

On the decomposition of D-modules over a hyperplane arrangement

Tilahun Abebaw

Research Reports in Mathematics Number 11, 2007

Department of Mathematics
Stockholm University

Electronic versions of this document are available at http://www.math.su.se/reports/2007/11

Date of publication: November 26, 2007
2000 Mathematics Subject Classification: Primary 13N10, Secondary 16S32, 32S22.
Keywords: Weyl algebra, hyperplane arrangements.
Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.math.su.se/
info@math.su.se

On the decomposition of D-modules over a hyperplane arrangement

Tilahun Abebaw

Dessertation presented to Stockholm University in partial fulfillment of the requirements for the Degree of Licentiate of Philosophy (Filosofie licentiate examen), to be presented on December 18, 2007 at 14:15 in Room 306, Building 6, Department of Mathematics, Stockholm University (Kräftriket).

Examiner: Clas Löfwall
Opponent: Jan-Erik Björk
Principal Advisor: Rikard Bøgvad
Second Advisors: Demissu Gemeda, Rolf Källström

Acknowledgments

I would like to thank Rikard Bøgvad for introducing to me the problem, all his support during this work, encouragements and besides that answering all the questions.
I am grateful to Rolf Källström for his suggestions, comments and encouragement, Jan-Erik Björk, a person from whom I have learnt a lot, for all his invaluable comments and suggestions on the problem, Demissu Gemeda for all his support, Adinew Alemayehu for his kindness to me, my friends Yohannes Tadesse and Ismail Mirumbe for all their support.
Finally my thanks goes to International Science Program (ISP) for the fellowship, Stockholm University, Department of Mathematics for accepting me as a graduate student and Addis Ababa University for giving me the study leave.

Contents

1 Introduction 5
2 Preliminaries 5
2.1 Definition of the module M_{α}^{β} 5
2.2 The simplest example 6
2.3 A basic property of the module M_{α}^{β} 7
$2.4 \mathrm{M}_{\alpha}^{\beta}$ is a holonomic module 8
2.5 External products 10
2.5.1 External products of algebras 11
2.5.2 External product of modules 11
2.6 Decomposition factors of modules 14
3 The module M_{α}^{β}, where $\beta \in \mathbb{Z}^{m}$ 15
3.1 Basic Lemma 16
3.2 No-broken circuits 17
3.3 The plane case 18
4 On the support of modules 19
4.1 Basic properties 20
4.2 Proof of Proposition 9 21
5 Normal Crossings 22
5.1 The module M_{α}^{β}, where $n=m=2$ 23
5.2 The general case, $m \leq n$ 23
6 Blowup 24
6.1 Definition 24
6.2 Describing the pullback of the module in the blowup 25
6.3 Composition series of the A_{1}-module $\mathbb{C}[z]_{\tilde{\alpha}} \tilde{\alpha}^{\tilde{\mathcal{\beta}}}$ 26
6.4 Composition series of the A_{2}-module $\mathbb{C}[z, w]_{\alpha^{\prime \prime}} \alpha^{\prime \prime \beta^{\prime \prime}}$ 28
7 The A_{2}-module M_{α}^{β} in the plane case where all $\beta_{i} \in \mathbb{C} \backslash \mathbb{Z}$ 28
7.1 Proof of the first part of Theorem 7 29
7.2 The annihilator of α^{β} 31
7.3 Proof of the second part of Theorem 7 34
7.3.1 Preliminaries 34
7.3.2 Proof 35
8 Example 36

Notations

- We use the standard notation \mathbb{C} for the field of complex numbers, \mathbb{Z} for the ring of integers and \mathbb{N} for the set of natural numbers.
- $A_{n}=\mathbb{C}<x_{1}, \ldots, x_{n}, \partial_{x_{1}}, \ldots, \partial_{x_{n}}>$, the ring of differential operators of the polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
- For multi-indices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}$, by $x^{\alpha} \partial^{\beta}$ we mean $x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \partial_{x_{1}}^{\beta_{1}} \ldots \partial_{x_{n}}^{\beta_{n}}$ and the degree of $x^{\alpha} \partial^{\beta}$ is $\operatorname{deg}\left(\mathrm{x}^{\alpha} \partial^{\beta}\right)=\alpha_{1}+\ldots+\alpha_{\mathrm{n}}+\beta_{1}+\ldots+\beta_{\mathrm{n}}$.
- For $P=\sum_{\alpha, \beta \in \mathbb{N}^{n}} a_{\alpha, \beta} x^{\alpha} \partial^{\beta} \in A_{n}$, the degree of P is $\operatorname{deg} \mathrm{P}=\max \left\{\operatorname{deg}\left(\mathrm{x}^{\alpha} \partial^{\beta}\right): \mathrm{a}_{\alpha, \beta} \neq 0\right\}$.

1 Introduction

Let $\alpha_{1}, \ldots, \alpha_{m}$ be linear forms defined on \mathbb{C}^{n} and $X=\mathbb{C}^{n} \backslash \cup_{i=1}^{m} V\left(\alpha_{i}\right)$, where $V\left(\alpha_{i}\right)=\left\{p \in \mathbb{C}^{n}: \alpha_{i}(P)=0\right\}$. Then the coordinate ring O_{X} of X is the localization $\mathbb{C}[x]_{\alpha}$, where $\alpha=\prod_{i=1}^{m} \alpha_{i}$. The ring O_{X} is a holonomic $A_{n^{-}}$ module, where A_{n} is the n-th Weyl algebra and since holonomic A_{n}-modules have finite length, O_{X} has finite length. We consider a "twisted" variant of this A_{n}-module. Defining M_{α}^{β} to be the free rank $1 \mathbb{C}[x]_{\alpha}$-module on the generator α^{β}, where $\alpha^{\beta}=\alpha_{1}^{\beta_{1}} \ldots \alpha_{m}^{\beta_{m}}$ and the multi-index $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right) \in$ \mathbb{C}^{m}, we can give it a structure as an A_{n}-module in the following way. Define the actions of the generators of A_{n} as follows:

$$
x_{i} \bullet \frac{p}{\alpha^{r}} \alpha^{\beta}=\frac{x_{i} p}{\alpha^{r}} \alpha^{\beta}
$$

for $i=1,2, \ldots, n$ and

$$
\partial_{j} \bullet \frac{p}{\alpha^{r}} \alpha^{\beta}=\partial_{j}\left(\frac{p}{\alpha^{r}}\right) \alpha^{\beta}+\frac{p}{\alpha^{r}} \partial_{j}\left(\alpha^{\beta}\right)
$$

where

$$
\partial_{j}\left(\alpha^{\beta}\right)=\sum_{i=1}^{m} \beta_{i} \frac{\partial_{j}\left(\alpha_{i}\right)}{\alpha_{i}} \alpha^{\beta}
$$

for $j=1,2, \ldots, n$. Clearly these relations mean that α^{β} behaves as the corresponding complex function is defined on the complement of the union of the hyperplanes.
The A_{n}-module M_{α}^{β} is a holonomic module (Theorem 1) and hence it has finite length with decomposition factors that have support on the intersetion of the hyperplanes defined by the linear forms (Proposition 9). It seems difficult to calculate the number of these decomposition factors in general. It has been done for the case $\beta \in \mathbb{Z}^{m}$, (see [5]) and our main result in this paper is a computation in the case $n=2$. Our methods are algebraic, in particular we calculate the A_{2}-annihilator of α^{β}. Along the way we prove that the module is irreducible in the generic situation.

2 Preliminaries

2.1 Definition of the module M_{α}^{β}

Let $\alpha_{i}: \mathbb{C}^{n} \longrightarrow \mathbb{C}, i=1,2, \ldots, m$ such that,

$$
\alpha_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} \alpha_{i j} x_{j}, \alpha_{i j} \in \mathbb{C}
$$

be linear forms and H_{i} be the hyperpane in \mathbb{C}^{n} defined by α_{i}, that is, $H_{i}=\left\{P \in \mathbb{C}^{n}: \alpha_{i}(P)=0\right\}$. If we let $X=\mathbb{C}^{n} \backslash \cup_{i=1}^{m} H_{i}$, then the coordinate
ring of X is the localization $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{\alpha}$, where $\alpha=\prod_{i=1}^{m} \alpha_{i}$, that is, the ring of rational functions of the form $\frac{p}{\alpha^{r}}$, where p is a polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Since rational functions are preserved by partial differentiation and multiplication by polynomials, $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{\alpha}$ is an A_{n}-module, where A_{n} is the n-th Weyl Algebra. Consider for varying values of the complex parameters $\beta_{1}, \ldots, \beta_{m}$, the function

$$
\alpha^{\beta}=\alpha_{1}^{\beta_{1}} \ldots \alpha_{m}^{\beta_{m}}
$$

Here $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$ and we will throughout this paper use the above multiindex notation. Also we will use $\mathbb{C}[x]$ instead of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
Definition 1. The module M_{α}^{β} is the free rank $1 \mathbb{C}[x]_{\alpha}$-module on the generator α^{β}. We can give M_{α}^{β} a structure as an A_{n}-module in the following way. Define the actions of the generators of A_{n} as follows:

$$
x_{i} \bullet \frac{p}{\alpha^{r}} \alpha^{\beta}=\frac{x_{i} p}{\alpha^{r}} \alpha^{\beta}
$$

for $i=1,2, \ldots, n$ and

$$
\partial_{j} \bullet \frac{p}{\alpha^{r}} \alpha^{\beta}=\partial_{j}\left(\frac{p}{\alpha^{r}}\right) \alpha^{\beta}+\frac{p}{\alpha^{r}} \partial_{j}\left(\alpha^{\beta}\right)
$$

where

$$
\partial_{j}\left(\alpha^{\beta}\right)=\sum_{i=1}^{m} \beta_{i} \frac{\partial_{j}\left(\alpha_{i}\right)}{\alpha_{i}} \alpha^{\beta}
$$

for $j=1,2, \ldots, n$.

The verification that M_{α}^{β} is an A_{n}-module is left to the reader.
The problem which we consider in this paper, and solve in some cases is to find the number of the decomposition factors of M_{α}^{β}. We will throughout this paper use the notations $\operatorname{DF}\left(\mathrm{M}_{\alpha}^{\beta}\right)$ for the set of decomposition factors of M_{α}^{β} and $c\left(M_{\alpha}^{\beta}\right)$ for the number of decomposition factors of M_{α}^{β}.

2.2 The simplest example

This is clearly the A_{1}-module $M_{\alpha}^{\beta}=\mathbb{C}[x]_{x} x^{\beta}$, that is the case where $m=$ $n=1$. We have the following result, which we do in detail as a preparation for later results.

Proposition 1. (i) If $\beta \in \mathbb{Z}$, then $c\left(M_{\alpha}^{\beta}\right)=2$.
(ii) If $\beta \in \mathbb{C} \backslash \mathbb{Z}$, then M_{α}^{β} is an irreducible A_{1}-module, so $c\left(M_{\alpha}^{\beta}\right)=1$.

Proof. By definition $M_{\alpha}^{\beta}=\mathbb{C}[x]_{x} x^{\beta} \cong \oplus_{i \in \mathbb{Z}} \mathbb{C} x^{\beta+i}$.
(i) If $\beta \in \mathbb{Z}$, then clearly $M_{\alpha}^{\beta} \cong \mathbb{C}[x]_{x}$. Consider the submodule $\mathbb{C}[x]$. First we are going to show that $\mathbb{C}[x]$ is irreducible. Suppose $0 \neq f \in \mathbb{C}[x]$ and
consider the submodule $A_{1} f$ of $\mathbb{C}[x]$. Let m be the degree of f and a be its coefficient. Then $\partial_{x}^{m} f=m!a$ is a non-zero constant in the submodule generated by f. Since a non-zero constant generates $\mathbb{C}[x]$, then $\mathbb{C}[x] \subset A_{1} f$. But f was an arbitrary element. This means $\mathbb{C}[x]$ is irreducible. Again we consider the A_{1}-module $\mathbb{C}[x]_{x} / \mathbb{C}[x]$ and show that it is irreducible. Clearly the module is generated as an A_{1}-module by the class of x^{-1} modulo $\mathbb{C}[x]$. Let $0 \neq g \in \mathbb{C}[x]_{x} / \mathbb{C}[x]$. Then we may assume that all the terms of g have negative degree. Let h be such that $-h$ is the minimum of the degrees of the terms of g. Then $x^{h-1} g=b x^{-1}$, where b is the coefficient of the term with degree $-h$. Since $b x^{-1}$ generates $\mathbb{C}[x]_{x} / \mathbb{C}[x]$, then $\mathbb{C}[x]_{x} / \mathbb{C}[x] \subset A_{1} g$. But g was an arbitrary element. This means that $\mathbb{C}[x]_{x} / \mathbb{C}[x]$ is irreducible. So we have a composition series $0 \subset \mathbb{C}[x] \subset \mathbb{C}[x]_{x}$ of M_{α}^{β}, and hence $c\left(M_{\alpha}^{\beta}\right)=2$. This proves (i).
(ii) Suppose $\beta \in \mathbb{C} \backslash \mathbb{Z}$. We have the formula

$$
\left(x \partial_{x}-(\beta+i)\right) x^{\beta+j}=(j-i) x^{\beta+j}
$$

If $f=\sum_{i=0}^{k} \alpha_{i} x^{\beta+i} \in M_{\alpha}^{\beta}$ where $\alpha_{k} \neq 0$, then

$$
\prod_{i=0}^{k-1}\left(x \partial_{x}-(\beta+i)\right) f=\alpha_{k} k!x^{\beta+k}
$$

So the monomial $x^{\beta+k} \in A_{1} f$. Now use the formulas

$$
\begin{equation*}
\partial_{x}^{i} x^{\beta+k}=(\beta+k) \ldots(\beta+k-i) x^{\beta+k-i} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{i} x^{\beta+k}=x^{\beta+k+i} \tag{2.2}
\end{equation*}
$$

If now $\beta \in \mathbb{C} \backslash \mathbb{Z}$, then the coefficient in (2.1) is non-zero for all $i \geq 0$ and hence $x^{\beta+k-i} \in A_{1} f$. (2.2) gives that $x^{\beta+k+i} \in A_{1} f$ for all $i \geq 0$, and so $M_{\alpha}^{\beta} \subset A_{1} f$. But f was an arbitrary element. This means that M_{α}^{β} is irreducible. This concludes the proof.

2.3 A basic property of the module M_{α}^{β}

In the following proposition we are going to prove a basic property of the module $\mathrm{M}_{\alpha}^{\beta}$, which we will use later on.
Proposition 2. (i) $\mathrm{M}_{\alpha}^{\beta} \cong \mathrm{M}_{\alpha}^{\gamma}$, if $\beta \equiv \gamma\left(\bmod \mathbb{Z}^{\mathrm{m}}\right)$.
(ii) $\mathrm{M}_{\alpha}^{\beta} \cong \mathbb{C}[\mathrm{x}]_{\alpha}$, if $\beta \in \mathbb{Z}^{m}$.

Proof. (ii) is a special case of (i). Suppose that $\beta=\gamma+\tau, \tau \in \mathbb{Z}^{m}$.
Define $\theta: \mathrm{M}_{\alpha}^{\beta} \longrightarrow \mathrm{M}_{\alpha}^{\gamma}$ by:

$$
\theta\left(\frac{p}{\alpha^{r}} \alpha^{\beta}\right)=\frac{p}{\alpha^{r}} \alpha^{\tau} \alpha^{\gamma}
$$

Clearly this is a $1-1$, onto map and it is an easy exercise to show that it is an A_{n}-module homomorphism.

$2.4 \mathrm{M}_{\alpha}^{\beta}$ is a holonomic module

We are now going to show that our module M_{α}^{β} is a holonomic module and hence has finite length. For this we need the following definitions and results. For details see [4].

Definition 2. Let M be a left A_{n}-module. A family $\Gamma=\left\{\Gamma_{i}\right\}_{i \geq 0}$ of \mathbb{C}-vector spaces is a filtration of M with respect to the Bernstein filtration \mathcal{B} of A_{n} if it satisfies:

- $\Gamma_{0} \subset \Gamma_{1} \subset \cdots \subset M$,
- $M=\cup_{i \geq 0} \Gamma_{i}$,
- $B_{i} \Gamma_{j} \subseteq \Gamma_{i+j}$, where B_{i} is the set of all operators of A_{n} of degree less than or equal to i and
- Γ_{i} is a finite dimensional vector space.

It is known that a finitely generated A_{n}-module M has a filtration of the above type such that $g r^{\Gamma} M$ is a finitely generated $g r^{\mathcal{B}} A_{n}$-module.

Definition 3. The dimension of the A_{n}-module M is

$$
d(M)=\operatorname{dim}_{\mathrm{gr}^{\mathcal{B}} \mathrm{A}_{\mathrm{n}}} \operatorname{gr}^{\Gamma} \mathrm{M}
$$

for any filtration Γ such that $g r^{\Gamma} M$ is a finitely generated $g r^{\mathcal{B}} A_{n}$-module. Similarly the multiplicity $m(M)$ of M is the multiplicity of $g r^{\Gamma} M$ as $g r^{\mathcal{B}} A_{n^{-}}$ module. The $A_{n^{-}}$module M is called holonomic if $d(M)=n$ or $M=0$.

Since $g r^{\mathcal{B}} A_{n}$ is polynomial algebra on $2 n$ variables, this means that the dimension $d(M)$ of M is less than or equal to $2 n$. Bernstein's inequality says that there is also a lower bound: $d(M) \geq n$.

Example 1. Since the dimension of $\mathbb{C}[x]$ as A_{n}-module is n, it is a holonomic module. The dimension of A_{n} as a left A_{n}-module is $2 n$, so A_{n} is not a holonomic module.

Proposition 3 ([2, 4]). (i) Submodules, quotients and finite sums of holonomic A_{n}-modules are holonomic.
(ii) Holonomic modules are finitely generated and have finite length.

We will use the definition in the following form. The proof of the following Lemma can be found in [4].

Lemma 1. Let M be a left A_{n}-module with filtration Γ with respect to the Bernstein filtration \mathcal{B} of A_{n}. Suppose that there exist constants c_{1}, c_{2} such that for $j \succ \succ 0$

$$
\operatorname{dim}_{\mathbb{C}} \Gamma_{\mathrm{j}} \leq \frac{\mathrm{c}_{1} \mathrm{j}^{\mathrm{n}}}{\mathrm{n}!}+\mathrm{c}_{2} \mathrm{j}^{\mathrm{n}-1}
$$

Then M is a holonomic A_{n}-module whose multiplicity cannot exceed c_{1}. In particular M is finitely generated, and has finite length.

We are now in a position to prove that M_{α}^{β} is a holonomic module.
Theorem 1. The A_{n}-module M_{α}^{β} is holonomic.
Proof. Let m be the degree of α. Set

$$
\Gamma_{k}=\left\{\frac{q}{\alpha^{k}} \alpha^{\beta}: q \in \mathbb{C}[x], \operatorname{deg} \mathrm{q} \leq(\mathrm{m}+1) \mathrm{k}\right\}
$$

We first check, in detail, that $\Gamma=\left\{\Gamma_{k}\right\}_{k \geq 0}$ is a filtration for $\mathrm{M}_{\alpha}^{\beta}$. Let $\frac{q}{\alpha^{k}} \alpha^{\beta}$ be an element of M_{α}^{β}, and assume that q has degree s. Then

$$
\frac{q}{\alpha^{k}} \alpha^{\beta}=\frac{q \alpha^{s}}{\alpha^{k+s}} \alpha^{\beta}
$$

But $q \alpha^{s}$ has degree $s(m+1) \leq(m+1)(s+k)$, and hence

$$
\frac{q}{\alpha^{k}} \alpha^{\beta} \in \Gamma_{s+k}
$$

It follows that M_{α}^{β} is the union of all Γ_{k} for $k \geq 0$.
Next suppose that $\frac{q}{\alpha^{k}} \alpha^{\beta} \in \Gamma_{k}$. Equivalently $\operatorname{deg} q \leq(\mathrm{m}+1) \mathrm{k}$. Multiplying by x_{i} increases the degree of q by 1 . Thus

$$
\begin{equation*}
x_{i} \frac{q}{\alpha^{k}} \alpha^{\beta}=\frac{x_{i} q}{\alpha^{k}} \alpha^{\beta}=\frac{x_{i} q \alpha}{\alpha^{k+1}} \alpha^{\beta} \in \Gamma_{k+1} \tag{2.3}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\partial_{i}\left(\frac{q}{\alpha^{k}} \alpha^{\beta}\right)=\partial_{i}\left(\frac{q}{\alpha^{k}}\right) \alpha^{\beta}+\frac{q}{\alpha^{k}} \partial_{i}\left(\alpha^{\beta}\right), \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{i}\left(\frac{q}{\alpha^{k}}\right) \alpha^{\beta}=\frac{\alpha \partial_{i}(q)-k q \partial_{i}(\alpha)}{\alpha^{k+1}} \alpha^{\beta} \tag{2.5}
\end{equation*}
$$

The numerator in (2.5) has degree less than or equal to $(m+1) k+(m-1) \leq$ $(m+1)(k+1)$, so that

$$
\begin{equation*}
\partial_{i}\left(\frac{q}{\alpha^{k}}\right) \alpha^{\beta} \in \Gamma_{k+1} \tag{2.6}
\end{equation*}
$$

On the other hand

$$
\frac{q}{\alpha^{k}} \partial_{i}\left(\alpha^{\beta}\right)=\sum_{j=1}^{m} \frac{q}{\alpha^{k}} \beta_{j} \frac{\partial_{i}\left(\alpha_{j}\right)}{\alpha_{j}} \alpha^{\beta}
$$

Now consider

$$
\frac{q}{\alpha^{k}} \beta_{j} \frac{\partial_{i}\left(\alpha_{j}\right)}{\alpha_{j}} \alpha^{\beta} .
$$

Then

$$
\beta_{j} \frac{q \partial_{i}\left(\alpha_{j}\right)}{\alpha^{k} \alpha_{j}} \alpha^{\beta}=\beta_{j} \frac{q \partial_{i}\left(\alpha_{j}\right) \alpha_{1} \ldots \widehat{\alpha_{j}} \ldots \alpha_{m}}{\alpha^{k+1}} \alpha^{\beta} .
$$

The numerator has degree less than or equal to $(m+1) k+(m-1) \leq$ $(m+1)(k+1)$. This implies

$$
\frac{q}{\alpha^{k}} \beta_{j} \frac{\partial_{i}\left(\alpha_{j}\right)}{\alpha_{j}} \alpha^{\beta} \in \Gamma_{k+1}
$$

and then

$$
\sum_{j=1}^{m} \frac{q}{\alpha^{k}} \beta_{j} \frac{\partial_{i}\left(\alpha_{j}\right)}{\alpha_{j}} \alpha^{\beta} \in \Gamma_{k+1} .
$$

Hence

$$
\begin{equation*}
\frac{q}{\alpha^{k}} \partial_{i}\left(\alpha^{\beta}\right) \in \Gamma_{k+1} \tag{2.7}
\end{equation*}
$$

So (2.7) together with (2.6) means that

$$
\partial_{i}\left(\frac{q}{\alpha^{k}} \alpha^{\beta}\right) \in \Gamma_{k+1}
$$

if $\frac{q}{\alpha^{k}} \alpha^{\beta} \in \Gamma_{k}$. This may be summed up as: $B_{1} \Gamma_{k} \subseteq \Gamma_{k+1}$. Since $B_{i}=B_{1}^{i}$, we also have that $B_{i} \Gamma_{k} \subseteq \Gamma_{i+k}$.
Finally, the dimension of Γ_{k} cannot exceed the dimension of the vector space of polynomials of degree $(m+1) k$. This concludes the proof that $\Gamma=\left\{\Gamma_{k}\right\}_{k \geq 0}$ is a filtration of M_{α}^{β} and shows that

$$
\operatorname{dim}_{\mathbb{C}} \Gamma_{\mathrm{k}} \leq\binom{(m+1) k+n}{n} .
$$

Since the term of highest degree in k of this binomial number is $(m+1)^{n} k^{n} / n$! it follows that

$$
\operatorname{dim}_{\mathbb{C}} \Gamma_{\mathrm{k}} \leq \frac{(\mathrm{m}+1)^{\mathrm{n}} \mathrm{k}^{\mathrm{n}}}{\mathrm{n}!}+\mathrm{ck}^{\mathrm{n}-1}
$$

for very large values of k. By Lemma $1, M_{\alpha}^{\beta}$ must be holonomic module of multiplicity less than or equal to $(m+1)^{n}$, and has finite length.

2.5 External products

In this subsection we will give the definition of external product of modules which we will use later. We will start by considering external product of algebras. For more details and some of the proofs see [4].

2.5.1 External products of algebras

Let K be a field of characterstic zero and A, B be K-algebras. The extenal product $A \widehat{\otimes} B$ is the tensor product $A \otimes_{K} B$ on wich we define a multiplication. For $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$, let

$$
(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b b^{\prime}
$$

It is easy to check that $A \otimes_{K} B$ with this product is a K-algebra Let $K[x]=k\left[x_{1}, \ldots, x_{n}\right]$ and $k[y]=K\left[y_{1}, \ldots, y_{m}\right]$ be polynomial rings. Write $K[x, y]$ for the polynomial ring on $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$. Let A_{n} be the Weyl algebra generated by $x_{1}, \ldots, x_{n}, \partial_{x_{1}}, \ldots, \partial_{x_{n}}$ and A_{m} the Weyl algebra generated by $y_{1}, \ldots, y_{m}, \partial_{y_{1}}, \ldots, \partial_{y_{m}}$. Both are subalgebras of A_{m+n}, the Weyl algebra generated by $x_{1}, \ldots, x_{n}, \partial_{x_{1}}, \ldots, \partial_{x_{n}}, y_{1}, \ldots, y_{m}, \partial_{y_{1}}, \ldots, \partial_{y_{m}}$. Then the following isomorphisms are induced by the multiplication map:

- $K[x] \widehat{\otimes} K[y] \cong K[x, y]$,
- $A_{m} \widehat{\otimes} A_{n} \cong A_{m+n}$.

2.5.2 External product of modules

LetK be a field of characterstic zero and A, B be K-algebras. Suppose that M is a left A -module and N is a left B -module. Then we may turn the K -vector space $M \otimes_{K} N$ into an $A \widehat{\otimes} B$-module $M \widehat{\otimes} N$. The action of $a \otimes b \in A \widehat{\otimes} B$ on $u \otimes v \in M \otimes_{K} N$ is given by the formula

$$
(a \otimes b)(u \otimes v)=a u \otimes b v
$$

Definition 4. The $A \widehat{\otimes} B$-module $M \widehat{\otimes} N$, which is defined above, is called the external product of M and N .

We have the following Lemma on the dimension and multiplicity of external product of modules. The proof can be found [4].

Lemma 2. Let M be a finitely generated left A_{m}-module and N be a finitely generated left A_{n}-module. Then:
(i) $M \widehat{\otimes} N$ is finitely generated $A \widehat{\otimes} B$-module
(ii) $d(M \widehat{\otimes} N)=d(M)+d(N)$
(iii) $m(M \widehat{\otimes} N) \leq m(M) m(N)$
(iv) If M is a holonomic A_{m}-module and N is a holonomic A_{n}-module, then $M \widehat{\otimes} N$ is a holonomic A_{m+n}-module.

The proof of the second part of the following Lemma can be found [8].
Lemma 3. Let M be a simple A_{n}-module.
(i) The set of endomorphisms End $_{\mathrm{A}_{\mathrm{n}}} \mathrm{M}$ is a skew field.
(ii) If $\phi \in \operatorname{End}_{A_{n}} M$, then ϕ is algebraic over \mathbb{C}.
(iii) $\operatorname{Hom}_{\mathrm{A}_{\mathrm{n}}}(\mathrm{M}, \mathrm{M})=\mathbb{C}$.

Proof. The first statement is Schur's Lemma. For the second let $A=\mathbb{C}[\phi]$, the subalgebra of $\operatorname{End}_{A_{\mathrm{n}}} \mathrm{M}$ generated by 1 and ϕ. Assume that ϕ is transcendent over \mathbb{C}. Then A is identified with a polynomial algebra over \mathbb{C} in one variable.
Let $D=A \otimes_{\mathbb{C}} A_{n}$. Then there is a unique structure of D -module on M such that $(a \otimes u) m=a u m=u a m$ for $a \in A, u \in A_{n}$ and $m \in M$. Choose a non-zero element $m_{0} \in M$. We have $M=D m_{0}$ since M is simple. Put $D_{k}=A \otimes B_{k}$ and $M_{k}=D_{k} m_{0}$, where $\left\{B_{k}\right\}$ is the Bernstein filtration of A_{n}. The vector space $g r M=\oplus M_{k+1} / M_{k}$ is a finitely generated (cyclic) module over the graded algebra $g r D$ and $g r D$ is finitely generated over A. Hence by [11, Theorem 24.1] there exists $f \in A-\{0\}$ such that $\operatorname{gr} M \otimes_{A} A_{f}$ is free over A_{f}. Since A_{f} is principal ring, every $\left(M_{k} / M_{k-1}\right) \otimes_{A} A_{f}$ is free over A_{f}. Hence $M \otimes_{A} A_{f}$ is a successive extension of free A_{f}-modules and hence free over A_{f}.
Now let $a \in A-\{0\}$ be an element that does not divide any powers of f. Then the induced multiplication map $A_{f} \longrightarrow A_{f},(b \mapsto a b)$, is not surjective. Using that M is free it follows that the induced mapping $\eta: M \otimes_{A} A_{f} \longrightarrow$ $M \otimes_{A} A_{f}$ is not surjective. We have $\eta(m \otimes b)=m \otimes a b=a m \otimes b$ for $m \in M$ and $b \in A_{f}$. Since M is simple the mapping $m \mapsto a m$ of m is bijective and we reach a contradiction. Hence ϕ is algebraic. Since \mathbb{C} is algebraically closed this implies (iii).

The following proposition will be one of our main tools.
Proposition 4. Let M be an irreducible A_{n}-module and N be an irreducible A_{m}-module. Then $M \widehat{\otimes} N$ is an irreducible A_{m+n}-module.

Proof. Clearly $M \otimes_{\mathbb{C}} N=\left\{\sum_{i=1}^{k} a_{i} m_{i} \otimes n_{i}: m_{i} \in M, n_{i} \in N, a_{i} \in \mathbb{C}\right\}$. Now, let $f \in M \widehat{\otimes} N$ and $f \neq 0$. Then we want to show that $A_{m+n} f=M \widehat{\otimes} N$. We will prove this in two steps.

Step I

Let $f=m_{0} \otimes n_{0}, m_{0} \in M \backslash\{0\}, n_{0} \in N \backslash\{0\}$. We know that $A_{n} m_{0}=M$ and $A_{m} n_{0}=N$ and if $m_{1} \otimes n_{1} \in M \otimes N$, then $m_{1}=a m_{0}$ and $n_{1}=b n_{0}$ for some $a \in A_{n}, b \in A_{m}$. This implies that

$$
m_{1} \otimes n_{1}=\left(a m_{0}\right) \otimes\left(b n_{0}\right)=a b\left(m_{0} \otimes n_{0}\right) \in A_{m+n} f
$$

If $g=\sum_{i=1}^{k} m_{i} \otimes n_{i} \in M \otimes N$, then $m_{i}=a_{i} m_{0}$ and $n_{i}=b_{i} n_{0}, a_{i} \in A_{n}$ and $b_{i} \in A_{m}$ and hence

$$
g=\sum_{i=1}^{k} a_{i} m_{0} \otimes b_{i} n_{0}=\sum_{i=1}^{k} a_{i} b_{i}\left(m_{0} \otimes n_{0}\right)=\left(\sum_{i=1}^{k} a_{i} b_{i}\right) m_{0} \otimes n_{0}=c m_{0} \otimes n_{0},
$$

where $c=\sum_{i=1}^{k} a_{i} b_{i} \in A_{m+n}$. This implies that $g \in A_{m+n} f$. Therefore $A_{m+n} f=M \widehat{\otimes} N$.

Step II

Let $f=\sum_{i=0}^{k} m_{i} \otimes n_{i}, m_{i} \in M, n_{i} \in N$. We will proceed by induction on k. We already proved the result for $k=1$ in the preceding step. First we will consider the case $k=2$. Suppose $f=m_{0} \otimes n_{0}+m_{1} \otimes n_{1}$, where $m_{0} \otimes n_{0} \neq 0$, and $m_{1} \otimes n_{1} \neq 0$. We know that $(a \otimes 1) f=a m_{0} \otimes n_{0}+a m_{1} \otimes n_{1}$. Suppose $a m_{0}=0$ and $a m_{1} \neq 0$. Then $(a \otimes 1) f=a m_{1} \otimes n_{1} \neq 0$. By the first case, $a m_{1} \otimes n_{1}$ generates $M \otimes N$, and hence $A_{m+n} f=M \widehat{\otimes} N$. So we should check if there are elements $a \in A_{n}$ such that $a m_{0}=0$ but $a m_{1} \neq 0$.
Let us answer the question, do we have $a \in A_{n}-\{0\}$ and $a m_{0}=0$ and $a m_{1} \neq 0$?

Lemma 4. If M is an irreducible A_{n}-module and $m \in M, m \neq 0$, then $\operatorname{Ann}(m) \neq 0$.

Proof. Consider the map

$$
\phi: A_{n} \longrightarrow M
$$

defined by $\phi(a)=a m \in M$. Since M is irreducible and $m \neq 0, \phi$ is a surjective map. If $\operatorname{Ker} \phi=\left\{a \in A_{n}: a m=0\right\}=0$, then $A_{n} \cong M$ and hence A_{n} is irreducible which is a contradiction. Hence $\operatorname{Ann}(\mathrm{m})=\operatorname{Ker} \phi \neq 0$.

Let us continue the proof of Proposition 4 step II. Let $J_{0}=\operatorname{Ann}\left(\mathrm{m}_{0}\right)$ and $J_{1}=\operatorname{Ann}\left(\mathrm{m}_{1}\right)$. If $J_{1} \subsetneq J_{0}$, then we can apply the argument above. If $J_{0} \subsetneq J_{1}$, then we can apply the first case, because we have $a \in A_{n}$ such that $a m_{0}=0$ and $a m_{1} \neq 0$ and hence

$$
a m_{0} \otimes n_{0}+a m_{1} \otimes n_{1}=a m_{1} \otimes n_{1} \neq 0
$$

and $A_{m+n}\left(a m_{1} \otimes n_{1}\right)=A_{m+n} f=M \widehat{\otimes} N$. So $J_{0}=J_{1}$ is the only case which the argument does not work. So suppose this is the case. Then consider the isomorphisms

$$
\begin{gathered}
\phi_{0}: A_{n} / J_{0} \longrightarrow M \\
a+J_{0} \longmapsto a m_{0}
\end{gathered}
$$

and

$$
\begin{gathered}
\phi_{1}: A_{n} / J_{1} \longrightarrow M \\
a+J_{1} \longmapsto a m_{1} .
\end{gathered}
$$

We have $M \xrightarrow{\overbrace{\phi_{0}^{-1}}^{\longrightarrow} A_{n} / J_{0}\left(=J_{1}\right) \xrightarrow{\phi_{1}}} M$. That is $\eta=\phi_{1} o \phi_{0}^{-1}$. Then by Lemma 3, $\eta(m)=\alpha m$ for some $\alpha \in \mathbb{C}$. This implies $\eta\left(m_{0}\right)=\alpha m_{0}=m_{1}$ and hence
$f=m_{0} \otimes n_{0}+m_{1} \otimes n_{1}=m_{0} \otimes n_{0}+\alpha m_{0} \otimes n_{1}=m_{0} \otimes n_{0}+m_{0} \otimes \alpha n_{1}=m_{0} \otimes\left(n_{0}+\alpha n_{1}\right)=m_{0} \otimes n_{2}$,
where $n_{2}=n_{0} \otimes \alpha n_{1}$. This implies $f=m_{0} \otimes n_{2}$ and then by the first case above, $A_{m+n} f=M \otimes N$. The case $k>2$ is treated in the same way. By the above argument, if $f=\sum_{i=0}^{k} m_{i} \otimes n_{i}$, either there exists $a \otimes 1$ such that $0 \neq(a \otimes 1) f=\sum_{i=0}^{k-1} a m_{i} \otimes n_{i}$ and hence by induction f generates $M \widehat{\otimes} N$, or we use Lemma 4 in the same way as above to see that $f=\sum_{i=0}^{k-1} \tilde{m}_{i} \otimes \tilde{n}_{i}$ and again by induction generates $M \widehat{\otimes} N$.

Proposition 5. Let M be an A_{n}-module with a composition series

$$
0=M_{0} \subset M_{1} \subset \ldots M_{r}=M
$$

and N be an irreducible A_{m}-module. Then

$$
0=M_{0} \widehat{\otimes} N \subset M_{1} \widehat{\otimes} N \subset \ldots \subset M_{r} \widehat{\otimes} N=M \widehat{\otimes} N
$$

is a composition series of $M \widehat{\otimes} N$.
Proof. It suffices to note that $M_{i} \widehat{\otimes} N / M_{i-1} \widehat{\otimes} N \cong M_{i} / M_{i-1} \widehat{\otimes} N$ is irreducible by Proposition 4.

2.6 Decomposition factors of modules

Let R be a ring and M be an R -module. If $0=M_{0} \subset M_{1} \subset \ldots M_{r}=M$ is a composition series of M , then the set

$$
\operatorname{DF}(\mathrm{M}):=\left\{\mathrm{M}_{\mathrm{i}} / \mathrm{M}_{\mathrm{i}-1}\right\}_{\mathrm{i}=1}^{\mathrm{r}}
$$

of simple R-modules is the set of decomposition facors of M.
We have the following Proposition on the decomposition factors of R-modules.
Proposition 6. Let M be an R-module .
(i) Let N be a submodule of M. Consider the exact sequence of R-modules $N \subset M \xrightarrow{\phi} M / N$. Then,
(a) $\mathrm{DF}(\mathrm{M})=\mathrm{DF}(\mathrm{N}) \cup \mathrm{DF}(\mathrm{M} / \mathrm{N})$ and
(b) $c(M)=c(N)+c(M / N)$.
(ii) If $M=M_{k} \supset M_{k-1} \supset \ldots \supset M_{0}$ is a sequence of R-modules, then

$$
\operatorname{DF}(\mathrm{M})=\bigcup_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{DF}\left(\mathrm{M}_{\mathrm{i}} / \mathrm{M}_{\mathrm{i}-1}\right) .
$$

Proof. Once we have proved (i), (ii) can easily be proved by induction on k . To prove (i) consider

$$
M \xrightarrow{\phi} M / N=F_{k} \supset F_{k-1} \supset \ldots \supset F_{1} \supset F_{0}=0
$$

Then $F_{j}=M_{j} / N$, where $M \supset M_{j}=\phi^{-1}\left(F_{j}\right)$ for $j=0,1, \ldots, k$. But

$$
M_{j} / M_{j-1}=\phi^{-1}\left(F_{j}\right) / \phi^{-1}\left(F_{j-1}\right) \cong M_{j} / N / M_{j-1} / N=F_{j} / F_{j-1}
$$

Hence if F_{j} / F_{j-1} are irreducible, then M_{j} / M_{j-1} also are irreducible. Suppose $0=N_{0} \subset N_{1} \subset \ldots \subset N_{s}=N$ is a composition series of N . Then

$$
N_{0} \subset N_{1} \subset \ldots \subset N_{s}=N=M_{0} \subset M_{1} \subset \ldots \subset M_{k}=M
$$

is a composition series of M. Therefore

$$
\left\{N_{j} / N_{j-1}\right\}_{j=0}^{s} \cup\left\{F_{i} / F_{i-1} \cong M_{i} / M_{i-1}\right\}_{i=0}^{k}
$$

is the set of decomposition factors of M .
Corollary 1. Let $0=M_{0} \subset M_{1} \subset \ldots \subset M_{k}=M$ be a composition series of an A_{n} module M and $0=N_{0} \subset N_{1} \subset \ldots \subset N_{l}=N$ be a composition series of an A_{m}-module N. Then

$$
\mathrm{DF}(\mathrm{M} \widehat{\otimes} \mathrm{~N})=\left\{\mathrm{M}_{\mathrm{i}} / \mathrm{M}_{\mathrm{i}-1} \widehat{\otimes} \mathrm{~N}_{\mathrm{j}} / \mathrm{N}_{\mathrm{j}-1}\right\}_{\mathrm{i}=1, \mathrm{j}=1}^{\mathrm{k}, \mathrm{l}}
$$

and hence $c(M \widehat{\otimes} N)=c(M) c(N)$.
Proof. It is an easy consquence of Proposition 6.

3 The module M_{α}^{β}, where $\beta \in \mathbb{Z}^{m}$

By Proposition 2, in the case where $\beta \in \mathbb{Z}^{m}, M_{\alpha}^{\beta} \cong \mathbb{C}[x]_{\alpha}$. Our aim in this section is to find the number of decomposition factors of $\mathbb{C}[x]_{\alpha}$. This will turn out to be equivalent to analyzing expressions in partial fractions for functions in $\mathbb{C}[x]_{\alpha}$. Let us proceed in the following way.

- To every subset

$$
S=\left\{\alpha_{i_{1}}, \ldots, \alpha_{i_{d}}\right\} \subset \triangle=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}
$$

that consists of linearly independent forms, choose coordinates z_{d+1}, \ldots, z_{n} such that $\alpha_{i_{1}}, \ldots, \alpha_{i_{d}}, z_{d+1}, \ldots, z_{n}$ are linear coordinates in space.

- In order to simplify the notations let us denote $\alpha_{i_{k}}=z_{k}, k=1,2, \ldots, d$.
- Let $A_{S}=\mathbb{C}\left[z_{d+1}, \ldots, z_{n}\right]$ be the corresponding ring of polynomials.
- Define $R_{S}=\left\{h \in \mathbb{C}[x]_{\alpha}: h=\frac{g}{\prod_{j=1}^{d} z_{j}^{m_{j}}} ; g \in A_{S}, m_{j}>0, \forall j\right\}$.
- We will just use these modules for certain subsets S called no-broken circuits defined below.

Consider the following sequence of A_{n}-modules

$$
0 \subset R_{0}(=\mathbb{C}[x]) \subset R_{1} \subset \cdots \subset R_{r}=\mathbb{C}[x]_{\alpha},
$$

where $r \leq n$ and R_{k} is the subspace of $\mathbb{C}[x]_{\alpha}$ which is generated by monomials in $x_{1}, \ldots, x_{n}, \alpha_{1}^{-1}, \ldots, \alpha_{m}^{-1}$ such that at most k of $\alpha_{1}, \ldots, \alpha_{m}$ have strictly negative exponents. Clearly R_{k} is an A_{n}-submodule of $\mathbb{C}[x]_{\alpha}$. The main theorem in this section is the following.

Theorem 2.

$$
R_{k} / R_{k-1}=\oplus_{W} \oplus_{S} R_{S}
$$

where W runs over the subspaces of dimension k generated by elements of \triangle and S runs over certain subsets of k elements of \triangle (the so called no-broken circuits, see definition below) which generate W.

The proof of Theorem 2 can be found in [5], whose exposition we follow. We will indicate some parts of it below.

3.1 Basic Lemma

Lemma 5 ([5]). Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \alpha_{k+1}$ be non-zero linear forms with $\alpha_{1}=$ $\sum_{j=2}^{k+1} c_{j} \alpha_{j}$. Then we have

$$
\frac{1}{\prod_{j=1}^{k+1} \alpha_{j}}=\sum_{j=2}^{k+1} c_{j} \frac{1}{\alpha_{1}^{2} \prod_{1}^{j-1} \alpha_{i} \prod_{i=j+1}^{k+1} \alpha_{i}}
$$

Proof.

$$
\frac{1}{\prod_{j=1}^{k+1} \alpha_{j}}=\frac{\alpha_{1}}{\alpha_{1}^{2} \prod_{j=2}^{k+1} \alpha_{j}}=\sum_{j=2}^{k+1} c_{j} \frac{\alpha_{j}}{\alpha_{1}^{2} \prod_{j=2}^{k+1} \alpha_{j}} .
$$

Given non-zero linear forms $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$, let d be the dimension of the vector space they generate.
Proposition 7 ([5]). Every expression $\frac{1}{\prod_{j=1}^{m} \alpha_{i}^{h_{j}}}$ can be expressed as linear combinations of expressions $\frac{1}{\prod_{j=1}^{d} \alpha_{i_{j}}^{m_{j}}}$ with $\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{d}}$ linearly independent and $\sum_{j=1}^{d} m_{j}=\sum_{i=1}^{m} h_{i}$.

Proof. Let us apply reduction and an induction on the vector of exponents $\left(h_{1}, \ldots, h_{m}\right)$ in the following way.

- Using the given ordering we can take the first linearly dependent elements that appear in the product with non-zero exponents.
- Using Lemma 5 we can substitute the product of these terms with a sum in which developing the vector of exponents is increased in the lexicographical order maintaining the same sum.
- In each term the space generated by the factors remains the same.
- Clearly this recursive procedure terminates after a finite number of steps, when all the summands are of the required type.

3.2 No-broken circuits

We will systemize the procedure in the proof of the preceding proposition.
Definition 5. Let $\alpha_{1}, \ldots, \alpha_{m}$ be non-zero linear forms. Let $\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{h}}$, $i_{1}<i_{2}<\ldots<i_{h}$ be an ordered sublist of linearly independent elements. We say that the sublist is a broken circuit if there exists an integer $k \leq h$ and an integer $i<i_{k}$ such that the elements $\alpha_{i}, \alpha_{i_{k}}, \ldots, \alpha_{i_{h}}$ are linearly dependent, otherwise it is called no-broken circuit.

Lemma 6. If $\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{h}}$ is a broken circuit, then $\frac{1}{\prod_{j=1}^{h} \alpha_{i_{j}}}$ is a linear combination of expressions $\frac{1}{\prod_{j=1}^{m} \alpha_{j}^{h_{j}}}$ with the vector of exponents lexicographically bigger than the vector of exponents of $\frac{1}{\prod_{j=1}^{h} \alpha_{i j}}$.

Proof. From the given hypothesis we have $\alpha_{i}=\sum_{j=k}^{h} c_{j} \alpha_{i_{j}}$, with $i<i_{k}$. Let us substitute and simplify:

$$
\frac{1}{\prod_{j=1}^{h} \alpha_{i_{j}}}=\frac{\alpha_{i}}{\alpha_{i} \prod_{j=1}^{h} \alpha_{i_{j}}}=\frac{c_{k} \alpha_{i_{k}}+\cdots+c_{h} \alpha_{i_{h}}}{\alpha_{i} \prod_{j=1}^{h} \alpha_{i_{j}}}
$$

Simplifying every term in the numerator with the corresponding factor in the denominator we get the desired expressions.

Theorem 3. Every expession $\frac{1}{\prod_{j=1}^{m} \alpha_{j}^{h_{j}}}$ can be expressed as a linear combination of expressions $\frac{1}{\prod_{j=1}^{d} \alpha_{i_{j}}^{m_{j}}}$, with $\alpha_{i_{1}}, \ldots, \alpha_{i_{d}}$ a no-broken circuit and $\sum_{j=1}^{d} m_{j}=\sum_{i=1}^{m} h_{i}$.
Proof. The fact that an expression of the given type can be written as a linear combination of expressions relative to no-broken circuits can be proved by induction on the lexicographic order of the vector exponents as in Proposition 7 and repeatedly using Lemma 6.

Corollary 2. The space R_{S} has basis the monomials $\prod_{i=1}^{n} z_{i}^{h_{i}}$ such that $h_{i} \geq 0$ $\forall i>d, h_{i}<0 \forall i \leq d$ and $\mathbb{C}[x]_{\alpha}=\sum_{S} R_{S}$ as S varies among the no-broken circuits.

Proof. - The elements $z_{1}, z_{2}, \ldots, z_{n}$ are linear coordinates in space and R_{S} is contained in the ring of Laurent polynomials in these variables. These polynomials have as basis all the monomials in the variables with integer exponents. The proposed monomials are thus part of these basis and so linearly independent.

- From Theorem 3 it follows immediately that every function f in R can be written as a linear combination of expessions

$$
f=\frac{g}{\prod_{j=1}^{d} \alpha_{i_{j}}^{m_{j}}}
$$

such that $g \in \mathbb{C}[x], m_{j}>0, \forall j$ and $S=\alpha_{i_{1}}, \ldots, \alpha_{i_{d}}$ a no-broken circuit.

- We write f as a polynomial in the variables $\alpha_{i_{1}}, \ldots, \alpha_{i_{d}}, z_{d+1}, \ldots, z_{n}$. Simplify the α_{i} that appear in the numerator and the denominator. Thus with as easy induction we can prove that every element in R is a sum of elements of the spaces R_{S}.

Corollary 3. The number of decomposition factors of $\mathbb{C}[x]_{\alpha}$ equals the number of no-broken circuits.

3.3 The plane case

Consider the A_{2}-module $M_{\alpha}^{\beta}=\mathbb{C}[x, y]_{\alpha} \alpha^{\beta}$, where
$\alpha^{\beta}=x^{\beta_{1}} y^{\beta_{2}}\left(x+c_{3} y\right)^{\beta_{3}} \ldots\left(x+c_{m} y\right)^{\beta_{m}}$. If $\beta_{1}, \ldots, \beta_{m} \in \mathbb{Z}$, then by Proposition $2, M_{\alpha}^{\beta} \cong \mathbb{C}[x, y]_{x y} \prod_{i=3}^{m}\left(x+c_{i} y\right)$. We have the following sequence of A_{2}-modules

$$
0 \rightarrow R_{0}(=\mathbb{C}[x, y]) \subset R_{1} \subset R_{2}=M_{\alpha}^{\beta}
$$

where R_{1} is the subspace of $\mathbb{C}[x, y]_{x y} \prod_{i=3}^{m}\left(x+c_{i} y\right)$ which is generated by the monomials $x^{ \pm 1} y^{ \pm 1},\left(x+c_{3} y\right)^{-1}, \ldots,\left(x+c_{m} y\right)^{-1}$ such that atmost one of $x, y, x+c_{3} y, \ldots, x+c_{m} y$ has striclly negative exponent. Then

$$
R_{1} / R_{0}=\oplus_{j=1}^{m} R_{S_{j}}
$$

where $R_{S_{1}}$ and $R_{S_{2}}$ isomorphic to the submodules generated by $e_{S_{1}}=\frac{1}{x}$ and $e_{S_{2}}=\frac{1}{y}$ modulo R_{0} respectively and $R_{S_{j}}$ is isomorphic to the submodule generated by $e_{S_{j}}=\frac{1}{z_{i}}$ modulo R_{0}, where $z_{i}=x+c_{i} y, i=3, \ldots, m$ and each $R_{S_{j}}, j=1, \ldots, m$ is irreducible. On the other hand

$$
R_{2} / R_{1}=\oplus_{i=2}^{m} R_{S_{i}}
$$

where $R_{S_{2}}$ is is isomorphic to the submodule generated by $e_{S_{2}}=\frac{1}{x y}$ modulo $R_{1}, R_{S_{i}}$ for $i=3, \ldots, m$ is is isomorphic to the submodule generated by $e_{S_{i}}=\frac{1}{x z_{i}}$ modulo R_{1}, where $z_{i}=x+c_{i} y, i=3, \ldots, m$ and each $R_{S_{i}}$ is irreducible. Hence $c\left(R_{2} / R_{1}\right)=m-1, c\left(R_{1} / R_{0}\right)=m$ and $c\left(R_{0}\right)=1$. We know that

$$
\mathrm{DF}\left(\mathrm{M}_{\alpha}^{\beta}\right)=\mathrm{DF}\left(\mathrm{R}_{0}\right) \cup \mathrm{DF}\left(\mathrm{R}_{1} / \mathrm{R}_{0}\right) \cup \mathrm{DF}\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)
$$

and

$$
c\left(M_{\alpha}^{\beta}\right)=c\left(R_{0}\right)+c\left(R_{1} / R_{0}\right)+c\left(R_{2} / R_{1}\right)
$$

Therefore $c\left(M_{\alpha}^{\beta}\right)=2 m$.
Remark 1. Observe that the set of no-broken circuits of the set $\left\{x, y, x+c_{3} y, \ldots, x+c_{m} y\right\}$ of the linear forms is

$$
\left\{\emptyset,\{x\},\{y\},\left\{x+c_{3} y\right\}, \ldots,\left\{x+c_{m} y\right\},\{x, y\},\left\{x, x+c_{3} y\right\}, \ldots,\left\{x, x+c_{m} y\right\}\right\}
$$

4 On the support of modules

Let X be a smooth affine algebraic variety. (X will be \mathbb{C}^{n} or an open subset of \mathbb{C}^{n} which is the complement of a union of hyperplanes defined by forms). We denote by D_{X} the ring of differential operators on X and if $X=\mathbb{C}^{n}$ this is the same as A_{n}. If X is an affine open subset of \mathbb{C}^{n} defined by $0 \neq f \in \mathbb{C}[x]$, then $D_{X}=\mathbb{C}[x]_{f} \otimes_{\mathbb{C}[x]} A_{n}$. We will use the notation $O_{X}=\mathbb{C}[x]_{f}$ in this case.
If M is a D_{X}-module then it can be viewed as an O_{X}-module and hence has an annihilator, $A n n_{O_{X}} M$.

Definition 6. $V\left(A n n_{O_{X}} M\right)$ is called the support of M , and is denoted by SuppM. (With $V(I)$ for an ideal $I \subset O_{X}$ means the closed subvariety of zeroes defined by I.)

We have the following examples.

- For $M_{1}=\mathbb{C}[x, y]_{x y} /\left(\mathbb{C}[x, y]_{x}+\mathbb{C}[x, y]_{y}\right)$,
$\operatorname{Supp} M_{1}=V(x, y)=(0,0)$.
- For $M_{2}=\mathbb{C}[x, y]_{x} / \mathbb{C}[x, y]$, Supp $M_{2}=V(x)=\{(0, y): y \in \mathbb{C}\}$.
- $M_{3}=\mathbb{C}[x, y]$,
$\operatorname{Supp} M_{3}=V(0)=\mathbb{C}^{2}$.

4.1 Basic properties

Proposition 8. If M is an irreducible D_{X}-module and $U \subset X$ an affine open subset, then $M_{\left.\right|_{U}}=: O_{U} \otimes_{O_{X}} M$ is an irreducible D_{U}-module. If N is a D_{X}-module, then $c\left(N_{\mid U}\right) \leq c(N)$.

Proof. Suppose $U=X-V(s)$ and $0 \neq f, g \in M_{\mid U}$. Then $f=\frac{f^{\prime}}{s^{j}}, g=\frac{g^{\prime}}{s^{k}}$, $f^{\prime}, g^{\prime} \in M$. By the assumption that M is irreducible, there exists $P \in D_{X}$ such that $P f^{\prime}=g^{\prime}$. This implies $\left(s^{-k} P s^{j}\right)\left(\frac{f^{\prime}}{s^{j}}\right)=\frac{g^{\prime}}{s^{k}}$. This gives the result since clearly $s^{-k} P s^{j} \in D_{U}$.

Proposition 9. Consider M_{α}^{β} and a decomposition factor M_{i}. It has support on an intersection of hyperplanes H_{S} for some $S \subset\{1,2, \ldots, m\}$.

$$
H_{S}=\left\{p \in \mathbb{C}^{n}: \alpha_{i}(p)=0, i \in S\right\} .
$$

The proof of the proposition will be given below after some preliminaries.
Definition 7. Suppose that θ is an automorphism of D_{X}. If M is a $D_{X^{-}}$ module, $\theta^{*} M$ is defined to be the D_{X}-module which consists of the same elements as M, but on which D_{X} acts by θ : if $P \in D_{X}, m \in \theta^{*} M$, then $P m=\theta(P) m$.

The following Lemma is clear.
Lemma 7. If $\theta: D_{X} \longrightarrow D_{X}$ is an automorphism such that it is the identity on O_{X} and M has decomposition factors $M_{i}, i=1, \ldots, l$, then $\theta^{*} M$ has decomposition factors $\theta^{*} M_{i}, i=1, \ldots, l$. In particular $c(M)=c\left(\theta^{*} M\right)$. The support of $\theta^{*} M_{i}$ equals the support of M_{i}.

We will apply this Lemma to the following Proposition.
Proposition 10. Suppose that $U=X-V\left(\alpha_{1}, \ldots, \alpha_{l}\right)$. Then $c\left(M_{\alpha \mid U}^{\beta}\right)=$ $c\left(M_{\alpha^{\prime} \mid U}^{\beta^{\prime}}\right)$, where $\alpha^{\prime}=\alpha_{l+1} \ldots \alpha_{m}$ and $\beta^{\prime}=\left(\beta_{l+1}, \ldots, \beta_{m}\right)$.
Proof. It is enough to assume by induction that $U=X-V\left(\alpha_{1}\right)$. Put $\alpha^{\beta}=$ $\alpha_{1}^{\beta_{1}} \tilde{\alpha}^{\tilde{\beta}}$, where $\tilde{\alpha}=\alpha_{2} \ldots \alpha_{m}$ and $\tilde{\beta}=\left(\beta_{2}, \ldots, \beta_{m}\right)$. Then $M_{\alpha \mid U}^{\beta}=\mathbb{C}[x]_{\alpha} \alpha_{1}^{\beta_{1}} \tilde{\alpha} \tilde{\beta}$ and the point is that α_{1} is invertible here. Now define $\theta: D_{U} \longrightarrow D_{U}$ in the following way.

- If $D \in \operatorname{Der}_{\mathbb{C}}(\mathbb{C}[x]) \subset D_{U}, \theta(D)=D+\frac{\beta_{1} D\left(\alpha_{1}\right)}{\alpha_{1}}$.
- If $r \in O_{U}$, then $\theta(r)=r$.

Extending this inductively gives an automorphism of D_{U}, since it has the inverse $\theta^{-1}: D \mapsto D-\frac{\beta_{1} D\left(\alpha_{1}\right)}{\alpha_{1}}$. We claim that the map

$$
\rho: \theta^{*} M_{\tilde{\alpha} \mid U}^{\tilde{\mathcal{\beta}}} \longrightarrow M_{\alpha \mid U}^{\beta}
$$

defined by $\rho: r \tilde{\alpha}^{\tilde{\beta}} \mapsto r \alpha^{\beta}$ is a D_{U}-isomorphism. It suffices to check that $\rho\left(D\left(r \tilde{\alpha}^{\tilde{\beta}}\right)\right)=D\left(\rho\left(r \tilde{\alpha}^{\tilde{\beta}}\right)\right.$, i.e. $\rho\left(\theta(D)\left(r \tilde{\alpha}^{\tilde{\beta}}\right)\right)=D\left(r \alpha^{\beta}\right)$, if $D \in \operatorname{Der}_{\mathbb{C}}(\mathbb{C}[x])$ and $r \in \mathbb{C}[x]_{\alpha}$. But

$$
\theta(D) r \tilde{\alpha}^{\tilde{\beta}}=\left(D+\frac{\beta_{1} D\left(\alpha_{1}\right)}{\alpha_{1}}\right) r \tilde{\alpha}^{\tilde{\beta}}=\left(\sum_{i=1}^{m} \frac{\beta_{i} D\left(\alpha_{i}\right)}{\alpha_{i}}\right) r \tilde{\alpha}^{\tilde{\beta}}+D(r) \tilde{\alpha}^{\tilde{\beta}} .
$$

Since $D\left(r \alpha^{\beta}\right)=\left(\sum_{i=1}^{m} \frac{\beta_{i} D\left(\alpha_{i}\right)}{\alpha_{i}}\right) r \alpha^{\beta}+D(r) \alpha^{\beta}$, the statement is clear. Hence the proposition is clear by the preceeding lemma.

Lemma 8. Let $U \subset X$ be an affine open subset.
(i) $\mathrm{SuppM}_{\mid \mathrm{U}}=\mathrm{U} \cap$ SuppM.
(ii) $M_{\left.\right|_{U}}=0 \Leftrightarrow \operatorname{SuppM} \subset \mathrm{X}-\mathrm{U}=: \mathrm{Z}$.
(iii)If M is irreducible, then SuppM is irreducible as a variety.

Proof. (i) is clear by definition. Let I be the ideal of Z. For any O_{X}-module M there exists an exact sequence

$$
\Gamma_{\mathrm{Z}} M \subset M \longrightarrow M_{\left.\right|_{U}},
$$

where $\Gamma_{\mathrm{Z}} M=\left\{m \in M: \exists r, I^{r} m=0\right\}$. If $M_{\mid U}=0$, then $\Gamma_{\mathrm{Z}} M=M$ and this proves (ii) in one direction. The other direction is a consquence of (i) and the fact that the only module with SuppM $=\emptyset$ is the the zero module. The proof of (iii) may be found in [2].

Corollary 4. (i) $\operatorname{DF}\left(\mathrm{M}_{\mid \mathrm{U}}\right)=\left\{\mathrm{M}_{\mathrm{i}} \in \operatorname{DF}(\mathrm{M}): \operatorname{Supp}_{\mathrm{i}} \cap \mathrm{U} \neq \emptyset\right\}$. (ii) $c\left(M_{\mid U}\right) \leq c(M)$.

4.2 Proof of Proposition 9

We are going to prove the proposition in a more general setting, by letting X be possibly the complement of a union of hyperplanes $V\left(\alpha_{i}\right) i=1, \ldots, m$. So the statement to be proved is the following: consider M_{α}^{β} as a $D_{X^{-}}$ module, the the support of a decomposition factor is an intersection of some of the hyperplanes $V\left(\alpha_{i}\right) i=1, \ldots, m$. Make induction on the number of $\alpha_{i}, i=1, \ldots, m$ that are not invertible in O_{X}. Suppose these are $\alpha_{l+1}, \ldots, \alpha_{m}$,
and the ones which are invertible are $\alpha_{1}, \ldots, \alpha_{l}$. Then as in the proof of Proposition 10,

$$
\begin{equation*}
M_{\alpha}^{\beta} \cong \theta^{*} M_{\alpha^{\prime}}^{\beta^{\prime}} \tag{4.1}
\end{equation*}
$$

 preserves support, so it suffices to prove the proposition for $M_{\alpha^{\prime}}^{\beta^{\prime}}$. If the number of non-invertible α_{i} is zero, then $m=l, M_{\alpha^{\prime}}^{\beta^{\prime}} \cong O_{X}$ and we are done by Section 3 and Lemma 8 (i). Now for the induction step, assume that the statement is known for $m-l=p$. Assume first that $X=\mathbb{C}^{n}$, and

$$
M_{\alpha}^{\beta}=\mathbb{C}\left[x, \alpha_{1}^{-1}, \ldots, \alpha_{m}^{-1}\right] \alpha^{\prime \beta^{\prime}}
$$

Let N be a decomposition factor of M_{α}^{β} with $\operatorname{SuppN}=\mathrm{Z}$. Assume first that Z is contained in all the hyperplanes $V\left(\alpha_{i}\right), \mathrm{j}=1, \ldots, \mathrm{~m}$. (They do not have to intersect in the origin.) Then $Z \subset \cap_{j=1}^{m} V\left(\alpha_{j}\right)=: H$. If H is the origin we are done. Otherwise choose a decomposition $\mathbb{C}^{n} \cong \mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{2}}$ with coordinates $\tilde{x_{1}}, \ldots, \tilde{x_{1}}, \tilde{y_{1}}, \ldots, \tilde{y_{n}}$ such that $\alpha_{i}(x)=\sum_{j=1}^{n_{1}} \alpha_{i}^{j} \tilde{x_{j}}$. This is always possible, letting $\mathbb{C}^{n_{2}}=H$ and $\mathbb{C}^{n_{1}}$ a complement. Then $M_{\alpha}^{\beta} \cong$ $\mathbb{C}[\tilde{y}] \widehat{\otimes} \mathbb{C}[\tilde{x}]_{\alpha^{\prime}}^{\beta^{\prime}}$. All the decomposition factors of this module have the form $\mathbb{C}[\tilde{y}] \widehat{\otimes} \tilde{N}$, (see Section 2) where \tilde{N} is a decomposition factor of $\mathbb{C}[\tilde{x}]_{\alpha^{\prime}}^{\beta^{\prime}}$. Since $\operatorname{Supp}(\mathbb{C}[\tilde{\mathrm{y}}] \widehat{\otimes} \widetilde{\mathrm{N}})=\mathbb{C}^{\mathrm{n}_{1}} \times \operatorname{Supp} \widetilde{\mathrm{N}}$, we are reduced to proving the proposition for $\mathbb{C}[\tilde{x}]_{\alpha^{\prime}}^{\beta^{\prime}}$. This means that we may assume WLOG that $\cap_{i=1}^{j} V\left(\alpha_{i}\right)$ is the origin. In that case there is some hyperplane, $V\left(\alpha_{1}\right)$ say, which does not contain $Z=$ SuppN. Then $N_{\left.\right|_{U_{1}}}$, where $U_{1}=X-V\left(\alpha_{1}\right)$ is a non-trivial decomposition factor of $M_{\left.\alpha\right|_{U_{1}}}^{\beta}$ with support $U_{1} \cap Z \neq 0$. Hence, since α_{1} is invertible on U_{1}, by induction $U_{1} \cap Z$ is an intersection $H_{S} \cap U_{1}$ of hyperplanes.
Since Z is irreducible, $Z=\overline{U_{1} \cap Z}=H_{S}$, so the result follows.
It remains to see that the inductive hypothesis is true for an arbitrary X that is a complement of a union of hyperplane sections. By the procedure of (4.1) we may assume that $M_{\alpha}^{\beta}=\left(O_{X}\right)_{\alpha} \alpha^{\beta}, \alpha_{1}, \ldots, \alpha_{m}$, for some $m \leq$ $p+1$ are not invertible. Hence, $\left(O_{X}\right)_{\alpha} \alpha^{\beta}=\left(O_{\mathbb{C}^{n}}\right)_{\alpha} \alpha^{\beta}$, and the proposition follows from Lemma 8 (i) and the preceding discussion for the case \mathbb{C}^{n}, since $\left(O_{X}\right)_{\alpha} \alpha^{\beta}=\mathbb{C}\left[x, \alpha^{-1}\right] \alpha_{\mid X}^{\beta}$.

5 Normal Crossings

In this section, we restrict ourselves to the normal crossings, that is, all the linear forms are some of the coordinate axes. Any module M_{α}^{β} where $\alpha_{1}, \ldots, \alpha_{m}$ are linearly independent on \mathbb{C}^{n} and $m \leq n$ is isomorphic to such
a module by change of coordinates. Let $\alpha_{1}=x_{1}, \ldots, \alpha_{m}=x_{m}, m \leq n$. Then $M_{\alpha}^{\beta}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{x_{1} \ldots x_{m}} \alpha^{\beta}$, where $\alpha^{\beta}=x_{1}^{\beta_{1}} \ldots x_{m}^{\beta_{m}}, \beta_{1}, \ldots, \beta_{m} \in \mathbb{C}$. Recall that, in section 2 of this paper, we considered the case $m=n=1$. We are going to start this section by considering the case $m=n=2$ and then at last we will treat the general case.

5.1 The module M_{α}^{β}, where $n=m=2$

Clearly this is the module $M_{\alpha}^{\beta}=\mathbb{C}[x, y]_{x y} x^{\beta_{1}} y^{\beta_{2}}$. Then the multiplication map induces the following isomorphism, $\mathbb{C}[x, y]_{x y} x^{\beta_{1}} y^{\beta_{2}} \cong \mathbb{C}[x]_{x} x^{\beta_{1}} \widehat{\otimes} \mathbb{C}[y]_{y} y^{\beta_{2}}$.
Theorem 4. (i) If $\beta_{1}, \beta_{2} \in \mathbb{C} \backslash \mathbb{Z}$, then M_{α}^{β} is an irreducible A_{2}-module.
(ii) If $\beta_{1}, \beta_{2} \in \mathbb{Z}$, then $c\left(\mathbb{C}[x, y]_{x y}\right)=4$.
(iii) If $\beta_{1} \in \mathbb{Z}$ and $\beta_{2} \in \mathbb{C} \backslash \mathbb{Z}$, then $c\left(M_{\alpha}^{\beta}\right)=2$.

Proof. (i) By Proposition 1, if $\beta_{1}, \beta_{2} \in \mathbb{C} \backslash \mathbb{Z}$, then $\mathbb{C}[x]_{x} x^{\beta_{1}}$ is irreducible $\mathbb{C}<x, \partial_{x}>$-module and $\mathbb{C}[y]_{y} y^{\beta^{2}}$ is an irreducible $\mathbb{C}<y, \partial_{y}>$-module. Hence by Proposition 4, $\mathbb{C}[x]_{x} x^{\beta_{1}} \widehat{\otimes} \mathbb{C}[y]_{y} y^{\beta_{2}} \cong M_{\alpha}^{\beta}$ is irreducible A_{2}-module.
(ii) By Proposition 2, if $\beta_{1}, \beta_{2} \in \mathbb{Z}$, then $M_{\alpha}^{\beta} \cong \mathbb{C}[x, y]_{x y}$ and $\mathbb{C}[x, y]_{x y} \cong$ $\mathbb{C}[x]_{x} \widehat{\otimes} \mathbb{C}[y]_{y}$. By Proposition $1, c\left(\mathbb{C}[x]_{x}\right)=2$ and $c\left(\mathbb{C}[y]_{y}\right)=2$. Therefore $c\left(M_{\alpha}^{\beta}\right)=c\left(\mathbb{C}[x]_{x}\right) . c\left(\mathbb{C}[y]_{y}\right)=2(2)=4$, this proves (ii).
(iii) If $\beta_{1} \in \mathbb{Z}$ and $\beta_{2} \in \mathbb{C} \backslash \mathbb{Z}$, then $\mathbb{C}[x, y]_{x y} x^{\beta_{1}} y^{\beta_{2}} \cong \mathbb{C}[x]_{x} x^{\beta_{1}} \widehat{\otimes} \mathbb{C}[y]_{y} y^{\beta_{2}}$ and $\mathbb{C}[x]_{x} x^{\beta_{1}} \cong \mathbb{C}[x]_{x}$. So we have $M_{\alpha}^{\beta} \cong \mathbb{C}[x]_{x} \widehat{\otimes} \mathbb{C}[y]_{y} y^{\beta_{2}}$. But $c\left(\mathbb{C}[x]_{x}\right)=2$ and $\mathbb{C}[y]_{y} y^{\beta_{2}}$ is an irreducible $\mathbb{C}<y, \partial_{y}>$-module. Therefore $c\left(M_{\alpha}^{\beta}\right)=$ $c\left(\mathbb{C}[x]_{x}\right) c\left(\mathbb{C}[y]_{y} y^{\beta_{2}}\right)=2(1)=2$. This completes the proof.

5.2 The general case, $m \leq n$

The module is $M_{\alpha}^{\beta}=\mathbb{C}[x]_{x_{1} \ldots x_{m}} x_{1}^{\beta_{1}} \ldots x_{m}^{\beta_{m}}$. We are now going to consider the module in the following cases.

- $\beta_{i} \in \mathbb{C}-\mathbb{Z}$ for $i=1, \ldots, m$,
- $\beta_{i} \in \mathbb{Z}$ for $i=1, \ldots, m$ and
- some of them are integers and some are not.

The following Theorem gives all the results.
Theorem 5. Let $M_{\alpha}^{\beta}=\mathbb{C}[x]_{\alpha} \alpha^{\beta}, \alpha=x_{1} \ldots x_{m}$ and $m \leq n$. Then:
(i) If $\beta_{1}, \beta_{2}, \ldots, \beta_{m} \in \mathbb{C} \backslash \mathbb{Z}$, then M_{α}^{β} is irreducible.
(ii) If $\beta_{1}, \beta_{2}, \ldots, \beta_{m} \in \mathbb{Z}$, then $c\left(M_{\alpha}^{\beta}\right)=2^{m}$.
(iii) Suppose that k of the $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$ are integers and the others are elements of $\mathbb{C} \backslash \mathbb{Z}$, then $c\left(M_{\alpha}^{\beta}\right)=2^{k}$.

Proof. (i) If $\beta_{1}, \beta_{2}, \ldots, \beta_{m} \in \mathbb{C} \backslash \mathbb{Z}$, then $M_{\alpha}^{\beta}=\mathbb{C}[x]_{x_{1} \ldots x_{m}} x_{1}^{\beta_{1}} \ldots x_{m}^{\beta_{m}}$ and the multiplication map induces the following isomorphisms,

$$
\mathbb{C}[x]_{x_{1} \ldots x_{m}} x_{1}^{\beta_{1}} \ldots x_{m}^{\beta_{m}} \cong \mathbb{C}\left[x_{1}, \ldots, x_{m}\right]_{x_{1} \ldots x_{m}} x_{1}^{\beta_{1}} \ldots x_{m}^{\beta_{m}} \widehat{\otimes} \mathbb{C}\left[x_{m+1}, \ldots, x_{n}\right]
$$

and

$$
\mathbb{C}\left[x_{1}, \ldots, x_{m}\right]_{x_{1} \ldots x_{m}} x_{1}^{\beta_{1}} \ldots x_{m}^{\beta_{m}} \cong \mathbb{C}\left[x_{1}\right]_{x_{1}} x_{1}^{\beta_{1}} \widehat{\otimes} \ldots \widehat{\otimes} \mathbb{C}\left[x_{m}\right]_{x_{m}} x_{m}^{\beta_{m}}
$$

By Proposition $1, \mathbb{C}\left[x_{i}\right]_{x_{i}} x_{i}^{\beta_{i}}$ is an irreducible $\mathbb{C}<x_{i}, \partial_{i}>$-module. So, by Proposition $4, \mathbb{C}\left[x_{1}\right]_{x_{1}} x_{1}^{\beta_{1}} \widehat{\otimes} \ldots \widehat{\otimes} \mathbb{C}\left[x_{m}\right]_{x_{m}} x_{m}^{\beta_{m}}$ is an irreducible A_{m}-module. On the other hand, $\mathbb{C}\left[x_{m+1}, \ldots, x_{n}\right]$ is an irreducible $\mathbb{C}<x_{m+1}, \ldots, x_{n}, \partial_{m+1}, \ldots, \partial_{n}>$ module, [4, Chapter 5, Proposition 1.2]. Since

$$
M_{\alpha}^{\beta} \cong \mathbb{C}\left[x_{1}, \ldots, x_{m}\right]_{x_{1} \ldots x_{m}} x_{1}^{\beta_{1}} \ldots x_{m}^{\beta_{m}} \widehat{\otimes} \mathbb{C}\left[x_{m+1}, \ldots, x_{n}\right]
$$

by Proposition $4, M_{\alpha}^{\beta}$ is irreducible.
(ii) If $\beta_{1}, \ldots, \beta_{m} \in \mathbb{Z}$, then

$$
M_{\beta} \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{x_{1} \ldots x_{m}} \cong \mathbb{C}\left[x_{1}, \ldots, x_{m}\right]_{x_{1} \ldots x_{m}} \widehat{\otimes} \mathbb{C}\left[x_{m+1}, \ldots, x_{n}\right]
$$

But $\mathbb{C}\left[x_{1}, \ldots, x_{m}\right]_{x_{1} \ldots x_{m}} \cong \mathbb{C}\left[x_{1}\right]_{x_{1}} \widehat{\otimes} \ldots \widehat{\otimes} \mathbb{C}\left[x_{m}\right]_{x_{m}}$, with $c\left(\mathbb{C}\left[x_{i}\right]_{x_{i}}\right)=2$ and $\mathbb{C}\left[x_{m+1}, \ldots, x_{n}\right]$ is an irreducible $\mathbb{C}<x_{m+1}, \ldots, x_{n}, \partial_{m+1}, \ldots, \partial_{n}>$-module. Hence by Corollary 1, $c\left(M_{\alpha}^{\beta}\right)=\underbrace{2.2 \ldots 2}_{m-\text { copies }}=2^{m}$. This proves (ii).
(iii) Suppose some of the $\beta_{1}, \ldots, \beta_{m}$ are integers and the others are elements of $\mathbb{C} \backslash \mathbb{Z}$. WLOG assume that $\beta_{1}, \ldots, \beta_{k} \in \mathbb{Z}$ and $\beta_{k+1}, \ldots, \beta_{m} \in \mathbb{C} \backslash \mathbb{Z}$. Then

$$
M_{\alpha}^{\beta} \cong \mathbb{C}\left[x_{1}, \ldots, x_{k}\right]_{x_{1} \ldots x_{k}} x_{1}^{\beta_{1}} \ldots x_{k}^{\beta_{k}} \widehat{\otimes} \mathbb{C}\left[x_{k+1}, \ldots, x_{n}\right]_{x_{k+1} \ldots x_{m}} x_{k+1}^{\beta_{k+1}} \ldots x_{m}^{\beta_{m}}
$$

But

$$
\mathbb{C}\left[x_{1}, \ldots, x_{k}\right]_{x_{1} \ldots x_{k}} x_{1}^{\beta_{1}} \ldots x_{k}^{\beta_{k}} \cong \mathbb{C}\left[x_{1}, \ldots, x_{k}\right]_{x_{1} \ldots x_{k}}
$$

and $\mathbb{C}\left[x_{k+1}, \ldots, x_{n}\right]_{h} x_{k+1}^{\beta_{k+1}} \ldots x_{m}^{\beta_{m}}$ is an irreducible $\mathbb{C}<x_{k+1}, \ldots, x_{n}, \partial_{k+1}, \ldots, \partial_{n}>$ module. But in (ii) above we have shown that $c\left(\mathbb{C}\left[x_{1}, x_{2} \ldots, x_{k}\right]_{x_{1} \ldots x_{k}}\right)=$ 2^{k}, and hence

$$
c\left(M_{\alpha}^{\beta}\right)=c\left(\mathbb{C}\left[x_{1}, \ldots, x_{k}\right]_{x_{1} \ldots x_{k}}\right) c\left(\mathbb{C}\left[x_{k+1}, \ldots, x_{n}\right]_{x_{k+1} \ldots x_{m}} x_{k+1}^{\beta_{k+1}} \ldots x_{m}^{\beta_{m}}\right)=2^{k}(1)=2^{k}
$$

This completes the proof.

6 Blowup

6.1 Definition

The blowup of \mathbb{A}^{2} at the origin is the locus:

$$
\left.\tilde{\mathbb{A}^{2}}=\left\{(x, y),\left[W_{0}, W_{1}\right]\right): x W_{1}=y W_{0}\right\} \subset \mathbb{A}^{2} \times \mathbb{P}^{1}
$$

together with the map

$$
\pi: \tilde{\mathbb{A}^{2}} \longrightarrow \mathbb{A}^{2}
$$

which is the restriction of the projection of $\mathbb{A}^{2} \times \mathbb{P}^{1}$ onto the first factor. Let $U_{0} \subset \tilde{\mathbb{A}^{2}}$ be the open subset given by $W_{0} \neq 0$. In terms of Euclidian coordinates, $w_{1}=\frac{W_{1}}{W_{0}}$. We can write:

$$
\left.U_{0}=\left\{(x, y),\left(w_{1}\right)\right): x w_{1}=y\right\}=\left\{\left(x, x w_{1}, w_{1}\right)\right\} \subset \mathbb{A}^{2} \times \mathbb{A}^{1}
$$

From this description we see that $U_{0} \cong \mathbb{A}^{2}$ with coordinates x, w_{1}. The map $\pi: U_{0} \longrightarrow \mathbb{A}_{\tilde{A}}{ }^{2}$ is given by $\pi\left(x, w_{1}\right)=\left(x, x w_{1}\right)$.
Let $U_{1} \subset \tilde{\mathbb{A}^{2}}$ be the open subset given by $W_{1} \neq 0$. In terms of Euclidian coordinates $w_{0}=\frac{W_{0}}{W_{1}}$.
We can write: $\left.U_{1}=\left\{(x, y),\left(w_{0}\right)\right): x=y w_{0}\right\}=\left\{\left(y w_{0}, y, w_{0}\right)\right\} \subset \mathbb{A}^{2} \times \mathbb{A}^{1}$. From this description we see that $U_{1} \cong \mathbb{A}^{2}$ with coordinates y, w_{0}. The $\operatorname{map} \pi: U_{1} \longrightarrow \mathbb{A}^{2}$ is given by $\pi\left(y, w_{0}\right)=\left(y w_{0}, w_{0}\right)$. This implies that $\tilde{\mathbb{A}^{2}}=U_{0} \cup U_{1}$, so $\left\{U_{0}, U_{1}\right\}$ is an affine cover of $\tilde{\mathbb{A}^{2}}$ and also we can see that: $\pi_{\mid U_{0}}(x, y)=\pi_{1}(x, y)=(x, x y)$ and $\pi_{\mid U_{1}}(x, y)=\pi_{2}(x, y)=(x y, y)$.
For these facts, as well as generalization see $[9,10]$.

6.2 Describing the pullback of the module in the blowup

We are now going to describe the module $M_{\alpha}^{\beta}=\mathbb{C}[x, y]_{x y L_{3} \ldots L_{m}} \alpha^{\beta}$, where $\alpha^{\beta}=x^{\beta_{1}} y^{\beta_{2}} L_{3}^{\beta_{3}} \ldots L_{m}^{\beta_{m}}$ and $L_{i}=x+c_{i} y$ for $i=3, . ., m, c_{i} \neq c_{j}$ for $i \neq j$ pulled back to the affine blowup. Let us consider the polynomial map

$$
\pi_{2}: \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}
$$

defined by $\pi_{2}(z, w)=(z w, w)$. Then the homomorphism of rings,

$$
\pi_{2}^{\sharp}: \mathbb{C}[x, y] \rightarrow \mathbb{C}[z, w]
$$

defined by $\pi_{2}^{\sharp}(f)=f o \pi_{2}$ is called the comorphism of π_{2}. It gives an isomorphism $\mathbb{C}[x, y] \cong \mathbb{C}[z w, w]$. We have that $\pi_{2}^{\sharp}(\alpha)=\alpha^{\prime \prime}$, where $\alpha^{\prime \prime}=$ $w^{m} z\left(z+c_{3}\right) \ldots\left(z_{m}+c_{m}\right)$.
The inverse image of M_{α}^{β} by π_{2} is defined as a $\mathbb{C}[z, w]$-module by $\pi_{2}^{*}\left(M_{\alpha}^{\beta}\right)=$ $\mathbb{C}[z, w] \otimes_{\mathbb{C}[x, y]} M_{\alpha}^{\beta}$, which implies that

$$
\pi_{2}^{*}\left(M_{\alpha}^{\beta}\right) \cong \mathbb{C}[z, w] \otimes_{\mathbb{C}[x, y]} \mathbb{C}[x, y]_{\alpha} \alpha^{\beta} \cong \mathbb{C}[z, w]_{\alpha^{\prime \prime}} \alpha^{\beta}
$$

Using the comorphism formally on α^{β} gives

$$
\alpha^{\prime \prime \beta^{\prime \prime}}=\pi_{2}^{\sharp}\left(\alpha^{\beta}\right)=w^{\sum_{i=1}^{m} \beta_{i}} z^{\beta_{1}}\left(z+c_{3}\right)^{\beta_{3}} \ldots\left(z+c_{m}\right)^{\beta_{m}}
$$

and hence one would expect

$$
\pi_{2}^{*}\left(M_{\alpha}^{\beta}\right) \cong \mathbb{C}[z, w]_{\tilde{\alpha}} \alpha^{\prime \prime \beta^{\prime \prime}}
$$

as A_{2}-modules. This is indeed the case. The standard A_{2}-module structure on the pullback is defined by using the chain rule:

$$
\partial_{z} \mapsto y \partial_{x}
$$

and

$$
\partial_{w} \mapsto \frac{x}{y} \partial_{x}+\partial_{y}
$$

to induce actions of $\partial_{z}, \partial_{w}$ on α^{β} and then extending. Hence it suffices to see that $\partial_{z} \alpha^{\beta}=\partial_{z} \alpha^{\prime \prime \beta^{\prime \prime}}$ and $\partial_{w} \alpha^{\beta}=\partial_{w} \alpha^{\prime \prime \beta^{\prime \prime}}$ which is an easy exercise. The multiplication map gives the isomorphism,

$$
\mathbb{C}[z, w]_{\alpha^{\prime \prime}} \alpha^{\prime \prime \beta^{\prime \prime}} \cong \mathbb{C}[w]_{w} w^{\beta_{2}^{\prime}} \widehat{\otimes} \mathbb{C}[z]_{z \prod_{i=3}^{m}\left(z+c_{i}\right)} \tilde{\alpha}^{\tilde{\beta}}
$$

where $\tilde{\alpha}^{\tilde{\beta}}=z^{\beta_{1}}\left(z+c_{3}\right)^{\beta_{3}} \ldots\left(z+c_{m}\right)^{\beta_{m}}$ and $\beta_{2}^{\prime}=\sum_{i=1}^{m} \beta_{i}$. This is an external product, and so we can obtain information on the number of its decomposition factors by the methods of section 2 .

6.3 Composition series of the A_{1}-module $\mathbb{C}[z]_{\tilde{\alpha}} \tilde{\alpha}^{\tilde{\beta}}$

Let us consider the number of decomposition factors of $\mathbb{C}[w]_{w} w^{\beta_{1}^{\prime}}$ as $\mathbb{C}<$ $w, \partial_{w}>$-module and $\mathbb{C}[z]_{z} \prod_{i=3}^{m}\left(z+c_{i}\right) \alpha^{\prime \beta^{\prime}}$ as $\mathbb{C}<z, \partial_{z}>$-module separately. We know, by Proposition 1, that if $\beta_{2}^{\prime} \in \mathbb{C} \backslash \mathbb{Z}$, then $c\left(\mathbb{C}[w]_{w} w^{\beta_{2}^{\prime}}\right)=1$ and if $\beta_{2}^{\prime} \in \mathbb{Z} c\left(\mathbb{C}[w]_{w} w^{\beta_{2}^{\prime}}\right)=2$. In this subsection, we will prove that the A_{1}-module $\mathbb{C}[z] \tilde{\alpha} \tilde{\alpha}^{\tilde{\beta}}$ is irreducible, if $\beta_{1}, \beta_{3}, \ldots, \beta_{m} \in \mathbb{C} \backslash \mathbb{Z}$. We have the following proposition.
Proposition 11. If $\beta_{1}, \beta_{3}, \ldots, \beta_{m} \in \mathbb{C} \backslash \mathbb{Z}$, then the A_{1}-module $\mathbb{C}[z] \tilde{\alpha} \tilde{\alpha}^{\tilde{B}}$ is irreducible.

Proof. We are going to prove the Proposition in two steps.

Step I

In this step we are going to show that $\mathbb{C}[x]_{\tilde{\alpha}} \tilde{\alpha}^{\tilde{\beta}}=A_{1}\left(\tilde{\alpha}^{\tilde{\beta}}\right)$.
Let $P \in \mathbb{C}[z]]_{\tilde{\alpha}} \tilde{\alpha}^{\tilde{\beta}}$. Then $P=\frac{F}{\left(z \prod_{i=3}^{m}\left(z+c_{i}\right)\right)^{r}} \tilde{\alpha}^{\tilde{\beta}}$, for $r \geq 0$ and $F \in \mathbb{C}[z]$. But $\frac{1}{\left(z \prod_{i=3}^{m}\left(z+c_{i}\right)\right)^{r}}$ can be written as $\frac{q}{z^{r}} \tilde{\alpha}^{\tilde{\beta}}+\sum_{i=3}^{m} \frac{q_{i}}{\left(z+c_{i}\right)^{r}} \tilde{\alpha^{3}} \tilde{\beta}$, for some $q, q_{i} \in$ $\mathbb{C}\left(c_{3}, \ldots, c_{m}\right), i=3, \ldots, m$ and hence

$$
P=\frac{F q}{z^{r}} \tilde{\alpha}^{\tilde{\beta}}+\sum_{i=3}^{m} \frac{F q_{i}}{\left(z+c_{i}\right)^{r}} \tilde{\alpha}^{\tilde{\beta}} .
$$

So it suffices to show that $\frac{1}{z^{r}}, \frac{1}{\left(z+c_{i}\right)^{s}} \in A_{1}\left(\tilde{\alpha}^{\tilde{\beta}}\right)$, for $r, s \geq 1$ and some $i \in$ $\{3, \ldots, m\}$. By applying the argument successively on $\beta^{\prime \prime}=\tilde{\beta}-(k, 0, \ldots, 0)$
and $\beta^{\prime \prime}=\tilde{\beta}-(0, \ldots s, \ldots, 0)$ and using induction it suffices to prove that $\frac{1}{z} \tilde{\alpha}^{\tilde{\beta}} \in A_{1}\left(\tilde{\alpha}^{\tilde{\beta}}\right)$ and $\frac{1}{z+c_{i}} \tilde{\alpha}^{\tilde{\beta}} \in A_{1}\left(\tilde{\alpha}^{\tilde{\beta}}\right)$. This can be done as follows.
Let

$$
\tilde{D}=\left[\prod_{i=3}^{m}\left(z+c_{i}\right) \partial_{z}-\sum_{i=3}^{m} \beta_{i} \prod_{j=3, j \neq i}^{m}\left(z+c_{j}\right)\right] .
$$

Clearly $\tilde{D} \in A_{1}$ and $\tilde{D}\left(\tilde{\alpha}^{\tilde{\beta}}\right)=\frac{\beta_{1} \prod_{i=3}^{m}\left(z+c_{i}\right)}{x} \tilde{\alpha}^{\tilde{\beta}}$. But

$$
\frac{\beta_{1} \prod_{i=3}^{m}\left(z+c_{i}\right)}{z} \tilde{\alpha}^{\tilde{\beta}}=P_{1} \tilde{\alpha}^{\tilde{\beta}}+\frac{C}{z} \tilde{\alpha}^{\tilde{\beta}}
$$

for some $P_{1} \in \mathbb{C}[z]$ and $C=\beta_{1} \prod_{3}^{m} c_{i}$. Since $C \neq 0$, we have that

$$
\frac{1}{C}\left[\left(\tilde{D}-P_{1}\right)\left(\tilde{\alpha}^{\tilde{\beta}}\right)=\frac{1}{z} \tilde{\alpha}^{\tilde{\beta}} .\right.
$$

Hence $\frac{1}{z} \tilde{\alpha}^{\tilde{\beta}} \in A_{1}\left(\tilde{\alpha}^{\tilde{\beta}}\right)$.
Let

$$
D^{\prime \prime}=\left[\prod_{i=3}^{m}\left(z+c_{i}\right) \partial_{z}-\beta_{1} z \prod_{j=4}^{m}\left(z+c_{j}\right)-\sum_{i=4}^{m} \beta_{i} z \prod_{j=4, j \neq i}^{m}\left(z+c_{j}\right)\right] .
$$

Clearly $D^{\prime \prime} \in A_{1}$ and

$$
D^{\prime \prime}\left(\tilde{\alpha}^{\tilde{\beta}}\right)=\frac{\beta_{3} z \prod_{i=4}^{m}\left(z+c_{i}\right)}{z+c_{3}} \tilde{\alpha}^{\tilde{\beta}} .
$$

But

$$
\frac{\beta_{3} z \prod_{i=4}^{m}\left(z+c_{i}\right)}{z+c_{3}} \tilde{\alpha}^{\tilde{\beta}}=R \tilde{\alpha}^{\tilde{\beta}}+\frac{C^{\prime}}{z+c_{3}} \tilde{\alpha}^{\tilde{\beta}}
$$

for some $R \in \mathbb{C}[x]$ and for some $C^{\prime}, 0 \neq C^{\prime} \in \mathbb{C}\left[c_{3}, \ldots, c_{k}\right]$. Therefore

$$
\frac{1}{C^{\prime}}\left(D^{\prime \prime}-R\right)\left(\tilde{\alpha}^{\tilde{\beta}}\right)=\frac{1}{z+c_{3}} \tilde{\alpha}^{\tilde{\beta}}
$$

and hence $\frac{1}{z+c_{3}} \tilde{\alpha}^{\tilde{\beta}} \in A_{1}\left(\tilde{\alpha}^{\tilde{\beta}}\right)$. Since $z+c_{3}$ was arbitrary, $\frac{1}{\left(z+c_{i}\right)} \tilde{\alpha}^{\tilde{\beta}} \in A_{1}\left(\tilde{\alpha}^{\tilde{\beta}}\right)$, for some $i=3, \ldots, m$.
Therefore, $M_{\tilde{\alpha}}^{\tilde{\beta}}=A_{1}\left(\tilde{\alpha}^{\tilde{\beta}}\right)$. This completes the proof of Part I.

Step II

In this step we are going to prove that $A_{1}\left(\tilde{\alpha}^{\tilde{\beta}}\right)$ is irreducible. It suffices to show that $A_{1}\left(\tilde{\alpha}^{N} \tilde{\alpha}^{\tilde{\beta}}\right)=A_{1}\left(\tilde{\alpha}^{\tilde{\beta}}\right)$ for some large N . But from above, $M_{\tilde{\alpha}}^{\tilde{\beta}^{\prime \prime}}=$ $A_{1}\left(\alpha^{\tilde{\beta}^{\prime \prime}}\right), \tilde{\beta}^{\prime \prime}=\tilde{\beta}+N^{\prime \prime}, N^{\prime \prime} \in \mathbb{N}^{m-1}$ and by Proposition $2, M_{\alpha}^{\beta^{\prime}} \cong M_{\tilde{\alpha}}^{\tilde{\beta}^{\prime \prime}}$. Therefore $A_{1}\left(\tilde{\alpha}^{\tilde{\beta}}\right)=A_{1}\left(\tilde{\alpha}^{\tilde{\beta}^{\prime \prime}}\right)$ and hence $A_{1}\left(\tilde{\alpha}^{\tilde{\beta}}\right)$ is irreducible. This concludes the proof.

6.4 Composition series of the A_{2}-module $\mathbb{C}[z, w]_{\alpha^{\prime \prime}} \alpha^{\prime \prime \beta^{\prime \prime}}$

In this subsection we are going to prove the following Theorem.
Theorem 6. Let $M_{\alpha^{\prime \prime}}^{\beta^{\prime \prime}}=\mathbb{C}[z, w]_{\alpha^{\prime \prime}} \alpha^{\prime \prime \beta^{\prime \prime}}$, where $\beta_{1}, \beta_{2}^{\prime} \ldots, \beta_{m} \in \mathbb{C} \backslash \mathbb{Z}, \alpha^{\prime \prime}=$ $z w\left(z+c_{3}\right) \ldots\left(z+c_{m}\right)$ and $\alpha^{\prime \prime \beta^{\prime \prime}}=z^{\beta_{1}} w^{\beta_{2}^{\prime}}\left(z+c_{3}\right)^{\beta_{3}} \ldots\left(z+c_{m}\right)^{\beta_{m}}$ such that $c_{i} \neq c_{j}$ for $i \neq j$.
(i) If $\beta_{2}^{\prime} \in \mathbb{C} \backslash \mathbb{Z}$, then $M_{\alpha^{\prime \prime}}^{\beta^{\prime \prime}}$ is irreducible.
(ii) If $\beta_{2}^{\prime} \in \mathbb{Z}$, then $c\left(M_{\alpha^{\prime \prime}}^{\beta^{\prime \prime \prime}}\right)=2$.

Proof. (i) From the previous section, we know that,

$$
\mathbb{C}[z, z]_{\alpha^{\prime \prime}} \alpha^{\prime \prime \beta^{\prime \prime}}=\mathbb{C}[z]_{\tilde{\alpha}} \tilde{\alpha}^{\tilde{\beta}} \widehat{\otimes} \mathbb{C}[w]_{w} w^{\beta_{2}^{\prime}}
$$

and by Proposition 11, $\mathbb{C}[x] \tilde{\alpha} \tilde{\alpha}^{\tilde{\beta}}$ is irreducible $\mathbb{C}<z, \partial_{z}>$-module, where $\tilde{\alpha}=z \prod_{i=3}^{m}\left(z+c_{i}\right)$ and $\tilde{\beta}=\left(\beta_{1}, \beta_{3}, \ldots, \beta_{m}\right)$ and also by Proposition 1, $\mathbb{C}[w]_{w} w^{\beta_{2}^{\prime}}$ is irreducible $\mathbb{C}<w, \partial_{w}>$-module. Hence by Proposition 4, $M_{\alpha^{\prime \prime}}^{\beta^{\prime \prime}}$ is irreducible A_{2}-module.
(ii) By Proposition 11, $\mathbb{C}[z] \tilde{\alpha} \tilde{\alpha}^{\tilde{\beta}}$ is irreducible $\mathbb{C}<z, \partial_{z}>$-module and by Proposition 1, $c\left(\mathbb{C}[w]_{w} w^{\beta_{2}^{\prime}}\right)=2$. Therefore

$$
c\left(M_{\alpha^{\prime \prime}}^{\beta^{\prime \prime}}\right)=c\left(\mathbb{C}[z]_{\tilde{\alpha}} \tilde{\alpha}^{\tilde{\beta}}\right) c\left(\mathbb{C}[w]_{w} w^{\beta_{2}^{\prime}}\right)=2 .
$$

This completes the proof.

7 The A_{2}-module M_{α}^{β} in the plane case where all $\beta_{i} \in \mathbb{C} \backslash \mathbb{Z}$

In this section, we restrict ourselves to $\mathrm{n}=2$, that is the plane case, and we assume that $\beta_{i} \in \mathbb{C} \backslash \mathbb{Z}, \mathrm{i}=1, \ldots, \mathrm{~m}$. Then $c\left(M_{\alpha}^{\beta}\right)$ is 1 or $m-1$ according to whether $|\beta|=\sum_{i=1}^{m} \beta_{i} \in \mathbb{Z}$ or not. Our module in this case is

$$
M_{\alpha}^{\beta}=\mathbb{C}[x, y]_{\alpha} \alpha^{\beta},
$$

where $\alpha=x y \prod_{i=3}^{m}\left(x+c_{i} y\right), \alpha^{\beta}=x^{\beta_{1}} y^{\beta_{2}}\left(x+c_{3} y\right)^{\beta_{3}} \ldots\left(x+c_{m} y\right)^{\beta_{m}}$ and $c_{i} \neq c_{j}$ for $i \neq j$. We generalize this result in the following theorem.

Theorem 7. Asuume that $\beta_{i} \in \mathbb{C} \backslash \mathbb{Z}, i=1, \ldots, m$.
(i) If $|\beta| \in \mathbb{C} \backslash \mathbb{Z}$, then $c\left(M_{\alpha}^{\beta}\right)=1$.
(ii) If $|\beta| \in \mathbb{Z}$, then $c\left(M_{\alpha}^{\beta}\right)=m-1$.

The proof will be done in several steps and we start by proving (i).

7.1 Proof of the first part of Theorem 7

In this subsection we will prove (i) and this will be done in four steps. In steps I-III we will prove, under the given assumption, that α^{β} generates the module M_{α}^{β} and using this in step IV we will prove that M_{α}^{β} is irreducible. Let $Q \in M_{\alpha}^{\beta}$. Then

$$
Q=\frac{F}{\left(x y \prod_{i=3}^{m}\left(x+c_{i} y\right)\right)^{r}} \alpha^{\beta},
$$

for $F \in \mathbb{C}[x, y]$ and $r \geq 0$. Since by Theorem 3

$$
\frac{F}{\left(x y \prod_{i=3}^{m}\left(x+c_{i} y\right)\right)^{r}} \alpha^{\beta}
$$

can be written as a linear combination of

$$
\frac{F}{x^{s_{1}} y^{s_{2}}} \alpha^{\beta}, \frac{F}{x^{n_{1}^{3}}\left(x+c_{3} y\right)^{n_{2}^{3}}} \alpha^{\beta}, \ldots, \frac{F}{x_{1}^{n_{1}^{m}}\left(x+c_{m} y\right)^{n_{2}^{m}}} \alpha^{\beta}
$$

where $s_{1}+s_{2}=n_{1}^{3}+n_{2}^{3}=\ldots=n_{1}^{m}+n_{2}^{m}=m r$, it suffices to show that,

$$
\frac{F}{x^{s_{1}} y^{s_{2}}} \alpha^{\beta}, \frac{F}{x^{n_{1}^{3}}\left(x+c_{3} y\right)^{n_{2}^{3}}} \alpha^{\beta}, \ldots, \frac{F}{x^{n_{1}^{m}}\left(x+c_{m} y\right)^{n_{2}^{m}}} \alpha^{\beta}
$$

are all elements of $A_{2}\left(\alpha^{\beta}\right)$. Let us proceed step by step.

Step I

In this step we are going to show that $\frac{1}{x^{k}} \alpha^{\beta} \in A_{2}\left(\alpha^{\beta}\right)$ for $k \geq 1$. By applying the argument successively on $\tilde{\beta}=\beta-(k, 0, \ldots, 0)$ and using induction it suffices to prove that $\frac{1}{x} \alpha^{\beta} \in A_{2}\left(\alpha^{\beta}\right)$. Let

$$
D_{1}=\frac{1}{\beta_{1}}\left[\prod_{i=3}^{m}\left(x+c_{i} y\right) \partial_{x}-\sum_{j=3}^{m} c_{j} \beta_{j} \prod_{i=3, i \neq j}^{m}\left(x+c_{i} y\right)\right] .
$$

Clearly $D_{1} \in A_{2}$ and $D_{1}\left(\alpha^{\beta}\right)=\frac{\prod_{i=3}^{m}\left(x+c_{i} y\right)}{x} \alpha^{\beta}$. But

$$
\frac{\prod_{i=3}^{m}\left(x+c_{i} y\right)}{x} \alpha^{\beta}=\frac{d_{1} y^{m-2}}{x} \alpha^{\beta}+H \alpha^{\beta},
$$

for some $H \in \mathbb{C}[x, y]$ and $d_{1}=\prod_{i=3}^{m} c_{i}$. Then we have

$$
\frac{1}{d_{1}}\left(D_{1}-H\right) \alpha^{\beta}=\frac{y^{m-2}}{x} \alpha^{\beta} .
$$

On the other hand

$$
\partial_{y}\left(\frac{y^{m-2}}{x} \alpha^{\beta}\right)=\frac{\left(\beta_{2}+m-2\right) y^{m-3}}{x} \alpha^{\beta}+\sum_{i=3}^{m} \frac{c_{i} \beta_{i} y^{m-2}}{x\left(x+c_{i} y\right)} \alpha^{\beta}
$$

and

$$
y^{m-3} \partial_{x}\left(\alpha^{\beta}\right)=\frac{\beta_{1} y^{m-3}}{x} \alpha^{\beta}+\sum_{i=3}^{m-2} \frac{\beta_{i} y^{m-3}}{x+c_{i} y} \alpha^{\beta} .
$$

This implies

$$
\left(\partial_{y} \frac{1}{d_{1}}\left(D_{1}-H\right)+y^{m-3} \partial_{x}\right)\left(\alpha^{\beta}\right)=\frac{(|\beta|+m-2) y^{m-3}}{x} \alpha^{\beta} .
$$

Iterating we find that

$$
D_{2}\left(\alpha^{\beta}\right)=\frac{\prod_{i=1}^{m-2}(|\beta|+i)}{x} \alpha^{\beta}
$$

for some $D_{2} \in A_{2}$. Since $|\beta| \in \mathbb{C} \backslash \mathbb{Z}$, we have $\frac{1}{x} \alpha^{\beta} \in A_{2}\left(\alpha^{\beta}\right)$.

Step II

In this step we are going to show that $\frac{1}{x^{k} y^{t}} \alpha^{\beta} \in A_{2}\left(\alpha^{\beta}\right)$ for $k, t \geq 1$. By applying the argument successively on $\tilde{\beta}=\beta-(0, t, \ldots, 0)$ and using induction it suffices to prove that $\frac{1}{x^{k} y} \alpha^{\beta} \in A_{2}\left(\alpha^{\beta}\right)$. From step I we know that $\frac{1}{x^{k}} \alpha^{\beta} \in$ $A_{2}\left(\alpha^{\beta}\right)$. Let

$$
D_{3}=\frac{1}{\beta_{2}}\left(\prod_{i=3}^{m}\left(x+c_{i} y\right) \partial_{y}-\sum_{j=3}^{m} c_{j} \beta_{j} \prod_{i=3, i \neq j}\left(x+c_{i} y\right)\right)
$$

Clearly $D_{3} \in A_{2}$ and

$$
D_{3}\left(\frac{1}{x^{k}} \alpha^{\beta}\right)=\frac{\prod_{i=3}^{m}\left(x+c_{i} y\right)}{x^{k} y} \alpha^{\beta} .
$$

But

$$
\frac{\prod_{i=3}^{m}\left(x+c_{i} y\right)}{x^{k} y} \alpha^{\beta}=\frac{x^{m-2}}{x^{k} y} \alpha^{\beta}+\frac{L}{x^{k}} \alpha^{\beta}
$$

for some $L \in \mathbb{C}[x, y]$. This implies that

$$
\left(D_{3}-L\right)\left(\frac{1}{x^{k}} \alpha^{\beta}\right)=\frac{x^{m-2}}{x^{k} y} \alpha^{\beta} .
$$

On the other hand

$$
\partial_{x}\left(\frac{x^{m-2}}{x^{k} y} \alpha^{\beta}\right)=\frac{\left(\beta_{1}+m-2-k\right) x^{m-3}}{x^{k} y} \alpha^{\beta}+\sum_{i=3}^{m} \frac{\beta_{i} x^{m-2}}{x^{k} y\left(x+c_{i} y\right)} \alpha^{\beta}
$$

and

$$
x^{m-3} \partial_{y}\left(\frac{1}{x^{k}} \alpha^{\beta}\right)=\frac{\beta_{2} x^{m-3}}{x^{k} y} \alpha^{\beta}+\sum_{i=3}^{m} \frac{c_{i} \beta_{i} x^{m-3}}{x^{k}\left(x+c_{i} y\right)} \alpha^{\beta} .
$$

This implies that

$$
\left(\partial_{x} D_{4}+x^{m-3} \partial_{y}\right)\left(\frac{1}{x^{k}} \alpha^{\beta}\right)=\frac{(|\beta|+m-2-k) x^{m-3}}{x^{k} y} \alpha^{\beta}
$$

where $D_{4}=D_{3}-L$. Iterating we find that,

$$
D_{5}\left(\alpha^{\beta}\right)=\frac{\prod_{i=1}^{m-2}(|\beta|-i-k)}{x^{k} y} \alpha^{\beta}
$$

for some $D_{5} \in A_{2}$. Since $|\beta| \in \mathbb{C} \backslash \mathbb{Z}$, we have $\frac{1}{x^{k} y} \alpha^{\beta} \in A_{2}\left(\alpha^{\beta}\right)$.

Step III

In this step we are going to show that $\frac{1}{x^{k}\left(x+c_{i} y\right)^{t}} \alpha^{\beta} \in A_{2}\left(\alpha^{\beta}\right)$ for $k, t \geq 1$. By using the coordinate function, $\tilde{x}=x$ and $\tilde{y}=x+c_{i} y$ and step II, we have

$$
\frac{1}{\tilde{x}^{k} \tilde{y}^{t}} \alpha^{\beta}=\frac{1}{x^{k}\left(x+c_{i} y\right)^{t}} \alpha^{\beta} \in A_{2}\left(\alpha^{\beta}\right)
$$

By the description of M_{α}^{β} recalled at the begning of the proof, we have $M_{\alpha}^{\beta}=A_{2}\left(\alpha^{\beta}\right)$. Then it remains to show that $A_{2}\left(\alpha^{\beta}\right)$ and hence M_{α}^{β} is irreducible to conclude part (i) and we will prove that in the next step.

Step IV

In this step we are going to prove that $A_{2}\left(\alpha^{\beta}\right)$ and hence M_{α}^{β} is irreducible. But, it suffices to show that $M_{\alpha}^{\beta}=A_{2}\left(\alpha^{\beta+N}\right)$ for any $N \in \mathbb{N}^{m}$ (See Lemma 12). By step III we know that $M_{\alpha}^{\beta}=A_{2}\left(\alpha^{\beta}\right)$, if $\beta_{i} \in \mathbb{C} \backslash \mathbb{Z}$ and $|\beta| \in \mathbb{C} \backslash \mathbb{Z}$. Cleary, these conditions are satisfied for $\beta+N$, for any for $N \in \mathbb{N}^{m}$, as well. Hence $M_{\alpha}^{\beta+N}=A_{2}\left(\alpha^{\beta+N}\right)$. By Proposition 2 , $M_{\alpha}^{\beta} \cong M_{\alpha}^{\beta+N}$, and hence $M_{\alpha}^{\beta}=A_{2}\left(\alpha^{\beta+N}\right)$. Therefore M_{α}^{β} is irreducible. This completes the proof of (i) of Theorem 7.
It remains to prove (ii) of Theorem 7, but before that let us find the annihilator of α^{β} in the next section which we will use it in the prove of part (ii).

7.2 The annihilator of α^{β}

In this subsection we are going to find the annihilator of α^{β} in the Weyl algebra A_{2}.
Let

$$
P=x \partial_{x}+y \partial_{y}-\left(\sum_{i=1}^{m} \beta_{i}\right)
$$

and

$$
Q=y \prod_{i=3}^{m} L_{i} \partial_{y}-\beta_{2} \prod_{i=3}^{m} L_{i}-\sum_{j=3}^{m} \beta_{i} y \prod_{i=3, i \neq j}^{m} L_{i}
$$

where $L_{i}=x+c_{i} y, \mathrm{i}=3, \ldots, \mathrm{~m}$ and $c_{i} \neq c_{j}$ for $i \neq j$. We use the following graded reverse lexicographic order, letting $y>x>\partial_{x}>\partial_{y}$,

$$
y^{i} x^{j} \partial_{x}^{k} \partial_{y}^{l}>y^{i^{\prime}} x^{j^{\prime}} \partial_{x}^{k^{\prime}} \partial_{y}^{l^{\prime}}
$$

if

$$
i+j+k+l>i^{\prime}+j^{\prime}+k^{\prime}+l^{\prime}
$$

or

$$
i+j+k+l=i^{\prime}+j^{\prime}+k^{\prime}+l^{\prime}
$$

and the last non-zero coordinate of $(i, j, k, l)-\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)$ is negative. The most important point for us with this term order is that there is a normal form algorithm, see [12, Chapter 1] and [7, Chapter 2], with respect to the set $\{P, Q\}$. It inputs an element F of the Weyl algebra and outputs an element R such that there exist S and T in the Weyl algebra with $F=S P+T Q+R$ where the initial term of R is not divisible by initial terms of P and Q. Since the initial term of P is $\underline{x \partial_{x}}$ and the initial term of Q is $y^{m-1} \partial_{y}$, it follows that

$$
A_{2}=A_{2} P+A_{2} Q+N
$$

where

$$
N=\left(\oplus_{(i, j, k, l) \in M}\right) \mathbb{C} x^{i} y^{j} \partial_{x}^{k} \partial_{y}^{l}
$$

and $M \subset \mathbb{Z}_{\geq 0}^{4}$, is the set

$$
M=\{(i, j, k, l): i k=0 \& l \neq 0 \Longrightarrow j \leq m-2\} .
$$

Hence

$$
A_{2}=A_{2} P+A_{2} Q+\left(\oplus_{i \geq 1} R_{i}\left(y, \partial_{y}\right) \partial_{x}^{i}\right)+W,
$$

where $W=\left\{\sum_{i=0}^{m-2} y^{i} S_{i}\left(x, \partial_{y}\right): S_{i}\left(x, \partial_{y}\right) \in \mathbb{C}\left[x, \partial_{y}\right]\right\}$.
We have the following proposition about the annihilator of α^{β}.
Proposition 12. Let $\operatorname{Ann}_{\mathrm{A}_{2}}\left(\alpha^{\beta}\right)=\left\{\mathrm{D} \in \mathrm{A}_{2}: \mathrm{D}\left(\alpha^{\beta}\right)=0\right\}$. Then

$$
\operatorname{Ann}_{\mathrm{A}_{2}}\left(\alpha^{\beta}\right)=\mathrm{A}_{2} \mathrm{P}+\mathrm{A}_{2} \mathrm{Q}
$$

Proof. Since $P\left(\alpha^{\beta}\right)=0$ and $Q\left(\alpha^{\beta}\right)=0$, then $A_{2} P+A_{2} Q \subset \operatorname{Ann}_{\mathrm{A}_{2}}\left(\alpha^{\beta}\right)$. Let $D \in \operatorname{Ann}_{\mathrm{A}_{2}}\left(\alpha^{\beta}\right)$. We want to show that $D \in A_{2} P+A_{2} Q$. We know that $D=H+T+U$, where $H \in A_{2} P+A_{2} Q, T=\sum_{i \geq 1} R_{i}\left(y, \partial_{y}\right) \partial_{x}^{i}$ and $U=\sum_{j=0}^{m-2} y^{j} S_{j}\left(x, \partial_{y}\right)$. Then $D\left(\alpha^{\beta}\right)=0$ implies $T\left(\alpha^{\beta}\right)+U\left(\alpha^{\beta}\right)=0$. Let us now consider poles at $x=0$. If $m=r(x, y) \alpha^{\beta} \in M_{\alpha}^{\beta}$, define $O_{x}(m)$ to be the greatest $-k$ such that

$$
m=\left(r_{-k}(x, y) x^{-k}+r_{-k+1} x^{-k+1}+\ldots+r_{s}(x, y) x^{s}\right) \alpha^{\beta}
$$

where $r_{i}(x, y), i=-k,-k+1, \ldots s$ written as a reduced quotient of products of irreducible polynomials containing no x. Then note that if $R\left(y, \partial_{y}\right)$ is a polynomial in just y and ∂_{y},

$$
O_{x}\left(R\left(y, \partial_{y}\right) m\right) \geq O_{x}(m)
$$

Returning to D , we know that

$$
\begin{equation*}
\sum_{i=1}^{k} R_{i}\left(y, \partial_{y}\right) \partial_{x}^{i}\left(\alpha^{\beta}\right)+U\left(\alpha^{\beta}\right)=0 \tag{7.1}
\end{equation*}
$$

By the above agruement $O_{x}\left(U\left(\alpha^{\beta}\right)\right) \geq 0$. On the other hand

$$
\partial_{x}^{i}\left(\alpha^{\beta}\right)=\frac{\beta_{1}\left(\beta_{1}-1\right) \ldots\left(\beta_{1}-(i-1)\right)}{x^{i}}\left(\alpha^{\beta}\right)+r
$$

where $O_{x}(r)>-i$ and hence $O_{x}\left(\partial_{x}^{i}\left(\alpha^{\beta}\right)\right)=-i$ by the assumption that $\beta_{1} \notin \mathbb{Z}$. Consider the possible poles in (7.1) and assume that $R_{k}\left(y, \partial_{y}\right) \neq 0$ and $R_{k}\left(y, \partial_{y}\right) \alpha^{\beta} \neq 0$. Then

$$
R_{k}\left(y, \partial_{y}\right) \partial_{x}^{k}\left(\alpha^{\beta}\right)=\left(\frac{\beta_{1}\left(\beta_{1}-1\right) \ldots\left(\beta_{1}-(k-1)\right) R_{k}\left(y, \partial_{y}\right)}{x^{k}}+r\right) \alpha^{\beta}
$$

where $O_{x}\left(r \alpha^{\beta}\right)>-k$. For all other terms in (7.1) the contribution to the poles at $x=0$ will be of order greater than $-k$. This is a contradiction. So $R_{k}\left(y, \partial_{y}\right) \alpha^{\beta}=0$. But $R_{k}\left(y, \partial_{y}\right) \in \mathbb{C}<x, y, \partial_{y}>$ and hence we made the desired reduction. In the next step we will prove that this implies $R_{k}\left(y, \partial_{y}\right)=0$, which will be a contradiction to the assumption than $R_{k}\left(y, \partial_{y}\right) \neq 0$. Actually we will prove more generally that if $U \in \mathbb{C}<x, y, \partial_{y}>$ and $U\left(\alpha^{\beta}\right)=0$, then $U=0$. So now we can assume that $U\left(\alpha^{\beta}\right)=0$ and argue in the same way by considering the poles at the other lines. Write

$$
U=\sum_{i=0}^{k} P_{i}(x, y) \partial_{y}^{i}
$$

where $P_{k} \neq 0$. Consider $U\left(\alpha^{\beta}\right)$ and the order of its pole at L , where L is one of y, L_{3}, \ldots, L_{m}. Since $O_{L}\left(P_{i}(x, y) \partial_{y}^{i} \alpha^{\beta}\right)=O_{L}\left(P_{i}(x, y) \alpha^{\beta}\right)-i$, there must be two indices i_{1} and i_{2} such that

$$
O_{L}\left(P_{i_{1}}(x, y) \alpha^{\beta}\right)-i_{1}=O_{L}\left(P_{i_{2}}(x, y) \alpha^{\beta}\right)-i_{2} \leq O_{L}\left(P_{j}(x, y) \alpha^{\beta}\right)-j
$$

for all $0 \leq j \leq k$. In particular there is $i \neq k$, such that $O_{L}\left(P_{k}\right)-k \geq$ $O_{L}\left(P_{j}\right)-i$ and hence $O_{L}\left(P_{k}\right) \geq O_{L}\left(P_{j}\right)+k-i \geq 1$. Repeating this for all L implies that $y L_{3} \ldots L_{m}$ divides P_{k}. This contradicts that $\operatorname{deg}_{\mathrm{y}} \mathrm{P}_{\mathrm{k}} \leq \mathrm{m}-2$. Hence $\mathrm{U}=0$. This completes.

7.3 Proof of the second part of Theorem 7

7.3.1 Preliminaries

For the proof of (ii) of Theorem 7 we need the following Lemmas.
Lemma 9. Let $\tilde{\beta}=\beta+N$, where $N \in \mathbb{Z}^{m}$ and $\alpha^{\tilde{\beta}}=x^{\tilde{\beta_{1}}} y^{\tilde{\beta_{2}}} \ldots L_{m}^{\tilde{\beta_{m}}} \in M_{\alpha}^{\beta}$. Let $|\tilde{\beta}|=\sum_{i=1}^{m} \tilde{\beta}_{i}$. Then

$$
A_{2} x+\mathrm{Ann}_{\mathrm{A}_{2}} \alpha^{\tilde{\beta}}=\mathrm{A}_{2} \mathrm{x}+\mathrm{A}_{2}\left(\mathrm{y} \partial_{\mathrm{y}}-(|\tilde{\beta}|+1)\right)+\mathrm{A}_{2}\left(\mathrm{y}^{\mathrm{m}-2}\right) .
$$

(Recall that, we assumed $\beta_{i} \in \mathbb{C}-\mathbb{Z}, i=1, \ldots, m$.)
Proof. By Proposition 12,

$$
\mathrm{Ann}_{\mathrm{A}_{2}} \alpha^{\tilde{\beta}}=\mathrm{A}_{2} \mathrm{P}+\mathrm{A}_{2} \mathrm{Q},
$$

where $P=x \partial_{x}+y \partial_{y}-|\tilde{\beta}|$ and $Q=y \prod_{i=3}^{m} L_{i} \partial_{y}-\tilde{\beta}_{2} \prod_{i=3}^{m} L_{i}-\sum_{j=3}^{m} \tilde{\beta}_{i} y \prod_{i=3, i \neq j}^{m} L_{i}$. But $Q=G . x+C\left(y^{m-1} \partial_{y}-\sum_{i=2}^{m} \tilde{\beta}_{i} y^{m-2}\right)$ for some $G \in A_{2}$ and $C=\prod_{i=3}^{m} c_{i}$. Hence
$J:=A_{2} x+\operatorname{Ann}_{\mathrm{A}_{2}} \alpha^{\tilde{\beta}}=\mathrm{A}_{2} \mathrm{x}+\mathrm{A}_{2}\left(\mathrm{y} \partial_{\mathrm{y}}-(|\tilde{\beta}|+1)\right)+\mathrm{A}_{2}\left(\mathrm{y}^{\mathrm{m}-1} \partial_{\mathrm{y}}-\sum_{\mathrm{i}=2}^{\mathrm{m}} \tilde{\beta}_{\mathrm{i}} \mathrm{y}^{\mathrm{m}-2}\right)$.
But $y^{m-1} \partial_{y}-\sum_{i=2}^{m} \tilde{\beta}_{i} y^{m-2}-y^{m-2}\left(y \partial_{y}-(|\tilde{\beta}|+1)\right)=\left(\tilde{\beta}_{1}+1\right) y^{m-2} \in J$.
Since $\tilde{\beta}_{1}+1 \neq 0$, by assumption, then $y^{m-2} \in J$. Hence

$$
J=A_{2} x+A_{2}\left(y \partial_{y}-(|\tilde{\beta}|+1)\right)+A_{2}\left(y^{m-2}\right) .
$$

Lemma 10. Let $A_{1}=\mathbb{C}<y, \partial_{y}>$. Let $J=A_{1}\left(y \partial_{y}-\gamma\right)+A_{1} y^{k}$ for $k \geq 0$. Then we have the following.
(i) If $\gamma \notin\{-1, \ldots,-k\}$, then $J=A_{1}$.
(ii) If $-k \leq \gamma \leq-1$, then $J=A_{1}\left(y \partial_{y}-\gamma\right)+A_{1} y^{|\gamma|}$. Further more

$$
A_{1} / J \cong \mathbb{C}[y]_{y} / \mathbb{C}[y]
$$

and hence irreducible.
Proof. (i) If $\gamma \notin\{-1, \ldots,-k\}$, then $j+\gamma \neq 0$, for $j \in\{1, \ldots, k\}$.

$$
\partial_{y} y^{k}-y^{k-1}\left(y \partial_{y}-\gamma\right)=(k+\gamma) y^{k-1} .
$$

Since $k+\gamma \neq 0$, then $y^{k-1} \in J$. Iterating we find that $1 \in J$, since by assumption $k+\gamma \neq 0, k-1+\gamma \neq 0, \ldots, 1+\gamma \neq 0$, and hence $J=A_{1}$.
(ii) If $-k \leq \gamma \leq-1$, still it is clear that $J=A_{1}\left(y \partial_{y}-\gamma\right)+A_{1} y^{|\gamma|}$.

$$
\begin{equation*}
A_{1}=J+\oplus_{i \geq 0} \mathbb{C} \partial_{y}^{i} \oplus \oplus_{j=1}^{|\gamma|-1} \mathbb{C} y^{j} \tag{7.2}
\end{equation*}
$$

Let $\theta: A_{1} \longrightarrow \mathbb{C}[y]_{y} / \mathbb{C}[y]$ be the map defined by $\theta(P)=P\left(\bar{y}^{\gamma}\right)$. Clearly $J \subset \operatorname{Ker} \theta$ and θ is surjective and it is a map onto a simple A_{1}-module. By (7.2), $J=\operatorname{Ker} \theta$. This concludes the proof.

Lemma 11.

$$
A_{2} /\left(A_{2} x+\operatorname{Ann}_{\mathrm{A}_{2}} \alpha^{\tilde{\beta}}\right) \cong \mathrm{A}_{2} \alpha^{\tilde{\beta}} / \mathrm{A}_{2} \mathrm{x} \alpha^{\tilde{\beta}}
$$

is a simple A_{2}-module if and only if $-(m-2) \leq|\tilde{\beta}|+1 \leq-1$ and zero otherwise.

Proof. By Lemma 9,

$$
A_{2} \alpha^{\tilde{\beta}} / A_{2} x \alpha^{\tilde{\beta}} \cong A_{2} /\left(A_{2} x+A_{2}\left(y \partial_{y}-(|\tilde{\beta}|+1)\right)+A_{2}\left(y^{m-2}\right)\right)
$$

The last description makes it clear that the module is the external product
$\mathbb{C}<x, \partial_{x}>/ \mathbb{C}<x, \partial_{x}>x \widehat{\otimes} \mathbb{C}<y, \partial_{y}>/ \mathbb{C}<y, \partial_{y}><y \partial_{y}-(|\tilde{\beta}|+1), y^{m-2}>$.
Hence the result follows by Lemma 10 (ii) and Proposition 4.

7.3.2 Proof

We are now in a position to prove the last part of Theorem 7. We use the following Lemma as a starting point.
Lemma 12. (i)There exists N_{1} such that $\alpha^{\beta+N_{1}}$ generates M_{α}^{β}.
(ii)There exists $N_{2}>N_{1}$ such that $A_{2} \alpha^{\beta+N_{3}}$ is a simple submodule if $N_{3} \in$ $N_{2}+\mathbb{N}^{m}$.
Proof. The first follows directly from the fact that $M=M_{\alpha}^{\beta}$ is a holonomic module and hence cyclic see [4]. The second follows from the more difficult fact that M_{α}^{β} contains a simple submodule L with support on \mathbb{C}^{2}, the so called Deligne module [3]. This means that M / L has to be torsion as $\mathbb{C}[x]$ module. Since by Proposition 9 all decomposition factors have support on hyperplane intersetions it follows that any element $\bar{n} \in M / L$ is annihilated by a large enough power of α. Take $n=\alpha^{N_{1}+\beta}$ to be the generator of M / L, from the first statement of the lemma and assume that $\alpha^{N} \alpha^{N_{1}+\beta} \in N$ and let $N_{2}=N_{1}+N$.

Consider $A_{2} \alpha^{\beta+N_{1}}$. Put $\tilde{\beta}=\beta+N_{1}$. Since, if $\alpha^{\beta+N}$ generates M_{α}^{β}, also $x^{-n} \alpha^{\beta+N}$ generates if $n \geq 0$, we may assume $|\tilde{\beta}| \leq-(m-1)$. By Lemma 11, if $|\tilde{\beta}|$ is not one of $-(m-1), \ldots,-2$, we have that $A_{2} \tilde{\beta} / A_{2} x \tilde{\beta}=0$. Hence $A_{2} \alpha^{\tilde{\beta}}=A_{2} x \alpha^{\tilde{\beta}}=\ldots=A_{2} \alpha^{\tilde{\beta_{1}}}$, where $\alpha^{\tilde{\beta_{1}}}=x^{r} \alpha^{\tilde{\beta}}$ such that $\left|\tilde{\beta}_{1}\right|=-(m-1)$. Then by Lemma 11

$$
A_{2} \alpha^{\tilde{\beta_{1}}} \supset A_{2} x \alpha^{\tilde{\beta_{1}}} \supset \ldots \supset A_{2} x^{m-2} \alpha^{\tilde{\beta_{1}}}
$$

is a chain of strict submodules such that each factor is irreducible and has support at $(0,0)$. The last submodule, $A_{2} x^{m-2} \alpha^{\tilde{\beta_{1}}}$, has the property (again by applying the lemma to $A_{2} \alpha^{N} x^{m-2} \alpha^{\beta}$ for $N \in \mathbb{N}^{m}$ in succession), that it equals $A_{2} \alpha^{N} x^{m-2} \alpha^{\beta}$ for all $N \in \mathbb{N}^{m}$, and hence by Lemma 12 is simple. Hence M_{α}^{β} has $m-2$ decomposition factors with support at the origin, and one with support on \mathbb{C}^{2}. This concludes the proof.

8 Example

In this section we consider the A_{2}-module $M_{\alpha}^{\beta}=\mathbb{C}[x, y]_{x y(x+y)} \alpha^{\beta}$, where $\alpha^{\beta}=x^{\beta_{1}} y^{\beta_{2}}(x+y)^{\beta_{3}}$ and calculate $c\left(M_{\alpha}^{\beta}\right)$ by considering different cases on $\beta_{1}, \beta_{2}, \beta_{3}$. From section 3 and section 7 we know the following.

- If $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{Z}$, then $c\left(M_{\alpha}^{\beta}\right)=6$.
- If $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{1}+\beta_{2}+\beta_{3} \in \mathbb{C} \backslash \mathbb{Z}$, then $c\left(M_{\alpha}^{\beta}\right)=1$.
- If $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{C} \backslash \mathbb{Z}$ and $\beta_{1}+\beta_{2}+\beta_{3} \in \mathbb{Z}$, then $c\left(M_{\alpha}^{\beta}\right)=2$.

Hence it remains to consider the following two cases.

- Exactly one of $\beta_{1}, \beta_{2}, \beta_{3}$ is in $\mathbb{C} \backslash \mathbb{Z}$.
- Exactly two of $\beta_{1}, \beta_{2}, \beta_{3}$ are in $\mathbb{C} \backslash \mathbb{Z}$.

We generalize the results in the following theorem.
Theorem 8. (i) If exactly one of $\beta_{1}, \beta_{2}, \beta_{3}$ is in $\mathbb{C} \backslash \mathbb{Z}$, then $c\left(M_{\alpha}^{\beta}\right)=3$.
(ii) If exactly two of $\beta_{1}, \beta_{2}, \beta_{3}$ are in $\mathbb{C} \backslash \mathbb{Z}$ and $\beta_{1}+\beta_{2}+\beta_{3} \in \mathbb{C} \backslash \mathbb{Z}$, then $c\left(M_{\alpha}^{\beta}\right)=2$.
(iii) If exactly two of $\beta_{1}, \beta_{2}, \beta_{3}$ are in $\mathbb{C} \backslash \mathbb{Z}$ and $\beta_{1}+\beta_{2}+\beta_{3} \in \mathbb{Z}$, then $c\left(M_{\alpha}^{\beta}\right)=3$.

Proof. (i) WLOG assume $\beta_{1} \in \mathbb{C} \backslash \mathbb{Z}$ and $\beta_{2}, \beta_{3} \in \mathbb{Z}$. Then, by Proposition $2, M_{\alpha}^{\beta} \cong \mathbb{C}[x, y]_{x y(x+y)} x^{\beta_{1}}$. By Proposition $4, \mathbb{C}[x, y]_{x} x^{\beta_{1}}$ and $\mathbb{C}[x, y]_{x(x+y)} x^{\beta_{1}} / \mathbb{C}[x, y]_{x} x^{\beta_{1}}$ are irreducible A_{2}-modules. Consider the quotient module $N=\mathbb{C}[x, y]_{x y(x+y)} x^{\beta_{1}} / \mathbb{C}[x, y]_{x(x+y)} x^{\beta_{1}}$. We want to show that N is irreducible. Let $P \in N \backslash\{0\}$. Assume that $P=\frac{f}{y} x^{\beta_{1}}$, where $f=\sum_{i=0}^{k} \alpha_{i} x^{i}, \alpha_{k} \neq 0$. That is

$$
P=\frac{\sum_{i=0}^{k} \alpha_{i} x^{\beta_{1}+i}}{y}
$$

We have the formula

$$
\begin{equation*}
\left(x \partial_{i}-\left(\beta_{1}+i\right)\right) \frac{x^{\beta_{1}+j}}{y}=(j-i) \frac{x^{\beta_{1}+j}}{y} \tag{8.1}
\end{equation*}
$$

This implies

$$
\prod_{i=0}^{k-1}\left(x \partial_{x}-\left(\beta_{1}+i\right)\right) P=\alpha_{k} k!\frac{x^{\beta_{1}+k}}{y}
$$

and since $\alpha_{k} \neq 0$ by assumption, $\frac{x^{\beta_{1}+k}}{y} \in A_{2} P$. Consider the following two formulas:

$$
\begin{equation*}
\partial_{x}^{i} \frac{x^{\beta_{1}+k}}{y}=\left(\beta_{1}+k\right)\left(\beta_{1}+k-1\right) \ldots\left(\beta_{1}+k-i\right) \frac{x^{\beta_{1}+k-i}}{y} \tag{8.2}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{i} \cdot \frac{x^{\beta_{1}+k}}{y}=\frac{x^{\beta_{1}+k+i}}{y} \tag{8.3}
\end{equation*}
$$

Since $\beta_{1} \in \mathbb{C} \backslash \mathbb{Z}$ by assumption, the coefficient in (8.2) is non-zero for all $i \geq 0$ which implies that $\frac{x^{\beta_{1}+k-i}}{y} \in A_{2} P$. The formula (8.3) gives that $\frac{x^{\beta_{1}+k+i}}{y} \in A_{2} P$ for all $i \geq 0$. Hence $N \subset A_{2} P$. Since P was arbitrary, this means that N is irreducible. Therefore,

$$
\mathbb{C}[x, y]_{x} x^{\beta_{1}} \subset \mathbb{C}[x, y]_{x y} x^{\beta_{1}} \subset \mathbb{C}[x, y]_{x y(x+y)} x^{\beta_{1}}=M_{\alpha}^{\beta}
$$

is a composition series of M_{α}^{β} and hence $c\left(M_{\alpha}^{\beta}\right)=3$. This completes the proof of (i).
(ii) WLOG (we can change basis) assume that $\beta_{2} \in \mathbb{Z}$ and $\beta_{1}, \beta_{3} \in \mathbb{C} \backslash \mathbb{Z}$. By Proposition $2, M_{\alpha}^{\beta} \cong \mathbb{C}[x, y]_{x y(x+y)} x^{\beta_{1}}(x+y)^{\beta_{3}}$ and by Proposition 4 , $N=\mathbb{C}[x, y]_{x(x+y)} x^{\beta_{1}}(x+y)^{\beta_{3}}$ is an irreducible submodule of M_{α}^{β}. Let $M=M_{\alpha}^{\beta} / N$ be the quotient module. We are going to show that M is irreducible. First let us prove that the module M is generated by the class $\frac{1}{y} \alpha^{\beta}$ modulo N . Notice that
$\partial_{x}\left(\frac{1}{y} \alpha^{\beta}\right)=\left(\frac{\beta_{1}}{x y}+\frac{\beta_{3}}{y(x+y)}\right) \alpha^{\beta}=\left(\frac{\beta_{1}+\beta_{3}}{x y}-\frac{\beta_{3}}{x(x+y)}\right) \alpha^{\beta} \equiv \frac{\beta_{1}+\beta_{3}}{x y} \alpha^{\beta} \operatorname{modN}$.
Using the same decomposition as in (8.4) for $k>1$ we have that

$$
\begin{equation*}
\partial_{x}^{k}\left(\frac{1}{y} \alpha^{\beta}\right)=\left(\beta_{1}+\beta_{3}\right)\left(\beta_{1}+\beta_{3}-1\right) \ldots\left(\beta_{1}+\beta_{3}-(k-1)\right) \frac{1}{x^{k} y} \alpha^{\beta} \in M \tag{8.5}
\end{equation*}
$$

Since the coefficient in (8.5) is non-zero, by assumption, $\frac{1}{x^{k} y} \alpha^{\beta} \in A_{2}\left(\frac{1}{y} \alpha^{\beta}\right)$ for all $k \geq 0$. On the other hand

$$
\partial_{y}\left(\frac{1}{x^{k} y} \alpha^{\beta}\right)=\frac{-1}{x^{k} y^{2}} \alpha^{\beta}+\frac{\beta_{3}}{x^{k+1} y} \alpha^{\beta}-\frac{\beta_{3}}{x^{k+1}(x+y)} \alpha^{\beta}
$$

and $\frac{\beta_{3}}{x^{k+1}(x+y)} \alpha^{\beta} \in N$. This implies

$$
\partial_{y}\left(\frac{1}{x^{k} y} \alpha^{\beta}\right) \equiv \frac{-1}{x^{k} y^{2}} \alpha^{\beta}+\frac{\beta_{3}}{x^{k+1} y} \alpha^{\beta} \operatorname{modN} .
$$

Let $D_{k}=\left[\frac{1}{\left(\beta_{1}+\beta_{3}\right) \ldots\left(\beta_{1}+\beta_{3}-(k-1)\right)}\right] \partial_{x}^{k}$, for $k \geq 1$. Then

$$
\left(\beta_{3} D_{k+1}-\partial_{y} D_{k}\right)\left(\frac{1}{y} \alpha^{\beta}\right) \equiv \frac{1}{x^{k} y^{2}} \alpha^{\beta} \operatorname{modN}
$$

and hence $\frac{1}{x^{k^{2}} y^{2}} \alpha^{\beta} \in A_{2}\left(\frac{1}{y} \alpha^{\beta}\right)$. Following a similar argument one can easily show that $\frac{1}{x^{k} y^{m}} \alpha^{\beta} \in A_{2}\left(\frac{1}{y} \alpha^{\beta}\right)$ for $k, m \geq 1$ and hence $M=A_{2}\left(\frac{1}{y} \alpha^{\beta}\right)$.
Next we are going to show that M is irreducible. Let $P \in M \backslash\{0\}$. By simplifying as before, we can assume that

$$
P=\frac{\sum_{i=0}^{k} c_{i} x^{i}}{y} \alpha^{\beta} .
$$

Consider the following formulas

$$
\begin{equation*}
\prod_{j=0}^{k-1}\left(x \partial_{x}-\left(\beta_{1}+\beta_{3}+j\right)(P)=\frac{k!c_{k} x^{k}}{y} \alpha^{\beta} \in M\right. \tag{8.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{x}^{k}\left(\frac{x^{k}}{y} \alpha^{\beta}\right)=\left(1+\beta_{1}+\beta_{3}\right) \ldots\left(k+\beta_{1}+\beta_{3}\right) \frac{1}{y} \alpha^{\beta} \in M \tag{8.7}
\end{equation*}
$$

Since the coefficient of $\frac{1}{y} \alpha^{\beta}$ in (8.7) is non-zero, by assumption, we have that, $M \subset A_{1}(P)$. But P was an arbitrary element, so this means M is irreducible. Therefore

$$
\mathbb{C}[x, y]_{x y} x^{\beta_{1}} y^{\beta_{2}} \subset \mathbb{C}[x, y]_{x y(x+y)} x^{\beta_{1}} y^{\beta_{2}} \cong M_{\alpha}^{\beta}
$$

is a composition series of M_{α}^{β} and hence $\mathrm{c}\left(M_{\alpha}^{\beta}\right)=2$. This proves $(i i)$.
(iii) WLOG assume that $\beta_{2} \in \mathbb{Z}$ and $\beta_{1}, \beta_{3} \in \mathbb{C} \backslash \mathbb{Z}$. By Proposition 2 , $M_{\alpha}^{\beta} \cong \mathbb{C}[x, y]_{x y(x+y)} x^{\beta_{1}}(x+y)^{\beta_{3}}$ and by Proposition 4, $N=\mathbb{C}[x, y]_{x(x+y)} x^{\beta_{1}}(x+y)^{\beta_{3}}$ is an irreducible submodule of M_{α}^{β}. By Proposition 2, assume that $\beta_{1}+\beta_{2}+\beta_{3}=0$. Using the arguments in the proof of (ii), one can easily show that the quotient module $M=M_{\alpha}^{\beta} / N$ is generated by $\frac{1}{x y} \alpha^{\beta}$. Clearly $A_{2}\left(\frac{1}{y} \alpha^{\beta}\right)$ is a submodule of M. First observe that,

$$
\partial_{x}\left(\frac{1}{y} \alpha^{\beta}\right)=\left(\beta_{1}+\beta_{3}\right) \frac{1}{x y} \alpha^{\beta} \equiv 0 \operatorname{modN} .
$$

We are now going to show that $A_{2}\left(\frac{1}{y} \alpha^{\beta}\right)$ is a proper submodule of M. Assume that $\frac{1}{x y} \alpha^{\beta} \in A_{2}\left(\frac{1}{y} \alpha^{\beta}\right)$. Then $\frac{1}{x y} \alpha^{\beta}=D\left(\frac{1}{y} \alpha^{\beta}\right)$, for some $D \in A_{2}$. For sufficiently large $\mathrm{m}, \partial_{x}^{m} D\left(\frac{1}{y} \alpha^{\beta}\right)=D^{\prime} \partial_{x}\left(\frac{1}{y} \alpha^{\beta}\right)$ for some $D^{\prime} \in A_{2}$ and $D^{\prime} \partial_{x}\left(\frac{1}{y} \alpha^{\beta}\right)=0$. But

$$
\partial_{x}^{m} \frac{1}{x y} \alpha^{\beta}=\prod_{i=1}^{m-1}\left(\beta_{1}+\beta_{3}-i\right) \frac{1}{x^{m} y} \alpha^{\beta}
$$

and

$$
\gamma=\left(\beta_{1}+\beta_{3}-1\right)\left(\beta_{1}+\beta_{3}-2\right) \ldots\left(\beta_{1}+\beta_{3}-(m-1)\right) \neq 0,
$$

which implies $\partial_{x}^{m} \frac{1}{x y} \alpha^{\beta}=\frac{\gamma}{x^{m} y} \alpha^{\beta} \neq 0$. This is a contradiction. Therefore $A_{2}\left(\frac{1}{y} \alpha^{\beta}\right)$ is a proper submodule of M .
Next we want to show that $A_{2}\left(\frac{1}{y} \alpha^{\beta}\right)$ is an irreducible submodule of M. Let $Q \in A_{2}\left(\frac{1}{y} \alpha^{\beta}\right) \backslash\{0\}$. Then

$$
Q=\frac{\sum_{i=0}^{k} \alpha_{i} x^{i}}{y} \alpha^{\beta}, a_{k} \neq 0 .
$$

Using (8.6) and (8.7) we have that $A_{2}\left(\frac{1}{y}\right) \subset A_{2} Q$. Since Q was arbitrary, $A_{2}\left(\frac{1}{y}\right)$ is irreducible.
It remains to show that $M / A_{2}\left(\frac{1}{y}\right)$ is irreducible. Let $R \in M \backslash A_{2}\left(\frac{1}{y}\right)$. Then

$$
R=\sum_{i, j \geq 1} \frac{a_{i j}}{x^{i} y^{j}} \alpha^{\beta}, a_{i j} \neq 0 .
$$

We can assume that $i \geq j$. This is possible because otherwise for sufficiently large m, we can take $\partial_{x}^{m} R$. Let k be the maximum of all j such that

$$
R=\sum_{i, j \geq 1} \frac{a_{i j}}{x^{i} y^{j}} \alpha^{\beta} .
$$

Then

$$
y^{k-1} R=\sum_{i=k}^{r} \frac{a_{i}}{x^{i}}\left(\frac{1}{y} \alpha^{\beta}\right), a_{r} \neq 0
$$

and

$$
x^{r-1} \sum_{i=k}^{r} \frac{a_{i}}{x^{i}}\left(\frac{1}{y} \alpha^{\beta}\right)=\frac{a_{r}}{x y} \alpha^{\beta} .
$$

Since $a_{r} \neq 0$ and R was arbitrary, this implies that $A_{2} R=M / A_{2}\left(\frac{1}{y}\right)$ is irreducible. This completes the proof.

References

[1] Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
[2] Björk, J.-E., Rings of differential operators, North-Holland Publishing Co., Amsterdam, 1979.
[3] Björk, Jan-Erik, Analytic D-modules and applications, 247, Kluwer Academic Publishers Group, Dordrecht, 1993.
[4] Coutinho, S. C., A primer of algebraic D-modules, 33, Cambridge University Press, Cambridge, 1995.
[5] C. De Concini and C. Procesi, The algebra of the Box-spline, arXiv:math.NA/0602019 v1 (2006) .
[6] C. De Concini and C. Procesi, Topics in hyperplane arrangements, polytopes and box-splines, book to be published.
[7] Cox, David and Little, John and O'Shea, Donal, Ideals, varieties, and algorithms, Springer, New York, 2007.
[8] Dixmier, Jacques, Enveloping algebras, 11, American Mathematical Society, Providence, RI, 1996,
[9] Fulton, William, Algebraic curves, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989.
[10] Harris, Joe, Algebraic geometry, 133, Springer-Verlag, New York, 1995.
[11] Matsumura, Hideyuki, Commutative ring theory, Cambridge University Press, Cambridge, 1986.
[12] Saito, Mutsumi and Sturmfels, Bernd and Takayama, Nobuki, Gröbner deformations of hypergeometric differential equations, Springer-Verlag, Berlin, 2000.

