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Opponent: Jan-Erik Björk
Principal Advisor: Rikard Bøgvad
Second Advisors: Demissu Gemeda, Rolf Källström

Stockholm University, 2007

1



Acknowledgments

I would like to thank Rikard Bøgvad for introducing to me the problem, all
his support during this work, encouragements and besides that answering
all the questions.
I am grateful to Rolf Källström for his suggestions, comments and encour-
agement, Jan-Erik Björk, a person from whom I have learnt a lot , for all
his invaluable comments and suggestions on the problem, Demissu Gemeda
for all his support, Adinew Alemayehu for his kindness to me, my friends
Yohannes Tadesse and Ismail Mirumbe for all their support.
Finally my thanks goes to International Science Program (ISP) for the fel-
lowship, Stockholm University, Department of Mathematics for accepting
me as a graduate student and Addis Ababa University for giving me the
study leave.

Stockholm, December 26, 2007
Tilahun Abebaw

2



Contents

1 Introduction 5

2 Preliminaries 5
2.1 Definition of the module Mβ

α . . . . . . . . . . . . . . . . . . 5
2.2 The simplest example . . . . . . . . . . . . . . . . . . . . . . 6
2.3 A basic property of the module Mβ

α . . . . . . . . . . . . . . 7
2.4 Mβ

α is a holonomic module . . . . . . . . . . . . . . . . . . . . 8
2.5 External products . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 External products of algebras . . . . . . . . . . . . . . 11
2.5.2 External product of modules . . . . . . . . . . . . . . 11

2.6 Decomposition factors of modules . . . . . . . . . . . . . . . . 14

3 The module Mβ
α , where β ∈ Zm 15

3.1 Basic Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 No-broken circuits . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 The plane case . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 On the support of modules 19
4.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Proof of Proposition 9 . . . . . . . . . . . . . . . . . . . . . . 21

5 Normal Crossings 22
5.1 The module Mβ

α , where n = m = 2 . . . . . . . . . . . . . . . 23
5.2 The general case, m ≤ n . . . . . . . . . . . . . . . . . . . . . 23

6 Blowup 24
6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Describing the pullback of the module in the blowup . . . . . 25
6.3 Composition series of the A1-module C[z]α̃α̃β̃ . . . . . . . . . 26

6.4 Composition series of the A2-module C[z,w]α′′ α
′′β

′′

. . . . . . 28

7 The A2-module Mβ
α in the plane case where all βi ∈ C \ Z 28

7.1 Proof of the first part of Theorem 7 . . . . . . . . . . . . . . 29
7.2 The annihilator of αβ . . . . . . . . . . . . . . . . . . . . . . 31
7.3 Proof of the second part of Theorem 7 . . . . . . . . . . . . . 34

7.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 34
7.3.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Example 36

3



Notations

• We use the standard notation C for the field of complex numbers,Z
for the ring of integers and N for the set of natural numbers.

• An = C < x1, ..., xn, ∂x1
, ..., ∂xn >, the ring of differential operators of

the polynomial ring C[x1, ..., xn].

• For multi-indices α = (α1, ..., αn), β = (β1, ..., βn) ∈ Nn, by xα∂β we

mean xα1

1 ...xαn
n ∂β1

x1
...∂βn

xn and the degree of xα∂β is
deg(xα∂β) = α1 + ... + αn + β1 + ... + βn.

• For P =
∑

α,β∈Nn aα,βxα∂β ∈ An, the degree of P is

degP = max{deg(xα∂β) : aα,β 6= 0}.
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1 Introduction

Let α1, ..., αm be linear forms defined on Cn and X = Cn\∪m
i=1V (αi), where

V (αi) = {p ∈ Cn : αi(P ) = 0}. Then the coordinate ring OX of X is

the localization C[x]α, where α =
m∏

i=1
αi. The ring OX is a holonomic An-

module, where An is the n-th Weyl algebra and since holonomic An-modules
have finite length, OX has finite length. We consider a ”twisted” variant of
this An-module. Defining Mβ

α to be the free rank 1 C[x]α-module on the

generator αβ , where αβ = αβ1

1 ...αβm
m and the multi-index β = (β1, ..., βm) ∈

Cm, we can give it a structure as an An-module in the following way. Define
the actions of the generators of An as follows:

xi •
p

αr
αβ =

xip

αr
αβ

for i = 1, 2, ..., n and

∂j •
p

αr
αβ = ∂j(

p

αr
)αβ +

p

αr
∂j(α

β)

where

∂j(α
β) =

m∑

i=1

βi
∂j(αi)

αi
αβ

for j = 1, 2, ..., n. Clearly these relations mean that αβ behaves as the cor-
responding complex function is defined on the complement of the union of
the hyperplanes.
The An-module Mβ

α is a holonomic module (Theorem 1) and hence it has
finite length with decomposition factors that have support on the interse-
tion of the hyperplanes defined by the linear forms (Proposition 9). It seems
difficult to calculate the number of these decomposition factors in general.
It has been done for the case β ∈ Zm, (see [5]) and our main result in this
paper is a computation in the case n = 2. Our methods are algebraic, in
particular we calculate the A2-annihilator of αβ . Along the way we prove
that the module is irreducible in the generic situation.

2 Preliminaries

2.1 Definition of the module Mβ
α

Let αi : Cn −→ C, i = 1, 2, ...,m such that,

αi(x1, ..., xn) =
n∑

j=1

αijxj , αij ∈ C

be linear forms and Hi be the hyperpane in Cn defined by αi, that is,
Hi = {P ∈ Cn : αi(P ) = 0}. If we let X = Cn \∪m

i=1Hi, then the coordinate
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ring of X is the localization C[x1, . . . , xn]α, where α =
m∏

i=1
αi, that is, the ring

of rational functions of the form p
αr , where p is a polynomial in C[x1, . . . , xn].

Since rational functions are preserved by partial differentiation and multi-
plication by polynomials, C[x1, . . . , xn]α is an An-module, where An is the
n-th Weyl Algebra. Consider for varying values of the complex parameters
β1, ..., βm, the function

αβ = αβ1

1 ...αβm
m .

Here β = (β1, ..., βm) and we will throughout this paper use the above multi-
index notation. Also we will use C[x] instead of C[x1, ..., xn].

Definition 1. The module Mβ
α is the free rank 1 C[x]α-module on the

generator αβ. We can give Mβ
α a structure as an An-module in the following

way. Define the actions of the generators of An as follows:

xi •
p

αr
αβ =

xip

αr
αβ

for i = 1, 2, ..., n and

∂j •
p

αr
αβ = ∂j(

p

αr
)αβ +

p

αr
∂j(α

β)

where

∂j(α
β) =

m∑

i=1

βi
∂j(αi)

αi
αβ

for j = 1, 2, ..., n.

The verification that Mβ
α is an An-module is left to the reader.

The problem which we consider in this paper, and solve in some cases is to
find the number of the decomposition factors of Mβ

α . We will throughout
this paper use the notations DF(Mβ

α) for the set of decomposition factors of

Mβ
α and c(Mβ

α ) for the number of decomposition factors of Mβ
α .

2.2 The simplest example

This is clearly the A1-module Mβ
α = C[x]xxβ, that is the case where m =

n = 1. We have the following result, which we do in detail as a preparation
for later results.

Proposition 1. (i) If β ∈ Z, then c(Mβ
α ) = 2.

(ii) If β ∈ C \ Z, then Mβ
α is an irreducible A1-module, so c(Mβ

α ) = 1.

Proof. By definition Mβ
α = C[x]xxβ ∼= ⊕i∈ZCxβ+i.

(i) If β ∈ Z, then clearly Mβ
α
∼= C[x]x. Consider the submodule C[x]. First

we are going to show that C[x] is irreducible. Suppose 0 6= f ∈ C[x] and
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consider the submodule A1f of C[x]. Let m be the degree of f and a be
its coefficient. Then ∂m

x f = m!a is a non-zero constant in the submodule
generated by f . Since a non-zero constant generates C[x], then C[x] ⊂ A1f .
But f was an arbitrary element. This means C[x] is irreducible. Again we
consider the A1-module C[x]x/C[x] and show that it is irreducible. Clearly
the module is generated as an A1-module by the class of x−1 modulo C[x].
Let 0 6= g ∈ C[x]x/C[x]. Then we may assume that all the terms of g have
negative degree. Let h be such that −h is the minimum of the degrees of the
terms of g. Then xh−1g = bx−1, where b is the coefficient of the term with
degree −h. Since bx−1 generates C[x]x/C[x], then C[x]x/C[x] ⊂ A1g. But g
was an arbitrary element. This means that C[x]x/C[x] is irreducible. So we

have a composition series 0 ⊂ C[x] ⊂ C[x]x of Mβ
α , and hence c(Mβ

α ) = 2.
This proves (i).

(ii) Suppose β ∈ C \ Z. We have the formula

(x∂x − (β + i))xβ+j = (j − i)xβ+j

If f =
k∑

i=0
αix

β+i ∈ Mβ
α where αk 6= 0, then

k−1∏

i=0

(x∂x − (β + i))f = αkk!xβ+k.

So the monomial xβ+k ∈ A1f . Now use the formulas

∂i
xxβ+k = (β + k)...(β + k − i)xβ+k−i (2.1)

and
xixβ+k = xβ+k+i (2.2)

If now β ∈ C \ Z, then the coefficient in (2.1) is non-zero for all i ≥ 0
and hence xβ+k−i ∈ A1f . (2.2) gives that xβ+k+i ∈ A1f for all i ≥ 0, and

so Mβ
α ⊂ A1f . But f was an arbitrary element. This means that Mβ

α is
irreducible. This concludes the proof.

2.3 A basic property of the module Mβ
α

In the following proposition we are going to prove a basic property of the
module Mβ

α, which we will use later on.

Proposition 2. (i) Mβ
α
∼= Mγ

α, if β ≡ γ (modZm).

(ii) Mβ
α
∼= C[x]α, if β ∈ Zm.

Proof. (ii) is a special case of (i). Suppose that β = γ + τ , τ ∈ Zm.

Define θ : Mβ
α −→ Mγ

α by:

θ(
p

αr
αβ) =

p

αr
αταγ
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Clearly this is a 1-1, onto map and it is an easy exercise to show that it is
an An-module homomorphism.

2.4 Mβ
α is a holonomic module

We are now going to show that our module Mβ
α is a holonomic module

and hence has finite length. For this we need the following definitions and
results. For details see [4].

Definition 2. Let M be a left An-module. A family Γ = {Γi}i≥0 of C-vector
spaces is a filtration of M with respect to the Bernstein filtration B of An

if it satisfies:

• Γ0 ⊂ Γ1 ⊂ · · · ⊂ M ,

• M = ∪i≥0Γi,

• BiΓj ⊆ Γi+j, where Bi is the set of all operators of An of degree less
than or equal to i and

• Γi is a finite dimensional vector space.

It is known that a finitely generated An-module M has a filtration of the
above type such that grΓM is a finitely generated grBAn-module.

Definition 3. The dimension of the An-module M is

d(M) = dimgrBAn
grΓM

for any filtration Γ such that grΓM is a finitely generated grBAn-module.
Similarly the multiplicity m(M) of M is the multiplicity of grΓM as grBAn-
module. The An- module M is called holonomic if d(M) = n or M = 0.

Since grBAn is polynomial algebra on 2n variables, this means that the
dimension d(M) of M is less than or equal to 2n. Bernstein′s inequality
says that there is also a lower bound: d(M) ≥ n.

Example 1. Since the dimension of C[x] as An-module is n, it is a holonomic
module. The dimension of An as a left An-module is 2n, so An is not a
holonomic module.

Proposition 3 ([2, 4]). (i) Submodules, quotients and finite sums of holo-
nomic An-modules are holonomic.
(ii) Holonomic modules are finitely generated and have finite length.

We will use the definition in the following form. The proof of the follow-
ing Lemma can be found in [4].
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Lemma 1. Let M be a left An-module with filtration Γ with respect to the
Bernstein filtration B of An. Suppose that there exist constants c1, c2 such
that for j ≻≻ 0

dimCΓj ≤
c1j

n

n!
+ c2j

n−1.

Then M is a holonomic An-module whose multiplicity cannot exceed c1. In
particular M is finitely generated, and has finite length.

We are now in a position to prove that Mβ
α is a holonomic module.

Theorem 1. The An-module Mβ
α is holonomic.

Proof. Let m be the degree of α. Set

Γk = {
q

αk
αβ : q ∈ C[x],degq ≤ (m + 1)k}.

We first check, in detail, that Γ = {Γk}k≥0 is a filtration for Mβ
α. Let q

αk αβ

be an element of Mβ
α , and assume that q has degree s. Then

q

αk
αβ =

qαs

αk+s
αβ .

But qαs has degree s(m + 1) ≤ (m + 1)(s + k), and hence

q

αk
αβ ∈ Γs+k.

It follows that Mβ
α is the union of all Γk for k ≥ 0.

Next suppose that q
αk αβ ∈ Γk. Equivalently degq ≤ (m + 1)k. Multiplying

by xi increases the degree of q by 1. Thus

xi
q

αk
αβ =

xiq

αk
αβ =

xiqα

αk+1
αβ ∈ Γk+1. (2.3)

On the other hand

∂i(
q

αk
αβ) = ∂i(

q

αk
)αβ +

q

αk
∂i(α

β), (2.4)

and

∂i(
q

αk
)αβ =

α∂i(q) − kq∂i(α)

αk+1
αβ . (2.5)

The numerator in (2.5) has degree less than or equal to (m+1)k+(m−1) ≤
(m + 1)(k + 1), so that

∂i(
q

αk
)αβ ∈ Γk+1 (2.6)

On the other hand

q

αk
∂i(α

β) =

m∑

j=1

q

αk
βj

∂i(αj)

αj
αβ .
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Now consider
q

αk
βj

∂i(αj)

αj
αβ .

Then

βj
q∂i(αj)

αkαj
αβ = βj

q∂i(αj)α1 . . . α̂j . . . αm

αk+1
αβ.

The numerator has degree less than or equal to (m + 1)k + (m − 1) ≤
(m + 1)(k + 1). This implies

q

αk
βj

∂i(αj)

αj
αβ ∈ Γk+1

and then
m∑

j=1

q

αk
βj

∂i(αj)

αj
αβ ∈ Γk+1.

Hence
q

αk
∂i(α

β) ∈ Γk+1 (2.7)

So (2.7) together with (2.6) means that

∂i(
q

αk
αβ) ∈ Γk+1

if q
αk αβ ∈ Γk. This may be summed up as: B1Γk ⊆ Γk+1. Since Bi = Bi

1,
we also have that BiΓk ⊆ Γi+k.
Finally, the dimension of Γk cannot exceed the dimension of the vector
space of polynomials of degree (m + 1)k. This concludes the proof that

Γ = {Γk}k≥0 is a filtration of Mβ
α and shows that

dimCΓk ≤

(
(m + 1)k + n

n

)
.

Since the term of highest degree in k of this binomial number is (m+1)nkn/n!
it follows that

dimCΓk ≤
(m + 1)nkn

n!
+ ckn−1

for very large values of k. By Lemma 1, Mβ
α must be holonomic module of

multiplicity less than or equal to (m + 1)n, and has finite length.

2.5 External products

In this subsection we will give the definition of external product of modules
which we will use later. We will start by considering external product of
algebras. For more details and some of the proofs see [4].
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2.5.1 External products of algebras

Let K be a field of characterstic zero and A, B be K-algebras. The extenal
product A⊗̂B is the tensor product A ⊗K B on wich we define a multipli-
cation. For a, a

′

∈ A and b, b
′

∈ B, let

(a ⊗ b)(a
′

⊗ b
′

) = aa
′

⊗ bb
′

It is easy to check that A ⊗K B with this product is a K-algebra Let
K[x] = k[x1, ..., xn] and k[y] = K[y1, ..., ym] be polynomial rings. Write
K[x, y] for the polynomial ring on x1, ..., xn, y1, ..., ym. Let An be the Weyl
algebra generated by x1, ..., xn, ∂x1

, ..., ∂xn and Am the Weyl algebra gen-
erated by y1, ..., ym, ∂y1

, ..., ∂ym . Both are subalgebras of Am+n, the Weyl
algebra generated by x1, ..., xn, ∂x1

, ..., ∂xn , y1, ..., ym, ∂y1
, ..., ∂ym . Then the

following isomorphisms are induced by the multiplication map:

• K[x]⊗̂K[y] ∼= K[x, y],

• Am⊗̂An
∼= Am+n.

2.5.2 External product of modules

LetK be a field of characterstic zero and A, B be K-algebras. Suppose that M
is a left A-module and N is a left B-module. Then we may turn the K-vector
space M ⊗K N into an A⊗̂B-module M⊗̂N . The action of a⊗ b ∈ A⊗̂B on
u ⊗ v ∈ M ⊗K N is given by the formula

(a ⊗ b)(u ⊗ v) = au ⊗ bv.

Definition 4. The A⊗̂B-module M⊗̂N , which is defined above, is called
the external product of M and N.

We have the following Lemma on the dimension and multiplicity of ex-
ternal product of modules. The proof can be found [4].

Lemma 2. Let M be a finitely generated left Am-module and N be a finitely
generated left An-module. Then:
(i) M⊗̂N is finitely generated A⊗̂B-module
(ii) d(M⊗̂N) = d(M) + d(N)
(iii) m(M⊗̂N) ≤ m(M)m(N)
(iv) If M is a holonomic Am-module and N is a holonomic An-module, then
M⊗̂N is a holonomic Am+n-module.

The proof of the second part of the following Lemma can be found [8].

Lemma 3. Let M be a simple An-module.
(i) The set of endomorphisms EndAn

M is a skew field.
(ii) If φ ∈ EndAnM , then φ is algebraic over C.
(iii) HomAn

(M,M) = C.
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Proof. The first statement is Schur’s Lemma. For the second let A = C[φ],
the subalgebra of EndAn

M generated by 1 and φ. Assume that φ is tran-
scendent over C. Then A is identified with a polynomial algebra over C in
one variable.
Let D = A ⊗C An. Then there is a unique structure of D-module on M
such that (a ⊗ u)m = aum = uam for a ∈ A,u ∈ An and m ∈ M . Choose
a non-zero element m0 ∈ M . We have M = Dm0 since M is simple. Put
Dk = A⊗Bk and Mk = Dkm0, where {Bk} is the Bernstein filtration of An.
The vector space grM = ⊕Mk+1/Mk is a finitely generated (cyclic) module
over the graded algebra grD and grD is finitely generated over A. Hence by
[11, Theorem 24.1] there exists f ∈ A − {0} such that grM ⊗A Af is free
over Af . Since Af is principal ring, every (Mk/Mk−1)⊗A Af is free over Af .
Hence M ⊗A Af is a successive extension of free Af -modules and hence free
over Af .
Now let a ∈ A − {0} be an element that does not divide any powers of f .
Then the induced multiplication map Af −→ Af , (b 7→ ab), is not surjective.
Using that M is free it follows that the induced mapping η : M ⊗A Af −→
M ⊗A Af is not surjective. We have η(m⊗ b) = m⊗ab = am⊗ b for m ∈ M
and b ∈ Af . Since M is simple the mapping m 7→ am of m is bijective
and we reach a contradiction. Hence φ is algebraic. Since C is algebraically
closed this implies (iii).

The following proposition will be one of our main tools.

Proposition 4. Let M be an irreducible An-module and N be an irreducible
Am-module. Then M⊗̂N is an irreducible Am+n-module.

Proof. Clearly M ⊗C N = {
∑k

i=1 aimi ⊗ni : mi ∈ M,ni ∈ N, ai ∈ C}. Now,
let f ∈ M⊗̂N and f 6= 0. Then we want to show that Am+nf = M⊗̂N . We
will prove this in two steps.

Step I

Let f = m0 ⊗ n0,m0 ∈ M \ {0}, n0 ∈ N \ {0}. We know that Anm0 = M
and Amn0 = N and if m1 ⊗ n1 ∈ M ⊗ N , then m1 = am0 and n1 = bn0 for
some a ∈ An, b ∈ Am. This implies that

m1 ⊗ n1 = (am0) ⊗ (bn0) = ab(m0 ⊗ n0) ∈ Am+nf.

If g =
k∑

i=1
mi ⊗ ni ∈ M ⊗ N , then mi = aim0 and ni = bin0, ai ∈ An and

bi ∈ Am and hence

g =
k∑

i=1

aim0 ⊗ bin0 =
k∑

i=1

aibi(m0 ⊗ n0) = (
k∑

i=1

aibi)m0 ⊗ n0 = cm0 ⊗ n0,
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where c =
k∑

i=1
aibi ∈ Am+n. This implies that g ∈ Am+nf . Therefore

Am+nf = M⊗̂N .

Step II

Let f =
k∑

i=0
mi ⊗ ni,mi ∈ M,ni ∈ N . We will proceed by induction on k.

We already proved the result for k = 1 in the preceding step. First we will
consider the case k = 2. Suppose f = m0⊗n0+m1⊗n1, where m0⊗n0 6= 0,
and m1 ⊗ n1 6= 0. We know that (a⊗ 1)f = am0 ⊗ n0 + am1 ⊗ n1. Suppose
am0 = 0 and am1 6= 0. Then (a ⊗ 1)f = am1 ⊗ n1 6= 0. By the first case,
am1⊗n1 generates M ⊗N , and hence Am+nf = M⊗̂N . So we should check
if there are elements a ∈ An such that am0 = 0 but am1 6= 0.
Let us answer the question, do we have a ∈ An − {0} and am0 = 0 and
am1 6= 0?

Lemma 4. If M is an irreducible An-module and m ∈ M,m 6= 0, then
Ann(m) 6= 0.

Proof. Consider the map
φ : An −→ M

defined by φ(a) = am ∈ M . Since M is irreducible and m 6= 0, φ is a
surjective map. If Kerφ = {a ∈ An : am = 0} = 0, then An

∼= M and hence
An is irreducible which is a contradiction. Hence Ann(m) = Kerφ 6= 0.

Let us continue the proof of Proposition 4 step II. Let J0 = Ann(m0)
and J1 = Ann(m1). If J1 ( J0 , then we can apply the argument above. If
J0 ( J1, then we can apply the first case, because we have a ∈ An such that
am0 = 0 and am1 6= 0 and hence

am0 ⊗ n0 + am1 ⊗ n1 = am1 ⊗ n1 6= 0

and Am+n(am1 ⊗n1) = Am+nf = M⊗̂N . So J0 = J1 is the only case which
the argument does not work. So suppose this is the case. Then consider the
isomorphisms

φ0 : An/J0 −→ M

a + J0 7−→ am0

and
φ1 : An/J1 −→ M

a + J1 7−→ am1.
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We have M

η︷ ︸︸ ︷
φ−1

0→ An/J0(= J1)
φ1
→M . That is η = φ1oφ

−1
0 . Then by Lemma 3,

η(m) = αm for some α ∈ C. This implies η(m0) = αm0 = m1 and hence

f = m0⊗n0+m1⊗n1 = m0⊗n0+αm0⊗n1 = m0⊗n0+m0⊗αn1 = m0⊗(n0+αn1) = m0⊗n2,

where n2 = n0 ⊗ αn1. This implies f = m0 ⊗ n2 and then by the first case
above, Am+nf = M ⊗ N . The case k > 2 is treated in the same way. By

the above argument, if f =
k∑

i=0
mi ⊗ ni, either there exists a ⊗ 1 such that

0 6= (a ⊗ 1)f =
k−1∑
i=0

ami ⊗ ni and hence by induction f generates M⊗̂N , or

we use Lemma 4 in the same way as above to see that f =
k−1∑
i=0

m̃i ⊗ ñi and

again by induction generates M⊗̂N .

Proposition 5. Let M be an An-module with a composition series

0 = M0 ⊂ M1 ⊂ . . . Mr = M

and N be an irreducible Am-module. Then

0 = M0⊗̂N ⊂ M1⊗̂N ⊂ ... ⊂ Mr⊗̂N = M⊗̂N

is a composition series of M⊗̂N .

Proof. It suffices to note that Mi⊗̂N/Mi−1⊗̂N ∼= Mi/Mi−1⊗̂N is irreducible
by Proposition 4.

2.6 Decomposition factors of modules

Let R be a ring and M be an R-module. If 0 = M0 ⊂ M1 ⊂ . . . Mr = M is
a composition series of M, then the set

DF(M) := {Mi/Mi−1}
r
i=1

of simple R-modules is the set of decomposition facors of M.
We have the following Proposition on the decomposition factors of R-modules.

Proposition 6. Let M be an R-module .
(i) Let N be a submodule of M. Consider the exact sequence of R-modules

N ⊂ M
φ
→ M/N . Then,

(a) DF(M) = DF(N) ∪ DF(M/N) and
(b) c(M) = c(N) + c(M/N).
(ii) If M = Mk ⊃ Mk−1 ⊃ ... ⊃ M0 is a sequence of R-modules, then

DF(M) =
k⋃

i=1

DF(Mi/Mi−1).

14



Proof. Once we have proved (i), (ii) can easily be proved by induction on k.
To prove (i) consider

M
φ
→ M/N = Fk ⊃ Fk−1 ⊃ ... ⊃ F1 ⊃ F0 = 0

Then Fj = Mj/N , where M ⊃ Mj = φ−1(Fj) for j = 0, 1, ..., k. But

Mj/Mj−1 = φ−1(Fj)/φ
−1(Fj−1) ∼= Mj/N/Mj−1/N = Fj/Fj−1.

Hence if Fj/Fj−1 are irreducible, then Mj/Mj−1 also are irreducible. Sup-
pose 0 = N0 ⊂ N1 ⊂ ... ⊂ Ns = N is a composition series of N. Then

N0 ⊂ N1 ⊂ ... ⊂ Ns = N = M0 ⊂ M1 ⊂ ... ⊂ Mk = M

is a composition series of M. Therefore

{Nj/Nj−1}
s
j=0 ∪ {Fi/Fi−1

∼= Mi/Mi−1}
k
i=0

is the set of decomposition factors of M.

Corollary 1. Let 0 = M0 ⊂ M1 ⊂ ... ⊂ Mk = M be a composition series of
an An module M and 0 = N0 ⊂ N1 ⊂ ... ⊂ Nl = N be a composition series
of an Am-module N. Then

DF(M⊗̂N) = {Mi/Mi−1⊗̂Nj/Nj−1}
k,l
i=1,j=1

and hence c(M⊗̂N) = c(M)c(N).

Proof. It is an easy consquence of Proposition 6.

3 The module Mβ
α , where β ∈ Zm

By Proposition 2, in the case where β ∈ Zm, Mβ
α
∼= C[x]α. Our aim in this

section is to find the number of decomposition factors of C[x]α. This will
turn out to be equivalent to analyzing expressions in partial fractions for
functions in C[x]α. Let us proceed in the following way.

• To every subset

S = {αi1 , . . . , αid} ⊂ △ = {α1, . . . , αm}

that consists of linearly independent forms, choose coordinates zd+1, . . . , zn

such that αi1 , . . . , αid , zd+1, . . . , zn are linear coordinates in space.

• In order to simplify the notations let us denote αik = zk, k = 1, 2, ..., d.

• Let AS = C[zd+1, . . . , zn] be the corresponding ring of polynomials.
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• Define RS = {h ∈ C[x]α : h = g
Qd

j=1 z
mj
j

; g ∈ AS ,mj > 0,∀j}.

• We will just use these modules for certain subsets S called no-broken
circuits defined below.

Consider the following sequence of An-modules

0 ⊂ R0(= C[x]) ⊂ R1 ⊂ · · · ⊂ Rr = C[x]α,

where r ≤ n and Rk is the subspace of C[x]α which is generated by monomi-
als in x1, ..., xn, α−1

1 , ..., α−1
m such that at most k of α1, ..., αm have strictly

negative exponents. Clearly Rk is an An-submodule of C[x]α. The main
theorem in this section is the following.

Theorem 2.
Rk/Rk−1 = ⊕W ⊕S RS

where W runs over the subspaces of dimension k generated by elements of △
and S runs over certain subsets of k elements of △ (the so called no-broken
circuits, see definition below) which generate W.

The proof of Theorem 2 can be found in [5], whose exposition we follow.
We will indicate some parts of it below.

3.1 Basic Lemma

Lemma 5 ([5]). Let α1, α2, . . . , αk, αk+1 be non-zero linear forms with α1 =
k+1∑
j=2

cjαj. Then we have

1
∏k+1

j=1 αj

=

k+1∑

j=2

cj
1

α2
1

∏j−1
1 αi

∏k+1
i=j+1 αi

Proof.

1
∏k+1

j=1 αj

=
α1

α2
1

∏k+1
j=2 αj

=
k+1∑

j=2

cj
αj

α2
1

∏k+1
j=2 αj

.

Given non-zero linear forms α1, α2, . . . , αm, let d be the dimension of the
vector space they generate.

Proposition 7 ([5]). Every expression 1
m
Q

j=1

α
hj
i

can be expressed as linear

combinations of expressions 1
d

Q

j=1

α
mj
ij

with αi1 , αi2 , . . . , αid linearly indepen-

dent and
d∑

j=1
mj =

m∑
i=1

hi.
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Proof. Let us apply reduction and an induction on the vector of exponents
(h1, . . . , hm) in the following way.

• Using the given ordering we can take the first linearly dependent ele-
ments that appear in the product with non-zero exponents.

• Using Lemma 5 we can substitute the product of these terms with a
sum in which developing the vector of exponents is increased in the
lexicographical order maintaining the same sum.

• In each term the space generated by the factors remains the same.

• Clearly this recursive procedure terminates after a finite number of
steps, when all the summands are of the required type.

3.2 No-broken circuits

We will systemize the procedure in the proof of the preceding proposition.

Definition 5. Let α1, . . . , αm be non-zero linear forms. Let αi1, αi2 , . . . , αih ,
i1 < i2 < ... < ih be an ordered sublist of linearly independent elements. We
say that the sublist is a broken circuit if there exists an integer k ≤ h and an
integer i < ik such that the elements αi, αik , . . . , αih are linearly dependent,
otherwise it is called no-broken circuit.

Lemma 6. If αi1 , αi2 , . . . , αih is a broken circuit, then 1
h
Q

j=1

αij

is a linear

combination of expressions 1
m
Q

j=1

α
hj
j

with the vector of exponents lexicograph-

ically bigger than the vector of exponents of 1
h
Q

j=1

αij

.

Proof. From the given hypothesis we have αi =
h∑

j=k

cjαij , with i < ik. Let

us substitute and simplify:

1
∏h

j=1 αij

=
αi

αi

∏h
j=1 αij

=
ckαik + · · · + chαih

αi

∏h
j=1 αij

Simplifying every term in the numerator with the corresponding factor in
the denominator we get the desired expressions.
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Theorem 3. Every expession 1
m
Q

j=1

α
hj
j

can be expressed as a linear com-

bination of expressions 1
d

Q

j=1

α
mj
ij

, with αi1 , . . . , αid a no-broken circuit and

d∑
j=1

mj =
∑m

i=1 hi.

Proof. The fact that an expression of the given type can be written as a lin-
ear combination of expressions relative to no-broken circuits can be proved
by induction on the lexicographic order of the vector exponents as in Propo-
sition 7 and repeatedly using Lemma 6.

Corollary 2. The space RS has basis the monomials
n∏

i=1
zhi

i such that hi ≥ 0

∀i > d, hi < 0 ∀i ≤ d and C[x]α =
∑

S RS as S varies among the no-broken
circuits.

Proof. • The elements z1, z2, . . . , zn are linear coordinates in space and
RS is contained in the ring of Laurent polynomials in these variables.
These polynomials have as basis all the monomials in the variables
with integer exponents. The proposed monomials are thus part of
these basis and so linearly independent.

• From Theorem 3 it follows immediately that every function f in R can
be written as a linear combination of expessions

f =
g

∏d
j=1 α

mj

ij

such that g ∈ C[x], mj > 0, ∀j and S = αi1 , . . . , αid a no-broken
circuit.

• We write f as a polynomial in the variables αi1 , . . . , αid , zd+1, . . . , zn.
Simplify the αi that appear in the numerator and the denominator.
Thus with as easy induction we can prove that every element in R is
a sum of elements of the spaces RS .

Corollary 3. The number of decomposition factors of C[x]α equals the num-
ber of no-broken circuits.

3.3 The plane case

Consider the A2-module Mβ
α = C[x, y]ααβ , where

αβ = xβ1yβ2(x + c3y)β3...(x + cmy)βm . If β1, ..., βm ∈ Z, then by Propo-

sition 2, Mβ
α

∼= C[x, y]xy
Qm

i=3(x+ciy). We have the following sequence of
A2-modules

0 → R0(= C[x, y]) ⊂ R1 ⊂ R2 = Mβ
α ,
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where R1 is the subspace of C[x, y]xy
Qm

i=3
(x+ciy) which is generated by the

monomials x±1y±1, (x + c3y)−1, ..., (x + cmy)−1 such that atmost one of
x, y, x + c3y, ..., x + cmy has striclly negative exponent. Then

R1/R0 = ⊕m
j=1RSj

,

where RS1
and RS2

isomorphic to the submodules generated by eS1
= 1

x
and

eS2
= 1

y
modulo R0 respectively and RSj

is isomorphic to the submodule

generated by eSj
= 1

zi
modulo R0, where zi = x + ciy, i = 3, ...,m and each

RSj
, j = 1, ...,m is irreducible. On the other hand

R2/R1 = ⊕m
i=2RSi

,

where RS2
is is isomorphic to the submodule generated by eS2

= 1
xy

modulo
R1, RSi

for i = 3, ...,m is is isomorphic to the submodule generated by
eSi

= 1
xzi

modulo R1, where zi = x + ciy, i = 3, ...,m and each RSi
is

irreducible. Hence c(R2/R1) = m − 1, c(R1/R0) = m and c(R0) = 1. We
know that

DF(Mβ
α) = DF(R0) ∪ DF(R1/R0) ∪ DF(R2/R1),

and
c(Mβ

α ) = c(R0) + c(R1/R0) + c(R2/R1).

Therefore c(Mβ
α ) = 2m.

Remark 1. Observe that the set of no-broken circuits of the set
{x, y, x + c3y, ..., x + cmy} of the linear forms is

{∅, {x}, {y}, {x + c3y}, ..., {x + cmy}, {x, y}, {x, x + c3y}, ..., {x, x + cmy}}.

4 On the support of modules

Let X be a smooth affine algebraic variety. (X will be Cn or an open subset
of Cn which is the complement of a union of hyperplanes defined by forms).
We denote by DX the ring of differential operators on X and if X = Cn this is
the same as An. If X is an affine open subset of Cn defined by 0 6= f ∈ C[x],
then DX = C[x]f ⊗C[x] An. We will use the notation OX = C[x]f in this
case.
If M is a DX -module then it can be viewed as an OX -module and hence has
an annihilator, AnnOX

M .

Definition 6. V (AnnOX
M) is called the support of M, and is denoted by

SuppM. (With V (I) for an ideal I ⊂ OX means the closed subvariety of
zeroes defined by I.)

We have the following examples.
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• For M1 = C[x, y]xy/(C[x, y]x + C[x, y]y),
SuppM1 = V (x, y) = (0, 0).

• For M2 = C[x, y]x/C[x, y],
SuppM2 = V (x) = {(0, y) : y ∈ C}.

• M3 = C[x, y],
SuppM3 = V (0) = C2.

4.1 Basic properties

Proposition 8. If M is an irreducible DX-module and U ⊂ X an affine
open subset, then M|U =: OU ⊗OX

M is an irreducible DU -module.
If N is a DX -module, then c(N|U ) ≤ c(N).

Proof. Suppose U = X − V (s) and 0 6= f, g ∈ M|U . Then f = f
′

sj , g = g
′

sk ,

f
′

, g
′

∈ M . By the assumption that M is irreducible, there exists P ∈ DX

such that Pf
′

= g
′

. This implies (s−kPsj)(f
′

sj ) = g
′

sk . This gives the result

since clearly s−kPsj ∈ DU .

Proposition 9. Consider Mβ
α and a decomposition factor Mi. It has sup-

port on an intersection of hyperplanes HS for some S ⊂ {1, 2, ...,m} .

HS = {p ∈ Cn : αi(p) = 0, i ∈ S}.

The proof of the proposition will be given below after some preliminaries.

Definition 7. Suppose that θ is an automorphism of DX . If M is a DX-
module, θ∗M is defined to be the DX-module which consists of the same
elements as M, but on which DX acts by θ: if P ∈ DX , m ∈ θ∗M , then
Pm = θ(P )m.

The following Lemma is clear.

Lemma 7. If θ : DX −→ DX is an automorphism such that it is the
identity on OX and M has decomposition factors Mi, i=1,...,l, then θ∗M
has decomposition factors θ∗Mi, i = 1, ..., l. In particular c(M) = c(θ∗M).
The support of θ∗Mi equals the support of Mi.

We will apply this Lemma to the following Proposition.

Proposition 10. Suppose that U = X − V (α1, ..., αl). Then c(Mβ
α |U ) =

c(Mβ
′

α
′
|U

), where α
′

= αl+1...αm and β
′

= (βl+1, ..., βm).

Proof. It is enough to assume by induction that U = X − V (α1). Put αβ =

αβ1

1 α̃β̃, where α̃ = α2...αm and β̃ = (β2, ..., βm). Then Mβ
α |U = C[x]ααβ1

1 α̃β̃

and the point is that α1 is invertible here. Now define θ : DU −→ DU in the
following way.
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• If D ∈ DerC(C[x]) ⊂ DU , θ(D) = D + β1D(α1)
α1

.

• If r ∈ OU , then θ(r) = r.

Extending this inductively gives an automorphism of DU , since it has the
inverse θ−1 : D 7→ D − β1D(α1)

α1
. We claim that the map

ρ : θ∗M β̃
α̃ |U −→ Mβ

α |U

defined by ρ : rα̃β̃ 7→ rαβ is a DU -isomorphism. It suffices to check that
ρ(D(rα̃β̃)) = D(ρ(rα̃β̃), i.e. ρ(θ(D)(rα̃β̃)) = D(rαβ), if D ∈ DerC(C[x])
and r ∈ C[x]α. But

θ(D)rα̃β̃ = (D +
β1D(α1)

α1
)rα̃β̃ = (

m∑

i=1

βiD(αi)

αi
)rα̃β̃ + D(r)α̃β̃ .

Since D(rαβ) = (
∑m

i=1
βiD(αi)

αi
)rαβ + D(r)αβ , the statement is clear. Hence

the proposition is clear by the preceeding lemma.

Lemma 8. Let U ⊂ X be an affine open subset.
(i) SuppM|U = U ∩ SuppM.
(ii)M|U = 0 ⇔ SuppM ⊂ X − U =: Z.
(iii)If M is irreducible, then SuppM is irreducible as a variety.

Proof. (i) is clear by definition. Let I be the ideal of Z. For any OX -module
M there exists an exact sequence

ΓZM ⊂ M −→ M|U ,

where ΓZM = {m ∈ M : ∃r, Irm = 0}. If M|U = 0, then ΓZM = M and
this proves (ii) in one direction. The other direction is a consquence of (i)
and the fact that the only module with SuppM = ∅ is the the zero module.
The proof of (iii) may be found in [2].

Corollary 4. (i) DF(M|U) = {Mi ∈ DF(M) : SuppMi ∩ U 6= ∅}.
(ii) c(M|U ) ≤ c(M).

4.2 Proof of Proposition 9

We are going to prove the proposition in a more general setting, by letting
X be possibly the complement of a union of hyperplanes V (αi) i = 1, ...,m.

So the statement to be proved is the following: consider Mβ
α as a DX-

module, the the support of a decomposition factor is an intersection of some
of the hyperplanes V (αi) i = 1, ...,m. Make induction on the number of
αi, i = 1, ...,m that are not invertible in OX . Suppose these are αl+1, ..., αm,
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and the ones which are invertible are α1, ..., αl . Then as in the proof of
Proposition 10,

Mβ
α
∼= θ∗Mβ

′

α
′ (4.1)

where α
′β

′

= α
βl+1

l+1 ...αβm
m , as DX-modules. θ being the identity on functions

preserves support, so it suffices to prove the proposition for Mβ
′

α
′ . If the

number of non-invertible αi is zero, then m = l, Mβ
′

α
′
∼= OX and we are done

by Section 3 and Lemma 8 (i). Now for the induction step, assume that the
statement is known for m − l = p. Assume first that X = Cn, and

Mβ
α = C[x, α−1

1 , ..., α−1
m ]α

′β
′

.

Let N be a decomposition factor of Mβ
α with SuppN = Z. Assume first

that Z is contained in all the hyperplanes V (αi), j=1,..,m. (They do not
have to intersect in the origin.) Then Z ⊂ ∩m

j=1V (αj) =: H. If H is the
origin we are done. Otherwise choose a decomposition Cn ∼= Cn1 × Cn2

with coordinates x̃1, ..., ˜xn1
, ỹ1, ..., ˜yn2

such that αi(x) =
∑n1

j=1 αj
i x̃j . This

is always possible, letting Cn2 = H and Cn1 a complement. Then Mβ
α

∼=

C[ỹ]⊗̂C[x̃]β
′

α
′ . All the decomposition factors of this module have the form

C[ỹ]⊗̂Ñ , (see Section 2) where Ñ is a decomposition factor of C[x̃]β
′

α
′ . Since

Supp(C[ỹ]⊗̂Ñ) = Cn1 × SuppÑ, we are reduced to proving the proposition

for C[x̃]β
′

α
′ . This means that we may assume WLOG that ∩j

i=1V (αi) is the
origin. In that case there is some hyperplane, V (α1) say, which does not
contain Z = SuppN. Then N|U1

, where U1 = X − V (α1) is a non-trivial

decomposition factor of Mβ
α |U1

with support U1 ∩ Z 6= 0. Hence, since
α1 is invertible on U1, by induction U1 ∩ Z is an intersection HS ∩ U1 of
hyperplanes.
Since Z is irreducible, Z = U1 ∩ Z = HS, so the result follows.
It remains to see that the inductive hypothesis is true for an arbitrary X
that is a complement of a union of hyperplane sections. By the procedure
of (4.1) we may assume that Mβ

α = (OX)ααβ, α1, ..., αm, for some m ≤
p + 1 are not invertible. Hence,(OX )ααβ = (OCn)ααβ , and the proposition
follows from Lemma 8 (i) and the preceding discussion for the case Cn, since

(OX)ααβ = C[x, α−1]αβ
|X

.

5 Normal Crossings

In this section, we restrict ourselves to the normal crossings, that is, all
the linear forms are some of the coordinate axes. Any module Mβ

α where
α1, ..., αm are linearly independent on Cn and m ≤ n is isomorphic to such
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a module by change of coordinates. Let α1 = x1, ..., αm = xm, m ≤ n. Then
Mβ

α = C[x1, ..., xn]x1..xmαβ, where αβ = xβ1

1 ...xβm
m , β1, ..., βm ∈ C. Recall

that, in section 2 of this paper, we considered the case m = n = 1. We are
going to start this section by considering the case m = n = 2 and then at
last we will treat the general case.

5.1 The module Mβ
α , where n = m = 2

Clearly this is the module Mβ
α = C[x, y]xyx

β1yβ2. Then the multiplication
map induces the following isomorphism, C[x, y]xyx

β1yβ2 ∼= C[x]xxβ1⊗̂C[y]yy
β2.

Theorem 4. (i) If β1, β2 ∈ C \ Z, then Mβ
α is an irreducible A2-module.

(ii) If β1, β2 ∈ Z, then c(C[x, y]xy) = 4.

(iii) If β1 ∈ Z and β2 ∈ C \ Z, then c(Mβ
α ) = 2.

Proof. (i) By Proposition 1, if β1, β2 ∈ C \ Z, then C[x]xxβ1 is irreducible
C < x, ∂x >-module and C[y]yy

β2

is an irreducible C < y, ∂y >-module.

Hence by Proposition 4, C[x]xxβ1⊗̂C[y]yy
β2 ∼= Mβ

α is irreducible A2-module.

(ii) By Proposition 2, if β1, β2 ∈ Z, then Mβ
α

∼= C[x, y]xy and C[x, y]xy
∼=

C[x]x⊗̂C[y]y. By Proposition 1, c(C[x]x) = 2 and c(C[y]y) = 2. Therefore

c(Mβ
α ) = c(C[x]x).c(C[y]y) = 2(2) = 4, this proves (ii).

(iii) If β1 ∈ Z and β2 ∈ C\Z, then C[x, y]xyx
β1yβ2 ∼= C[x]xxβ1⊗̂C[y]yy

β2 and

C[x]xxβ1 ∼= C[x]x. So we have Mβ
α

∼= C[x]x⊗̂C[y]yy
β2. But c(C[x]x) = 2

and C[y]yy
β2 is an irreducible C < y, ∂y >-module. Therefore c(Mβ

α ) =
c(C[x]x)c(C[y]yy

β2) = 2(1) = 2. This completes the proof.

5.2 The general case, m ≤ n

The module is Mβ
α = C[x]x1...xmxβ1

1 ...xβm
m . We are now going to consider the

module in the following cases.

• βi ∈ C − Z for i = 1, ...,m,

• βi ∈ Z for i = 1, ...,m and

• some of them are integers and some are not.

The following Theorem gives all the results.

Theorem 5. Let Mβ
α = C[x]ααβ, α = x1...xm and m ≤ n. Then:

(i) If β1, β2, . . . , βm ∈ C \ Z, then Mβ
α is irreducible.

(ii) If β1, β2, . . . , βm ∈ Z, then c(Mβ
α ) = 2m.

(iii) Suppose that k of the β1, β2, . . . , βm are integers and the others are

elements of C \ Z, then c(Mβ
α ) = 2k.
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Proof. (i) If β1, β2, . . . , βm ∈ C \ Z, then Mβ
α = C[x]x1...xmxβ1

1 ...xβm
m and the

multiplication map induces the following isomorphisms,

C[x]x1...xmxβ1

1 ...xβm
m

∼= C[x1, ..., xm]x1...xmxβ1

1 ...xβm
m ⊗̂C[xm+1, . . . , xn]

and

C[x1, . . . , xm]x1...xmxβ1

1 . . . xβm
m

∼= C[x1]x1
xβ1

1 ⊗̂...⊗̂C[xm]xmxβm
m .

By Proposition 1, C[xi]xi
xβi

i is an irreducible C < xi, ∂i >-module. So, by

Proposition 4, C[x1]x1
xβ1

1 ⊗̂ . . . ⊗̂C[xm]xmxβm
m is an irreducible Am-module.

On the other hand, C[xm+1, . . . , xn] is an irreducible C < xm+1, . . . , xn, ∂m+1, . . . , ∂n >-
module, [4, Chapter 5, Proposition 1.2]. Since

Mβ
α
∼= C[x1, . . . , xm]x1...xmxβ1

1 . . . xβm
m ⊗̂C[xm+1, . . . , xn],

by Proposition 4, Mβ
α is irreducible.

(ii) If β1, . . . , βm ∈ Z, then

Mβ
∼= C[x1, . . . , xn]x1...xm

∼= C[x1, . . . , xm]x1...xm⊗̂C[xm+1, . . . , xn].

But C[x1, . . . , xm]x1...xm
∼= C[x1]x1

⊗̂ . . . ⊗̂C[xm]xm , with c(C[xi]xi
) = 2 and

C[xm+1, . . . , xn] is an irreducible C < xm+1, . . . , xn, ∂m+1, . . . , ∂n >-module.

Hence by Corollary 1, c(Mβ
α ) = 2.2...2︸ ︷︷ ︸

m−copies

= 2m. This proves (ii).

(iii) Suppose some of the β1, . . . , βm are integers and the others are elements
of C\Z. WLOG assume that β1, . . . , βk ∈ Z and βk+1, . . . , βm ∈ C\Z. Then

Mβ
α
∼= C[x1, . . . , xk]x1...xk

xβ1

1 . . . xβk

k ⊗̂C[xk+1, . . . , xn]xk+1...xmx
βk+1

k+1 . . . xβm
m .

But
C[x1, . . . , xk]x1...xk

xβ1

1 . . . xβk

k
∼= C[x1, . . . , xk]x1...xk

and C[xk+1, . . . , xn]hx
βk+1

k+1 . . . xβm
m is an irreducible C < xk+1, . . . , xn, ∂k+1, . . . , ∂n >-

module. But in (ii) above we have shown that c(C[x1, x2. . . . , xk]x1...xk
) =

2k, and hence

c(Mβ
α ) = c(C[x1, . . . , xk]x1...xk

)c(C[xk+1, . . . , xn]xk+1..xmx
βk+1

k+1 . . . xβm
m ) = 2k(1) = 2k.

This completes the proof.

6 Blowup

6.1 Definition

The blowup of A2 at the origin is the locus:

Ã2 = {(x, y), [W0,W1]) : xW1 = yW0} ⊂ A2 × P1
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together with the map
π : Ã2 −→ A2

which is the restriction of the projection of A2 × P1 onto the first factor.
Let U0 ⊂ Ã2 be the open subset given by W0 6= 0. In terms of Euclidian
coordinates, w1 = W1

W0
. We can write:

U0 = {(x, y), (w1)) : xw1 = y} = {(x, xw1, w1)} ⊂ A2 × A1.

From this description we see that U0
∼= A2 with coordinates x,w1. The map

π : U0 −→ A2 is given by π(x,w1) = (x, xw1).

Let U1 ⊂ Ã2 be the open subset given by W1 6= 0. In terms of Euclidian
coordinates w0 = W0

W1
.

We can write: U1 = {(x, y), (w0)) : x = yw0} = {(yw0, y, w0)} ⊂ A2 × A1.
From this description we see that U1

∼= A2 with coordinates y,w0. The
map π : U1 −→ A2 is given by π(y,w0) = (yw0, w0). This implies that

Ã2 = U0 ∪ U1, so {U0, U1} is an affine cover of Ã2 and also we can see that:
π|U0

(x, y) = π1(x, y) = (x, xy) and π|U1
(x, y) = π2(x, y) = (xy, y).

For these facts, as well as generalization see [9, 10].

6.2 Describing the pullback of the module in the blowup

We are now going to describe the module Mβ
α = C[x, y]xyL3...Lmαβ, where

αβ = xβ1yβ2Lβ3

3 ...Lβm
m and Li = x + ciy for i = 3, ..,m, ci 6= cj for i 6= j

pulled back to the affine blowup. Let us consider the polynomial map

π2 : C2 −→ C2

defined by π2(z,w) = (zw,w). Then the homomorphism of rings,

π♯
2 : C[x, y] → C[z,w]

defined by π♯
2(f) = foπ2 is called the comorphism of π2. It gives an iso-

morphism C[x, y] ∼= C[zw,w]. We have that π♯
2(α) = α

′′

, where α
′′

=
wmz(z + c3)...(zm + cm).

The inverse image of Mβ
α by π2 is defined as a C[z,w]-module by π∗

2(M
β
α ) =

C[z,w] ⊗C[x,y] M
β
α , which implies that

π∗
2(M

β
α ) ∼= C[z,w] ⊗C[x,y] C[x, y]ααβ ∼= C[z,w]α′′ αβ .

Using the comorphism formally on αβ gives

α
′′β

′′

= π♯
2(α

β) = w
Pm

i=1 βizβ1(z + c3)
β3 ...(z + cm)βm ,

and hence one would expect

π∗
2(M

β
α ) ∼= C[z,w]α̃α

′′β
′′
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as A2-modules. This is indeed the case. The standard A2-module structure
on the pullback is defined by using the chain rule:

∂z 7→ y∂x

and
∂w 7→

x

y
∂x + ∂y

to induce actions of ∂z, ∂w on αβ and then extending. Hence it suffices to

see that ∂zα
β = ∂zα

′′β
′′

and ∂wαβ = ∂wα
′′β

′′

which is an easy exercise. The
multiplication map gives the isomorphism,

C[z,w]α′′ α
′′β

′′

∼= C[w]wwβ
′

2⊗̂C[z]z
Qm

i=3
(z+ci)α̃

β̃

where α̃β̃ = zβ1(z + c3)
β3 ...(z + cm)βm and β

′

2 =
∑m

i=1 βi. This is an external
product, and so we can obtain information on the number of its decomposi-
tion factors by the methods of section 2.

6.3 Composition series of the A1-module C[z]α̃α̃β̃

Let us consider the number of decomposition factors of C[w]wwβ
′

1 as C <

w, ∂w >-module and C[z]z
Qm

i=3(z+ci)α
′β

′

as C < z, ∂z >-module separately.

We know , by Proposition 1, that if β
′

2 ∈ C \ Z, then c(C[w]wwβ
′

2) = 1

and if β
′

2 ∈ Z c(C[w]wwβ
′

2) = 2. In this subsection, we will prove that the

A1-module C[z]α̃α̃β̃ is irreducible, if β1, β3, ..., βm ∈ C \ Z. We have the
following proposition.

Proposition 11. If β1, β3, ..., βm ∈ C \ Z, then the A1-module C[z]α̃α̃β̃ is
irreducible.

Proof. We are going to prove the Proposition in two steps.

Step I

In this step we are going to show that C[x]α̃α̃β̃ = A1(α̃
β̃).

Let P ∈ C[z]α̃α̃β̃ . Then P = F
(z

Qm
i=3

(z+ci))r α̃β̃, for r ≥ 0 and F ∈ C[z].

But 1
(z

Qm
i=3

(z+ci))r can be written as q
zr α̃β̃ +

∑m
i=3

qi

(z+ci)r α̃β̃ , for some q, qi ∈

C(c3, ..., cm), i = 3, ...,m and hence

P =
Fq

zr
α̃β̃ +

m∑

i=3

Fqi

(z + ci)r
α̃β̃.

So it suffices to show that 1
zr , 1

(z+ci)s ∈ A1(α̃
β̃), for r, s ≥ 1 and some i ∈

{3, ...,m}. By applying the argument successively on β
′′

= β̃ − (k, 0, ..., 0)
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and β
′′

= β̃ − (0, ...s, ..., 0) and using induction it suffices to prove that
1
z
α̃β̃ ∈ A1(α̃

β̃) and 1
z+ci

α̃β̃ ∈ A1(α̃
β̃). This can be done as follows.

Let

D̃ = [

m∏

i=3

(z + ci)∂z −
m∑

i=3

βi

m∏

j=3,j 6=i

(z + cj)].

Clearly D̃ ∈ A1 and D̃(α̃β̃) =
β1

Qm
i=3(z+ci)

x
α̃β̃ . But

β1
∏m

i=3(z + ci)

z
α̃β̃ = P1α̃

β̃ +
C

z
α̃β̃ ,

for some P1 ∈ C[z] and C = β1
∏m

3 ci. Since C 6= 0, we have that

1

C
[(D̃ − P1)(α̃

β̃) =
1

z
α̃β̃.

Hence 1
z
α̃β̃ ∈ A1(α̃

β̃).
Let

D
′′

= [
m∏

i=3

(z + ci)∂z − β1z
m∏

j=4

(z + cj) −
m∑

i=4

βiz
m∏

j=4,j 6=i

(z + cj)].

Clearly D
′′

∈ A1 and

D
′′

(α̃β̃) =
β3z

∏m
i=4(z + ci)

z + c3
α̃β̃ .

But
β3z

∏m
i=4(z + ci)

z + c3
α̃β̃ = Rα̃β̃ +

C
′

z + c3
α̃β̃

for some R ∈ C[x] and for some C
′

, 0 6= C
′

∈ C[c3, ..., ck]. Therefore

1

C ′ (D
′′

− R)(α̃β̃) =
1

z + c3
α̃β̃

and hence 1
z+c3

α̃β̃ ∈ A1(α̃
β̃). Since z + c3 was arbitrary, 1

(z+ci)
α̃β̃ ∈ A1(α̃

β̃),
for some i = 3, ...,m.

Therefore, M β̃
α̃ = A1(α̃

β̃). This completes the proof of Part I.

Step II

In this step we are going to prove that A1(α̃
β̃) is irreducible. It suffices to

show that A1(α̃
N α̃β̃) = A1(α̃

β̃) for some large N. But from above, M β̃
′′

α̃ =

A1(α
β̃
′′

), β̃
′′

= β̃ + N
′′

, N
′′

∈ Nm−1 and by Proposition 2, Mβ
′

α
∼= M β̃

′′

α̃ .

Therefore A1(α̃
β̃) = A1(α̃

β̃
′′

) and hence A1(α̃
β̃) is irreducible. This con-

cludes the proof.
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6.4 Composition series of the A2-module C[z, w]α′′α
′′β

′′

In this subsection we are going to prove the following Theorem.

Theorem 6. Let Mβ
′′

α
′′ = C[z,w]α′′α

′′β
′′

, where β1, β
′

2..., βm ∈ C \ Z, α
′′

=

zw(z + c3)...(z + cm) and α
′′β

′′

= zβ1wβ
′

2(z + c3)
β3...(z + cm)βm such that

ci 6= cj for i 6= j.

(i) If β
′

2 ∈ C \ Z, then Mβ
′′

α
′′ is irreducible.

(ii) If β
′

2 ∈ Z, then c(Mβ
′′

α
′′ ) = 2.

Proof. (i) From the previous section, we know that,

C[z, z]α′′ α
′′β

′′

= C[z]α̃α̃β̃⊗̂C[w]wwβ
′

2

and by Proposition 11, C[x]α̃α̃β̃ is irreducible C < z, ∂z >-module, where
α̃ = z

∏m
i=3(z + ci) and β̃ = (β1, β3, ..., βm) and also by Proposition 1,

C[w]wwβ
′

2 is irreducible C < w, ∂w >-module. Hence by Proposition 4,

Mβ
′′

α
′′ is irreducible A2-module.

(ii) By Proposition 11, C[z]α̃α̃β̃ is irreducible C < z, ∂z >-module and by

Proposition 1, c(C[w]wwβ
′

2) = 2. Therefore

c(Mβ
′′

α
′′ ) = c(C[z]α̃α̃β̃)c(C[w]wwβ

′

2) = 2.

This completes the proof.

7 The A2-module Mβ
α in the plane case where all

βi ∈ C \ Z

In this section, we restrict ourselves to n=2, that is the plane case, and we
assume that βi ∈ C \ Z, i=1,...,m. Then c(Mβ

α ) is 1 or m − 1 according to
whether |β| =

∑m
i=1 βi ∈ Z or not. Our module in this case is

Mβ
α = C[x, y]ααβ ,

where α = xy
∏m

i=3(x+ciy),αβ = xβ1yβ2(x+c3y)β3...(x+cmy)βm and ci 6= cj

for i 6= j. We generalize this result in the following theorem.

Theorem 7. Asuume that βi ∈ C \ Z, i=1,...,m.

(i) If |β| ∈ C \ Z , then c(Mβ
α ) = 1.

(ii) If |β| ∈ Z, then c(Mβ
α ) = m − 1.

The proof will be done in several steps and we start by proving (i).
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7.1 Proof of the first part of Theorem 7

In this subsection we will prove (i) and this will be done in four steps. In
steps I-III we will prove, under the given assumption, that αβ generates the
module Mβ

α and using this in step IV we will prove that Mβ
α is irreducible.

Let Q ∈ Mβ
α . Then

Q =
F

(xy
∏m

i=3(x + ciy))r
αβ,

for F ∈ C[x, y] and r ≥ 0. Since by Theorem 3

F

(xy
∏m

i=3(x + ciy))r
αβ

can be written as a linear combination of

F

xs1ys2
αβ ,

F

xn3
1(x + c3y)n

3
2

αβ , ...,
F

xnm
1 (x + cmy)n

m
2

αβ ,

where s1 + s2 = n3
1 + n3

2 = ... = nm
1 + nm

2 = mr , it suffices to show that,

F

xs1ys2
αβ,

F

xn3
1(x + c3y)n

3
2

αβ , ...,
F

xnm
1 (x + cmy)n

m
2

αβ

are all elements of A2(α
β). Let us proceed step by step.

Step I

In this step we are going to show that 1
xk αβ ∈ A2(α

β) for k ≥ 1. By applying

the argument successively on β̃ = β − (k, 0, ..., 0) and using induction it
suffices to prove that 1

x
αβ ∈ A2(α

β). Let

D1 =
1

β1
[

m∏

i=3

(x + ciy)∂x −
m∑

j=3

cjβj

m∏

i=3,i6=j

(x + ciy)].

Clearly D1 ∈ A2 and D1(α
β) =

Qm
i=3

(x+ciy)
x

αβ . But

∏m
i=3(x + ciy)

x
αβ =

d1y
m−2

x
αβ + Hαβ ,

for some H ∈ C[x, y] and d1 =
∏m

i=3 ci. Then we have

1

d1
(D1 − H)αβ =

ym−2

x
αβ.

On the other hand

∂y(
ym−2

x
αβ) =

(β2 + m − 2)ym−3

x
αβ +

m∑

i=3

ciβiy
m−2

x(x + ciy)
αβ
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and

ym−3∂x(αβ) =
β1y

m−3

x
αβ +

m−2∑

i=3

βiy
m−3

x + ciy
αβ .

This implies

(∂y
1

d1
(D1 − H) + ym−3∂x)(αβ) =

(|β| + m − 2)ym−3

x
αβ.

Iterating we find that

D2(α
β) =

∏m−2
i=1 (|β| + i)

x
αβ

for some D2 ∈ A2. Since |β| ∈ C \ Z, we have 1
x
αβ ∈ A2(α

β).

Step II

In this step we are going to show that 1
xkyt α

β ∈ A2(α
β) for k, t ≥ 1. By

applying the argument successively on β̃ = β−(0, t, ..., 0) and using induction
it suffices to prove that 1

xky
αβ ∈ A2(α

β). From step I we know that 1
xk αβ ∈

A2(α
β). Let

D3 =
1

β2
(

m∏

i=3

(x + ciy)∂y −
m∑

j=3

cjβj

∏

i=3,i6=j

(x + ciy))

Clearly D3 ∈ A2 and

D3(
1

xk
αβ) =

∏m
i=3(x + ciy)

xky
αβ .

But ∏m
i=3(x + ciy)

xky
αβ =

xm−2

xky
αβ +

L

xk
αβ

for some L ∈ C[x, y]. This implies that

(D3 − L)(
1

xk
αβ) =

xm−2

xky
αβ .

On the other hand

∂x(
xm−2

xky
αβ) =

(β1 + m − 2 − k)xm−3

xky
αβ +

m∑

i=3

βix
m−2

xky(x + ciy)
αβ

and

xm−3∂y(
1

xk
αβ) =

β2x
m−3

xky
αβ +

m∑

i=3

ciβix
m−3

xk(x + ciy)
αβ .
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This implies that

(∂xD4 + xm−3∂y)(
1

xk
αβ) =

(|β| + m − 2 − k)xm−3

xky
αβ ,

where D4 = D3 − L. Iterating we find that,

D5(α
β) =

∏m−2
i=1 (|β| − i − k)

xky
αβ

for some D5 ∈ A2. Since |β| ∈ C \ Z, we have 1
xky

αβ ∈ A2(α
β).

Step III

In this step we are going to show that 1
xk(x+ciy)t α

β ∈ A2(α
β) for k, t ≥ 1.

By using the coordinate function, x̃ = x and ỹ = x + ciy and step II, we
have

1

x̃kỹt
αβ =

1

xk(x + ciy)t
αβ ∈ A2(α

β).

By the description of Mβ
α recalled at the begning of the proof, we have

Mβ
α = A2(α

β). Then it remains to show that A2(α
β) and hence Mβ

α is
irreducible to conclude part (i) and we will prove that in the next step.

Step IV

In this step we are going to prove that A2(α
β) and hence Mβ

α is irre-

ducible. But, it suffices to show that Mβ
α = A2(α

β+N ) for any N ∈ Nm

(See Lemma 12). By step III we know that Mβ
α = A2(α

β), if βi ∈ C \ Z

and |β| ∈ C \ Z. Cleary, these conditions are satisfied for β + N , for any

for N ∈ Nm, as well. Hence Mβ+N
α = A2(α

β+N ). By Proposition 2 ,

Mβ
α

∼= Mβ+N
α , and hence Mβ

α = A2(α
β+N ). Therefore Mβ

α is irreducible.
This completes the proof of (i) of Theorem 7.
It remains to prove (ii) of Theorem 7, but before that let us find the anni-
hilator of αβ in the next section which we will use it in the prove of part
(ii).

7.2 The annihilator of αβ

In this subsection we are going to find the annihilator of αβ in the Weyl
algebra A2.
Let

P = x∂x + y∂y − (
m∑

i=1

βi)

and

Q = y
m∏

i=3

Li∂y − β2

m∏

i=3

Li −
m∑

j=3

βiy
m∏

i=3,i6=j

Li,
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where Li = x + ciy, i=3,...,m and ci 6= cj for i 6= j. We use the following
graded reverse lexicographic order, letting y > x > ∂x > ∂y,

yixj∂k
x∂l

y > yi
′

xj
′

∂k
′

x ∂l
′

y

if
i + j + k + l > i

′

+ j
′

+ k
′

+ l
′

or
i + j + k + l = i

′

+ j
′

+ k
′

+ l
′

and the last non-zero coordinate of (i, j, k, l) − (i
′

, j
′

, k
′

, l
′

) is negative. The
most important point for us with this term order is that there is a normalform
algorithm, see [12, Chapter 1] and [7, Chapter 2], with respect to the set
{P,Q}. It inputs an element F of the Weyl algebra and outputs an element
R such that there exist S and T in the Weyl algebra with F = SP +TQ+R
where the initial term of R is not divisible by initial terms of P and Q. Since
the initial term of P is x∂x and the initial term of Q is ym−1∂y, it follows
that

A2 = A2P + A2Q + N

where
N = (⊕(i,j,k,l)∈M)Cxiyj∂k

x∂l
y

and M ⊂ Z4
≥0, is the set

M = {(i, j, k, l) : ik = 0&l 6= 0 =⇒ j ≤ m − 2}.

Hence
A2 = A2P + A2Q + (⊕i≥1Ri(y, ∂y)∂

i
x) + W,

where W = {
∑m−2

i=0 yiSi(x, ∂y) : Si(x, ∂y) ∈ C[x, ∂y]}.
We have the following proposition about the annihilator of αβ.

Proposition 12. Let AnnA2
(αβ) = {D ∈ A2 : D(αβ) = 0}. Then

AnnA2
(αβ) = A2P + A2Q.

Proof. Since P (αβ) = 0 and Q(αβ) = 0, then A2P + A2Q ⊂ AnnA2
(αβ).

Let D ∈ AnnA2
(αβ). We want to show that D ∈ A2P + A2Q. We know

that D = H + T + U , where H ∈ A2P + A2Q, T =
∑

i≥1 Ri(y, ∂y)∂
i
x and

U =
∑m−2

j=0 yjSj(x, ∂y). Then D(αβ) = 0 implies T (αβ) + U(αβ) = 0. Let

us now consider poles at x = 0. If m = r(x, y)αβ ∈ Mβ
α , define Ox(m) to be

the greatest −k such that

m = (r−k(x, y)x−k + r−k+1x
−k+1 + ... + rs(x, y)xs)αβ
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where ri(x, y), i = −k,−k + 1, ...s written as a reduced quotient of products
of irreducible polynomials containing no x. Then note that if R(y, ∂y) is a
polynomial in just y and ∂y,

Ox(R(y, ∂y)m) ≥ Ox(m).

Returning to D, we know that

k∑

i=1

Ri(y, ∂y)∂
i
x(αβ) + U(αβ) = 0. (7.1)

By the above agruement Ox(U(αβ)) ≥ 0. On the other hand

∂i
x(αβ) =

β1(β1 − 1)...(β1 − (i − 1))

xi
(αβ) + r,

where Ox(r) > −i and hence Ox(∂i
x(αβ)) = −i by the assumption that

β1 /∈ Z. Consider the possible poles in (7.1) and assume that Rk(y, ∂y) 6= 0
and Rk(y, ∂y)α

β 6= 0 . Then

Rk(y, ∂y)∂
k
x(αβ) = (

β1(β1 − 1)...(β1 − (k − 1))Rk(y, ∂y)

xk
+ r)αβ ,

where Ox(rαβ) > −k. For all other terms in (7.1) the contribution to
the poles at x = 0 will be of order greater than −k. This is a con-
tradiction. So Rk(y, ∂y)α

β = 0. But Rk(y, ∂y) ∈ C < x, y, ∂y > and
hence we made the desired reduction. In the next step we will prove that
this implies Rk(y, ∂y) = 0, which will be a contradiction to the assump-
tion than Rk(y, ∂y) 6= 0. Actually we will prove more generally that if
U ∈ C < x, y, ∂y > and U(αβ) = 0, then U = 0. So now we can assume that
U(αβ) = 0 and argue in the same way by considering the poles at the other
lines. Write

U =
k∑

i=0

Pi(x, y)∂i
y ,

where Pk 6= 0. Consider U(αβ) and the order of its pole at L, where L is one
of y, L3, ..., Lm. Since OL(Pi(x, y)∂i

yα
β) = OL(Pi(x, y)αβ) − i, there must

be two indices i1 and i2 such that

OL(Pi1(x, y)αβ) − i1 = OL(Pi2(x, y)αβ) − i2 ≤ OL(Pj(x, y)αβ) − j

for all 0 ≤ j ≤ k. In particular there is i 6= k, such that OL(Pk) − k ≥
OL(Pj) − i and hence OL(Pk) ≥ OL(Pj) + k − i ≥ 1. Repeating this for all
L implies that yL3...Lm divides Pk. This contradicts that degyPk ≤ m − 2.
Hence U=0. This completes.
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7.3 Proof of the second part of Theorem 7

7.3.1 Preliminaries

For the proof of (ii) of Theorem 7 we need the following Lemmas.

Lemma 9. Let β̃ = β + N, where N ∈ Zm and αβ̃ = xβ̃1yβ̃2...Lβ̃m
m ∈ Mβ

α .
Let |β̃| =

∑m
i=1 β̃i. Then

A2x + AnnA2
αβ̃ = A2x + A2(y∂y − (|β̃| + 1)) + A2(y

m−2).

(Recall that, we assumed βi ∈ C − Z, i=1,...,m.)

Proof. By Proposition 12,

AnnA2
αβ̃ = A2P + A2Q,

where P = x∂x+y∂y−|β̃| and Q = y
∏m

i=3 Li∂y−β̃2
∏m

i=3 Li−
∑m

j=3 β̃iy
∏m

i=3,i6=j Li.

But Q = G.x+C(ym−1∂y−
∑m

i=2 β̃iy
m−2) for some G ∈ A2 and C =

∏m
i=3 ci.

Hence

J := A2x+AnnA2
αβ̃ = A2x+A2(y∂y−(|β̃|+1))+A2(y

m−1∂y−
m∑

i=2

β̃iy
m−2).

But ym−1∂y −
∑m

i=2 β̃iy
m−2 − ym−2(y∂y − (|β̃| + 1)) = (β̃1 + 1)ym−2 ∈ J .

Since β̃1 + 1 6= 0, by assumption, then ym−2 ∈ J . Hence

J = A2x + A2(y∂y − (|β̃| + 1)) + A2(y
m−2).

Lemma 10. Let A1 = C < y, ∂y >. Let J = A1(y∂y − γ) + A1y
k for k ≥ 0.

Then we have the following.
(i) If γ /∈ {−1, ...,−k}, then J = A1.
(ii) If −k ≤ γ ≤ −1, then J = A1(y∂y − γ) + A1y

|γ|. Further more

A1/J ∼= C[y]y/C[y]

and hence irreducible.

Proof. (i) If γ /∈ {−1, ...,−k}, then j + γ 6= 0, for j ∈ {1, ..., k}.

∂yy
k − yk−1(y∂y − γ) = (k + γ)yk−1.

Since k + γ 6= 0, then yk−1 ∈ J. Iterating we find that 1 ∈ J , since by
assumption k + γ 6= 0, k − 1 + γ 6= 0, ..., 1 + γ 6= 0, and hence J = A1.

(ii) If −k ≤ γ ≤ −1, still it is clear that J = A1(y∂y − γ) + A1y
|γ|.

A1 = J + ⊕i≥0C∂i
y ⊕⊕

|γ|−1
j=1 Cyj. (7.2)

Let θ : A1 −→ C[y]y/C[y] be the map defined by θ(P ) = P (ȳγ). Clearly
J ⊂ Kerθ and θ is surjective and it is a map onto a simple A1-module. By
(7.2), J = Kerθ. This concludes the proof.
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Lemma 11.
A2/(A2x + AnnA2

αβ̃) ∼= A2α
β̃/A2xαβ̃

is a simple A2-module if and only if −(m − 2) ≤ |β̃| + 1 ≤ −1 and zero
otherwise.

Proof. By Lemma 9,

A2α
β̃/A2xαβ̃ ∼= A2/(A2x + A2(y∂y − (|β̃| + 1)) + A2(y

m−2)).

The last description makes it clear that the module is the external product

C < x, ∂x > /C < x, ∂x > x⊗̂C < y, ∂y > /C < y, ∂y >< y∂y−(|β̃|+1), ym−2 > .

Hence the result follows by Lemma 10 (ii) and Proposition 4.

7.3.2 Proof

We are now in a position to prove the last part of Theorem 7. We use the
following Lemma as a starting point.

Lemma 12. (i)There exists N1 such that αβ+N1 generates Mβ
α .

(ii)There exists N2 > N1 such that A2α
β+N3 is a simple submodule if N3 ∈

N2 + Nm.

Proof. The first follows directly from the fact that M = Mβ
α is a holonomic

module and hence cyclic see [4]. The second follows from the more difficult

fact that Mβ
α contains a simple submodule L with support on C2, the so

called Deligne module [3]. This means that M/L has to be torsion as C[x]-
module. Since by Proposition 9 all decomposition factors have support on
hyperplane intersetions it follows that any element n ∈ M/L is annihilated
by a large enough power of α. Take n = αN1+β to be the generator of M/L,
from the first statement of the lemma and assume that αNαN1+β ∈ N and
let N2 = N1 + N .

Consider A2α
β+N1 . Put β̃ = β + N1. Since, if αβ+N generates Mβ

α , also
x−nαβ+N generates if n ≥ 0, we may assume |β̃| ≤ −(m−1). By Lemma 11,
if |β̃| is not one of −(m − 1), ...,−2, we have that A2β̃/A2xβ̃ = 0. Hence

A2α
β̃ = A2xαβ̃ = ... = A2α

β̃1 , where αβ̃1 = xrαβ̃ such that |β̃1| = −(m−1).
Then by Lemma 11

A2α
β̃1 ⊃ A2xαβ̃1 ⊃ ... ⊃ A2x

m−2αβ̃1,

is a chain of strict submodules such that each factor is irreducible and has
support at (0, 0). The last submodule, A2x

m−2αβ̃1 , has the property (again
by applying the lemma to A2α

Nxm−2αβ for N ∈ Nm in succession), that it
equals A2α

Nxm−2αβ for all N ∈ Nm, and hence by Lemma 12 is simple.
Hence Mβ

α has m− 2 decomposition factors with support at the origin, and
one with support on C2. This concludes the proof.

35



8 Example

In this section we consider the A2-module Mβ
α = C[x, y]xy(x+y)α

β , where

αβ = xβ1yβ2(x + y)β3 and calculate c(Mβ
α ) by considering different cases on

β1, β2, β3. From section 3 and section 7 we know the following.

• If β1, β2, β3 ∈ Z, then c(Mβ
α ) = 6.

• If β1, β2, β3, β1 + β2 + β3 ∈ C \ Z, then c(Mβ
α ) = 1.

• If β1, β2, β3 ∈ C \ Z and β1 + β2 + β3 ∈ Z, then c(Mβ
α ) = 2.

Hence it remains to consider the following two cases.

• Exactly one of β1, β2, β3 is in C \ Z.

• Exactly two of β1, β2, β3 are in C \ Z.

We generalize the results in the following theorem.

Theorem 8. (i) If exactly one of β1, β2, β3 is in C \ Z, then c(Mβ
α ) = 3.

(ii) If exactly two of β1, β2, β3 are in C \ Z and β1 + β2 + β3 ∈ C \ Z, then

c(Mβ
α )=2.

(iii) If exactly two of β1, β2, β3 are in C \ Z and β1 + β2 + β3 ∈ Z, then

c(Mβ
α )=3.

Proof. (i) WLOG assume β1 ∈ C \ Z and β2, β3 ∈ Z. Then, by Proposi-

tion 2, Mβ
α
∼= C[x, y]xy(x+y)x

β1. By Proposition 4, C[x, y]xxβ1 and

C[x, y]x(x+y)x
β1/C[x, y]xxβ1 are irreducible A2-modules. Consider the quo-

tient module N = C[x, y]xy(x+y)x
β1/C[x, y]x(x+y)x

β1. We want to show

that N is irreducible. Let P ∈ N \ {0}. Assume that P = f
y
xβ1, where

f =
k∑

i=0
αix

i, αk 6= 0. That is

P =

k∑
i=0

αix
β1+i

y
.

We have the formula

(x∂i − (β1 + i))
xβ1+j

y
= (j − i)

xβ1+j

y
(8.1)

This implies
k−1∏

i=0

(x∂x − (β1 + i))P = αkk!
xβ1+k

y
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and since αk 6= 0 by assumption, xβ1+k

y
∈ A2P . Consider the following two

formulas:

∂i
x

xβ1+k

y
= (β1 + k)(β1 + k − 1)...(β1 + k − i)

xβ1+k−i

y
(8.2)

and

xi ·
xβ1+k

y
=

xβ1+k+i

y
. (8.3)

Since β1 ∈ C \ Z by assumption, the coefficient in (8.2) is non-zero for all

i ≥ 0 which implies that xβ1+k−i

y
∈ A2P . The formula (8.3) gives that

xβ1+k+i

y
∈ A2P for all i ≥ 0. Hence N ⊂ A2P . Since P was arbitrary, this

means that N is irreducible. Therefore,

C[x, y]xxβ1 ⊂ C[x, y]xyx
β1 ⊂ C[x, y]xy(x+y)x

β1 = Mβ
α ,

is a composition series of Mβ
α and hence c(Mβ

α ) = 3. This completes the
proof of (i).

(ii) WLOG (we can change basis) assume that β2 ∈ Z and β1, β3 ∈ C \ Z.

By Proposition 2, Mβ
α

∼= C[x, y]xy(x+y)x
β1(x + y)β3 and by Proposition 4,

N = C[x, y]x(x+y)x
β1(x + y)β3 is an irreducible submodule of Mβ

α . Let

M = Mβ
α/N be the quotient module. We are going to show that M is

irreducible. First let us prove that the module M is generated by the class
1
y
αβ modulo N. Notice that

∂x(
1

y
αβ) = (

β1

xy
+

β3

y(x + y)
)αβ = (

β1 + β3

xy
−

β3

x(x + y)
)αβ ≡

β1 + β3

xy
αβmodN.

(8.4)
Using the same decomposition as in (8.4) for k > 1 we have that

∂k
x(

1

y
αβ) = (β1 + β3)(β1 + β3 − 1)...(β1 + β3 − (k − 1))

1

xky
αβ ∈ M. (8.5)

Since the coefficient in (8.5) is non-zero, by assumption, 1
xky

αβ ∈ A2(
1
y
αβ)

for all k ≥ 0. On the other hand

∂y(
1

xky
αβ) =

−1

xky2
αβ +

β3

xk+1y
αβ −

β3

xk+1(x + y)
αβ

and β3

xk+1(x+y)
αβ ∈ N . This implies

∂y(
1

xky
αβ) ≡

−1

xky2
αβ +

β3

xk+1y
αβmodN.

Let Dk = [ 1
(β1+β3)...(β1+β3−(k−1)) ]∂

k
x , for k ≥ 1. Then

(β3Dk+1 − ∂yDk)(
1

y
αβ) ≡

1

xky2
αβmodN
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and hence 1
xky2 αβ ∈ A2(

1
y
αβ). Following a similar argument one can easily

show that 1
xkym αβ ∈ A2(

1
y
αβ) for k,m ≥ 1 and hence M = A2(

1
y
αβ).

Next we are going to show that M is irreducible. Let P ∈ M \ {0}. By
simplifying as before, we can assume that

P =

k∑
i=0

cix
i

y
αβ .

Consider the following formulas

k−1∏

j=0

(x∂x − (β1 + β3 + j)(P ) =
k!ckx

k

y
αβ ∈ M (8.6)

and

∂k
x(

xk

y
αβ) = (1 + β1 + β3)...(k + β1 + β3)

1

y
αβ ∈ M (8.7)

Since the coefficient of 1
y
αβ in (8.7) is non-zero, by assumption, we have

that, M ⊂ A1(P ). But P was an arbitrary element, so this means M is
irreducible. Therefore

C[x, y]xyx
β1yβ2 ⊂ C[x, y]xy(x+y)x

β1yβ2 ∼= Mβ
α

is a composition series of Mβ
α and hence c(Mβ

α )=2. This proves (ii).

(iii) WLOG assume that β2 ∈ Z and β1, β3 ∈ C \ Z. By Proposition 2,

Mβ
α
∼= C[x, y]xy(x+y)x

β1(x + y)β3 and by Proposition 4,

N = C[x, y]x(x+y)x
β1(x+y)β3 is an irreducible submodule of Mβ

α . By Propo-
sition 2, assume that β1 + β2 + β3 = 0. Using the arguments in the proof of
(ii), one can easily show that the quotient module M = Mβ

α/N is generated
by 1

xy
αβ . Clearly A2(

1
y
αβ) is a submodule of M. First observe that,

∂x(
1

y
αβ) = (β1 + β3)

1

xy
αβ ≡ 0modN.

We are now going to show that A2(
1
y
αβ) is a proper submodule of M. As-

sume that 1
xy

αβ ∈ A2(
1
y
αβ). Then 1

xy
αβ = D( 1

y
αβ), for some D ∈ A2.

For sufficiently large m, ∂m
x D( 1

y
αβ) = D

′

∂x( 1
y
αβ) for some D

′

∈ A2 and

D
′

∂x( 1
y
αβ) = 0. But

∂m
x

1

xy
αβ =

m−1∏

i=1

(β1 + β3 − i)
1

xmy
αβ

and
γ = (β1 + β3 − 1)(β1 + β3 − 2)...(β1 + β3 − (m − 1)) 6= 0,
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which implies ∂m
x

1
xy

αβ = γ
xmy

αβ 6= 0. This is a contradiction. Therefore

A2(
1
y
αβ) is a proper submodule of M.

Next we want to show that A2(
1
y
αβ) is an irreducible submodule of M. Let

Q ∈ A2(
1
y
αβ) \ {0}. Then

Q =

k∑
i=0

αix
i

y
αβ , ak 6= 0.

Using (8.6) and (8.7) we have that A2(
1
y
) ⊂ A2Q. Since Q was arbitrary,

A2(
1
y
) is irreducible.

It remains to show that M/A2(
1
y
) is irreducible. Let R ∈ M \ A2(

1
y
). Then

R =
∑

i,j≥1

aij

xiyj
αβ , aij 6= 0.

We can assume that i ≥ j. This is possible because otherwise for sufficiently
large m, we can take ∂m

x R. Let k be the maximum of all j such that

R =
∑

i,j≥1

aij

xiyj
αβ .

Then

yk−1R =
r∑

i=k

ai

xi
(
1

y
αβ), ar 6= 0

and

xr−1
r∑

i=k

ai

xi
(
1

y
αβ) =

ar

xy
αβ .

Since ar 6= 0 and R was arbitrary, this implies that A2R = M/A2(
1
y
) is

irreducible. This completes the proof.
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