ISSN: 1401-5617

Cofinite Hochschild cohomology

Alexander Berglund

Research Reports in Mathematics Number 1, 2007

Department of Mathematics Stockholm University Electronic versions of this document are available at http://www.math.su.se/reports/2007/1 $\,$

Date of publication: January 8, 2007

Postal address: Department of Mathematics Stockholm University S-106 91 Stockholm Sweden

Electronic addresses: http://www.math.su.se/ info@math.su.se

COFINITE HOCHSCHILD COHOMOLOGY

ALEXANDER BERGLUND

ABSTRACT. First steps are taken towards a cohomology theory of associative algebras R over a commutative noetherian ring k using 'cofinite cochains', or ' δ -cochains' as I will call them. These are defined using the subcomplex of the Hochschild cochain complex consisting of k-linear maps from $R^{\otimes n}$ to the coefficient module that factor through a quotient algebra of $R^{\otimes n}$ which is finitely generated as a k-module. Under certain reasonable conditions on R, it is possible to interpret cofinite cohomology, or ' δ -cohomology', as a derived functor. I show that if R is a commutative noetherian k-algebra fulfilling these conditions, then the natural map from δ -cohomology to Hochschild cohomology is an isomorphism.

This is an attempt to extend results of [2] where it is shown that the group cohomology $H^*(G; Z)$ of a torsion-free finitely generated nilpotent group Gmay be computed using 'numerical cochains'. The extension is two-fold: I consider associative algebras over a commutative noetherian ring k, as a generalization of group algebras over the integers. Secondly, numerical cochains are replaced by the more general cofinite cochains.

The results presented here are preliminary. However, I have tried to write the notes in an elementary and clear fashion so that anyone (including myself) interested in developing the theory further could pick up where I left it.

Contents

1.	Preliminaries	1
2.	δ -maps	2
3.	δ -modules	4
4.	The bifunctor $\operatorname{Hom}_{\delta}(M, N)$	7
5.	Hochschild cohomology and δ -cohomology	9
6.	Preservation of filtered colimits	12
7.	δ -cohomology as a derived functor	14
8.	Change of ground ring	16
9.	δ -cohomology of polynomial algebras	18
10.	The cofinite topology	22
References		23

1. Preliminaries

Throughout, k will denote a commutative noetherian ring with 1. Unadorned tensor products are over k. The term 'k-algebra' will mean 'associative unitary k-algebra'. If R is a k-algebra then 'R-module' will mean left R-module. We will use without reference standard results of homological algebra, such as those found in [1] or [4]. A k-module M is called *finite* if it is a finitely generated k-module. A

submodule M' of a k-module M is called *cofinite in* M (or just *cofinite* when M is clear from the context) if M/M' is finite. In this case we also say that the inclusion is cofinite.

If \mathcal{A} is an abelian category, then $\mathcal{D}^{\geq 0}(\mathcal{A})$ will denote the derived category of non-negative cochain complexes in \mathcal{A} . If R is a k-algebra, then \mathcal{A}^R will denote the abelian category of left R-modules and \mathcal{A}^R_{δ} will denote the abelian category of δ -modules over R, to be defined below. We denote by $R^e = R \otimes R^{op}$ the enveloping k-algebra of R.

Proposition 1.1. The intersection of two cofinite submodules is cofinite.

Proof. Let I, J be cofinite submodules of M. The kernel of the map $M \to M/I \oplus M/J$ sending x to (x + I, x + J) is $I \cap J$, so the map factors through an injection of $M/I \cap J$ into $M/I \oplus M/J$. Since the latter is finite, so is $M/I \cap J$. Here we of course use that k is noetherian.

Proposition 1.2. If $M_1 \subseteq M_2 \subseteq M_3$ are inclusions of k-modules then the inclusion $M_1 \subseteq M_3$ is cofinite if and only if both the inclusions $M_1 \subseteq M_2$ and $M_2 \subseteq M_3$ are.

Proof. This follows from the short exact sequence

$$0 \longrightarrow M_2/M_1 \longrightarrow M_3/M_1 \longrightarrow M_3/M_2 \longrightarrow 0$$

Proposition 1.3. Let R be a k-algebra.

- If M' ⊆ M is a cofinite inclusion of R-modules then there is a cofinite two-sided ideal I ⊆ R such that IM ⊆ M'.
- If M is a finitely generated R-module then the inclusion IM ⊆ M is cofinite for any cofinite ideal I ⊆ R.
- In particular, any cofinite left or right ideal in R contains a cofinite twosided ideal.

Proof. Let M'' be the k-finite R-module M/M'. There is a surjection of k-modules $k^n \to M''$ for some n, so we get an embedding $\operatorname{Hom}_k(M'', M'') \to \operatorname{Hom}_k(k^n, M'') \cong (M'')^n$, showing that $\operatorname{Hom}_k(M'', M'')$ is k-finite. Let $I \subseteq R$ be the kernel of the homomorphism of k-algebras $R \to \operatorname{Hom}_k(M'', M'')$ sending $r \in R$ to the endomorphism $x \mapsto rx$ of M''. Then I is a two-sided ideal and the induced injection of k-modules $R/I \to \operatorname{Hom}_k(M'', M'')$ shows that I is cofinite.

If M is finitely generated there is a surjection of R-modules $R^n \to M$ for some n. If I is a cofinite ideal of R then we get a surjection $(R/I)^n = R/I \otimes_R R^n \to R/I \otimes M \cong M/IM$, which exhibits M/IM as a k-finite module.

2.
$$\delta$$
-maps

Let R be a k-algebra.

Definition 2.1. Let N be a k-module. A k-linear map $f: R \to N$ is called a δ -map if it vanishes on some two-sided cofinite ideal of R. Equivalently, f is a δ -map if it factors through a homomorphism of k-algebras $\phi: R \to S$ where S is k-finite

$$R \xrightarrow{f} M$$

The set of δ -maps from R to N is denoted by $\operatorname{Hom}_{\delta}(R, N)$. Given a k-linear map $f: N \to M$, composition with f from the left takes δ -maps to δ -maps, so $\operatorname{Hom}_{\delta}(R, -)$ is a subfunctor of the functor $\operatorname{Hom}_{k}(R, -)$ on the category of k-modules.

Maximal cofinite ideals. Let N be a k-module and let $f: R \to N$ be a k-linear map. For $r, s \in R$, sfr is the map (sfr)(x) = f(rxs). The k-module

$$J_f = \bigcap_{r,s \in R} \operatorname{Ker}(sfr)$$

is a two-sided ideal contained in Ker f. If f vanishes on a two-sided cofinite ideal I, then certainly $I \subseteq J_f$, so J_f contains all cofinite two-sided ideals contained in Ker f. Therefore we have the following

Proposition 2.2. $f: R \to N$ is a δ -map if and only if J_f is cofinite, and in this case J_f is the unique maximal cofinite two-sided ideal contained in Ker f.

If R and S are k-algebras, then $R \otimes S$ is a k-algebra by $(a \otimes b)(c \otimes d) = (ac) \otimes (bd)$. In particular we can form the algebra $R^{\otimes n} = R \otimes \ldots \otimes R$ (n factors). Let $\iota_m : R \to R^{\otimes n}$ be the natural homomorphism of k-algebras sending r to $1 \otimes \ldots \otimes r \otimes \ldots \otimes 1$ (r at the m^{th} factor). If $\phi : R \to R'$ and $\psi : S \to S'$ are homomorphisms of k-algebras, then there is an induced homomorphism of k-algebras $\phi \otimes \psi : R \otimes S \to R' \otimes S'$, mapping $a \otimes b$ to $\phi(a) \otimes \psi(b)$.

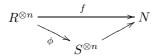
Proposition 2.3. Let R and S be k-algebras. Any cofinite ideal in $R \otimes S$ contains an ideal of the form $I \otimes S + R \otimes J$, where I and J are cofinite ideals in R and S, respectively.

Proof. Let $I \subseteq R \otimes S$ be a cofinite ideal. Then $I_R = i_R^{-1}(I)$ and $I_S = i_S^{-1}(I)$, where i_R and i_S are the natural homomorphisms $R, S \to R \otimes S$, are ideals in R and S, respectively. The induced maps

$$R/I_R \longrightarrow R \otimes S/I \longleftarrow S/I_S$$

are injective, which shows that I_R and I_S are cofinite. Clearly, the ideal $I_R \otimes S + R \otimes I_S$ is contained in I.

Proposition 2.4. A k-linear map $f: \mathbb{R}^{\otimes n} \to N$ is a δ -map if and only if it factors as



where S is a k-finite algebra and ϕ is induced by a surjective homomorphism of algebras $R \to S$.

Proof. Clearly, the condition is sufficient. To show necessity, factor f as $R^{\otimes n} \to Q \to N$, where Q is a k-finite quotient of $R^{\otimes n}$. Using the previous proposition and induction, the kernel of the surjection $R^{\otimes n} \to Q$ contains an ideal of the form $\sum_{i+j=n-1} R^{\otimes i} \otimes I_i \otimes R^{\otimes j}$ where $I_1, \ldots, I_n \subseteq R$ are cofinite ideals. Then $J = I_1 \cap \ldots \cap I_n$ is a cofinite ideal and $R^{\otimes n} \to Q$ factors as $R^{\otimes n} \to S^{\otimes n} \to Q$, where S = R/J.

3. δ -modules

Let R be a k-algebra.

Proposition 3.1. The following are equivalent for an *R*-module *M*:

- *M* is a filtered colimit of *k*-finite *R*-modules.
- Every cyclic submodule of M is k-finite.
- Every R-finite submodule of M is k-finite.
- The annihilator of each finite k-submodule of M is a cofinite ideal.

Proof. The second and third are equivalent since an R-finite submodule is a finite sum of cyclic submodules. If N is a finite k-submodule of M, say generated by x_1, \ldots, x_n , then $\operatorname{Ann} N = \operatorname{Ann} x_1 \cap \ldots \cap \operatorname{Ann} x_n$ is cofinite because each $\operatorname{Ann} x_i$ is, as $R / \operatorname{Ann} x_i \cong Rx_i$. The remaining implications are left to the reader. \Box

Definition 3.2. An *R*-module *M* is called a δ -module over *R* if it satisfies the conditions of Proposition 3.1.

If R is a k-algebra then let \mathcal{A}^R denote the abelian category of left R-modules. Let \mathcal{A}^R_{δ} denote the full subcategory of \mathcal{A}^R whose objects are the δ -modules.

Proposition 3.3. \mathcal{A}^{R}_{δ} is a cocomplete abelian category. Furthermore, if R is noetherian then \mathcal{A}^{R}_{δ} is a Serre subcategory of \mathcal{A}^{R} .

Proof. As \mathcal{A}^{R}_{δ} by definition is a full subcategory of an abelian category, it suffices to check that submodules, quotients and direct sums of δ -modules are δ -modules. Let

$$0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

be a short exact sequence of R-modules. Suppose that M is a δ -module. Then for any $x \in M'$, we have that $Rx \cong Rf(x) \subseteq M$ is k-finite, so M' is a δ -module. If $y \in M''$, let g(x) = y. Then Rx is k-finite and the surjection $g: Rx \to Ry$ shows that Ry is k-finite.

Let $\{M_i\}_{i\in I}$ be a family of δ -modules. If $x \in \bigoplus_{i\in I} M_i$ then $x = \sum_{i\in J} x_i$, where $x_i \in M_i$, for some finite subset $J \subseteq I$. Therefore, Rx is a submodule of $\bigoplus_{i\in J} Rx_i$. The latter, being a finite direct sum of k-finite R-modules, is k-finite, so Rx must be k-finite. Hence $\bigoplus_{i\in I} M_i$ is a δ -module.

Suppose now that R is noetherian. We need to show that if M' and M'' are δ -modules in the short exact sequence above, then so is M. Let $x \in M$. There is a short exact sequence

$$0 \longrightarrow Rx \cap M' \longrightarrow Rx \longrightarrow Rg(x) \longrightarrow 0$$

Here Rg(x) is k-finite as $g(x) \in M''$ and M'' is a δ -module. The *R*-module $Rx \cap M'$ is a submodule of the finitely generated module Rx and is therefore itself finitely generated, since *R* is assumed to be noetherian. But it is also a submodule of the δ -module M', so it must then be k-finite. Thus, Rx is an extension of k-finite modules and is therefore k-finite. This proves that *M* is a δ -module. \Box

Definition 3.4. Let M be an R-module. Define

$$M_{\delta} = \{x \in M \mid Rx \text{ is } k\text{-finite}\}.$$

Clearly, M_{δ} is an *R*-submodule of *M* and it is the largest δ -submodule of *M*. It is the union of all *k*-finite *R*-submodules of *M*. If $f: M \to N$ is a map of *R*-modules, then the induced map $Rx \to Rf(x)$ is surjective, so $f(x) \in N_{\delta}$ if $x \in M_{\delta}$. In other words, *f* restricts to a map of δ -modules $M_{\delta} \to N_{\delta}$, so we can regard $(-)_{\delta}$ as a functor from \mathcal{A}^R to \mathcal{A}^R_{δ} .

Proposition 3.5. The functor

$$(-)_{\delta} \colon \mathcal{A}^R \to \mathcal{A}^R_{\delta}$$

is right adjoint to the exact inclusion functor

$$\iota_R \colon \mathcal{A}^R_{\delta} \to \mathcal{A}^R.$$

Proof. This amounts to the fact that if M is a δ -module and N an R-module, then any map of R-modules $f: M \to N$ factors through N_{δ} .

Corollary 3.6. \mathcal{A}^{R}_{δ} has enough injectives.

Proof. If I is an injective R-module, then I_{δ} is an injective object of \mathcal{A}_{δ}^{R} because the functor $\operatorname{Hom}_{\mathcal{A}_{\delta}^{R}}(-, I_{\delta}) \cong \operatorname{Hom}_{R}(\iota_{R}(-), I)$ is the composite of two exact functors. Thus, if $M \in \mathcal{A}_{\delta}^{R}$ then an embedding of M into an injective R-module I gives rise to an embedding of $M = M_{\delta}$ into the injective object I_{δ} of \mathcal{A}_{δ}^{R} .

Proposition 3.7. Suppose that R is noetherian. Then $(M/M_{\delta})_{\delta} = 0$ for any R-module M.

Proof. In fact, this holds for any right adjoint of an inclusion $\mathcal{A} \to \mathcal{B}$ of a Serre subcategory.

Suppose that N is a δ -submodule of M/M_{δ} . We need to show that N = 0. Let $\pi: M \to M/M_{\delta}$ be the projection and let $L = \pi^{-1}(N)$. Since \mathcal{A}_{δ}^{R} is a Serre subcategory, the exact sequence

$$0 \longrightarrow M_{\delta} \longrightarrow L \xrightarrow{\pi} N \longrightarrow 0$$

shows that L is a δ -module. But then applying $(-)_{\delta}$ to the sequence of inclusions $M_{\delta} \subseteq L \subseteq M$ yields $L = M_{\delta}$, which means that N = 0.

One can characterize δ -modules over R as filtered colimits of k-finite R-modules. Moreover, it is obvious that any filtered colimit of δ -modules is a δ -module. In fact, there is yet another way to write δ -modules as filtered colimits. For a two-sided ideal I in R, the forgetful functor

$$\mathcal{A}^{R/I} \to \mathcal{A}^R$$

has a right adjoint,

$$(-)^I \colon \mathcal{A}^R \to \mathcal{A}^{R/I}.$$

If M is an R-module then

$$M^{I} = \{ x \in M \mid Ix = 0 \}.$$

This is the largest submodule of M which is a module over R/I. If $I \subseteq J$ then there is an obvious inclusion $M^J \subseteq M^I$.

Proposition 3.8. Let M be an R-module. Then

$$M_{\delta} = \cup_I M^I,$$

where the union is over the set of cofinite two-sided ideals in R. Furthermore,

$$(M_{\delta})^I = M^I$$

for any cofinite two-sided ideal $I \subseteq R$.

Proof. If I is a cofinite two-sided ideal in R then $M^I \subseteq M_{\delta}$, because for any $x \in M^I$ we have $Rx \cong R/\operatorname{Ann}(x)$ which is k-finite as $I \subseteq \operatorname{Ann}(x)$. Conversely, if $x \in M_{\delta}$ then $\operatorname{Ann}(x)$ is a cofinite left ideal of R. By Proposition 1.3, $\operatorname{Ann}(x)$ contains a cofinite two-sided ideal I, and then $x \in M^I$.

 δ -bimodules. As usual, an *R*-bimodule is thought of as a module over the *k*-algebra $R^e = R \otimes R^{op}$. Thus, a δ -bimodule is an object of $\mathcal{A}^{R^e}_{\delta}$. One can characterize δ -bimodules in terms of their left and right *R*-module structures.

Proposition 3.9. The following are equivalent for an R-bimodule M:

- M is a δ -bimodule.
- M is simultaneously a right and left δ -module over R.
- Ann^b(x) = { $r \in R | rx = xr = 0$ } is a cofinite k-submodule of R for each $x \in M$.

Furthermore, the right adjoint $(-)_{\delta} \colon \mathcal{A}^{R^e} \to \mathcal{A}^{R^e}_{\delta}$ of the forgetful functor from *R*-bimodules to δ -bimodules is given by

$$M_{\delta} = \{x \in M \mid Rx \text{ and } xR \text{ are } k\text{-finite}\}$$

Proof. Any δ -bimodule is a left and right δ -module because Rx and xR are k-submodules of RxR for each $x \in M$, so finiteness of the latter k-module implies finiteness of the former ones as k is assumed noetherian.

Suppose M is a left and right δ -module and let $x \in M$. Then Rx is k-finite, say generated by $x_1, \ldots, x_n \in Rx \subseteq M$. Each x_iR is k-finite, and therefore so is $RxR = x_1R + \ldots + x_nR$.

For an R-bimodule M and a two-sided ideal I of R, we set

$$M^{I} = \{ x \in M \mid Ix = xI = 0 \}$$

This is a bimodule over R/I and the functor $(-)^I \colon \mathcal{A}^{R^e} \to \mathcal{A}^{(R/I)^e}$ from *R*-bimodules to R/I-bimodules is right adjoint to the forgetful functor. Furthermore, as in Proposition 3.8 we have

$$M_{\delta} = \bigcup_I M^I$$

for bimodules M over R, where the union is over all cofinite two-sided ideals $I \subseteq R$, and we have

$$(M_{\delta})^I = M^I$$

for all such I.

4. The bifunctor $\operatorname{Hom}_{\delta}(M, N)$

The notion of δ -maps may be extended to modules over R.

Definition 4.1. Let M be an R-module and let N be a k-module. A k-linear map $f: M \to N$ is called a δ -map over R, or simply a δ -map if there is no risk of confusion, if f vanishes on some k-cofinite R-submodule of M. The set of δ -maps from M to N will be denoted Hom_{δ}(M, N).

By Proposition 1.3, a k-linear map $R \to N$ vanishes on some left ideal if and only if it does so on some two-sided ideal, so Definition 2.1 is an extension of Definition 4.1.

Note that $\operatorname{Hom}_{\delta}(M, N)$ is a right *R*-submodule of $\operatorname{Hom}_{k}(M, N)$. Indeed, if *I* is a cofinite submodule of *M* contained in the kernel of some *k*-linear map $f: M \to N$, then $I \subseteq \operatorname{Ker} fr$ for any $r \in R$, and if *g* is another δ -map that vanishes on a cofinite submodule *J*, then $\operatorname{Ker}(f+g) \supseteq \operatorname{Ker} f \cap \operatorname{Ker} \supseteq I \cap J$, so that f+g is a δ -map.

The next proposition tells us that $\operatorname{Hom}_{\delta}(-,-)$ may be considered as a bifunctor from $\mathcal{A}^R \times \mathcal{A}^k$ to $\mathcal{A}^{R^{op}}$.

Proposition 4.2. Suppose given maps $M' \xrightarrow{\phi} M \xrightarrow{f} N \xrightarrow{g} N'$ where ϕ is a map of *R*-modules, *f* is a δ -map and *g* is *k*-linear. Then *gf* and *f* ϕ are δ -maps.

Proof. By assumption, Ker f contains a cofinite submodule I of M. Since Ker $gf \supseteq$ Ker $f \supseteq I$, we see that gf is a δ -map. The R-submodule $\phi^{-1}(I)$ of M' is contained in Ker $f\phi$ and the induced map of R-modules $M'/\phi^{-1}(I) \to M/I$ is injective, which shows that $\phi^{-1}(I)$ is cofinite. \Box

Proposition 4.3. For a fixed k-module N, the functor $\operatorname{Hom}_{\delta}(-, N) \colon \mathcal{A}^{R^{op}} \to \mathcal{A}^{R}$ is left exact. If N is an injective k-module then $\operatorname{Hom}_{\delta}(-, N)$ takes cofinite inclusions to surjections.

Proof. Let $0 \to M' \xrightarrow{\mu} M \xrightarrow{\epsilon} M'' \to 0$ be a short exact sequence of right *R*-modules. We must show that the sequence

$$0 \longrightarrow \operatorname{Hom}_{\delta}(M'', N) \xrightarrow{\epsilon^*} \operatorname{Hom}_{\delta}(M, N) \xrightarrow{\mu^*} \operatorname{Hom}_{\delta}(M', N)$$

is exact, where $\epsilon^*(f) = f \circ \epsilon$ and $\mu^*(g) = g \circ \mu$. Clearly, $\epsilon^*(f) = 0$ implies f = 0because ϵ is surjective. If g is a δ -map with $\mu^*(g) = 0$, then $g = f \circ \epsilon$ for some $f \in \operatorname{Hom}_k(M'', N)$, since the functor $\operatorname{Hom}_k(-, N)$ is left exact. We must show that f is a δ -map. Let I be a cofinite submodule of M contained in Ker g. Then $\epsilon(I)$ is an R-submodule of M'' contained in Ker f, and it is cofinite because of the surjection $M/I \to M''/\epsilon(I)$ induced by ϵ .

Next, suppose that N is injective and that the inclusion $M' \to M$ is cofinite, i.e., the quotient M'' is k-finite. Given a δ -map $f: M' \to N$ we must produce a δ -map $g: M \to N$ that extends f. But N is injective, so we can at least find a k-linear map g extending f. Let $I \subseteq M'$ be a cofinite submodule on which f vanishes. If we assume that $M' \to M$ is cofinite then by transitivity (Proposition 1.2) the composed map $I \to M$ is cofinite. Hence g is a δ -map as it vanishes on the image of I in M.

Proposition 4.4. Let M be a finitely presented R-module and let N be a k-module. There is an isomorphism of right R-modules

$$\operatorname{Hom}_R(M, \operatorname{Hom}_{\delta}(R, N)) \to \operatorname{Hom}_{\delta}(M, N),$$

which is natural for maps of finitely presented R-modules.

Proof. The map is defined by sending an R-linear map $f: M \to \operatorname{Hom}_{\delta}(R, N)$ to the map $g: M \to N$ given by g(x) = f(x)(1). We need to check that g is indeed a δ -map. Let x_1, \ldots, x_n be R-module generators for M. Each $f(x_i)$ is a δ -map from R to N. Say $f(x_i)$ vanishes on a cofinite ideal I_i . Then $I = I_1 \cap \ldots \cap I_n$ is a cofinite ideal so that IM is a cofinite submodule of M, by Proposition 1.3. Clearly, g vanishes on IM.

The map just defined is clearly natural in M, so we have a natural transformation of contravariant functors from finitely generated R-modules to k-modules

$$\operatorname{Hom}_R(-, \operatorname{Hom}_{\delta}(R, N)) \to \operatorname{Hom}_{\delta}(-, N).$$

These functors are both additive and left exact (Proposition 4.3) and they agree on R. Therefore they agree on all finitely presented R-modules.

Proposition 4.5. A k-linear map $f: R \to N$ is a δ -map if and only if the Rsubmodule of $\operatorname{Hom}_k(R, N)$ generated by f is k-finite. In other words, $\operatorname{Hom}_{\delta}(R, N) = \operatorname{Hom}_k(R, N)_{\delta}$.

Proof. First of all, note that for any left ideal $I \subseteq R$ and any k-linear map $f: R \to N$ we have that $I \subseteq \text{Ker } f$ if and only if $I \subseteq \text{Ann } f$. Indeed, $\text{Ann } f \subseteq \text{Ker } f$ is obvious, and for the converse, suppose $I \subseteq \text{Ker } f$ and let $a \in I$. Then for any $x \in R$, (af)(x) = f(xa) = 0, since $xa \in I$ as I is a left ideal.

Let $I \subseteq R$ be a cofinite ideal contained in Ker f. Then $I \subseteq \operatorname{Ann} f$, so Ann f is a cofinite, and therefore $Rf \cong R/\operatorname{Ann} f$ is finite. Conversely, if Rf is finite, then Ann f is a cofinite left ideal of R contained in Ker f.

Definition 4.6. A k-algebra R is called *almost finite* if every non-zero ideal in R is cofinite.

If k is a field and R is a Dedekind domain over k, then R is almost finite because the quotient by any non-zero ideal is an artinian k-algebra which is finite dimensional as a k-vector space.

Proposition 4.7. Suppose that R is an almost finite noetherian k-algebra. Then the functor $\operatorname{Hom}_{\delta}(R, -)$ from $\mathcal{A}^k \to \mathcal{A}^R$ takes injective k-modules to injective Rmodules.

Proof. Let D be an injective k-module. The R-module $E = \text{Hom}_{\delta}(R, D)$ is injective if and only if $\text{Hom}_{R}(-, E)$ takes inclusions of left ideal $I \subseteq R$ to surjections. Since R is assumed noetherian all ideals in R are finitely presented, so by Proposition 4.4 we get a commutative diagram

This shows that $\operatorname{Hom}_{\delta}(R, D)$ is injective if and only if a surjection $\operatorname{Hom}_{\delta}(R, D) \to \operatorname{Hom}_{\delta}(I, D)$ is induced when $I \to R$ is the inclusion of an ideal into R. By 4.3, $\operatorname{Hom}_{\delta}(-, D)$ takes cofinite inclusions to surjections. We assume that R is almost finite, i.e., that all non-zero ideals in R are cofinite, so it follows that $\operatorname{Hom}_{\delta}(R, D)$ is an injective R-module.

Proposition 4.8. If R is an almost finite noetherian k-algebra then any R-module M may be embedded into an injective R-module E such that E_{δ} is also injective as an R-module.

Proof. The functor $\operatorname{Hom}_k(R, -)$ from \mathcal{A}^k to \mathcal{A}^R is right adjoint to the exact forgetful functor $\mathcal{A}^R \to \mathcal{A}^k$, so it preserves injectives. The left *R*-module structure on $\operatorname{Hom}_k(R, N)$ is given by rf(s) = f(sr). Let $i: M \to D$ be an injective *k*-linear map where *D* is an injective *k*-module. Then there is an embedding of *R*-modules

$$M \xrightarrow{g} \operatorname{Hom}_k(R, M) \xrightarrow{i^*} \operatorname{Hom}_k(R, D) ,$$

where for $x \in M$, the k-linear map $g(x): R \to M$ is defined by g(x)(r) = rxfor $r \in R$. The *R*-module $E = \operatorname{Hom}_k(R, D)$ is injective, and by Proposition 4.5, the *R*-module $E_{\delta} = \operatorname{Hom}_k(R, D)_{\delta}$ may be identified with $\operatorname{Hom}_{\delta}(R, D)$, and this is injective by Proposition 4.7.

Corollary 4.9. If R is an almost finite noetherian k-algebra, then the inclusion functor

$$\iota \colon \mathcal{A}^R_\delta \to \mathcal{A}^R$$

preserves injective objects.

Proof. Let I be an injective object in \mathcal{A}_{δ}^{R} . Embed I into an R-module E such that E and E_{δ} are both injective R-modules. Since I is a δ -module, I lands inside the δ -module E_{δ} . The monomorphism $I \to E_{\delta}$ in \mathcal{A}_{δ}^{R} splits as I is injective in this category, so I is a direct summand of E_{δ} in \mathcal{A}_{δ}^{R} . But as $\iota: \mathcal{A}_{\delta}^{R} \to \mathcal{A}^{R}$ is fully faithful and exact, I is also a direct summand of E_{δ} in \mathcal{A}^{R}_{δ} . Being a direct summand in an injective R-module, the R-module I is itself injective.

5. Hochschild cohomology and δ -cohomology

Cosimplicial k-modules. If $A = \{A^n\}_{n\geq 0}$ is a cosimplicial k-module, then its associated cochain complex is the graded k-module A with differential $\partial = \sum_{i} (-1)^i d^i$. The normalized cochain complex is the graded k-module $NA = \{NA^n\}$, where

$$NA^n = \bigcap_{i=0}^{n-1} \operatorname{Ker}(s^i) \subseteq A^n.$$

The cosimplicial identities ensure that NA is preserved by ∂ (however, NA is not necessarily preserved by the individual d^i). Obviously, NA is functorial in A. The inclusion $NA \to A$ is a quasi-isomorphism of cochain complexes. Therefore a map $f: A \to B$ of cosimplicial k-modules is a weak equivalence if and only if $Nf: NA \to NB$ is a quasi-isomorphism.

The Hochschild cosimplicial k-module of a k-algebra. Let R be a k-algebra and let M be an R-bimodule. The Hochschild cosimplicial k-module is the graded k-module $C^*(R; M) = {\text{Hom}_k(R^{\otimes n}, M)}_{n \geq 0}$ with coface and codegeneracy maps

By definition, the Hochschild cohomology of R with coefficients in M, $H^*(R; M)$, is the cohomology of the corresponding cochain complex. The normalized cochain

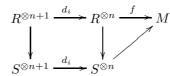
complex $NC^*(R; M)$ coincides with the classical normalized Hochschild cochain complex.

 δ -cochains. Let $C^*_{\delta}(R, M)$ denote the graded k-submodule of $C^*(R, M)$ with

$$C^n_{\delta}(R,M) = \operatorname{Hom}_{\delta}(R^{\otimes n},M)$$

Proposition 5.1. If $f \in \text{Hom}_{\delta}(R^{\otimes n}, M)$, then $d^{i}f \in \text{Hom}_{\delta}(R^{\otimes n+1}, M)$ for $i = 1, 2, \ldots, n-1$ and $s^{j}f \in \text{Hom}_{\delta}(R^{\otimes n-1}, M)$ for all j.

Proof. Note that for 0 < i < n, $d^i f = f \circ d_i$, where $d_i \colon \mathbb{R}^{\otimes n+1} \to \mathbb{R}^{\otimes n}$ sends $r_0 \otimes \ldots \otimes r_n$ to $r_0 \otimes \ldots \otimes r_{i-1}r_i \otimes \ldots r_n$. Suppose f factors as $\mathbb{R}^{\otimes n} \to S^{\otimes n} \to M$, where the first map is induced by a surjective homomorphism $\mathbb{R} \to S$ onto a k-finite algebra S, as in Proposition 2.4. The map d_i is natural in k-algebras, so the diagram



commutes, and yields a factorization of $d^i f = f \circ d_i$ of the required type.

One proceeds similarly for the codegeneracies by noting that $s^j f = f \circ s_j$, where $s_j \colon \mathbb{R}^{\otimes n-1} \to \mathbb{R}^{\otimes n}$ is the map, natural in \mathbb{R} , sending $r_1 \otimes \ldots \otimes r_{n-1}$ to $r_1 \otimes \ldots \otimes r_i \otimes 1 \otimes r_{i+1} \otimes \ldots \otimes r_{n-1}$.

Proposition 5.2. Suppose that M is a left δ -module over R. Then $d^0 f$ is a δ -map whenever f is one. Similarly, if M is a right δ -module over R, then $d^n f$ is a δ -map if f is one.

Proof. Let $J \subseteq R^{\otimes n}$ be a cofinite ideal contained in Ker f. The kernel of $d^0 f$ contains the ideal $K = \operatorname{Ann}(\operatorname{Im} f) \otimes R^{\otimes n} + R \otimes J$ of $R^{\otimes n+1}$, and

$$R^{\otimes n+1}/K \cong \frac{R}{\operatorname{Ann}(\operatorname{Im} f)} \otimes \frac{R^{\otimes n}}{J}.$$

But Im f is a finite k-submodule of M, so as M is a δ -module, Ann(Im f) is a cofinite ideal, by Proposition 3.1. Therefore, both factors above are k-finite, so K is cofinite.

The second part of the proposition is proved in the same way.

By Proposition 3.9, a δ -bimodule over R, i.e. a δ -module over $R^e = R \otimes R^{op}$, is the same thing as a bimodule over R which is simultaneously a left and right δ -module over R, so we have the following corollary.

Corollary 5.3. If M is a δ -bimodule over R, then $C^*_{\delta}(R, M)$ is a cosimplicial submodule of $C^*(R, M)$.

Definition 5.4. Let M be a δ -bimodule over R. The δ -cohomology of R with coefficients in M, $\mathrm{H}^*_{\delta}(R, M)$, is the cohomology of the cosimplicial k-module $C^*_{\delta}(R, M)$,

$$\mathrm{H}^{n}_{\delta}(R,M) = \mathrm{H}^{n}(C^{*}_{\delta}(R,M))$$

The inclusion $C^*_{\delta}(R, M) \subseteq C^*(R, M)$ induces a map of graded k-modules

$$\mathrm{H}^*_{\delta}(R,M) \to \mathrm{H}^*(R,M)$$

One might ask under what circumstances this map is an isomorphism.

For $m \in M$, $\partial_0(m)$ is the map $R \to M$ given by $\partial_0(m)(r) = rm - mr$. Since M is a δ -bimodule, $\partial_0(m)$ is always a δ -map. Therefore we always have

$$\mathrm{H}^{0}_{\delta}(R,M) = \mathrm{H}^{0}(R,M) = \{m \in M \mid rm = mr \text{ for all } r \in R\}.$$

 δ -derivations and H¹. The δ -cocycles of degree 1 are precisely the δ -derivations, i.e., the δ -maps $d: R \to M$ satisfying

$$d(rs) = rd(s) + d(r)s.$$

The 1-coboundaries are the inner derivations $r \mapsto rm - mr$, and since all these are δ -maps, the map $\mathrm{H}^{1}_{\delta}(R, M) \to \mathrm{H}^{1}(R, M)$ is injective, and it is surjective if and only if all derivations $d \colon R \to M$ are δ -derivations.

Lemma 5.5. A derivation $d: R \to M$ is a δ -derivation if and only if the k-module Im d is finitely generated.

Proof. Let $d: R \to M$ be a derivation. Clearly, if d is δ -map, then $\operatorname{Im} d$ is k-finite. Conversely, since (sdr)(x) = d(rxs) = d(r)xs + rd(x)s + rxd(s) for any $r, s, x \in R$, there is an inclusion of k-modules

$$\operatorname{Ann}^{b}(\operatorname{Im} d) \cap \operatorname{Ker} d \subseteq J_{d},$$

with J_d as in Proposition 2.2. If $\operatorname{Im} d$ is k-finite, then $\operatorname{Ker} d$ is cofinite, and so is $\operatorname{Ann}^b(\operatorname{Im} d)$, because M is a δ -module. Hence J_d is also cofinite.

Proposition 5.6. Let $\phi: R \to S$ be a surjective homomorphism of k-algebras. Suppose that the natural map $\mathrm{H}^{1}_{\delta}(R; M) \to \mathrm{H}^{1}(R; M)$ is an isomorphism for all δ -bimodules M over R. Then $\mathrm{H}^{1}_{\delta}(S; M) \to \mathrm{H}^{1}(S; M)$ is an isomorphism for all δ -bimodules M over S.

Proof. Let $d: S \to M$ be a derivation into a δ -bimodule M over S. By pullback along ϕ , M is a δ -modules over R. Hence, by the assumption on R, the derivation $d \circ \phi: R \to M$ is a δ -derivation, i.e., $\operatorname{Im} d \circ \phi$ is k-finite. But $\operatorname{Im} d = \operatorname{Im} d \circ \phi$ as ϕ is surjective, so d is a δ -derivation.

Proposition 5.7. If R is a finitely generated k-algebra then $\mathrm{H}^{1}_{\delta}(R, M) \to \mathrm{H}^{1}(R, M)$ is an isomorphism for any δ -bimodule M.

Proof. Let x_1, \ldots, x_n be algebra generators for R and let $d: R \to M$ be a derivation into a δ -bimodule. We have to show that Im d is k-finite. The bi-submodule L of M generated by Im d is finitely generated. Indeed, it is generated by the elements $d(x_1), \ldots, d(x_n)$. Being a sub-bimodule of a δ -bimodule, L is therefore k-finite, which implies that Im $d \subseteq L$ is k-finite. \Box

Example 5.8. Let $R = k[x_1, x_2, \ldots]$ and let M be the R-module $\mathfrak{m}/\mathfrak{m}^2$, where \mathfrak{m} is the ideal generated by all indeterminates x_1, x_2, \ldots . It is easily seen that M is a δ -module. The derivation $d: R \to M$ defined by letting $d(x_i)$ be the image of x_i under the projection $\mathfrak{m} \to \mathfrak{m}/\mathfrak{m}^2$ is not a δ -derivation because its image is not k-finite. This gives an example of a pair (R, M) where $\mathrm{H}^1_{\delta}(R, M) \to \mathrm{H}^1(R, M)$ is not an isomorphism.

6. Preservation of filtered colimits

Definition 6.1. For any k-algebra R, let Q_R^k denote the opposite category to the category of k-finite algebra quotients of R. The objects are surjective homomorphisms of k-algebras $R \to S$ and a morphism from $R \to S$ to $R \to S'$ is a homomorphism of k-algebras $S' \to S$ such that the diagram below commutes.

By taking kernels, Q_R^k is isomorphic to the set \mathcal{I}_R^k of cofinite two-sided ideals in R partially ordered by reverse inclusion. Sums and intersections of cofinite ideals remain cofinite. In particular the category Q_R^k is both filtered and cofiltered.

Proposition 6.2. Let N be a k-module and let $n \ge 1$. The natural map

 $\varinjlim_{I} \operatorname{Hom}_{k}((R/I)^{\otimes n}, N) \to \operatorname{Hom}_{\delta}(R^{\otimes n}, N)$

is an isomorphism, where the colimit is over the filtered system of cofinite two-sided ideals in R.

Proof. This is merely a reformulation of Proposition 2.4. Namely, a map $f: \mathbb{R}^{\otimes n} \to N$ is a δ -map if and only if it factors as $\mathbb{R}^{\otimes n} \to S^{\otimes n} \to N$, for some k-finite quotient algebra S of R.

Let M be a δ -bimodule over R. For every inclusion of cofinite two-sided ideals $I \subseteq J$ in R, we have a map $C^*_{\delta}(R/J, M^J) \to C^*_{\delta}(R/I, M^I)$ of cosimplicial k-modules obtained as the composite $C^*_{\delta}(R/J, M^J) \to C^*_{\delta}(R/I, M^J) \to C^*_{\delta}(R/I, M^I)$ of the maps induced by the homomorphism $R/I \to R/J$ and the inclusion $M^J \subseteq M^I$ of δ -modules over R/I. This defines a functor $I \mapsto C^*_{\delta}(R/I, M^I)$ from the filtered system of cofinite two-sided ideals of R to cosimplicial k-modules. By the same token, we have compatible maps $C^*_{\delta}(R/I, M^I) \to C^*_{\delta}(R, M)$ and hence an induced map

$$\lim_{I} C^*_{\delta}(R/I, M^I) \to C^*_{\delta}(R, M).$$

Proposition 6.3. Let M be a δ -bimodule. The canonical map

$$\lim_{I \to 0} C^*_{\delta}(R/I, M^I) \to C^*_{\delta}(R, M)$$

is an isomorphism. The colimit is over the filtered system of cofinite two-sided ideals in R.

Proof. In degree n, the map is the natural one

$$\varinjlim_{I} \operatorname{Hom}_{k}((R/I)^{\otimes n}, M^{I}) \longrightarrow \operatorname{Hom}_{\delta}(R^{\otimes n}, M) .$$

We wish to show that it is an isomorphism.

As in Section 3, the δ -bimodule M is the filtered union $\cup_J M^J$. If $I \subseteq R$ is cofinite, then $(R/I)^{\otimes n}$ is k-finite, so $\operatorname{Hom}_k((R/I)^{\otimes n}, -)$ commutes with filtered colimits. Therefore we have a chain of natural isomorphisms, the first one coming from Proposition 6.2

$$\operatorname{Hom}_{\delta}(R^{\otimes n}, M) \stackrel{\cong}{\leftarrow} \varinjlim_{I} \operatorname{Hom}_{k}((R/I)^{\otimes n}, \cup_{J} M^{J}) \stackrel{\cong}{\leftarrow} \varinjlim_{I} \varinjlim_{I} \operatorname{Hom}_{k}((R/I)^{\otimes n}, M^{J})$$

The colimits are indexed by the same category. For any category \mathcal{I} the diagonal functor $\mathcal{I} \to \mathcal{I} \times \mathcal{I}$ is cofinal, and thus induces isomorphisms on colimits. Therefore, we can continue our chain of isomorphisms

$$\underline{\lim}_{I} \underline{\lim}_{J} \operatorname{Hom}_{k}((R/I)^{\otimes n}, M^{J}) \stackrel{\cong}{\longleftarrow} \underline{\lim}_{I} \operatorname{Hom}_{k}((R/I)^{\otimes n}, M^{I}) .$$

Since all maps in the chain are the natural ones, the composite isomorphism is the natural map

$$\underline{\lim}_{I} \operatorname{Hom}_{k}((R/I)^{\otimes n}, M^{I}) \to \operatorname{Hom}_{\delta}(R^{\otimes n}, M).$$

Corollary 6.4. Let M be a δ -bimodule over R. For any $n \ge 0$ the canonical map $\lim_{I \to I} \operatorname{H}^n(R/I, M^I) \to \operatorname{H}^n_{\delta}(R, M)$

is an isomorphism. The colimit is indexed by the filtered system of cofinite two-sided ideals in R.

Proof. We have established an isomorphism of cochain complexes

$$\varinjlim_I C^*(R/I, M^I) \xrightarrow{\cong} C^*_{\delta}(R, M) .$$

The claim follows from the fact that cohomology commutes with filtered colimits. $\hfill \Box$

Unlike the ordinary Hom-functor, Hom_{δ} preserves filtered colimits of k-modules.

Proposition 6.5. Let $\{N_i\}_{i \in I}$ be a filtered system of k-modules. Then the canonical k-linear map

$$\lim_{k \to \infty} \operatorname{Hom}_{\delta}(R, N_i) \to \operatorname{Hom}_{\delta}(R, \lim_{k \to \infty} N_i)$$

is an isomorphism.

Proof. Observe that since k is noetherian, any finitely generated k-module S is small in the sense that the canonical map

$$\underline{\lim}_{i} \operatorname{Hom}_{k}(S, N_{i}) \to \operatorname{Hom}_{k}(S, \underline{\lim}_{i} N_{i})$$

is an isomorphism. Then, using Proposition 6.2 one only needs that colimits commute with colimits

$$\underbrace{\lim_{i \to i} \operatorname{Hom}_{\delta}(R, N_{i})}_{i} = \underbrace{\lim_{i \to i} \lim_{i \to S} \operatorname{Hom}_{k}(S, N_{i})}_{i} \\
= \underbrace{\lim_{i \to S} \lim_{i \to i} \operatorname{Hom}_{k}(S, N_{i})}_{i} \\
\cong \underbrace{\lim_{i \to S} \operatorname{Hom}_{k}(S, \underbrace{\lim_{i \to i} N_{i}})}_{i} \\
= \operatorname{Hom}_{\delta}(R, \underbrace{\lim_{i \to i} N_{i}})$$

Corollary 6.6. Let $\{M_i\}_{i \in I}$ be a filtered system of δ -bimodules over R. Then the canonical map

$$\lim \operatorname{H}^*_{\delta}(R, M_i) \to \operatorname{H}^*_{\delta}(R, \lim M_i)$$

is an isomorphism.

Proof. From the proposition it follows that the canonical map $\varinjlim_{\delta} C^*_{\delta}(R, M_i) \to C^*_{\delta}(R, \varinjlim_{I} M_i)$ is an isomorphism of cosimplicial k-modules. Since I is filtered, the functor $\lim_{K \to \infty} i$ is exact, and from this it follows that

$$\varinjlim \mathcal{H}^*_{\delta}(R, M_i) = \varinjlim \mathcal{H}^*(C^*_{\delta}(R, M)) \cong \mathcal{H}^*(\varinjlim C^*_{\delta}(R, M_i)) \cong \mathcal{H}^*_{\delta}(R, \varinjlim M_i)$$

Proposition 6.7. Let R and S be k-algebras. There is an isomorphism of k-modules

$$\operatorname{Hom}_{\delta}(R \otimes S, M) \cong \operatorname{Hom}_{\delta}(R, \operatorname{Hom}_{\delta}(S, M))$$

natural in k-modules M.

Proof. It follows from Proposition 2.3 that

 $\operatorname{Hom}_{\delta}(R \otimes S, M) = \varinjlim_{I} \operatorname{Hom}_{k}(R/I \otimes S/J, M),$

where the colimits are over cofinite ideals I and J in R and S respectively. Since R/I is k-finite the functor $\operatorname{Hom}_k(R/I, -)$ commutes with filtered colimits, so we get

$$\underbrace{\lim_{K \to J} \lim_{K \to J} \operatorname{Hom}_{k}(R/I \otimes S/J, M)}_{\cong} \cong \underbrace{\lim_{K \to J} \lim_{K \to J} \operatorname{Hom}_{k}(R/I, \operatorname{Hom}_{k}(S/J, M))}_{\cong} \operatorname{Hom}_{k}(R/I, \operatorname{Iim}_{J} \operatorname{Hom}_{k}(S/J, M))$$
$$\cong \operatorname{Hom}_{\delta}(R, \operatorname{Hom}_{\delta}(S, M))$$

Definition 6.8. A k-algebra R is called *nice* if it there is a resolution of R over $R^e = R \otimes R^{\text{op}}$ by finitely presented relatively free R^e -modules.

For example, a noetherian k-algebra is nice.

Proposition 6.9. Suppose that R is nice. Then for every filtered system $\{M_i\}_{i \in I}$ of R-bimodules the canonical map

$$\lim \operatorname{H}^*(R, M_i) \to \operatorname{H}^*(R, \lim M_i)$$

is an isomorphism.

Proof. If we compute $H^*(R, -) = Ext^*_{R^e/k}(R, -)$ by using a resolution of R by finitely presented relatively free R^e -modules, then the claim follows from the facts that the functor $Hom_{R^e}(P, -)$ commutes with filtered colimits if P is a finitely presented R^e -module and that homology commutes with filtered colimits. \Box

7. δ -cohomology as a derived functor

It is useful to know when short exact sequences of coefficient modules give rise to long exact sequences in cohomology. For ordinary Hochschild cohomology, this happens when R is projective as a k-module. The corresponding notion for δ cohomology is that of a δ -projective algebra.

Definition 7.1. A k-algebra R is called δ -projective if for any surjective map of k-modules $f: M \to N$, the induced map $f_*: \operatorname{Hom}_{\delta}(R, M) \to \operatorname{Hom}_{\delta}(R, N)$ is surjective.

Proposition 7.2. If R and S are δ -projective then so is $R \otimes S$ and R^{op} . In particular, if R is δ -projective, then so is R^e and $R^{\otimes n}$ for all $n \ge 1$.

Proof. That R is δ -projective means that the functor $\operatorname{Hom}_{\delta}(R, -)$ is exact. Proposition 6.7 identifies $\operatorname{Hom}_{\delta}(R \otimes S, -)$ with the composite $\operatorname{Hom}_{\delta}(R, \operatorname{Hom}_{\delta}(S, -))$.

There is a natural isomorphism $\operatorname{Hom}_{\delta}(R^{op}, M) \cong \operatorname{Hom}_{\delta}(R, M)$, because if $I \subseteq R$ is a cofinite two-sided ideal then so is $I^{op} \subseteq R^{op}$ and $R/I \cong R^{op}/I^{op}$ as k-modules.

Definition 7.3. A k-algebra R is called *strongly* δ -*projective* if every surjection of k-algebras $R \to S$, where S is k-finite, factors into surjective homomorphisms of k-algebras $R \to Q \to S$ where Q is k-finite and projective as a k-module.

Clearly, strongly δ -projective implies δ -projective. If R is strongly δ -projective, then so is $R^{\otimes n}$. Indeed, any surjection $R^{\otimes n} \to S$ where S is k-finite factors through $Q^{\otimes n}$ for some k-finite projective quotient algebra Q of R, and then $Q^{\otimes n}$ is also k-finite and projective.

Example 7.4. If $p(x) \in k[x]$ is a monic polynomial, then k[x]/(p(x)) is a finitely generated free k-module. Also, an ideal $I \subseteq k[x]$ is cofinite if and only if it contains a monic polynomial. Indeed, the sequence of k-submodules $\langle 1 \rangle_k \subseteq \langle 1, \alpha \rangle_k \subseteq \langle 1, \alpha, \alpha^2 \rangle_k \subseteq \ldots \subseteq k[x]/I$, where $\alpha = x + I$, must stabilize as k is noetherian. Therefore, $\alpha^n = a_{n-1}\alpha^{n-1} + \ldots + a_1\alpha + a_0$ for some $a_i \in k$, so that I contains the polynomial $x^n - a_{n-1}\alpha^{n-1} - \ldots - a_0$.

The polynomial algebra k[x] is strongly δ -projective, because an ideal $I \subseteq k[x]$ is cofinite if and only if it contains a monic polynomial. The quotient of k[x] by such a polynomial is a finitely generated free k-module.

For δ -projective algebras R, we will interpret $\mathrm{H}^{n}_{\delta}(R, -)$ as the n^{th} right derived functor $R^{n} \mathrm{H}^{0}(R, -)$ on the category $\mathcal{A}^{R^{e}}_{\delta}$ of δ -bimodules over R.

Proposition 7.5. Suppose R is δ -projective. Then the functors $\operatorname{H}^n_{\delta}(R,-)$ form a universal cohomological δ -functor from $\mathcal{A}^{R^e}_{\delta}$ to \mathcal{A}^k .

Proof. By Proposition 7.2 each $R^{\otimes n}$ is δ -projective. If we have a short exact sequence $0 \to M' \to M \to M'' \to 0$ of δ -bimodules over R, we therefore get a short exact sequence of cosimplicial k-modules

$$0 \to C^*_{\delta}(R; M') \to C^*_{\delta}(R; M) \to C^*_{\delta}(R; M'') \to 0$$

This in turn induces the required long exact sequence in cohomology in the usual way

$$\cdots \to \mathrm{H}^{n-1}_{\delta}(R; M'') \to \mathrm{H}^{n}_{\delta}(R; M') \to \mathrm{H}^{n}_{\delta}(R; M) \to \mathrm{H}^{n}_{\delta}(R; M'') \to \cdots$$

To prove universality, we show that $\mathrm{H}^{n}_{\delta}(R, -)$ is effaceable for every $n \geq 1$. Let M be a δ -bimodule. Embed M in an injective R-bimodule J. Then M is a submodule of J_{δ} . By the bimodule version of Proposition 3.8 we have $(J_{\delta})^{I} = J^{I}$, if I is a cofinite two-sided ideal in R. Since $(-)^{I} \colon \mathcal{A}^{R^{e}} \to \mathcal{A}^{(R/I)^{e}}$ is right adjoint to the exact forgetful functor, it takes injectives to injectives. Hence, $(J_{\delta})^{I} = J^{I}$ is an injective R/I-bimodule for every cofinite two-sided ideal $I \subseteq R$. Therefore, $\mathrm{H}^{n}(R/I, (J_{\delta})^{I}) = 0$ for $n \geq 1$, so by Corollary 6.4

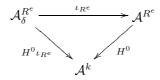
$$\operatorname{H}^{n}_{\delta}(R, J_{\delta}) \cong \operatorname{\underline{\lim}}_{I} \operatorname{H}^{n}(R/I, (J_{\delta})^{I}) = 0$$

for all $n \geq 1$.

Remark 7.6. Since $\operatorname{Hom}_{\delta}(R^{\otimes n}, -)$ is an additive functor it preserves k-split short exact sequences. Therefore, one obtains long exact sequences in δ -cohomology from k-split short exact sequences of δ -bimodules without any assumption on R.

Since $\mathcal{A}_{\delta}^{R^{e}}$ has enough injectives by Corollary 3.6, we conclude that $\mathrm{H}_{\delta}^{n}(R, -)$ is the n^{th} right derived functor of the restriction of the functor $H^{0}: \mathcal{A}^{R} \to \mathcal{A}^{k}$, $M \mapsto \{x \in M \mid rx = xr \text{ for all } r \in R\}$, to the category \mathcal{A}_{δ}^{R} . We state this as a proposition.

Proposition 7.7. Let R be a k-algebra. Consider the following diagram of additive functors between abelian categories.



The right derived functors of H^0 are the Hochschild cohomology functors,

$$R^n(H^0)(M) = \mathrm{H}^n(R; M).$$

If R is δ -projective, then the right derived functors of the restriction $H^0\iota_{R^e}$ of H^0 to $\mathcal{A}^{R^e}_{\delta}$ are given by

$$R^n(H^0\iota_{R^e})(M) = \mathrm{H}^n_{\delta}(R;M).$$

In other words, $R^*(H^0\iota_R)$ may be computed as the cohomology of the cochain complex $C^*_{\delta}(R; M)$ of δ -cochains. Furthermore, the natural transformation $R(H^0\iota_{R^e}) \rightarrow R(H^0)R(\iota_{R^e})$ of triangulated functors $\mathcal{D}^{\geq 0}(\mathcal{A}^{R^e}_{\delta}) \rightarrow \mathcal{D}^{\geq 0}(\mathcal{A}^k)$ induces for each δ bimodule M a map in cohomology

$$\mathrm{H}^*_{\delta}(R; M) \to \mathrm{H}^*(R; M)$$

which may be identified with the map induced in cohomology by the inclusion of cochain complexes $C^*_{\delta}(R; M) \to C^*(R; M)$.

Definition 7.8. A k-algebra R is called *stable* if the inclusion functor $\iota_R \colon \mathcal{A}^R_{\delta} \to \mathcal{A}^R$ preserves injective objects.

Corollary 4.9 says that almost finite noetherian k-algebras are stable. We will see later that any commutative noetherian k-algebra is stable.

Corollary 7.9. Suppose that R is a δ -projective k-algebra whose enveloping algebra R^e is stable. Then the natural map $\operatorname{H}^n_{\delta}(R; M) \to \operatorname{H}^n(R; M)$ is an isomorphism for all δ -bimodules M over R.

8. Change of ground ring

Let $\phi: k \to l$ be a homomorphism of commutative rings. Any *l*-module is a *k*-module by pullback along ϕ . In particular *l* is a *k*-module. If *R* is a *k*-algebra, then R_l denotes the *l*-algebra $l \otimes_k R$. There is a natural homomorphism of *k*-algebras $j = \phi \otimes 1: R = k \otimes_k R \to R_l$. If *M* is an *R*-bimodule then $M_l = l \otimes_k M$ is an R_l -bimodule. There is a functor $Q_R^k \to Q_{R_l}^l$ acting on objects in the obvious way: a surjection $R \to S$ is sent to the surjection $R_l \to S_l$. It is a classical result that

$$\mathrm{H}_{k}^{*}(R,M) \cong \mathrm{H}_{l}^{*}(R_{l},M)$$

for any R_l -bimodule M. A natural question is what happens for δ -cohomology.

Proposition 8.1. Let $k \to l$ be a homomorphism of commutative rings. There is an inclusion of *l*-modules

$$\operatorname{Hom}_{\delta k}(R,N) \subset \operatorname{Hom}_{\delta l}(R_l,N)$$

natural in *l*-modules N. The following are equivalent:

- $\operatorname{Hom}_{\delta,k}(R,N) = \operatorname{Hom}_{\delta,l}(R_l,N)$ for all *l*-modules N.
- Every l-cofinite ideal of R_l pulls back to a k-cofinite ideal of R along the natural map $R \to R_l$. • The functor $Q_R^k \to Q_{R_l}^l$ is cofinal.

Proof. The inclusion is defined by sending a δ_k -map $f: R \to N$ to the *l*-linear map $f_l: R_l \to N$ given by $f_l(\lambda \otimes r) = \lambda f(r)$. It is clear that f_l is a δ_l -map because a factorization $R \to S \to N$ of f yields a factorization $R_l \to S_l \to N$ of f_l , and S k-finite implies S_l l-finite. We always have that $f_l \circ j = f$, so it is clear $f \mapsto f_l$ is injective. We have equality if and only if $g \circ j$ is a δ_k -map whenever $g: R_l \to N$ is a δ_l -map. Now, in the case of equality, let $I \subseteq R_l$ be an *l*-cofinite ideal. Then the projection $f: R_l \to R_l/I$ is a δ_l -map, so by assumption $g = f \circ j$ is a δ_k -map. Hence $j^{-1}(I) = \text{Ker } g$ is k-cofinite in R. Conversely, assume that l-cofinite ideals of R_l pull back to k-cofinite ideals of R. Let $f: R_l \to N$ be a δ_l -map. We must show that $f \circ j$ is a δ_k -map, i.e., we need to find a k-cofinite ideal of R on which $f \circ j$ vanishes. But the ideal $j^{-1}(I)$, which is cofinite by assumption, will do.

For the equivalence of the second and third statements, if we interpret Q_B^k as the set of k-cofinite ideals of R partially ordered by reverse inclusion, and similarly for $Q_{R_l}^l$, then the functor $Q_R^k \to Q_{R_l}^l$ is given by mapping a k-cofinite ideal $I \subseteq R$ to the extension of I, i.e., the ideal I_l generated by j(I). In this setup, cofinality is equivalent to the statement that every *l*-cofinite ideal J in R_l contains the extension of some k-cofinite ideal $I \subseteq R$. But if $j^{-1}(J)$ is k-cofinite for every such J, then J contains the extended ideal $(j^{-1}(J))_l$. Conversely, if every *l*-cofinite J contains the extension of a k-cofinite I, then $j^{-1}(J) \supseteq j^{-1}(I_l) \supseteq I$, implying that $j^{-1}(J)$ is k-cofinite. \square

Proposition 8.2. Suppose that the equivalent conditions of Proposition 8.1 are satisfied and that in addition l is flat as a k-module. Then for any k-module N, there is an isomorphism of *l*-modules

 $l \otimes_k \operatorname{Hom}_{\delta,k}(R,N) \to \operatorname{Hom}_{\delta,l}(R_l,N_l).$

Proof. If S is k-finite, then it is finitely presented as a k-module, and hence the map $l \otimes_k \operatorname{Hom}_k(S, N) \to \operatorname{Hom}_l(S_l, N_l)$ is an isomorphism as l is flat as a k-module. Since tensor products commute with filtered colimits, we have a sequence of isomorphisms

$$\begin{split} l \otimes_k \operatorname{Hom}_{\delta,k}(R,N) &\cong l \otimes_k \varinjlim_S \operatorname{Hom}_k(S,N) \cong \varinjlim_S l \otimes_k \operatorname{Hom}_k(S,N) \\ &\cong \varinjlim_S \operatorname{Hom}_l(S_l,N_l) \cong \varinjlim_{S'} \operatorname{Hom}_l(S',N_l) = \operatorname{Hom}_{\delta,l}(R_l,N_l). \end{split}$$

Here the colimits are over $S \in Q_R^k$ and $S' \in Q_{R_l}^l$. The second to last isomorphism changing the index category comes from the fact that the functor $Q_R^k \to Q_{R_l}^l$ is cofinal, by Proposition 8.1, and hence induces an isomorphism on colimits.

Example 8.3. • The conditions in Proposition 8.1 are fulfilled when l is k-finite.

• The conditions are not fulfilled for $R = \mathbb{Z}[x]$ and $k \to l$ being the inclusion of \mathbb{Z} into \mathbb{Q} . For instance, the \mathbb{Q} -cofinite ideal of $\mathbb{Q}[x]$ generated by x - 1/2pulls back to the ideal in $\mathbb{Z}[x]$ generated by 2x - 1, but this ideal is not \mathbb{Z} -cofinite.

Proposition 8.4. Let $k \to l$ be a homomorphism of commutative rings satisfying the conditions of Proposition 8.1. Then for any $n \ge 0$ there is an isomorphism of l-modules $\mathrm{H}^{n}_{\delta,k}(R, M) \to \mathrm{H}^{n}_{\delta,l}(R_{l}, M)$ natural in δ -bimodules M over R_{l} that fit in a commutative diagram

$$\begin{array}{c} \operatorname{H}^{n}_{\delta,k}(R,M) \xrightarrow{\cong} \operatorname{H}^{n}_{\delta,l}(R_{l},M) \\ & \downarrow \\ & \downarrow \\ \operatorname{H}^{n}_{k}(R,M) \xrightarrow{\cong} \operatorname{H}^{n}_{l}(R_{l},M) \end{array}$$

Proof. Note that $(R_l)^{\otimes_l n} \cong (R^{\otimes n})_l$. Therefore, we get isomorphisms

 $\operatorname{Hom}_{\delta,k}(R^{\otimes n}, M) \to \operatorname{Hom}_{\delta,l}((R_l)^{\otimes_l n}, M)$

for all n by Proposition 8.1, and it is clear that these isomorphisms are compatible with the coface and codegeneracy maps, which means that we have an isomorphism of cosimplicial *l*-modules $C^*_{\delta,k}(R,M) \to C^*_{\delta,l}(R_l,M)$. This isomorphism sits inside a commutative diagram of cosimplicial *l*-modules

Now apply cohomology.

9. δ -cohomology of polynomial algebras

We will show that the Hochschild cohomology $\mathrm{H}^*(k[x], M)$ of the polynomial algebra k[x], with coefficients in any δ -bimodule M, may be computed using δ cochains, i.e., we will show that the map $\mathrm{H}^*_{\delta}(k[x], M) \to \mathrm{H}^*(k[x], M)$ is an isomorphism. This will be done by reduction to the case when M = k, and in this case by an explicit calculation.

The next proposition follows immediately from Proposition 2.4 and the description of cofinite ideals in k[x].

Proposition 9.1. Let N be any k-module. There is an isomorphism of k-modules

$$\operatorname{Hom}_{k}(k[x_{1},\ldots,x_{n}],N)\cong N[\![z_{1},\ldots,z_{n}]\!]$$

given by mapping a k-linear map $f: k[x_1, \ldots, x_n] \to N$ to the series

$$S_f = \sum_{\alpha \in \mathbb{N}^n} f(x^\alpha) z^\alpha.$$

Here $x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$ and $z^{\alpha} = z_1^{\alpha_1} \dots z_n^{\alpha_n}$. Furthermore, f is a δ -map if and only if there is a polynomial $q(z) \in k[z]$ with q(0) = 1 such that $q(z_1) \dots q(z_n)S_f \in N[z_1, \dots, z_n]$.

18

A series of the form S_f for some δ -map f will be called a δ -series.

We will now study the cosimplicial k-module $C^*_{\delta}(k[x], k)$, where k is considered a k[x]-bimodule via $x \cdot 1 = c_l$ and $1 \cdot x = c_r$ for some $c_l, c_r \in k$. If one traces the coface and codegeneracy maps through the isomorphism of Proposition 9.1 then one gets the following description of $C^*(k[x], k)$:

For compactness of notation, write $P_{i_1...i_n} = P(z_{i_1},...,z_{i_n})$ if P is a formal power series in n indeterminates. The component in degree n is the k-module $C^n(k[x], k) = k[\![z_1, \ldots, z_n]\!]$, and the coface and codegeneracy maps

$$d^{i} \colon C^{n-1}(k[x], k) \to C^{n}(k[x], k), \quad s^{i} \colon C^{n+1}(k[x], k) \to C^{n}(k[x], k)$$

for $0 \leq i \leq n$ are given by

$$d^{0}(S)_{12...n} = \frac{S_{23...n}}{1 - c_{l}z_{1}}$$

$$d^{i}(S)_{12...n} = \frac{z_{i}S_{12...\hat{i}+1...n} - z_{i+1}S_{12...\hat{i}...n}}{z_{i} - z_{i+1}}$$

$$d^{n}(S)_{12...n} = \frac{S_{12...(n-1)}}{1 - c_{r}z_{n}}$$

$$s^{i}(T)_{12...n} = T(z_{1},...,z_{i},0,z_{i+1},...,z_{n})$$

Let $\Pi(z_1,\ldots,z_n)$ be the polynomial

$$(1-c_l z_1)(z_1-z_2)(z_2-z_3)\dots(z_{n-1}-z_n)(1-c_r z_n).$$

Proposition 9.2. Let $S \in k[\![z_1, \ldots, z_{n-1}]\!]$. Then

(1)
$$\partial(S)_{12...n} = \frac{\sum_{i=1}^{n} (-1)^{i-1} z_i (\Pi S)_{12...\hat{i}...n}}{\prod_{12...n}}$$

Proof. Elementary calculation.

Proposition 9.3. The natural map $\operatorname{H}^{n}_{\delta}(k[x], k) \to \operatorname{H}^{n}(k[x], k)$ is an isomorphism for all $n \geq 0$.

Proof. By Proposition 5.7 the map $\mathrm{H}^{i}_{\delta}(k[x], k) \to \mathrm{H}^{i}(k[x], k)$ is an isomorphism for i = 0, 1. For notational convenience, write $A = C^{*}(k[x], k)$ and $B = C^{*}_{\delta}(k[x], k)$.

Clearly, $\operatorname{Ker}(s^i \colon A^n \to A^{n-1})$ is the ideal generated by z_{i+1} , for $i = 0, 1, \ldots, n-1$. Therefore the normalized cochain complex NA of A is in degree n the submodule of series S of the form $S = z_1 \ldots z_n P$ for some series P. The *n*-cochains S of NB have the same description but with P a δ -series.

Let S be an (n-1)-cocycle of NA, where $n \ge 3$, say $S = z_1 \dots z_{n-1}P$. Then from (1) we see that

$$0 = (\Pi \partial S)_{12...n} = \sum_{i=1}^{n} (-1)^{i-1} z_i (\Pi S)_{12...\hat{i}...n}$$
$$= \sum_{i=1}^{n} (-1)^{i-1} z_1 \dots z_n (\Pi P)_{12...\hat{i}...n},$$

which is equivalent to

$$\sum_{i=1}^{n} (-1)^{i-1} (\Pi P)_{12\dots\hat{i}\dots n} = 0.$$

Setting $z_n = 0$ in this equality of formal power series, we obtain

$$\sum_{i=1}^{n-1} (-1)^{i-1} (\Pi P)(z_1, \dots, \hat{z}_i, \dots, z_{n-1}, 0) + (-1)^{n-1} (\Pi P)(z_1, \dots, z_{n-1}) = 0,$$

and multiplying this with $z_1 \ldots z_{n-1}$ we get

$$(-1)^{n}(\Pi S)_{12\dots(n-1)} = \sum_{i=1}^{n-1} (-1)^{i-1} z_{1}\dots z_{n-1}(\Pi P)(z_{1},\dots,\hat{z}_{i},\dots,z_{n-1},0)$$
$$= \sum_{i=1}^{i-1} (-1)^{i-1} z_{i} Q_{12\dots\hat{i}\dots(n-1)}$$
$$= (\Pi \partial Q)_{12\dots(n-1)},$$

where $Q(z_1, \ldots, z_{n-2}) = z_1 \ldots z_{n-2}(\prod P)(z_1, \ldots, z_{n-2}, 0)$. Hence $S = \partial((-1)^n Q)$ is a coboundary. We have now shown by hand that $\operatorname{H}^n(NA) = 0$ for $n \ge 2$. This is of course no surprise and it could be shown in a few lines. The point however is the explicit description of the cochain $(-1)^n Q$ whose coboundary is the given cocycle S. The apparent but crucial observation is the following: If $S \in NB^{n-1}$, then

$$P(z_1, \dots, z_{n-1}) = \frac{p(z_1, \dots, z_{n-1})}{q(z_1) \dots q(z_{n-1})}$$

for polynomials p, q with coefficients in k and q(0) = 1, and it follows that

$$Q(z_1, \dots, z_{n-2}) = z_1 \dots z_{n-2} \frac{(\Pi p)(z_1, \dots, z_{n-2}, 0)}{q(z_1) \dots q(z_{n-2})}$$

so that $Q \in NB^{n-1}$. Therefore, we see that $H^n(NB) = 0$ for $n \ge 2$. We conclude that the inclusion $B \to A$ induces an isomorphism in cohomology.

Remark 9.4. Actually, the graded subspace $C = \{k[z_1, \ldots, z_n]\}_{n\geq 0}$ of A is preserved by the coface and codegeneracy maps, and one sees that if S is a polynomial (n-1)-cocycle then the cochain $(-1)^n Q$ whose coboundary is S is also a polynomial. So the inclusion $C \to A$ is a weak equivalence by the same argument.

Proposition 9.5. Let M be any δ -bimodule over k[x]. The natural map

$$\mathrm{H}^{n}_{\delta}(k[x], M) \to \mathrm{H}^{n}(k[x], M)$$

is an isomorphism for all n.

Proof. We will use the machinery developed so far to reduce to the case when M = k.

The δ -module M is a filtered colimit, $\varinjlim_i M_i$, of k-finite k[x]-bimodules M_i . For each $n \geq 0$, we have a commutative diagram

$$\underbrace{\lim_{i \to i} H^n_{\delta}(k[x], M_i) \longrightarrow H^n_{\delta}(k[x], M)}_{\lim_{i \to i} H^n(k[x], M_i) \longrightarrow H^n(k[x], M)}$$

The top horizontal map is an isomorphism by Corollary 6.6 and since k[x] is nice, the bottom map is also an isomorphism. Therefore the right map is an isomorphism if and only if the left one is. But this is induced by the natural maps $\mathrm{H}^n_{\delta}(k[x], M_i) \to$ $\mathrm{H}^n(k[x], M_i)$. Thus, we have reduced to the case when M is a k-finite R-bimodule.

If M is k-finite, then M is certainly finitely generated as an k[x]-bimodule. Let m(M) denote the minimal number of bimodule generators for M. Suppose m(M) = r and let x_1, \ldots, x_r be bimodule generators for M. Let N be the bisubmodule of M generated by x_r . Then we have a short exact sequence of k[x]-bimodules

$$0 \to N \to M \to M/N \to 0$$

where N and M/N are k-finite, m(N) = 1, and $m(M/N) \le r - 1$, since M/N can be generated by the images of x_1, \ldots, x_{r-1} in M/N.

Since k[x] is both projective and strongly δ -projective, any short exact sequences of k[x]-bimodules $0 \to M' \to M \to M'' \to 0$ gives rise to a ladder with exact rows

It follows from the 5-lemma that if the maps from δ -cohomology to cohomology with coefficients in M' and M'' are isomorphisms, then so are the maps $\mathrm{H}^n_{\delta}(k[x], M) \to \mathrm{H}^n(k[x], M)$.

Therefore, by induction on m(M), we may reduce to the case m(M) = 1, i.e., to the case of k-finite cyclic k[x]-bimodules. A bimodule over k[x] is the same thing as a left module over $k[x] \otimes k[x]^{\text{op}} \cong k[x, y]$, so a k-finite cyclic k[x]-bimodule is of the form M = k[x, y]/I for some cofinite ideal $I \subseteq k[x, y]$, where x acts as multiplication by x from the left and multiplication by y from the right. Now for the twist. Not only is k[x, y]/I a k[x]-bimodule, but it is also a commutative noetherian k-algebra, which we may denote by l. Now, l is an l[x]-bimodule by letting x act by multiplication by α to the left and by multiplication by β to the right, where $\alpha = x + I \in l$ and $\beta = y + I \in l$. Moreover, the l[x]-bimodule l is pulled back to the k[x]-bimodule k[x, y]/I along the homomorphism $k[x] \to l[x]$. Since l is k-finite, we have by Proposition 8.1 that the ring extension $k \to l$ induces an isomorphism

$$\operatorname{H}^{n}_{\delta k}(k[x], M) \cong \operatorname{H}^{n}_{\delta l}(l[x], l)$$

for all $n \ge 0$. Also, the base change $k \to l$ induces an isomorphism in ordinary cohomology $\operatorname{H}_{k}^{n}(k[x], M) \to \operatorname{H}_{l}^{n}(l[x], l)$ and we have a commutative diagram

$$\begin{array}{c} \mathrm{H}^{n}_{\delta,k}(k[x],M) \xrightarrow{\cong} \mathrm{H}^{n}_{\delta,l}(l[x],l) \\ \downarrow & \downarrow \\ \mathrm{H}^{n}_{k}(k[x],M) \xrightarrow{\cong} \mathrm{H}^{n}_{l}(l[x],l) \end{array}$$

The right vertical map is an isomorphism by Proposition 9.3, so it follows that the left map is an isomorphism too. $\hfill \Box$

We will now prove a similar result for $k[x, x^{-1}]$. Since $k[x, x^{-1}]$ is the group algebra of \mathbb{Z} , this can be interpreted as saying that the cohomology of the additive group \mathbb{Z} may be computed using δ -cochains.

Proposition 9.6. Let M be any δ -bimodule over $k[x, x^{-1}]$. The natural map $\mathrm{H}^{n}_{\delta}(k[x, x^{-1}], M) \to \mathrm{H}^{n}(k[x, x^{-1}], M)$ is an isomorphism for all n.

Proof. The δ -bimodule M pulls back to a δ -bimodule over k[x] via the canonical homomorphism $k[x] \to k[x, x^{-1}]$. It is classical, or in any case not hard to show, that this homomorphism induces an isomorphism $\mathrm{H}^n(k[x, x^{-1}], M) \to \mathrm{H}^n(k[x], M)$ for all n. According to Proposition 9.5 the natural map $\mathrm{H}^n_{\delta}(k[x], M) \to \mathrm{H}^n(k[x], M)$ is an isomorphism.

The map $C^*_{\delta}(k[x,x^{-1}],M) \to C^*_{\delta}(k[x],M)$ is an isomorphism. Indeed, an ideal $I \subseteq k[x,x^{-1}]$ is cofinite if and only if it contains a 'bimonic' polynomial, that is, a polynomial of the form $x^{r+1} + c_r x^r + \ldots + c_1 x + 1$. Therefore, $f : k[x,x^{-1}]^{\otimes n} \to M$ is a δ -map if and only if one can find a bimonic polynomial p(x) such that $f(q_1(x),\ldots,q_n(x)) = 0$ whenever some $q_i(x)$ can be written as $q_i(x) = p(x)s(x)$ for some $s(x) \in k[x,x^{-1}]$. From this it follows that f is determined by its values on $x^{a_1} \otimes \ldots \otimes x^{a_n}$ for $a_i \in \{0,1,\ldots,r\}$. In particular, f is determined by its restriction to $k[x]^{\otimes n}$, and for similar reasons it is clear that any δ -map $f : k[x]^{\otimes n} \to M$ extends to $k[x,x^{-1}]^{\otimes n}$. This means that the map $C^*_{\delta}(k[x,x^{-1}],M) \to C^*_{\delta}(k[x],M)$ is bijective.

The claim now follows by passing to cohomology in the commutative diagram

10. The cofinite topology

In this section we will rely on results proved in [3]. See also [5].

Let R be a k-algebra. The set \mathcal{I}_R^k of cofinite ideals in R forms a fundamental system of neighborhoods of 0 for a linear topology on R, which we will call the *cofinite topology*. An R-module M is topologized by letting the open neighborhoods of 0 be the submodules $L \subseteq M$ such that M/L is a δ -module. A module is discrete in this topology if and only if it is a δ -module. Proposition 3.3 implies that the cofinite topology is a Gabriel topology (cf. [5]) provided R is noetherian. Proposition 1.3 implies that the cofinite topology is *bounded*, i.e., that it has a basis consisting of two-sided ideals.

Recall that a k-algebra R is stable if the inclusion functor $\iota_R \colon \mathcal{A}^R_{\delta} \to \mathcal{A}^R$ preserves injective objects. As a consequence of the identification of δ -modules as the discrete modules for a topology on R, we get a characterization of stable k-algebras as follows, cf. [3] Proposition V.9.

Proposition 10.1. A k-algebra R is stable if and only if for every R-module M, the subspace topology on every submodule $M' \subseteq M$ coincides with the cofinite topology on M'.

Concretely, the last condition means that whenever we have inclusions of R-modules $L' \subseteq M' \subseteq M$ such that M'/L' is a δ -module there is a submodule $L \subseteq M$ such that M/L is a δ -module and $L \cap M' = L'$.

Proposition 10.2. Commutative noetherian k-algebras are stable.

Proof. If R is noetherian, then the cofinite topology is a bounded Gabriel topology. According to [3] Proposition V.10, any bounded Gabriel topology on a commutative noetherian ring is stable, so in particular R is stable for the cofinite topology. \Box

Since polynomial algebras are δ -projective, the next corollary subsumes the results of the previous section.

Corollary 10.3. If R is a δ -projective commutative noetherian k-algebra, then the natural map $\operatorname{H}^{n}_{\delta}(R; M) \to \operatorname{H}^{n}(R; M)$ is an isomorphism for all $n \geq 0$ and all δ -bimodules M over R.

Proof. The enveloping algebra R^e of a commutative noetherian algebra R is still commutative and noetherian and hence stable. The claim now follows from Corollary 7.9.

References

- [1] H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press 1956
- T. Ekedahl, On minimal models in integral homotopy theory, The Roos Festschrift, Homology Homotopy Appl. 4 (2002), 191–218
- [3] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448
- [4] S. Mac Lane Homology, Springer-Verlag 1975
- [5] B. Stenström, Rings of quotients, Die Grundlehren der Mathematischen Wissenschaften, Band 217. Springer-Verlag 1975