebra of the Box-spline,
arXiv:math.NA /0602019 v1 (2006) .

C. De Concini and C. Procesi, Topics in hyperplane arrangements, poly-
topes and boz-splines, book to be published.

Cox, David and Little, John and O’Shea, Donal, Ideals, varieties, and
algorithms, Springer, New York, 2007.

Dixmier, Jacques, Enveloping algebras, 11, American Mathematical So-
ciety, Providence, RI, 1996,

Fulton, William, Algebraic curves, Addison-Wesley Publishing Com-
pany Advanced Book Program, Redwood City, CA, 1989.

Harris, Joe, Algebraic geometry, 133, Springer-Verlag, New York, 1995.

Matsumura, Hideyuki, Commutative ring theory, Cambridge University
Press, Cambridge, 1986.

Saito, Mutsumi and Sturmfels, Bernd and Takayama, Nobuki, Grébner
deformations of hypergeometric differential equations, Springer-Verlag,
Berlin, 2000.

40



