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COFINITE HOCHSCHILD COHOMOLOGY

ALEXANDER BERGLUND

Abstract. First steps are taken towards a cohomology theory of associative
algebras R over a commutative noetherian ring k using ‘cofinite cochains’, or
‘δ-cochains’ as I will call them. These are defined using the subcomplex of
the Hochschild cochain complex consisting of k-linear maps from R⊗n to the
coefficient module that factor through a quotient algebra of R⊗n which is
finitely generated as a k-module. Under certain reasonable conditions on R,
it is possible to interpret cofinite cohomology, or ‘δ-cohomology’, as a derived
functor. I show that if R is a commutative noetherian k-algebra fulfilling these
conditions, then the natural map from δ-cohomology to Hochschild cohomology
is an isomorphism.

This is an attempt to extend results of [2] where it is shown that the group
cohomology H∗(G;Z) of a torsion-free finitely generated nilpotent group G

may be computed using ‘numerical cochains’. The extension is two-fold: I
consider associative algebras over a commutative noetherian ring k, as a gen-
eralization of group algebras over the integers. Secondly, numerical cochains
are replaced by the more general cofinite cochains.

The results presented here are preliminary. However, I have tried to write
the notes in an elementary and clear fashion so that anyone (including myself)
interested in developing the theory further could pick up where I left it.

Contents

1. Preliminaries 1
2. δ-maps 2
3. δ-modules 4
4. The bifunctor Homδ(M,N) 7
5. Hochschild cohomology and δ-cohomology 9
6. Preservation of filtered colimits 12
7. δ-cohomology as a derived functor 14
8. Change of ground ring 16
9. δ-cohomology of polynomial algebras 18
10. The cofinite topology 22
References 23

1. Preliminaries

Throughout, k will denote a commutative noetherian ring with 1. Unadorned
tensor products are over k. The term ‘k-algebra’ will mean ‘associative unitary
k-algebra’. If R is a k-algebra then ‘R-module’ will mean left R-module. We will
use without reference standard results of homological algebra, such as those found
in [1] or [4]. A k-module M is called finite if it is a finitely generated k-module. A
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2 ALEXANDER BERGLUND

submodule M ′ of a k-module M is called cofinite in M (or just cofinite when M is
clear from the context) if M/M ′ is finite. In this case we also say that the inclusion
is cofinite.

If A is an abelian category, then D≥0(A) will denote the derived category of
non-negative cochain complexes in A. If R is a k-algebra, then AR will denote
the abelian category of left R-modules and AR

δ will denote the abelian category of
δ-modules over R, to be defined below. We denote by Re = R⊗Rop the enveloping
k-algebra of R.

Proposition 1.1. The intersection of two cofinite submodules is cofinite.

Proof. Let I, J be cofinite submodules of M . The kernel of the map M →M/I ⊕
M/J sending x to (x + I, x+ J) is I ∩ J , so the map factors through an injection
of M/I ∩ J into M/I ⊕M/J . Since the latter is finite, so is M/I ∩ J . Here we of
course use that k is noetherian. �

Proposition 1.2. If M1 ⊆M2 ⊆M3 are inclusions of k-modules then the inclusion

M1 ⊆M3 is cofinite if and only if both the inclusions M1 ⊆M2 and M2 ⊆M3 are.

Proof. This follows from the short exact sequence

0 // M2/M1
// M3/M1

// M3/M2
// 0

�

Proposition 1.3. Let R be a k-algebra.

• If M ′ ⊆ M is a cofinite inclusion of R-modules then there is a cofinite

two-sided ideal I ⊆ R such that IM ⊆M ′.

• If M is a finitely generated R-module then the inclusion IM ⊆M is cofinite

for any cofinite ideal I ⊆ R.

• In particular, any cofinite left or right ideal in R contains a cofinite two-

sided ideal.

Proof. Let M ′′ be the k-finite R-module M/M ′. There is a surjection of k-modules
kn →M ′′ for some n, so we get an embedding Homk(M ′′,M ′′) → Homk(kn,M ′′) ∼=
(M ′′)n, showing that Homk(M ′′,M ′′) is k-finite. Let I ⊆ R be the kernel of the
homomorphism of k-algebras R→ Homk(M ′′,M ′′) sending r ∈ R to the endomor-
phism x 7→ rx of M ′′. Then I is a two-sided ideal and the induced injection of
k-modules R/I → Homk(M ′′,M ′′) shows that I is cofinite.

If M is finitely generated there is a surjection of R-modules Rn → M for some
n. If I is a cofinite ideal of R then we get a surjection (R/I)n = R/I ⊗R Rn →
R/I ⊗M ∼= M/IM , which exhibits M/IM as a k-finite module. �

2. δ-maps

Let R be a k-algebra.

Definition 2.1. Let N be a k-module. A k-linear map f : R → N is called a δ-map

if it vanishes on some two-sided cofinite ideal of R. Equivalently, f is a δ-map if it
factors through a homomorphism of k-algebras φ : R→ S where S is k-finite

R
φ

%%KKKKKK
f

// M

S

88rrrrrr
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The set of δ-maps from R to N is denoted by Homδ(R,N). Given a k-linear
map f : N → M , composition with f from the left takes δ-maps to δ-maps, so
Homδ(R,−) is a subfunctor of the functor Homk(R,−) on the category of k-
modules.

Maximal cofinite ideals. Let N be a k-module and let f : R → N be a k-linear
map. For r, s ∈ R, sfr is the map (sfr)(x) = f(rxs). The k-module

Jf =
⋂

r,s∈R

Ker(sfr)

is a two-sided ideal contained in Ker f . If f vanishes on a two-sided cofinite ideal
I, then certainly I ⊆ Jf , so Jf contains all cofinite two-sided ideals contained in
Ker f . Therefore we have the following

Proposition 2.2. f : R → N is a δ-map if and only if Jf is cofinite, and in this

case Jf is the unique maximal cofinite two-sided ideal contained in Ker f .

If R and S are k-algebras, then R⊗S is a k-algebra by (a⊗b)(c⊗d) = (ac)⊗(bd).
In particular we can form the algebra R⊗n = R⊗ . . .⊗R (n factors). Let ιm : R→
R⊗n be the natural homomorphism of k-algebras sending r to 1⊗ . . .⊗r⊗ . . .⊗1 (r
at the mth factor). If φ : R → R′ and ψ : S → S′ are homomorphisms of k-algebras,
then there is an induced homomorphism of k-algebras φ ⊗ ψ : R ⊗ S → R′ ⊗ S′,
mapping a⊗ b to φ(a) ⊗ ψ(b).

Proposition 2.3. Let R and S be k-algebras. Any cofinite ideal in R⊗S contains

an ideal of the form I ⊗ S + R⊗ J , where I and J are cofinite ideals in R and S,

respectively.

Proof. Let I ⊆ R⊗S be a cofinite ideal. Then IR = i−1
R (I) and IS = i−1

S (I), where
iR and iS are the natural homomorphisms R,S → R ⊗ S, are ideals in R and S,
respectively. The induced maps

R/IR // R⊗ S/I S/ISoo

are injective, which shows that IR and IS are cofinite. Clearly, the ideal IR ⊗ S +
R⊗ IS is contained in I. �

Proposition 2.4. A k-linear map f : R⊗n → N is a δ-map if and only if it factors

as

R⊗n

φ ''OOOOOO

f
// N

S⊗n

88qqqqqq

where S is a k-finite algebra and φ is induced by a surjective homomorphism of

algebras R→ S.

Proof. Clearly, the condition is sufficient. To show necessity, factor f as R⊗n →
Q → N , where Q is a k-finite quotient of R⊗n. Using the previous proposition
and induction, the kernel of the surjection R⊗n → Q contains an ideal of the
form

∑
i+j=n−1 R

⊗i ⊗ Ii ⊗ R⊗j where I1, . . . , In ⊆ R are cofinite ideals. Then

J = I1 ∩ . . . ∩ In is a cofinite ideal and R⊗n → Q factors as R⊗n → S⊗n → Q,
where S = R/J . �
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3. δ-modules

Let R be a k-algebra.

Proposition 3.1. The following are equivalent for an R-module M :

• M is a filtered colimit of k-finite R-modules.

• Every cyclic submodule of M is k-finite.

• Every R-finite submodule of M is k-finite.

• The annihilator of each finite k-submodule of M is a cofinite ideal.

Proof. The second and third are equivalent since an R-finite submodule is a finite
sum of cyclic submodules. If N is a finite k-submodule of M , say generated by
x1, . . . , xn, then AnnN = Annx1 ∩ . . . ∩ Annxn is cofinite because each Annxi is,
as R/Annxi

∼= Rxi. The remaining implications are left to the reader. �

Definition 3.2. An R-module M is called a δ-module over R if it satisfies the
conditions of Proposition 3.1.

If R is a k-algebra then let AR denote the abelian category of left R-modules.
Let AR

δ denote the full subcategory of AR whose objects are the δ-modules.

Proposition 3.3. AR
δ is a cocomplete abelian category. Furthermore, if R is noe-

therian then AR
δ is a Serre subcategory of AR.

Proof. As AR
δ by definition is a full subcategory of an abelian category, it suffices

to check that submodules, quotients and direct sums of δ-modules are δ-modules.
Let

0 // M ′
f

// M
g

// M ′′ // 0

be a short exact sequence of R-modules. Suppose that M is a δ-module. Then for
any x ∈ M ′, we have that Rx ∼= Rf(x) ⊆ M is k-finite, so M ′ is a δ-module. If
y ∈ M ′′, let g(x) = y. Then Rx is k-finite and the surjection g : Rx → Ry shows
that Ry is k-finite.

Let {Mi}i∈I be a family of δ-modules. If x ∈ ⊕i∈IMi then x =
∑

i∈J xi, where
xi ∈ Mi, for some finite subset J ⊆ I. Therefore, Rx is a submodule of ⊕i∈JRxi.
The latter, being a finite direct sum of k-finite R-modules, is k-finite, so Rx must
be k-finite. Hence ⊕i∈IMi is a δ-module.

Suppose now that R is noetherian. We need to show that if M ′ and M ′′ are
δ-modules in the short exact sequence above, then so is M . Let x ∈M . There is a
short exact sequence

0 // Rx ∩M ′ // Rx // Rg(x) // 0

Here Rg(x) is k-finite as g(x) ∈M ′′ and M ′′ is a δ-module. The R-module Rx∩M ′

is a submodule of the finitely generated module Rx and is therefore itself finitely
generated, since R is assumed to be noetherian. But it is also a submodule of the
δ-module M ′, so it must then be k-finite. Thus, Rx is an extension of k-finite
modules and is therefore k-finite. This proves that M is a δ-module. �

Definition 3.4. Let M be an R-module. Define

Mδ = {x ∈M | Rx is k-finite} .
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Clearly, Mδ is an R-submodule of M and it is the largest δ-submodule of M . It is
the union of all k-finite R-submodules of M . If f : M → N is a map of R-modules,
then the induced map Rx→ Rf(x) is surjective, so f(x) ∈ Nδ if x ∈Mδ. In other
words, f restricts to a map of δ-modules Mδ → Nδ, so we can regard (−)δ as a
functor from AR to AR

δ .

Proposition 3.5. The functor

(−)δ : AR → AR
δ

is right adjoint to the exact inclusion functor

ιR : AR
δ → AR.

Proof. This amounts to the fact that if M is a δ-module and N an R-module, then
any map of R-modules f : M → N factors through Nδ. �

Corollary 3.6. AR
δ has enough injectives.

Proof. If I is an injective R-module, then Iδ is an injective object of AR
δ because the

functor HomAR
δ
(−, Iδ) ∼= HomR(ιR(−), I) is the composite of two exact functors.

Thus, if M ∈ AR
δ then an embedding of M into an injective R-module I gives rise

to an embedding of M = Mδ into the injective object Iδ of AR
δ . �

Proposition 3.7. Suppose that R is noetherian. Then (M/Mδ)δ = 0 for any

R-module M .

Proof. In fact, this holds for any right adjoint of an inclusion A → B of a Serre
subcategory.

Suppose that N is a δ-submodule of M/Mδ. We need to show that N = 0.
Let π : M → M/Mδ be the projection and let L = π−1(N). Since AR

δ is a Serre
subcategory, the exact sequence

0 // Mδ
// L

π // N // 0

shows that L is a δ-module. But then applying (−)δ to the sequence of inclusions
Mδ ⊆ L ⊆M yields L = Mδ, which means that N = 0. �

One can characterize δ-modules over R as filtered colimits of k-finite R-modules.
Moreover, it is obvious that any filtered colimit of δ-modules is a δ-module. In fact,
there is yet another way to write δ-modules as filtered colimits. For a two-sided
ideal I in R, the forgetful functor

AR/I → AR

has a right adjoint,

(−)I : AR → AR/I .

If M is an R-module then

M I = {x ∈M | Ix = 0} .

This is the largest submodule of M which is a module over R/I. If I ⊆ J then
there is an obvious inclusion MJ ⊆M I .
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Proposition 3.8. Let M be an R-module. Then

Mδ = ∪IM
I ,

where the union is over the set of cofinite two-sided ideals in R. Furthermore,

(Mδ)
I = M I

for any cofinite two-sided ideal I ⊆ R.

Proof. If I is a cofinite two-sided ideal in R then M I ⊆Mδ, because for any x ∈M I

we have Rx ∼= R/Ann(x) which is k-finite as I ⊆ Ann(x). Conversely, if x ∈ Mδ

then Ann(x) is a cofinite left ideal of R. By Proposition 1.3, Ann(x) contains a
cofinite two-sided ideal I, and then x ∈M I . �

δ-bimodules. As usual, an R-bimodule is thought of as a module over the k-
algebraRe = R⊗Rop. Thus, a δ-bimodule is an object of ARe

δ . One can characterize
δ-bimodules in terms of their left and right R-module structures.

Proposition 3.9. The following are equivalent for an R-bimodule M :

• M is a δ-bimodule.

• M is simultaneously a right and left δ-module over R.

• Annb(x) = {r ∈ R | rx = xr = 0} is a cofinite k-submodule of R for each

x ∈M .

Furthermore, the right adjoint (−)δ : ARe

→ ARe

δ of the forgetful functor from R-

bimodules to δ-bimodules is given by

Mδ = {x ∈M | Rx and xR are k-finite}

Proof. Any δ-bimodule is a left and right δ-module because Rx and xR are k-
submodules of RxR for each x ∈ M , so finiteness of the latter k-module implies
finiteness of the former ones as k is assumed noetherian.

Suppose M is a left and right δ-module and let x ∈ M . Then Rx is k-finite,
say generated by x1, . . . , xn ∈ Rx ⊆ M . Each xiR is k-finite, and therefore so is
RxR = x1R+ . . .+ xnR. �

For an R-bimodule M and a two-sided ideal I of R, we set

M I = {x ∈M | Ix = xI = 0} .

This is a bimodule over R/I and the functor (−)I : ARe

→ A(R/I)e

from R-
bimodules to R/I-bimodules is right adjoint to the forgetful functor. Furthermore,
as in Proposition 3.8 we have

Mδ = ∪IM
I

for bimodules M over R, where the union is over all cofinite two-sided ideals I ⊆ R,
and we have

(Mδ)
I = M I

for all such I.
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4. The bifunctor Homδ(M,N)

The notion of δ-maps may be extended to modules over R.

Definition 4.1. Let M be an R-module and let N be a k-module. A k-linear
map f : M → N is called a δ-map over R, or simply a δ-map if there is no risk of
confusion, if f vanishes on some k-cofinite R-submodule of M . The set of δ-maps
from M to N will be denoted Homδ(M,N).

By Proposition 1.3, a k-linear map R → N vanishes on some left ideal if and only
if it does so on some two-sided ideal, so Definition 2.1 is an extension of Definition
4.1.

Note that Homδ(M,N) is a right R-submodule of Homk(M,N). Indeed, if I is a
cofinite submodule of M contained in the kernel of some k-linear map f : M → N ,
then I ⊆ Ker fr for any r ∈ R, and if g is another δ-map that vanishes on a cofinite
submodule J , then Ker(f + g) ⊇ Ker f ∩ Ker ⊇ I ∩ J , so that f + g is a δ-map.

The next proposition tells us that Homδ(−,−) may be considered as a bifunctor
from AR ×Ak to ARop

.

Proposition 4.2. Suppose given maps M ′ φ
→ M

f
→ N

g
→ N ′ where φ is a map of

R-modules, f is a δ-map and g is k-linear. Then gf and fφ are δ-maps.

Proof. By assumption, Ker f contains a cofinite submodule I of M . Since Ker gf ⊇
Ker f ⊇ I, we see that gf is a δ-map. The R-submodule φ−1(I) of M ′ is contained
in Ker fφ and the induced map of R-modules M ′/φ−1(I) →M/I is injective, which
shows that φ−1(I) is cofinite. �

Proposition 4.3. For a fixed k-module N , the functor Homδ(−, N) : ARop

→ AR

is left exact. If N is an injective k-module then Homδ(−, N) takes cofinite inclusions

to surjections.

Proof. Let 0 →M ′ µ
→M

ǫ
→M ′′ → 0 be a short exact sequence of right R-modules.

We must show that the sequence

0 // Homδ(M
′′, N)

ǫ∗ // Homδ(M,N)
µ∗

// Homδ(M
′, N)

is exact, where ǫ∗(f) = f ◦ ǫ and µ∗(g) = g ◦ µ. Clearly, ǫ∗(f) = 0 implies f = 0
because ǫ is surjective. If g is a δ-map with µ∗(g) = 0, then g = f ◦ ǫ for some
f ∈ Homk(M ′′, N), since the functor Homk(−, N) is left exact. We must show
that f is a δ-map. Let I be a cofinite submodule of M contained in Ker g. Then
ǫ(I) is an R-submodule of M ′′ contained in Ker f , and it is cofinite because of the
surjection M/I →M ′′/ǫ(I) induced by ǫ.

Next, suppose that N is injective and that the inclusion M ′ →M is cofinite, i.e.,
the quotient M ′′ is k-finite. Given a δ-map f : M ′ → N we must produce a δ-map
g : M → N that extends f . But N is injective, so we can at least find a k-linear
map g extending f . Let I ⊆ M ′ be a cofinite submodule on which f vanishes.
If we assume that M ′ → M is cofinite then by transitivity (Proposition 1.2) the
composed map I → M is cofinite. Hence g is a δ-map as it vanishes on the image
of I in M . �

Proposition 4.4. Let M be a finitely presented R-module and let N be a k-module.

There is an isomorphism of right R-modules

HomR(M,Homδ(R,N)) → Homδ(M,N),
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which is natural for maps of finitely presented R-modules.

Proof. The map is defined by sending an R-linear map f : M → Homδ(R,N) to
the map g : M → N given by g(x) = f(x)(1). We need to check that g is indeed
a δ-map. Let x1, . . . , xn be R-module generators for M . Each f(xi) is a δ-map
from R to N . Say f(xi) vanishes on a cofinite ideal Ii. Then I = I1 ∩ . . . ∩ In is a
cofinite ideal so that IM is a cofinite submodule of M , by Proposition 1.3. Clearly,
g vanishes on IM .

The map just defined is clearly natural inM , so we have a natural transformation
of contravariant functors from finitely generated R-modules to k-modules

HomR(−,Homδ(R,N)) → Homδ(−, N).

These functors are both additive and left exact (Proposition 4.3) and they agree
on R. Therefore they agree on all finitely presented R-modules. �

Proposition 4.5. A k-linear map f : R → N is a δ-map if and only if the R-

submodule of Homk(R,N) generated by f is k-finite. In other words, Homδ(R,N) =
Homk(R,N)δ.

Proof. First of all, note that for any left ideal I ⊆ R and any k-linear map f : R→
N we have that I ⊆ Ker f if and only if I ⊆ Ann f . Indeed, Ann f ⊆ Ker f is
obvious, and for the converse, suppose I ⊆ Ker f and let a ∈ I. Then for any
x ∈ R, (af)(x) = f(xa) = 0, since xa ∈ I as I is a left ideal.

Let I ⊆ R be a cofinite ideal contained in Ker f . Then I ⊆ Ann f , so Ann f is
a cofinite, and therefore Rf ∼= R/Ann f is finite. Conversely, if Rf is finite, then
Ann f is a cofinite left ideal of R contained in Ker f . �

Definition 4.6. A k-algebra R is called almost finite if every non-zero ideal in R
is cofinite.

If k is a field and R is a Dedekind domain over k, then R is almost finite
because the quotient by any non-zero ideal is an artinian k-algebra which is finite
dimensional as a k-vector space.

Proposition 4.7. Suppose that R is an almost finite noetherian k-algebra. Then

the functor Homδ(R,−) from Ak → AR takes injective k-modules to injective R-

modules.

Proof. LetD be an injective k-module. The R-module E = Homδ(R,D) is injective
if and only if HomR(−, E) takes inclusions of left ideal I ⊆ R to surjections. Since
R is assumed noetherian all ideals in R are finitely presented, so by Proposition 4.4
we get a commutative diagram

HomR(R,Homδ(R,D))
∼= //

��

Homδ(R,D)

��
HomR(I,Homδ(R,D))

∼= // Homδ(I,D)

This shows that Homδ(R,D) is injective if and only if a surjection Homδ(R,D) →
Homδ(I,D) is induced when I → R is the inclusion of an ideal into R. By 4.3,
Homδ(−, D) takes cofinite inclusions to surjections. We assume that R is almost
finite, i.e., that all non-zero ideals in R are cofinite, so it follows that Homδ(R,D)
is an injective R-module. �
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Proposition 4.8. If R is an almost finite noetherian k-algebra then any R-module

M may be embedded into an injective R-module E such that Eδ is also injective as

an R-module.

Proof. The functor Homk(R,−) from Ak to AR is right adjoint to the exact forgetful
functor AR → Ak, so it preserves injectives. The left R-module structure on
Homk(R,N) is given by rf(s) = f(sr). Let i : M → D be an injective k-linear map
where D is an injective k-module. Then there is an embedding of R-modules

M
g

// Homk(R,M)
i∗ // Homk(R,D) ,

where for x ∈ M , the k-linear map g(x) : R → M is defined by g(x)(r) = rx
for r ∈ R. The R-module E = Homk(R,D) is injective, and by Proposition 4.5,
the R-module Eδ = Homk(R,D)δ may be identified with Homδ(R,D), and this is
injective by Proposition 4.7. �

Corollary 4.9. If R is an almost finite noetherian k-algebra, then the inclusion

functor

ι : AR
δ → AR

preserves injective objects.

Proof. Let I be an injective object in AR
δ . Embed I into an R-module E such

that E and Eδ are both injective R-modules. Since I is a δ-module, I lands inside
the δ-module Eδ. The monomorphism I → Eδ in AR

δ splits as I is injective in this
category, so I is a direct summand of Eδ in AR

δ . But as ι : AR
δ → AR is fully faithful

and exact, I is also a direct summand of Eδ in AR. Being a direct summand in an
injective R-module, the R-module I is itself injective. �

5. Hochschild cohomology and δ-cohomology

Cosimplicial k-modules. If A = {An}n≥0 is a cosimplicial k-module, then its as-
sociated cochain complex is the graded k-module A with differential ∂ =

∑
i(−1)idi.

The normalized cochain complex is the graded k-module NA = {NAn}, where

NAn =

n−1⋂

i=0

Ker(si) ⊆ An.

The cosimplicial identities ensure that NA is preserved by ∂ (however, NA is not
necessarily preserved by the individual di). Obviously, NA is functorial in A.
The inclusion NA → A is a quasi-isomorphism of cochain complexes. Therefore
a map f : A → B of cosimplicial k-modules is a weak equivalence if and only if
Nf : NA→ NB is a quasi-isomorphism.

The Hochschild cosimplicial k-module of a k-algebra. Let R be a k-algebra
and let M be an R-bimodule. The Hochschild cosimplicial k-module is the graded
k-module C∗(R;M) = {Homk(R⊗n,M)}n≥0 with coface and codegeneracy maps

(d0f)(r0, . . . , rn) = r0f(r1, . . . , rn)
(dif)(r0, . . . , rn) = f(r0, . . . , ri−1ri, . . . , rn) (0 < i < n+ 1)

(dn+1f)(r0, . . . , rn) = f(r0, . . . , rn−1)rn
(sif)(r1, . . . , rn−1) = f(r1, . . . , ri, 1, ri+1, . . . , rn−1) (0 ≤ i ≤ n− 1)

By definition, the Hochschild cohomology of R with coefficients in M , H∗(R;M),
is the cohomology of the corresponding cochain complex. The normalized cochain
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complex NC∗(R;M) coincides with the classical normalized Hochschild cochain
complex.

δ-cochains. Let C∗
δ (R,M) denote the graded k-submodule of C∗(R,M) with

Cn
δ (R,M) = Homδ(R

⊗n,M).

Proposition 5.1. If f ∈ Homδ(R
⊗n,M), then dif ∈ Homδ(R

⊗n+1,M) for i =
1, 2, . . . , n− 1 and sjf ∈ Homδ(R

⊗n−1,M) for all j.

Proof. Note that for 0 < i < n, dif = f ◦ di, where di : R
⊗n+1 → R⊗n sends

r0 ⊗ . . .⊗ rn to r0 ⊗ . . .⊗ ri−1ri ⊗ . . . rn. Suppose f factors as R⊗n → S⊗n →M ,
where the first map is induced by a surjective homomorphism R → S onto a k-
finite algebra S, as in Proposition 2.4. The map di is natural in k-algebras, so the
diagram

R⊗n+1
di //

��

R⊗n
f

//

��

M

S⊗n+1
di // S⊗n

==zzzzzzzz

commutes, and yields a factorization of dif = f ◦ di of the required type.
One proceeds similarly for the codegeneracies by noting that sjf = f ◦ sj , where

sj : R⊗n−1 → R⊗n is the map, natural in R, sending r1 ⊗ . . . ⊗ rn−1 to r1 ⊗ . . .⊗
ri ⊗ 1 ⊗ ri+1 ⊗ . . .⊗ rn−1. �

Proposition 5.2. Suppose that M is a left δ-module over R. Then d0f is a δ-map

whenever f is one. Similarly, if M is a right δ-module over R, then dnf is a δ-map

if f is one.

Proof. Let J ⊆ R⊗n be a cofinite ideal contained in Ker f . The kernel of d0f
contains the ideal K = Ann(Im f) ⊗R⊗n +R⊗ J of R⊗n+1, and

R⊗n+1/K ∼=
R

Ann(Im f)
⊗
R⊗n

J
.

But Im f is a finite k-submodule of M , so as M is a δ-module, Ann(Im f) is a
cofinite ideal, by Proposition 3.1. Therefore, both factors above are k-finite, so K
is cofinite.

The second part of the proposition is proved in the same way. �

By Proposition 3.9, a δ-bimodule over R, i.e. a δ-module over Re = R ⊗ Rop,
is the same thing as a bimodule over R which is simultaneously a left and right
δ-module over R, so we have the following corollary.

Corollary 5.3. If M is a δ-bimodule over R, then C∗
δ (R,M) is a cosimplicial

submodule of C∗(R,M).

Definition 5.4. Let M be a δ-bimodule over R. The δ-cohomology of R with coef-

ficients in M , H∗
δ(R,M), is the cohomology of the cosimplicial k-module C∗

δ (R,M),

Hn
δ (R,M) = Hn(C∗

δ (R,M)).

The inclusion C∗
δ (R,M) ⊆ C∗(R,M) induces a map of graded k-modules

H∗
δ(R,M) → H∗(R,M).

One might ask under what circumstances this map is an isomorphism.
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For m ∈M , ∂0(m) is the map R →M given by ∂0(m)(r) = rm−mr. Since M
is a δ-bimodule, ∂0(m) is always a δ-map. Therefore we always have

H0
δ(R,M) = H0(R,M) = {m ∈M | rm = mr for all r ∈ R} .

δ-derivations and H1. The δ-cocycles of degree 1 are precisely the δ-derivations,
i.e., the δ-maps d : R→M satisfying

d(rs) = rd(s) + d(r)s.

The 1-coboundaries are the inner derivations r 7→ rm−mr, and since all these are
δ-maps, the map H1

δ(R,M) → H1(R,M) is injective, and it is surjective if and only
if all derivations d : R →M are δ-derivations.

Lemma 5.5. A derivation d : R→M is a δ-derivation if and only if the k-module

Im d is finitely generated.

Proof. Let d : R → M be a derivation. Clearly, if d is δ-map, then Im d is k-finite.
Conversely, since (sdr)(x) = d(rxs) = d(r)xs+ rd(x)s+ rxd(s) for any r, s, x ∈ R,
there is an inclusion of k-modules

Annb(Im d) ∩ Ker d ⊆ Jd,

with Jd as in Proposition 2.2. If Im d is k-finite, then Ker d is cofinite, and so is
Annb(Im d), because M is a δ-module. Hence Jd is also cofinite. �

Proposition 5.6. Let φ : R → S be a surjective homomorphism of k-algebras.
Suppose that the natural map H1

δ(R;M) → H1(R;M) is an isomorphism for all

δ-bimodules M over R. Then H1
δ(S;M) → H1(S;M) is an isomorphism for all

δ-bimodules M over S.

Proof. Let d : S → M be a derivation into a δ-bimodule M over S. By pullback
along φ, M is a δ-modules over R. Hence, by the assumption on R, the derivation
d ◦ φ : R→ M is a δ-derivation, i.e., Im d ◦ φ is k-finite. But Im d = Im d ◦ φ as φ is
surjective, so d is a δ-derivation. �

Proposition 5.7. If R is a finitely generated k-algebra then H1
δ(R,M) → H1(R,M)

is an isomorphism for any δ-bimodule M .

Proof. Let x1, . . . , xn be algebra generators for R and let d : R →M be a derivation
into a δ-bimodule. We have to show that Im d is k-finite. The bi-submodule L of
M generated by Im d is finitely generated. Indeed, it is generated by the elements
d(x1), . . . , d(xn). Being a sub-bimodule of a δ-bimodule, L is therefore k-finite,
which implies that Im d ⊆ L is k-finite. �

Example 5.8. Let R = k[x1, x2, . . .] and let M be the R-module m/m2, where m

is the ideal generated by all indeterminates x1, x2, . . .. It is easily seen that M is
a δ-module. The derivation d : R → M defined by letting d(xi) be the image of
xi under the projection m → m/m2 is not a δ-derivation because its image is not
k-finite. This gives an example of a pair (R,M) where H1

δ(R,M) → H1(R,M) is
not an isomorphism.
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6. Preservation of filtered colimits

Definition 6.1. For any k-algebra R, let Qk
R denote the opposite category to

the category of k-finite algebra quotients of R. The objects are surjective homo-
morphisms of k-algebras R → S and a morphism from R → S to R → S′ is a
homomorphism of k-algebras S′ → S such that the diagram below commutes.

S′

��
R

77nnnnnn

((PPPPPP

S

By taking kernels, Qk
R is isomorphic to the set Ik

R of cofinite two-sided ideals in
R partially ordered by reverse inclusion. Sums and intersections of cofinite ideals
remain cofinite. In particular the category Qk

R is both filtered and cofiltered.

Proposition 6.2. Let N be a k-module and let n ≥ 1. The natural map

lim
−→I

Homk((R/I)⊗n, N) → Homδ(R
⊗n, N)

is an isomorphism, where the colimit is over the filtered system of cofinite two-sided

ideals in R.

Proof. This is merely a reformulation of Proposition 2.4. Namely, a map f : R⊗n →
N is a δ-map if and only if it factors as R⊗n → S⊗n → N , for some k-finite quotient
algebra S of R. �

Let M be a δ-bimodule over R. For every inclusion of cofinite two-sided ideals
I ⊆ J in R, we have a map C∗

δ (R/J,MJ) → C∗
δ (R/I,M I) of cosimplicial k-modules

obtained as the composite C∗
δ (R/J,MJ) → C∗

δ (R/I,MJ) → C∗
δ (R/I,M I) of the

maps induced by the homomorphism R/I → R/J and the inclusion MJ ⊆ M I of
δ-modules over R/I. This defines a functor I 7→ C∗

δ (R/I,M I) from the filtered
system of cofinite two-sided ideals of R to cosimplicial k-modules. By the same
token, we have compatible maps C∗

δ (R/I,M I) → C∗
δ (R,M) and hence an induced

map

lim
−→I

C∗
δ (R/I,M I) → C∗

δ (R,M).

Proposition 6.3. Let M be a δ-bimodule. The canonical map

lim
−→I

C∗
δ (R/I,M I) → C∗

δ (R,M)

is an isomorphism. The colimit is over the filtered system of cofinite two-sided

ideals in R.

Proof. In degree n, the map is the natural one

lim
−→I

Homk((R/I)⊗n,M I) // Homδ(R
⊗n,M) .

We wish to show that it is an isomorphism.
As in Section 3, the δ-bimodule M is the filtered union ∪JM

J . If I ⊆ R is
cofinite, then (R/I)⊗n is k-finite, so Homk((R/I)⊗n,−) commutes with filtered
colimits. Therefore we have a chain of natural isomorphisms, the first one coming
from Proposition 6.2

Homδ(R
⊗n,M) lim

−→I
Homk((R/I)⊗n,∪JM

J)
∼=oo lim

−→I
lim
−→J

Homk((R/I)⊗n,MJ)
∼=oo
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The colimits are indexed by the same category. For any category I the diagonal
functor I → I×I is cofinal, and thus induces isomorphisms on colimits. Therefore,
we can continue our chain of isomorphisms

lim
−→I

lim
−→J

Homk((R/I)⊗n,MJ) lim
−→I

Homk((R/I)⊗n,M I)
∼=oo .

Since all maps in the chain are the natural ones, the composite isomorphism is the
natural map

lim
−→I

Homk((R/I)⊗n,M I) → Homδ(R
⊗n,M).

�

Corollary 6.4. Let M be a δ-bimodule over R. For any n ≥ 0 the canonical map

lim
−→I

Hn(R/I,M I) → Hn
δ (R,M)

is an isomorphism. The colimit is indexed by the filtered system of cofinite two-sided

ideals in R.

Proof. We have established an isomorphism of cochain complexes

lim
−→I

C∗(R/I,M I)
∼= // C∗

δ (R,M) .

The claim follows from the fact that cohomology commutes with filtered colimits.
�

Unlike the ordinary Hom-functor, Homδ preserves filtered colimits of k-modules.

Proposition 6.5. Let {Ni}i∈I be a filtered system of k-modules. Then the canon-

ical k-linear map

lim
−→i

Homδ(R,Ni) → Homδ(R, lim−→i
Ni)

is an isomorphism.

Proof. Observe that since k is noetherian, any finitely generated k-module S is
small in the sense that the canonical map

lim
−→i

Homk(S,Ni) → Homk(S, lim
−→i

Ni)

is an isomorphism. Then, using Proposition 6.2 one only needs that colimits com-
mute with colimits

lim
−→i

Homδ(R,Ni) = lim
−→i

lim
−→S

Homk(S,Ni)

= lim
−→S

lim
−→i

Homk(S,Ni)

∼= lim
−→S

Homk(S, lim
−→i

Ni)

= Homδ(R, lim−→i
Ni)

�

Corollary 6.6. Let {Mi}i∈I be a filtered system of δ-bimodules over R. Then the

canonical map

lim
−→

H∗
δ(R,Mi) → H∗

δ(R, lim−→
Mi)

is an isomorphism.
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Proof. From the proposition it follows that the canonical map lim
−→

C∗
δ (R,Mi) →

C∗
δ (R, lim

−→
Mi) is an isomorphism of cosimplicial k-modules. Since I is filtered, the

functor lim
−→i

is exact, and from this it follows that

lim
−→

H∗
δ(R,Mi) = lim

−→
H∗(C∗

δ (R,M)) ∼= H∗(lim
−→

C∗
δ (R,Mi)) ∼= H∗

δ(R, lim−→
Mi)

�

Proposition 6.7. Let R and S be k-algebras. There is an isomorphism of k-
modules

Homδ(R⊗ S,M) ∼= Homδ(R,Homδ(S,M))

natural in k-modules M .

Proof. It follows from Proposition 2.3 that

Homδ(R⊗ S,M) = lim
−→I

lim
−→J

Homk(R/I ⊗ S/J,M),

where the colimits are over cofinite ideals I and J in R and S respectively. Since
R/I is k-finite the functor Homk(R/I,−) commutes with filtered colimits, so we
get

lim
−→I

lim
−→J

Homk(R/I ⊗ S/J,M) ∼= lim
−→I

lim
−→J

Homk(R/I,Homk(S/J,M))

∼= lim
−→I

Homk(R/I, lim
−→J

Homk(S/J,M))

∼= Homδ(R,Homδ(S,M))

�

Definition 6.8. A k-algebra R is called nice if it there is a resolution of R over
Re = R⊗Rop by finitely presented relatively free Re-modules.

For example, a noetherian k-algebra is nice.

Proposition 6.9. Suppose that R is nice. Then for every filtered system {Mi}i∈I

of R-bimodules the canonical map

lim
−→

H∗(R,Mi) → H∗(R, lim
−→

Mi)

is an isomorphism.

Proof. If we compute H∗(R,−) = Ext∗Re/k(R,−) by using a resolution of R by
finitely presented relatively free Re-modules, then the claim follows from the facts
that the functor HomRe(P,−) commutes with filtered colimits if P is a finitely
presented Re-module and that homology commutes with filtered colimits. �

7. δ-cohomology as a derived functor

It is useful to know when short exact sequences of coefficient modules give rise
to long exact sequences in cohomology. For ordinary Hochschild cohomology, this
happens when R is projective as a k-module. The corresponding notion for δ-
cohomology is that of a δ-projective algebra.

Definition 7.1. A k-algebra R is called δ-projective if for any surjective map
of k-modules f : M → N , the induced map f∗ : Homδ(R,M) → Homδ(R,N) is
surjective.

Proposition 7.2. If R and S are δ-projective then so is R ⊗ S and Rop. In

particular, if R is δ-projective, then so is Re and R⊗n for all n ≥ 1.
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Proof. That R is δ-projective means that the functor Homδ(R,−) is exact. Propo-
sition 6.7 identifies Homδ(R⊗ S,−) with the composite Homδ(R,Homδ(S,−)).

There is a natural isomorphism Homδ(R
op,M) ∼= Homδ(R,M), because if I ⊆

R is a cofinite two-sided ideal then so is Iop ⊆ Rop and R/I ∼= Rop/Iop as k-
modules. �

Definition 7.3. A k-algebra R is called strongly δ-projective if every surjection of
k-algebras R → S, where S is k-finite, factors into surjective homomorphisms of
k-algebras R→ Q→ S where Q is k-finite and projective as a k-module.

Clearly, strongly δ-projective implies δ-projective. If R is strongly δ-projective,
then so is R⊗n. Indeed, any surjection R⊗n → S where S is k-finite factors through
Q⊗n for some k-finite projective quotient algebra Q of R, and then Q⊗n is also k-
finite and projective.

Example 7.4. If p(x) ∈ k[x] is a monic polynomial, then k[x]/(p(x)) is a finitely
generated free k-module. Also, an ideal I ⊆ k[x] is cofinite if and only if it con-
tains a monic polynomial. Indeed, the sequence of k-submodules 〈1〉k ⊆ 〈1, α〉k ⊆
〈1, α, α2〉k ⊆ . . . ⊆ k[x]/I, where α = x + I, must stabilize as k is noetherian.
Therefore, αn = an−1α

n−1 + . . .+ a1α+ a0 for some ai ∈ k, so that I contains the
polynomial xn − an−1α

n−1 − . . .− a0.
The polynomial algebra k[x] is strongly δ-projective, because an ideal I ⊆ k[x]

is cofinite if and only if it contains a monic polynomial. The quotient of k[x] by
such a polynomial is a finitely generated free k-module.

For δ-projective algebras R, we will interpret Hn
δ (R,−) as the nth right derived

functor Rn H0(R,−) on the category ARe

δ of δ-bimodules over R.

Proposition 7.5. Suppose R is δ-projective. Then the functors Hn
δ (R,−) form a

universal cohomological δ-functor from ARe

δ to Ak.

Proof. By Proposition 7.2 each R⊗n is δ-projective. If we have a short exact se-
quence 0 → M ′ → M → M ′′ → 0 of δ-bimodules over R, we therefore get a short
exact sequence of cosimplicial k-modules

0 → C∗
δ (R;M ′) → C∗

δ (R;M) → C∗
δ (R;M ′′) → 0

This in turn induces the required long exact sequence in cohomology in the usual
way

· · · → Hn−1
δ (R;M ′′) → Hn

δ (R;M ′) → Hn
δ (R;M) → Hn

δ (R;M ′′) → · · ·

To prove universality, we show that Hn
δ (R,−) is effaceable for every n ≥ 1.

Let M be a δ-bimodule. Embed M in an injective R-bimodule J . Then M is a
submodule of Jδ. By the bimodule version of Proposition 3.8 we have (Jδ)

I = JI ,
if I is a cofinite two-sided ideal in R. Since (−)I : ARe

→ A(R/I)e

is right adjoint
to the exact forgetful functor, it takes injectives to injectives. Hence, (Jδ)

I = JI

is an injective R/I-bimodule for every cofinite two-sided ideal I ⊆ R. Therefore,
Hn(R/I, (Jδ)

I) = 0 for n ≥ 1, so by Corollary 6.4

Hn
δ (R, Jδ) ∼= lim

−→I
Hn(R/I, (Jδ)

I) = 0

for all n ≥ 1. �
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Remark 7.6. Since Homδ(R
⊗n,−) is an additive functor it preserves k-split short

exact sequences. Therefore, one obtains long exact sequences in δ-cohomology from
k-split short exact sequences of δ-bimodules without any assumption on R.

Since ARe

δ has enough injectives by Corollary 3.6, we conclude that Hn
δ (R,−)

is the nth right derived functor of the restriction of the functor H0 : AR → Ak,
M 7→ {x ∈M | rx = xr for all r ∈ R}, to the category AR

δ . We state this as a
proposition.

Proposition 7.7. Let R be a k-algebra. Consider the follwing diagram of additive

functors between abelian categories.

ARe

δ

ιRe
//

H0ιRe !!CC
CC

CC
CC

ARe

H0

}}{{
{{

{{
{{

Ak

The right derived functors of H0 are the Hochschild cohomology functors,

Rn(H0)(M) = Hn(R;M).

If R is δ-projective, then the right derived functors of the restriction H0ιRe of H0

to ARe

δ are given by

Rn(H0ιRe)(M) = Hn
δ (R;M).

In other words, R∗(H0ιR) may be computed as the cohomology of the cochain com-

plex C∗
δ (R;M) of δ-cochains. Furthermore, the natural transformation R(H0ιRe) →

R(H0)R(ιRe) of triangulated functors D≥0(ARe

δ ) → D≥0(Ak) induces for each δ-
bimodule M a map in cohomology

H∗
δ(R;M) → H∗(R;M),

which may be identified with the map induced in cohomology by the inclusion of

cochain complexes C∗
δ (R;M) → C∗(R;M).

Definition 7.8. A k-algebra R is called stable if the inclusion functor ιR : AR
δ →

AR preserves injective objects.

Corollary 4.9 says that almost finite noetherian k-algebras are stable. We will
see later that any commutative noetherian k-algebra is stable.

Corollary 7.9. Suppose that R is a δ-projective k-algebra whose enveloping algebra

Re is stable. Then the natural map Hn
δ (R;M) → Hn(R;M) is an isomorphism for

all δ-bimodules M over R.

8. Change of ground ring

Let φ : k → l be a homomorphism of commutative rings. Any l-module is a k-
module by pullback along φ. In particular l is a k-module. If R is a k-algebra, then
Rl denotes the l-algebra l ⊗k R. There is a natural homomorphism of k-algebras
j = φ ⊗ 1: R = k ⊗k R → Rl. If M is an R-bimodule then Ml = l ⊗k M is an
Rl-bimodule. There is a functor Qk

R → Ql
Rl

acting on objects in the obvious way:
a surjection R → S is sent to the surjection Rl → Sl. It is a classical result that

H∗
k(R,M) ∼= H∗

l (Rl,M)

for any Rl-bimodule M . A natural question is what happens for δ-cohomology.



COFINITE HOCHSCHILD COHOMOLOGY 17

Proposition 8.1. Let k → l be a homomorphism of commutative rings. There is

an inclusion of l-modules

Homδ,k(R,N) ⊆ Homδ,l(Rl, N)

natural in l-modules N . The following are equivalent:

• Homδ,k(R,N) = Homδ,l(Rl, N) for all l-modules N .

• Every l-cofinite ideal of Rl pulls back to a k-cofinite ideal of R along the

natural map R → Rl.

• The functor Qk
R → Ql

Rl
is cofinal.

Proof. The inclusion is defined by sending a δk-map f : R → N to the l-linear map
fl : Rl → N given by fl(λ ⊗ r) = λf(r). It is clear that fl is a δl-map because a
factorization R → S → N of f yields a factorization Rl → Sl → N of fl, and S
k-finite implies Sl l-finite. We always have that fl ◦ j = f , so it is clear f 7→ fl is
injective. We have equality if and only if g ◦ j is a δk-map whenever g : Rl → N
is a δl-map. Now, in the case of equality, let I ⊆ Rl be an l-cofinite ideal. Then
the projection f : Rl → Rl/I is a δl-map, so by assumption g = f ◦ j is a δk-map.
Hence j−1(I) = Ker g is k-cofinite in R. Conversely, assume that l-cofinite ideals
of Rl pull back to k-cofinite ideals of R. Let f : Rl → N be a δl-map. We must
show that f ◦ j is a δk-map, i.e., we need to find a k-cofinite ideal of R on which
f ◦ j vanishes. But the ideal j−1(I), which is cofinite by assumption, will do.

For the equivalence of the second and third statements, if we interpret Qk
R as

the set of k-cofinite ideals of R partially ordered by reverse inclusion, and similarly
for Ql

Rl
, then the functor Qk

R → Ql
Rl

is given by mapping a k-cofinite ideal I ⊆ R
to the extension of I, i.e., the ideal Il generated by j(I). In this setup, cofinality is
equivalent to the statement that every l-cofinite ideal J in Rl contains the extension
of some k-cofinite ideal I ⊆ R. But if j−1(J) is k-cofinite for every such J , then
J contains the extended ideal (j−1(J))l. Conversely, if every l-cofinite J contains
the extension of a k-cofinite I, then j−1(J) ⊇ j−1(Il) ⊇ I, implying that j−1(J) is
k-cofinite. �

Proposition 8.2. Suppose that the equivalent conditions of Proposition 8.1 are

satisfied and that in addition l is flat as a k-module. Then for any k-module N ,

there is an isomorphism of l-modules

l ⊗k Homδ,k(R,N) → Homδ,l(Rl, Nl).

Proof. If S is k-finite, then it is finitely presented as a k-module, and hence the map
l⊗k Homk(S,N) → Homl(Sl, Nl) is an isomorphism as l is flat as a k-module. Since
tensor products commute with filtered colimits, we have a sequence of isomorphisms

l⊗k Homδ,k(R,N) ∼= l ⊗k lim
−→S

Homk(S,N) ∼= lim
−→S

l ⊗k Homk(S,N)

∼= lim
−→S

Homl(Sl, Nl) ∼= lim
−→S′

Homl(S
′, Nl) = Homδ,l(Rl, Nl).

Here the colimits are over S ∈ Qk
R and S′ ∈ Ql

Rl
. The second to last isomorphism

changing the index category comes from the fact that the functor Qk
R → Ql

Rl
is

cofinal, by Proposition 8.1, and hence induces an isomorphism on colimits. �

Example 8.3. • The conditions in Proposition 8.1 are fulfilled when l is
k-finite.
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• The conditions are not fulfilled for R = Z[x] and k → l being the inclusion
of Z into Q. For instance, the Q-cofinite ideal of Q[x] generated by x− 1/2
pulls back to the ideal in Z[x] generated by 2x − 1, but this ideal is not
Z-cofinite.

Proposition 8.4. Let k → l be a homomorphism of commutative rings satisfying

the conditions of Proposition 8.1. Then for any n ≥ 0 there is an isomorphism of

l-modules Hn
δ,k(R,M) → Hn

δ,l(Rl,M) natural in δ-bimodules M over Rl that fit in

a commutative diagram

Hn
δ,k(R,M)

∼= //

��

Hn
δ,l(Rl,M)

��
Hn

k (R,M)
∼= // Hn

l (Rl,M)

Proof. Note that (Rl)
⊗ln ∼= (R⊗n)l. Therefore, we get isomorphisms

Homδ,k(R⊗n,M) → Homδ,l((Rl)
⊗ln,M)

for all n by Proposition 8.1, and it is clear that these isomorphisms are compatible
with the coface and codegeneracy maps, which means that we have an isomorphism
of cosimplicial l-modules C∗

δ,k(R,M) → C∗
δ,l(Rl,M). This isomorphism sits inside

a commutative diagram of cosimplicial l-modules

C∗
δ,k(R,M)

∼= //

��

C∗
δ,l(Rl,M)

��
C∗

k(R,M)
∼= // Cl(Rl,M)

Now apply cohomology. �

9. δ-cohomology of polynomial algebras

We will show that the Hochschild cohomology H∗(k[x],M) of the polynomial
algebra k[x], with coefficients in any δ-bimodule M , may be computed using δ-
cochains, i.e., we will show that the map H∗

δ(k[x],M) → H∗(k[x],M) is an isomor-
phism. This will be done by reduction to the case when M = k, and in this case
by an explicit calculation.

The next proposition follows immediately from Proposition 2.4 and the descrip-
tion of cofinite ideals in k[x].

Proposition 9.1. Let N be any k-module. There is an isomorphism of k-modules

Homk(k[x1, . . . , xn], N) ∼= N [[z1, . . . , zn]]

given by mapping a k-linear map f : k[x1, . . . , xn] → N to the series

Sf =
∑

α∈Nn

f(xα)zα.

Here xα = xα1

1 . . . xαn
n and zα = zα1

1 . . . zαn
n . Furthermore, f is a δ-map if and

only if there is a polynomial q(z) ∈ k[z] with q(0) = 1 such that q(z1) . . . q(zn)Sf ∈
N [z1, . . . , zn].
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A series of the form Sf for some δ-map f will be called a δ-series.
We will now study the cosimplicial k-module C∗

δ (k[x], k), where k is considered
a k[x]-bimodule via x · 1 = cl and 1 · x = cr for some cl, cr ∈ k. If one traces the
coface and codegeneracy maps through the isomorphism of Proposition 9.1 then
one gets the following description of C∗(k[x], k):

For compactness of notation, write Pi1...in
= P (zi1 , . . . , zin

) if P is a formal
power series in n indeterminates. The component in degree n is the k-module
Cn(k[x], k) = k[[z1, . . . , zn]], and the coface and codegeneracy maps

di : Cn−1(k[x], k) → Cn(k[x], k), si : Cn+1(k[x], k) → Cn(k[x], k)

for 0 ≤ i ≤ n are given by

d0(S)12...n =
S23...n

1 − clz1

di(S)12...n =
ziS12...̂i+1...n

− zi+1S12...̂i...n

zi − zi+1

dn(S)12...n =
S12...(n−1)

1 − crzn

si(T )12...n = T (z1, . . . , zi, 0, zi+1, . . . , zn)

Let Π(z1, . . . , zn) be the polynomial

(1 − clz1)(z1 − z2)(z2 − z3) . . . (zn−1 − zn)(1 − crzn).

Proposition 9.2. Let S ∈ k[[z1, . . . , zn−1]]. Then

(1) ∂(S)12...n =

∑n
i=1(−1)i−1zi(ΠS)12...̂i...n

Π12...n

Proof. Elementary calculation. �

Proposition 9.3. The natural map Hn
δ (k[x], k) → Hn(k[x], k) is an isomorphism

for all n ≥ 0.

Proof. By Proposition 5.7 the map Hi
δ(k[x], k) → Hi(k[x], k) is an isomorphism for

i = 0, 1. For notational convenience, write A = C∗(k[x], k) and B = C∗
δ (k[x], k).

Clearly, Ker(si : An → An−1) is the ideal generated by zi+1, for i = 0, 1, . . . , n−1.
Therefore the normalized cochain complex NA of A is in degree n the submodule
of series S of the form S = z1 . . . znP for some series P . The n-cochains S of NB
have the same description but with P a δ-series.

Let S be an (n − 1)-cocycle of NA, where n ≥ 3, say S = z1 . . . zn−1P . Then
from (1) we see that

0 = (Π∂S)12...n =
n∑

i=1

(−1)i−1zi(ΠS)12...̂i...n

=

n∑

i=1

(−1)i−1z1 . . . zn(ΠP )12...̂i...n,

which is equivalent to
n∑

i=1

(−1)i−1(ΠP )12...̂i...n = 0.
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Setting zn = 0 in this equality of formal power series, we obtain

n−1∑

i=1

(−1)i−1(ΠP )(z1, . . . , ẑi, . . . , zn−1, 0) + (−1)n−1(ΠP )(z1, . . . , zn−1) = 0,

and multiplying this with z1 . . . zn−1 we get

(−1)n(ΠS)12...(n−1) =

n−1∑

i=1

(−1)i−1z1 . . . zn−1(ΠP )(z1, . . . , ẑi, . . . , zn−1, 0)

=

i−1∑

i=1

(−1)i−1ziQ12...̂i...(n−1)

= (Π∂Q)12...(n−1),

where Q(z1, . . . , zn−2) = z1 . . . zn−2(ΠP )(z1, . . . , zn−2, 0). Hence S = ∂((−1)nQ) is
a coboundary. We have now shown by hand that Hn(NA) = 0 for n ≥ 2. This is of
course no surprise and it could be shown in a few lines. The point however is the
explicit description of the cochain (−1)nQ whose coboundary is the given cocycle
S. The apparent but crucial observation is the following: If S ∈ NBn−1, then

P (z1, . . . , zn−1) =
p(z1, . . . , zn−1)

q(z1) . . . q(zn−1)
,

for polynomials p, q with coefficients in k and q(0) = 1, and it follows that

Q(z1, . . . , zn−2) = z1 . . . zn−2
(Πp)(z1, . . . , zn−2, 0)

q(z1) . . . q(zn−2)
,

so that Q ∈ NBn−1. Therefore, we see that Hn(NB) = 0 for n ≥ 2. We conclude
that the inclusion B → A induces an isomorphism in cohomology. �

Remark 9.4. Actually, the graded subspace C = {k[z1, . . . , zn]}n≥0 of A is pre-
served by the coface and codegeneracy maps, and one sees that if S is a polynomial
(n−1)-cocycle then the cochain (−1)nQ whose coboundary is S is also a polynomial.
So the inclusion C → A is a weak equivalence by the same argument.

Proposition 9.5. Let M be any δ-bimodule over k[x]. The natural map

Hn
δ (k[x],M) → Hn(k[x],M)

is an isomorphism for all n.

Proof. We will use the machinery developed so far to reduce to the case when
M = k.

The δ-module M is a filtered colimit, lim
−→i

Mi, of k-finite k[x]-bimodules Mi. For

each n ≥ 0, we have a commutative diagram

lim
−→i

Hn
δ (k[x],Mi) //

��

Hn
δ (k[x],M)

��
lim
−→i

Hn(k[x],Mi) // Hn(k[x],M)

The top horizontal map is an isomorphism by Corollary 6.6 and since k[x] is nice,
the bottom map is also an isomorphism. Therefore the right map is an isomorphism
if and only if the left one is. But this is induced by the natural maps Hn

δ (k[x],Mi) →
Hn(k[x],Mi). Thus, we have reduced to the case when M is a k-finite R-bimodule.
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If M is k-finite, then M is certainly finitely generated as an k[x]-bimodule. Let
m(M) denote the minimal number of bimodule generators forM . Supposem(M) =
r and let x1, . . . , xr be bimodule generators for M . Let N be the bisubmodule of
M generated by xr. Then we have a short exact sequence of k[x]-bimodules

0 → N →M →M/N → 0

where N and M/N are k-finite, m(N) = 1, and m(M/N) ≤ r − 1, since M/N can
be generated by the images of x1, . . . , xr−1 in M/N .

Since k[x] is both projective and strongly δ-projective, any short exact seqences
of k[x]-bimodules 0 →M ′ →M →M ′′ → 0 gives rise to a ladder with exact rows

· · · // Hn−1
δ (k[x],M ′′) //

��

Hn
δ (k[x],M ′) //

��

Hn
δ (k[x],M) //

��

Hn
δ (k[x],M ′′) //

��

· · ·

· · · // Hn−1(k[x],M ′′) // Hn(k[x],M ′) // Hn(k[x],M) // Hn(k[x],M ′′) // · · ·

It follows from the 5-lemma that if the maps from δ-cohomology to cohomology with
coefficients in M ′ and M ′′ are isomorphisms, then so are the maps Hn

δ (k[x],M) →
Hn(k[x],M).

Therefore, by induction on m(M), we may reduce to the case m(M) = 1, i.e.,
to the case of k-finite cyclic k[x]-bimodules. A bimodule over k[x] is the same
thing as a left module over k[x]⊗ k[x]op ∼= k[x, y], so a k-finite cyclic k[x]-bimodule
is of the form M = k[x, y]/I for some cofinite ideal I ⊆ k[x, y], where x acts as
multiplication by x from the left and multiplication by y from the right. Now for the
twist. Not only is k[x, y]/I a k[x]-bimodule, but it is also a commuative noetherian
k-algebra, which we may denote by l. Now, l is an l[x]-bimodule by letting x act
by multiplication by α to the left and by multiplication by β to the right, where
α = x+ I ∈ l and β = y+ I ∈ l. Moreover, the l[x]-bimodule l is pulled back to the
k[x]-bimodule k[x, y]/I along the homomorphism k[x] → l[x]. Since l is k-finite, we
have by Proposition 8.1 that the ring extension k → l induces an isomorphism

Hn
δ,k(k[x],M) ∼= Hn

δ,l(l[x], l)

for all n ≥ 0. Also, the base change k → l induces an isomorphism in ordinary
cohomology Hn

k (k[x],M) → Hn
l (l[x], l) and we have a commutative diagram

Hn
δ,k(k[x],M)

∼= //

��

Hn
δ,l(l[x], l)

��
Hn

k (k[x],M)
∼= // Hn

l (l[x], l)

The right vertical map is an isomorphism by Proposition 9.3, so it follows that the
left map is an isomorphism too. �

We will now prove a similar result for k[x, x−1]. Since k[x, x−1] is the group
algebra of Z, this can be interpreted as saying that the cohomology of the additive
group Z may be computed using δ-cochains.

Proposition 9.6. Let M be any δ-bimodule over k[x, x−1]. The natural map

Hn
δ (k[x, x−1],M) → Hn(k[x, x−1],M) is an isomorphism for all n.
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Proof. The δ-bimodule M pulls back to a δ-bimodule over k[x] via the canonical
homomorphism k[x] → k[x, x−1]. It is classical, or in any case not hard to show,
that this homomorphism induces an isomorphism Hn(k[x, x−1],M) → Hn(k[x],M)
for all n. According to Proposition 9.5 the natural map Hn

δ (k[x],M) → Hn(k[x],M)
is an isomorphism.

The map C∗
δ (k[x, x−1],M) → C∗

δ (k[x],M) is an isomorphism. Indeed, an ideal
I ⊆ k[x, x−1] is cofinite if and only if it contains a ‘bimonic’ polynomial, that is, a
polynomial of the form xr+1 + crx

r + . . . + c1x + 1. Therefore, f : k[x, x−1]⊗n →
M is a δ-map if and only if one can find a bimonic polynomial p(x) such that
f(q1(x), . . . , qn(x)) = 0 whenever some qi(x) can be written as qi(x) = p(x)s(x) for
some s(x) ∈ k[x, x−1]. From this it follows that f is determined by its values on
xa1 ⊗ . . .⊗ xan for ai ∈ {0, 1, . . . , r}. In particular, f is determined by its restric-
tion to k[x]⊗n, and for similar reasons it is clear that any δ-map f : k[x]⊗n → M
extends to k[x, x−1]⊗n. This means that the map C∗

δ (k[x, x−1],M) → C∗
δ (k[x],M)

is bijective.
The claim now follows by passing to cohomology in the commutative diagram

C∗
δ (k[x, x−1],M) //

��

C∗
δ (k[x],M)

��
C∗(k[x, x−1],M) // C∗(k[x],M)

�

10. The cofinite topology

In this section we will rely on results proved in [3]. See also [5].
Let R be a k-algebra. The set Ik

R of cofinite ideals in R forms a fundamental
system of neighborhoods of 0 for a linear topology on R, which we will call the
cofinite topology. An R-module M is topologized by letting the open neighborhoods
of 0 be the submodules L ⊆M such thatM/L is a δ-module. A module is discrete in
this topology if and only if it is a δ-module. Proposition 3.3 implies that the cofinite
topology is a Gabriel topology (cf. [5]) provided R is noetherian. Proposition 1.3
implies that the cofinite topology is bounded, i.e., that it has a basis consisting of
two-sided ideals.

Recall that a k-algebra R is stable if the inclusion functor ιR : AR
δ → AR pre-

serves injective objects. As a consequence of the identification of δ-modules as the
discrete modules for a topology on R, we get a characterization of stable k-algebras
as follows, cf. [3] Proposition V.9.

Proposition 10.1. A k-algebra R is stable if and only if for every R-module M , the

subspace topology on every submodule M ′ ⊆M coincides with the cofinite topology

on M ′.

Concretely, the last condition means that whenever we have inclusions of R-
modules L′ ⊆M ′ ⊆M such that M ′/L′ is a δ-module there is a submodule L ⊆M
such that M/L is a δ-module and L ∩M ′ = L′.

Proposition 10.2. Commutative noetherian k-algebras are stable.

Proof. If R is noetherian, then the cofinite topology is a bounded Gabriel topology.
According to [3] Proposition V.10, any bounded Gabriel topology on a commutative
noetherian ring is stable, so in particular R is stable for the cofinite topology. �
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Since polynomial algebras are δ-projective, the next corollary subsumes the re-
sults of the previous section.

Corollary 10.3. If R is a δ-projective commutative noetherian k-algebra, then

the natural map Hn
δ (R;M) → Hn(R;M) is an isomorphism for all n ≥ 0 and all

δ-bimodules M over R.

Proof. The enveloping algebra Re of a commutative noetherian algebra R is still
commutative and noetherian and hence stable. The claim now follows from Corol-
lary 7.9. �
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