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Abstract

This paper describes a mathematical framework for rigorously de-

scribing and solving problems regarding DNA sequencing. The main

problem regards the reconstruction of a DNA-sequence from several

partial descriptions of the sequence. The partial descriptions are mod-

eled by, what we call, semi-commutative images of different factor-

izations of the sequence. It is shown that the information given by

multiple semi-commutative images could be represented by a single

semi-commutative image obtained by, what is defined as the join of

the images. This join is an application of a general construction which

we define for sequences in a general group. This join is also applied

to factorizations and so called factorization schemata. It is shown that

the join operation makes the set of factorizations and factorization

schemata into boolean algebras. In two appendices the reconstruction

problem is reformulated in alternative ways. One uses the framework

of fuzzy set theory to model inexactness in the partial information.

The other formulates the problem as a completion problem of Parikh

matrices.
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1 Introduction

The work presented in this paper originates in an algorithmic problem

which is a part of a method of DNA-sequencing which the author

worked on for the biotech company Global Genomics AB. 1

To get an intuition for what the mathematics presented here could

be used for, we start to describe the biological background of the prob-

lem.

The problem arose in the context of DNA-sequencing which is a

process in molecular biology with the goal of determining the nu-

cleotide order of a given DNA-sequence. There are several ways to

perform this process. In the method which has inspired to this paper

we are given several partial descriptions of a sequence and from these

we are expected to derive the original sequence. Recall that a DNA-

sequence consists of a chain of molecules organized in a double-helix.

The molecules, called nucleotides, are of four types: adenine (abbrevi-

ated A), cytosine (C), guanine (G) and thymine (T). The double-helix

consists of two “complementary” chains of nucleotides. More specifi-

cally, the two chains are bonded to each other in such a way that an

A in one chain always bonds to a T on the other chain and vice versa.

Similarly a C in one chain is bonded to a G in the other chain. There-

fore, it is sufficient to describe the double-chain only by giving the order

of the nucleotides in one of the chains (chosen by some convention).

1The company Global Genomics AB no longer exists but the method is now property

of the Canadian company Genizon.
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E.g. ACCTAGGTA is one such representation, the omitted chain in

this example is TGGATCCAT . In biological literature the molecules

are often denoted by the capital letters A, C, G, T . From now on we,

however, will use lower-case letters when they are considered as parts

of sequences and capital letters when they are considered as molecules.

We will now illustrate the problem by an example. Let us say that

the (yet unknown) sequence w is aactgaccgtaattc. The sequence w is

measured by a scanning device. The device partitions the sequence

into consecutive segments, e.g. (aact, gaccgt, aatt, c). Each segment is

scanned and the amount of each of the four molecules A, C, G and T

is measured. Let k be the number of segments in one segmentation

of the sequence. The measurement of the segments is represented by

signal vectors si = (si,A, si,C , si,G, si,T ) ∈ R
4 where i = 1, . . . , k. We

assume si,N ≥ 0 for N = A, C, G, T . The magnitude of e.g. si,A then

gives information about how many A were present in the i:th segment.

Typically, si,A is a measurement of the total radiation of fluorescents

attached to the A-nucleotides. We assume that the scanner is so precise

that e.g. si,N = 4 means that exactly 4 N -nucleotides were present in

the segment i. Then, the sequence of signal vectors would be

(2, 1, 0, 1), (1, 2, 2, 1)(2, 0, 0, 2)(0, 1, 0, 0).

After that the sequence is segmented in another way. Each of the new

segments are scanned in the same way. This process of “re-segmenta-

tion” and scanning is repeated a number of times.

In the next measurement let us say that w is segmented as

(aa, ctgacc, gtaattc).

The signal vectors then are

(2, 0, 0, 0), (1, 3, 1, 1), (2, 1, 1, 3).

Now, given the two (or more) sequences of signal vectors, our prob-

lem is to determine w. The first signal vector (2, 0, 0, 0) in the second

measurement sequence shows us that w must begin with two a’s. If we

subtract (2, 0, 0, 0) from the first vector (2, 1, 0, 1) in the first sequence

we get (0, 1, 0, 1). This tells us that the next two letters are c and t.

The order of these are however still uncertain. So, we see that in the

above example it is not possible to determine w uniquely. We need

more signal vector sequences in order to do that. One question arises:

How many measurements do we have to do in order to determine w?

In this paper a formal method will be described for calculating the

set of possible words w. It will be shown that the information contained

4



in the two sequences in the above example could be described by the

following single sequence

(2, 0, 0, 0)(0, 1, 0, 1)(1, 2, 1, 0)(0, 0, 1, 1)(2, 0, 0, 2)(0, 1, 0, 0).

With the terminology of this paper the latter sequence is the join of

the two previous sequences. In Section 3.3 the concept of joint se-

quences will be discussed for sequences of elements in any group. In

order to construct the join of two sequences the concept of factorization

schemata is used.

To the authors best knowledge the concepts of joint sequences and

factorization schemata is not seen in the literature to this date. In

Section 4 this concept will be used to solve the problem described

above. In Section 5 there will be shown how to choose a segmentation

of the word in order to successfully reconstruct the word.

Another twist to the problem enters when we let the measurements

contain errors. The set of signal vector sequences then can be incon-

sistent. In Section 6 some indications are given on how to handle the

case of errors in the measurements. Appendix A will use the theory

of fuzzy sets to handle the inexact measurements. In Appendix B the

problem will be formulated as a matrix completion problem. The type

of matrices are of a special kind called Parikh Matrices.

2 Preliminaries

We will use the machinery used in formal languages and combinatorics

of words to formulate the biological problem described above into a

precise mathematical setting. We begin by setting our notation. The

notation closely follows [Lot97]. Throughout this paper Σ will denote

a finite alphabet. The elements of Σ will be called letters and finite

sequences of letters will be called words. Let Σ∗ denote the set of all

words over Σ, including the empty word ε. Σ∗ denotes the free monoid

generated by Σ with unity ε under the operation of concatenation (or

product) of words. Let Σ+ denote the subset of Σ∗ containing all words

but the empty word. Σ+ then is a semigroup. For a subset X ⊂ Σ∗ we

will let X∗ denote the set of all products of words in X .

The length of a word w = a1 · · ·an ∈ Σ∗, ai ∈ Σ, is the number

of letters that w is a product of. We denote the length |w| = n. In

particular |ε| = 0.

We let Σn denote the subset of Σ∗ containing all words of length

n.
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An ordered alphabet is an alphabet Σ = {a1, . . . , ak} which have a

total order < between the letters. If we have a1 < a2 < · · · < ak, then

we write Σ = {a1 < a2 < · · · < ak}.

We call a word u a factor or a subword of w if there exist words

x, y ∈ Σ∗ such that w = xuy. The factor is called proper if u 6= w. We

say that u is a prefix of w if there exists a word x such that w = ux.

Similarly we say that u is a suffix of w if there exists a word x such

that w = xu.

For a subset A ⊂ Σ we denote the number of letters of w that

belong to A by |w|A. For a single letter a ∈ Σ we abuse the notation

and write |w|a to denote the number of occurrences of a in w.

Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet. The image

of the map

Ψ : Σ∗ → N
k (1)

Ψ(w) = (|w|a1
, . . . , |w|ak

) (2)

is often referred to as the Parikh image or commutative image of w,

see e.g. [CK97].

We will regard Σ∗ as a subset of 〈Σ〉, the free group over Σ. In that

way expressions like

u(u−1x) = x (3)

are well defined with u−1 ∈ 〈Σ〉.

3 Factorizations of words

3.1 Introduction

In this section we will define the concept of factorization schemata.

The schema of a factorization determines the length of each factor in

a factorization. This concept will later be used to construct the join

of two factorizations. It is natural to let Σ∗∗ denote the set of finite

sequences of words from Σ∗. Let u, v ∈ Σ∗∗ where u = (u1, . . . , un) and

v = (v1, . . . , vm) with ui, vj ∈ Σ∗, for i = 1, . . . , n and j = 1, . . . , m.

We define the concatenation uv of u and v by

uv = (u1, . . . , un, v1, . . . , vm). (4)

We let ∅ denote the empty sequence in Σ∗∗ and define ∅u = u∅ = u

for all u ∈ Σ∗∗. Concatenation is clearly associative so Σ∗∗ is a monoid

with unity ∅. Given a sequence u = (u1, . . . un) ∈ Σ∗∗ we define a

mapping π : Σ∗∗ → Σ∗

π(u) = Πn
i=1ui. (5)
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In words, π concatenates the words of the sequence u to form a larger

word in Σ∗. The fact that

π(uv) = π(u)π(v) (6)

makes π a morphism. Consider a set A = {s1, . . . , sn} with si ∈ Σ∗∗.

For sets like A we will abuse notation and write

π(A) = {π(si)|i = 1, . . . , n} ⊂ Σ∗. (7)

Definition 3.1 (Factorization) Given a word w ∈ Σ∗ and a se-

quence of words u = (u1, . . . , un) ∈ Σ∗∗, we call u a factorization

of w if w = π(u). Let X = {Xi} for i = 1, . . . , n where Xi ⊂ Σ∗. If

ui ∈ Xi for i = 1, . . . , n then we say that u is an X -factorization. In

particular if ui ∈ X for all i = 1, . . . , n and some X ⊂ Σ∗ we call the

factorization u an X-factorization.

The above definition is an extension of the defintion found e.g. in

[Lot02].

Definition 3.2 (Code) Let X ⊂ Σ∗. We say that X is a code if the

equation

x1 · · ·xm = y1 · · · yn (8)

implies m = n and xi = yi for i = 1, . . . , m whenever all elements

x1, . . . , xm, y1, . . . , yn ∈ X.

That X is a code means that there is no relations between elements

in X . One could also describe it as that any word w ∈ Σ∗ has at most

one X-factorization. The following theorem motivates the name code.

Theorem 3.3 (Codes) Let Y be any alphabet. A set X ⊂ Σ∗ is a

code iff any morphism φ : Y ∗ → Σ∗ induced by a bijection from Y onto

X is injective.

In other words each word in Y ∗ is coded into a concatenation of “code

words” from X . That X is a code means that the original word in Y ∗

uniquely could be determined by the resulting “code word”.

Theorem 3.4 Let φ : Y ∗ → Σ∗ be an injective morphism. If Z ⊂ Y +

is a code, then φ(Z) is a code. If B ⊂ Σ+ is a code, then φ−1(B) is a

code.

For proofs of the above theorems see e.g. [Lot02].

Example 3.5 (Codes) The set X = {aa, ab, ac, b, c} is a code over

the alphabet Y = {a, b, c}. Let φ : Y ∗ → Σ∗ be the morphism induced

by φ(a) = a, φ(b) = ab and φ(c) = bb. According to Theorem 3.4 the

set φ(X) = {aa, aab, abb, ab, bb} is a code.
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We now procede with the definition of minimal factorizations. This is

a concept which we will use in Section 3.3.

Definition 3.6 (Minimal Factorizations) Let u = (u1, . . . , um) be

an X-factorization of a word w ∈ Σ∗ such that uiui+1 · · ·ui+s ∈ X is

false for all integers i and s where i = 1, . . . , m − 1 and s > 0 such

that s + i ≤ m. Then we call u a minimal X-factorization of w.

In a minimal factorization no product of consecutive elements, e.g.

uiui+1, belongs to X .

Theorem 3.7 If X is a code, then any X-factorization of a word

w ∈ Σ∗ is minimal.

Proof. Take an X-factorization u = (u1, . . . , um) of w. For any i and j

with 1 ≤ i < j ≤ m, define

ui,j = uiui+1 · · ·uj (9)

Then clearly ui,j could not belong to X since this would contradict the

properties of equation (8) given in the definition of a code. Therefore

(u1, . . . , um) must be a minimal factorization of u. �

The following example shows us that given a set X , a word can

have several different minimal factorizations.

Example 3.8 Let w = abcba ∈ Σ∗ and let X = {a, ab, cb, bcb}. Then

both (ab · cb · a) and (a · bcb · a) are minimal X-factorizations of w.

Theorem 3.9 Any X-factorization u = (u1, . . . , um) of a word w can

be transformed into a minimal factorization v of w.

Proof. If u is not minimal take the smallest integers i and j with

1 ≤ i < j ≤ m such that ui · · ·uj ∈ X . Then replace u with

u(1) = (u1, . . . , ui−1, ui · · ·uj , uj+1, . . . , um).

If u(1) is not minimal continue this procedure. Since the factorization

has a finite number of factors the procedure will terminate after say s

steps. Then take v = u(s) which must be minimal. �

3.2 Factorization Schemata

Take any factorization u = (u1, . . . , um) ∈ Σ∗∗ of the word w ∈ Σn.

We can specify the factors u1, . . . , um of u by specifying the position

of the first letter in each factor as it is positioned in w. Given that we

know the length of the word aaba the factorization (aa, ba) could be
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specified by just giving the position of the letter b in the last factor,

which in this case is 3. Obviously there is no need to specify the first

letter of the first factor, since this factor is completely determined once

we know where the second factor starts. For a word of length n the

positions of the letters are numbers between 1 and n. Thus, a general

factorization could be described by a subset of these numbers where

each number represents the start position of one of the factors. But

as we noted, the start of the first factor need not be specified so it is

sufficient with a subset of the numbers between 2 and n. This fact is

the motivation for the following definition.

Definition 3.10 (Factorization Schema) Let n be a positive in-

teger. We define an n-factorization schema as an ordered subset of

{2, ..., n}.

We will usually regard a factorization schema as an ordered set with the

usual order of natural numbers. We denote the set of n-factorization

schemata by Fn. In particular we denote the set {2, . . . , n} by λ. Given

F ∈ Fn one can construct a factorization on the words in Σn by split-

ting the word at the indices in F .

Definition 3.11 (Induced Factorization) Let F be an n-factoriza-

tion schema and w = a1 · · · an ∈ Σ∗ a non-empty word of length n with

ai ∈ Σ. Let k1 < . . . < ks be the elements of F given in order and set

k0 = 1 and ks+1 = n + 1. We define the factorization of w induced by

F as

F (w) = (w1, . . . , ws+1)

where

wi = aki−1
· · · aki−1 (10)

for i = 1, . . . , s + 1. For F = ∅ we define F (w) = (w). We call F

the n-factorization map induced by F . For the particular case F =

{2, . . . , n} = λ we denote F by λ.

Theorem 3.12 Let F and G be two n-factorization schemata. Then

F = G iff F = G.

Proof. If F = G then F = G by definition. Assume F = G. Then for

any w ∈ Σn

F (w) = G(w) = (w1, . . . , wm)

for some fixed integer m. Let f(wi) be the position of the first letter

in wi in the word w for i = 2, . . . , m. Then

F = G = {f(wi)|i = 2, . . . , m}

9
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Example 3.13 Let Σ = {a, b, c} and w = aabcabcb. For the sake of

clarity we rename the letters of w so that w = a1a2a3a4a5a6a7a8. Let

F = {3, 5, 8}. Then

w1 = a1 · · · a3−1 = a1a2 = aa

w2 = a3 · · · a5−1 = a3a4 = bc

w3 = a5 · · · a8−1 = a5a6a7 = abc

w4 = a8 · · · a9−1 = a8 = b.

This gives

F (w) = (w1, w2, w3, w4) = (aa, bc, abc, b).

We also have

λ(w) = (a, a, b, c, a, b, c, b).

We note that if |F | = s then F (w) has s+1 factors. For a word w ∈ Σn

we let Fn(w) denote the set of factorizations of w

Fn(w) = {F (w)|F ∈ Fn}. (11)

Clearly

|Fn(w)| = 2n−1. (12)

Given a factorization w = (w1, . . . , ws+1) a corresponding factor-

ization schema F ∈ Fn could be constructed. It is given by F =

{k1, . . . , ks} where the ki are easily calculated by equation (10) in Def-

inition 3.11.

Let Fn(Σn) be the set of factorizations of all words of length n. For

each n-factorization schemata F , the induced n-factorization map F is

an injective function Σn → Σ∗∗. The inverse of F is clearly the map π

defined in (5). Take for example w ∈ Σn and F (w) = (w1, . . . , ws) ∈

Fn(Σn). Then

π(F (w)) = π((w1, . . . , ws)) = w. (13)

We let Fn denote the set of n-factorization maps

Fn = {F |F ∈ Fn}. (14)

3.3 Joint Sequences

We will now describe a general construction of how to “join” two se-

quences as described in the introduction to this paper. The construc-

tion is applicable to all sequences in groups with one constraint: The

“partial products” as defined below must be increasing.
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Let M be a group with identity 1 and a norm | · | : M → R with

the following properties

∀a ∈ M : |a| = 0 ⇔ a = 1,

∀a ∈ M : |a| = |a−1|,

∀a, b ∈ M : |ab| ≤ |a| + |b|.

(15)

Denote the set of finite sequences of elements of M by M ∗. Now, con-

sider two sequences U and V from M∗. Let U = (U1, . . . , Us) ∈ M∗

and V = (V1, . . . , Vt) ∈ M∗ for some positive integers s and t. Define

the “partial products” U ′
i = U1 · · ·Ui and V ′

j = V1 · · ·Vj for i = 1, . . . , s

and j = 1, . . . , t. Then since M is a group U ′
i , V

′
j ∈ M .

We now assume that U and V are given such that |U ′
i | < |U ′

i+1|

and |V ′
j | < |V ′

j+1|, i.e. U ′
i and V ′

j are increasing sequences in M .

We proceed by constructing the sets U ′ = {U ′
i}

s
i=1 and V ′ =

{V ′
i }

t
i=1. It is now possible to define an order ≺U,V on U ′ ∪ V ′ by

x ≺U,V y if











|x| < |y|

or

|x| = |y| and x ∈ U ′ and y ∈ V ′

The assumption that the series of partial products is increasing makes

the order total. We see this since if x, y ∈ U ′ or x, y ∈ V ′, then by this

assumption on U and V , we have x 6= y which implies either |x| < |y| or

|y| < |x|. Let {x1 ≺U,V · · · ≺U,V xs+t} be the ordered set of elements

of U ′ ∪ V ′. Define

ϕU,V : {1, . . . , s + t} → U ′ ∪ V ′ (16)

such that ϕU,V (i) = xi. An obvious property of ϕU,V is that |ϕU,V (i)| ≤

|ϕU,V (j)| for i ≤ j. We construct a new sequence Z in M in the fol-

lowing way. Let

Z ′
1 = ϕU,V (1) (17)

Z ′
i = ϕU,V (i − 1)−1 · ϕU,V (i) (18)

for i = 2, . . . , s + t where ϕU,V (i − 1)−1 is the inverse of ϕU,V (i − 1)

in M . Let Z = Z1, . . . , Zr, r ≤ s + t be the subsequence of Z ′ where

all unity elements have been removed. We call Z for the joint sequence

of U and V with respect to the norm | · |. We assume that the norm

used is understood from the context and denote the joint sequence by

Z = U ∨ V . Let S be a subset of M . If Zi ∈ S for all i then we say

that U and V are S-joinable.

Example 3.14 Consider the sequences U = (1, 3, 5) and V = (2, 6)

in Z. Using the above construction we will now construct U ∨ V . We

11



use addition as binary operation and absolute value as norm. We then

obtain the following partial sums

U ′
1 = 1 V ′

1 = 2

U ′
2 = 4 V ′

2 = 8

U ′
3 = 9.

We see that the partial sums are increasing so it is possible to use our

join construction on these two sequences. By ordering these numbers

by ≺U,V we get

U ′
1 ≺U,V V ′

1 ≺U,V U ′
2 ≺U,V V ′

2 ≺U,V U ′
3.

Equations (17) and (18) then give us

Z ′
1 = U ′

1 = 1

Z ′
2 = V ′

1 − U ′
1 = 2 − 1 = 1

Z ′
3 = U ′

2 − V ′
1 = 4 − 2 = 2

Z ′
4 = V ′

2 − U ′
2 = 8 − 4 = 4

Z ′
5 = U ′

3 − V ′
2 = 9 − 8 = 1

Since the sequence Z ′
i does not contain any zeroes we get

(1, 3, 5) ∨ (2, 6) = (1, 1, 2, 4, 1)

Example 3.15 Let Σ = {a, b}. Take two sequences U = (aa, ba, a)

and V = (a, aba, a) in 〈Σ〉. We will now construct the join of these two

sequences. We will use the binary operation of concatenation from 〈Σ〉

and use word length as norm. The partial products are

U ′
1 = aa V ′

1 = a

U ′
2 = aaba V ′

2 = aaba

U ′
3 = aabaa V ′

3 = aabaa

The partial products are increasing so it is possible to use our join on

the sequences. It is obvious that the partial products must be increasing

for any sequence of words in Σ∗ for any given alphabet Σ. We order

the words U ′
i and V ′

i for i = 1, . . . , 3 using ≺U,V and we get

V ′
1 ≺U,V U ′

1 ≺U,V U ′
2 ≺U,V V ′

2 ≺U,V U ′
3 ≺U,V V ′

3

The next step in the construction results in

Z ′
1 = V ′

1 = a

Z ′
2 = (V ′

1 )−1U ′
1 = (a)−1aa = a

Z ′
3 = (U ′

1)
−1U ′

2 = (aa)−1aaba = ba

Z ′
4 = (U ′

2)
−1V ′

2 = (aaba)−1aaba = ε

Z ′
5 = (V ′

2 )−1U ′
3 = (aaba)−1aabaa = a

Z ′
5 = (U ′

3)
−1V ′

3 = (aabaa)−1aabaa = ε

12



After removal of the unity elements, i.e. of the empty words, we get

(aa, ba, a) ∨ (a, aba, a) = (a, a, ba, a).

3.4 The Boolean Algebra of Factorizations

In the previous section we defined joins of sequences in a general group.

In this section we will be more specific and look at joins of sequences

in 〈Σ〉. The elements of these sequences are regarded as factors in a

factorization. We will also define a construction of joins of factorization

schemata. Then we will show that this notion of join in a natural

way coincide with the previous notion when applied to the induced

factorizations in 〈Σ〉.

Definition 3.16 (Joins and Meets) Let F, G ∈ Fn be two n-facto-

rization schemata. We will define the join F ∨ G of F and G as the

n-factorization map induced by F ∪ G. We define the meet F ∧ G of

F and G as the n-factorization map induced by F ∩ G. That is

F ∧ G = F ∩ G, (19)

F ∨ G = F ∪ G. (20)

Example 3.17 As in Example 3.13 let Σ = {a, b, c}, w = aabcabcb,

F = {3, 5, 8} and also let G = {4, 5, 7}. Then F ∪ G = {3, 4, 5, 7, 8}

and F ∩ G = {5} so

F (w) = (aa, bc, abc, b),

G(w) = (aab, c, ab, cb),

F ∨ G(w) = (aa, b, c, ab, c, b),

F ∧ G(w) = (aabc, abcb).

It is natural to look at a join of two factorization maps as a refine-

ment of the factorizations. On the other hand, taking the meet of two

factorization maps gives a more coarse factorization of the word.

Definition 3.18 If F = F ∧ G then we write F ≤ G.

Theorem 3.19 F ≤ G iff F ⊂ G.

Proof. By definition F = F ∧ G = F ∩ G which by Theorem 3.12 is

equivalent to F = F ∩ G so we have F ⊂ G and the theorem follows.

�

We will now show that two factorizations of a word w can be con-

sidered as two sequences that must be joinable. We will also investigate
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the connection between their join and the factorization of w obtained

by the join of the factorizations corresponding factorization schemata.

We will actually show that these two factorizations coincide. We state

this as follows.

Theorem 3.20 Let F, G ∈ Fn and w ∈ Σn. F (w) and G(w) consid-

ered as sequences in the free group 〈Σ〉 together with the word length

| · | as norm admits the construction of a joint sequence F (w) ∨ G(w)

in 〈Σ〉 as described in Section 3.3. Moreover

F (w) ∨ G(w) = (F ∨ G)(w) (21)

Remark 3.21 The main part of the proof of this theorem consists in

the actual construction of the join F (w) ∨ G(w). In the proof we will

introduce an auxiliary function ϕ. In the remaining part of this paper

we sometimes need to refer to this function along with some other

elements of the proof (for instance in Corollary 3.22).

Proof. Assume w = a1 · · · an for ai ∈ Σ and assume F = (k1, . . . , ks)

and G = (k′
1, . . . , k

′
t). Let h1 ≤ h2 ≤ · · · ≤ hp be the elements of F ∪G

given in order and let h0 = 1 and hp+1 = n + 1. Then

(F ∨ G)(w) = (w1, w2, . . . , wp+1) (22)

where

wi = ahi−1
· · · ahi−1 (23)

for i = 1, . . . , p + 1.

We now turn to the construction of F (w) ∨ G(w). Let F (w) =

(u1, . . . , us+1) and G(w) = (v1, . . . , vt+1) where

ui = aki−1
· · · aki−1 and vj = ak′

j−1
· · ·ak′

j
−1 (24)

for i = 1, . . . , s + 1 and j = 1, . . . , t + 1 and where k0 = k′
0 = 1 and

ks+1 = kt+1 = n + 1. Then

F ′
i = u1 · · ·ui = a1 · · · aki−1 (25)

G′
j = v1 · · · vj = a1 · · · ak′

j
−1 (26)

which shows that |F ′
i | = ki − 1 and |G′

j | = k′
j − 1. We let the function

ϕF,G order the set {F ′
i}

s+1
i=1 ∪ {G′

j}
t+1
j=1 according to word length, as

shown in Section 3.3. So, by taking word length, the function |ϕF,G|

gives the elements in the set {ki − 1}s+1
i=1 ∪ {k′

j − 1}t+1
j=1 in order (since

these numbers are the corresponding word lengths by (25) and (26)).

14



Now hi′ also gives the elements in {ki}
s+1
i=1 ∪ {k′

j}
t+1
j=1 in order so we

have

|ϕF,G(i′)| = hi′ − 1 (27)

for i′ = 1, . . . , p + 1. This gives us

ϕF,G(i′) = a1 · · ·ahi′−1 (28)

and

Z1 = ϕF,G(1) = a1 · · ·ah1−1 = w1 (29)

Zi′ = ϕF,G(i′ − 1)−1ϕF,G(i′)

= (a1 · · · ahi′−1−1)
−1(a1 · · ·ah′

i
−1)

= ahi′−1
· · · ahi′−1

= wi′ (30)

for i′ = 2, . . . , p + 1 where the last equality follows from (23). We have

shown the existens of F (w) ∨ G(w) = (Z1, . . . , Zp+1). Equations (22),

(29) and (30) further show that F (w) ∨ G(w) = (F̄ ∨ Ḡ)(w). �

Corollary 3.22 In the proof of the above theorem ϕ(i− 1) is a prefix

of ϕ(i) for i = 2, . . . , p + 1.

Proof. This is directly seen by equation (28). �

Clearly the set Fn is closed under ∨ and ∧. These operations make

Fn a lattice. The maximal element of Fn is M where M = {2, . . . , n}.

We denote this factorization schema by λ. The minimal element is ∅

which we denote by 0.

Theorem 3.23 The operations ∨ and ∧ are associative and commu-

tative on elements in Fn.

Proof. This follows directly from the associativity and commutativity

of ∪ and ∩. �

Theorem 3.24 Let F, G, H ∈ Fn. Then the distributive laws hold

F ∨ (G ∧ H) = (F ∨ G) ∧ (F ∨ H), (31)

F ∧ (G ∨ H) = (F ∧ G) ∨ (F ∧ H). (32)

Proof. This follows directly from the distributive laws of ∪ and ∩. �
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Theorem 3.25 Let F ∈ Fn and let G = {2, . . . , n} \ F . We then

define F
−1

= G. Then the following equations hold

F ∧ 0 = 0 (33)

F ∨ 0 = F (34)

F ∧ λ = F (35)

F ∨ λ = λ (36)

F ∨ F
−1

= λ (37)

F ∧ F
−1

= 0 (38)

F ∧ F = F ∨ F = F . (39)

Proof. All these relations are easily verified by simple computation. �

Corollary 3.26 The structure (Fn,∨,∧, λ, 0) is a boolean algebra.

Proof. This follows directly from the properties in Theorem 3.25. �

4 Semi-Commutative Images

A word in Σ∗ is a non-commutative product of letters in Σ. In this

section we will study commutative images of words. The commutative

image of a word is the product of the same letters but the product

is commutative. We will also look at commutative images of factor-

izations. In this case the order of the factors in the factorization is

preserved but the factors are replaced by their commutative images.

Thus some non-commutativity is kept. We have chosen to call this a

semi-commutative image.

4.1 Commutative Images

For some positive integer m let N
m be the monoid of m-dimensional

vectors over N with ordinary vector addition as binary operation. Let

0̄ = (0, . . . , 0) ∈ N
m. Let Σ = {a1, . . . , am} be an alphabet. We define

a function Ψ : Σ∗ → N
m by

Ψ(w) = (|w|a1
, . . . , |w|am

). (40)

In particular Ψ(ε) = 0̄. Recall that |w|ai
denotes the number of occur-

rences of ai in w. Observe that under vector addition we have

Ψ(w1w2) = Ψ(w1) + Ψ(w2). (41)

Ψ is easily seen to be an epimorphism between Σ∗ and N
m. The image

Ψ(w) is referred to as the commutative image (or Parikh vector) of w.
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The morphism Ψ is sometimes referred to as the Parikh mapping. See

e.g. [Lot97].

Example 4.1 With w = aabcabcb we have

Ψ(w) = (3, 3, 2).

The term commutative image refers to the fact that if Σ∗ were com-

mutative the word w = aabcabcb could be written a3b3c2 and would

be uniquely determined by the image Ψ(w).

We will also use the following extension of Ψ. Let as before 〈Σ〉

be the free group generated by Σ. Let a ∈ Σ. Then for a−1 ∈ 〈Σ〉 we

define the homomorphism

Ψ(a−1) = −Ψ(a). (42)

With this extension Ψ becomes an epimorphism between 〈Σ〉 and Z
m.

We now consider the inverse of Ψ. Since several words in Σ∗ will

have the same commutative image, the inverse of Ψ maps commutative

images to subsets of Σ∗. Let P(Σ∗) be the set of subsets of Σ∗. We

define the inverse of Ψ as a function from N
m to P(Σ∗). For U ∈ N

m

we define

Ψ−1(U) = {w ∈ Σ∗|Ψ(w) = U}. (43)

Ψ−1(U) is the set of all words with the same commutative image U .

Example 4.2 With w = aabcabcb and w′ = bacacabb we have

Ψ(w) = Ψ(w′) = (3, 3, 2)

so w and w′ both belongs to Ψ−1(3, 3, 2).

For U = (u1, . . . , us) the cardinality of Ψ−1(U) is given by

|Ψ−1(U)| =
(
∑s

i=1 ui)!
∏s

i=1(ui!)
. (44)

4.2 Sequences of Commutative Images

One of the main topics in this paper is factorizations. In this section we

will discuss the concept of commutative images of factorizations. The

construction we will use preserves the order of the factorization and is

therefore called the semi-commutative image of the factorization.

We extend Ψ to a mapping Ψ∗ between sequences in Σ∗ and se-

quences in N
m. We will denote the set of finite sequences of vectors in

N
m by N

m∗. Thus Ψ∗ is a function Ψ∗ : Σ∗∗ → N
m∗ which we define

as follows. For s = (w1, . . . , ws) ∈ Σ∗∗ we let

Ψ∗(s) = (Ψ(w1), . . . , Ψ(ws)). (45)
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Now we look at the inverse of Ψ∗. Let P(Σ∗)∗ be the set of sequences of

subsets of Σ∗. We define the inverse of Ψ∗ as a function Ψ∗−1 : N
m∗ →

P(Σ∗)∗. 2 For U = (U1, . . . , Us) ∈ N
m∗ we have

Ψ∗−1(U) = (Ψ−1(U1), . . . , Ψ
−1(Us)). (46)

The cardinality of Ψ∗−1(U) is easily computed by using (44)

|Ψ∗−1(U)| =
s

∏

i=1

|Ψ−1(Ui)|. (47)

4.3 Induced Semi-Commutative Images

Each n-factorization schemata F ∈ Fn lets us define a function Ψ∗
F

:

Σn → N
m∗ by

Ψ∗
F
(w) = (Ψ∗ ◦ F )(w). (48)

The above function maps a word to a semi-commutative image where

the sequence elements are determined by a factorization.

Again several words in Σn have the same semi-commutative image.

Hence, the inverse of Ψ∗
F

is a map to subsets of Σn. More precisely, the

inverse of Ψ∗
F

is a function N
m∗ → P(Σn) defined by

(Ψ∗
F

)−1 = π ◦ Ψ∗−1, (49)

where π(A) for A ⊂ Σn∗ denotes the set {π(u)|u ∈ A}, cf. the definition

of π in (5). Note the difference between Ψ∗−1 and Ψ∗−1

F
. The function

Ψ∗−1 maps sequences to sequences of sets while Ψ∗−1

F
maps sequences

to sets of words.

4.4 Commutative Closures

Given a word we will need the following convenient way of denoting the

set of all other words with the same commutative or semi-commutative

image.

Definition 4.3 (Commutative Closure) Let w ∈ Σn and F ∈ Fn.

We introduce the following notation

C(w) = Ψ−1(Ψ(w)) (50)

SF (w) = Ψ∗−1

F
(Ψ∗

F
(w)) (51)

C(w) ⊂ Σn is the commutative closure of w. SF (w) ⊂ Σn is the semi-

commutative closure of w induced by F . In particular C(w) = S
∅
(w).

2One could also define Ψ∗−1 :
�

m∗ → P(Σ∗∗) with U = (U1, . . . , Us) 7→ {(w1, . . . , ws) ∈

Σ∗∗|Ψ(wi) = Ui}. But then the structure of U would be lost.
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Example 4.4 With w and w′ as in Example 4.2 we have w′ ∈ C(w).

Theorem 4.5 Let w ∈ Σn and F, G ∈ Fn such that F ≤ G. Then the

following hold

SG(w) ⊂ SF (w). (52)

Proof. Let x ∈ SG(w). Assume that F = {k1 < · · · < ks} and G =

{k′
1 < · · · < kt}. Let

F (x) = (x1, . . . , xs+1) (53)

F (w) = (w1, . . . , ws+1) (54)

G(x) = (x′
1, . . . , x

′
t+1) (55)

G(w) = (w′
1, . . . , w

′
t+1). (56)

The assumption x ∈ SG(w) says that Ψ∗
G
(x) = Ψ∗

G
(w) and thus that

Ψ(x′
j) = Ψ(w′

j) for j = 1, . . . , t + 1. We want to prove Ψ(xi) = Ψ(wi)

for i = 1, . . . , s + 1. Now F ≤ G implies F ⊂ G by Theorem 3.19 so

for all i = 1, . . . , s there exists a ji ∈ {1, . . . , t} such that ki = k′
ji

.

Therefore the first position of xi in x is the same as the first position

in x′
k′

ji

. We set k′
j1

= 1 and k′
js+2

= t + 2 and we get the following

relations

xi = x′
k′

ji

· · ·x′
k′

ji+1
−1 (57)

wi = w′
k′

ji

· · ·w′
k′

ji+1
−1 (58)

for i = 1, . . . , s + 1. The wanted equalities follows from

Ψ(xi) = Ψ(x′
k′

ji

· · ·x′
k′

ji+1
−1)

= Ψ(x′
k′

ji

) + · · · + Ψ(x′
k′

ji+1
−1)

= Ψ(w′
k′

ji

) + · · · + Ψ(w′
k′

ji+1
−1)

= Ψ(w′
k′

ji

· · ·w′
k′

ji+1
−1)

= Ψ(wi).

This shows that ΨF (x) = ΨF (w) so that x ∈ SF (w).

�

Corollary 4.6 Let w ∈ Σn and F, G ∈ Fn such that F ≤ G. Then

the following chain of inclusions is valid

{w} = Sλ(w) ⊂ SG(w) ⊂ SF (w) ⊂ S0(w) = C(w) ⊂ Σn. (59)
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4.5 Factorization Schemata Induced by Semi-Com-

mutative Images

In Section 4.3 we showed how a factorization schema could be used to

construct a sequence of commutative images. We will now investigate

how a factorization schema is induced by a sequence of commutative

images.

Let Σ be a finite alphabet. Let m = |Σ| and M = N
m. Take a

sequence U ∈ M s+1 with U = (U1, . . . , Us+1). For Ui ∈ N
m let |Ui|

denote the sum the elements in Ui and assume n =
∑s+1

i=1 |Ui| and

|Ui| 6= 0 for i = 1, . . . , s + 1. We will regard U as a semi-commutative

image and now show how to construct an induced factorization schema

from U .

Let ki = (
∑i

j=1 |Uj |) + 1 for i = 1, . . . , s. Clearly the sequence

k1, . . . , ks is increasing. Furthermore

k1 = |U1| + 1 ≥ 1 + 1 = 2

and

ks =

s
∑

i=1

|Ui| + 1 = n − |Us+1| + 1 ≤ n − 1 + 1 = n

This shows that the set F = {k1, . . . , ks} has the properties of an n-

factorization schema. We say that F is the factorization schema induced

by U .

Each factorization w1 · · ·ws+1 of a word w induces a partition or

a “factorization” of the vector Ψ(w) = Ψ(w1) + · · · + Ψ(ws+1) in the

monoid M = N
n. As the following example shows the opposite is not

true, i.e. a factorization of Ψ(w) does not necessarily correspond to a

factorization of w.

Example 4.7 Let Σ = {a, b, c} and w = aabca. Then

Ψ(w) = (3, 1, 1) = (2, 0, 1) + (1, 1, 0) (60)

but Ψ−1((2, 0, 1)) = {aac, aca, caa} does not contain a factor of w.

Note that when we are speaking of factorization of elements in N
m

we are really speaking of sums of elements. These “factorizations” are

commutative while the factorizations of words in Σ∗ are not.

4.6 Joins of Semi-Commutative Images

In Section 3.3 we showed how to construct a join of two sequences in

general groups and in Section 3.4 we applied this to joins of factoriza-

tions. In this section we will construct joins between semi-commutative
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images and investigate how these relate to joins of factorizations. This

is the construction used to join the sequences mentioned in the intro-

duction of this paper.

Let m = |Σ| and M = Z
m. We consider M as a group under

ordinary vector addition. Take U = (U1, . . . , Us) ∈ Ms and V =

(V1, . . . , Vt) ∈ M t where s and t are two positive integers. U and V are

then two sequences in M . We will use the norm

|X |M =

m
∑

i=1

|xi|. (61)

for elements X = (x1, . . . , xm) ∈ M . Assume n =
∑s

i=1 |Ui|M =
∑t

i=1 |Vi|M . Construct ϕU,V and Z as in Section 3.3 using the norm

| · |M . In general Zi ∈ Z
m for i = 1, . . . , r. Now we are mainly in-

terested in sequences that could be interpreted as semi-commutative

images. These sequences are those that belong to N
m∗. It is natural to

require that also the join of these sequences should belong to N
m∗ and

not to Z
m∗. To achieve this we assume that ϕU,V (i) ≤ ϕU,V (i + 1) for

i = 1, . . . , r − 1. That is, if ϕU,V (i) = (x1, . . . , xn) and ϕU,V (i + 1) =

(y1, . . . , yn) then xj ≤ yj for j = 1, . . . , n and i = 1, . . . , r − 1. The

monotonicity of ϕU,V (i) assures that the vector Z ′
i as defined in (17)

is a vector in N
m. That is,

Zi ∈ N
m for i = 1, . . . r (62)

and therefore the sequence Z ∈ (Nm)∗. We capture this in the following

definition.

Definition 4.8 Let m = |Σ| and M = Z
m. Let U = (U1, . . . , Us) ∈

Ms and V = (V1, . . . , Vt) ∈ M t where s and t are two positive integers.

Assume
∑s

i=1 |Ui|M =
∑t

i=1 |Vi|M . Then we say that U and V are

compatible if

ϕU,V (i) ≤ ϕU,V (i + 1) (63)

for i = 1, . . . , r − 1.

By using the above construction we can define the join of two semi-

commutative images. Let us say that U = ΨF (w) and V = ΨG(w).

The join Ψ∗
F
(w) ∨ Ψ∗

G
(w) then is defined to be the sequence Z in the

construction above.

Example 4.9 Let Σ = {a, b, c} and w = aabcabcb. Also let

F (w) = (aa, bc, abc, b)

G(w) = (aab, ca, b, cb).
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These factorizations induce the following semi-commutative images

U = Ψ∗
F
(w) = (Ψ(aa), Ψ(bc), Ψ(abc), Ψ(b))

= ((2, 0, 0), (0, 1, 1), (1, 1, 1), (0, 1, 0))

V = Ψ∗
G

(w) = (Ψ(aab), Ψ(ca), Ψ(b), Ψ(cb))

= ((2, 1, 0), (1, 0, 1), (0, 1, 0), (0, 1, 1)).

The construction yields

U ′
1 = (2, 0, 0) V ′

1 = (2, 1, 0)

U ′
2 = U ′

1 + (0, 1, 1) = (2, 1, 1) V ′
2 = V ′

1 + (1, 0, 0) = (3, 1, 1)

U ′
3 = U ′

2 + (1, 1, 1) = (3, 2, 2) V ′
3 = V ′

2 + (0, 1, 0) = (3, 2, 1)

U ′
4 = U ′

3 + (0, 1, 0) = (3, 3, 2) V ′
4 = V ′

3 + (0, 1, 1) = (3, 3, 2).

After ordering the elements U ′
i and V ′

i with the norm |U | =
∑

|ui| we

get

ϕU,V (1) = U ′
1 ϕU,V (5) = V ′

3

ϕU,V (2) = V ′
1 ϕU,V (6) = U ′

3

ϕU,V (3) = U ′
2 ϕU,V (7) = U ′

4

ϕU,V (4) = V ′
2 ϕU,V (8) = V ′

4 .

We note that ϕU,V (i) ≤ ϕU,V (i + 1) for i = 1, . . . , 7 so U and V are

compatible. We continue with the construction and get

Z ′
1 = U ′

1 = (2, 0, 0)

Z ′
2 = −U ′

1 + V ′
1 = (−2, 0, 0) + (2, 1, 0) = (0, 1, 0)

Z ′
3 = −V ′

1 + U ′
2 = (−2,−1, 0) + (2, 1, 1) = (0, 0, 1)

Z ′
4 = −U ′

2 + V ′
2 = (−2,−1,−1) + (3, 1, 1) = (1, 0, 0)

Z ′
5 = −V ′

2 + V ′
3 = (−3,−1,−1) + (3, 2, 1) = (0, 1, 0)

Z ′
6 = −V ′

3 + U ′
3 = (−3,−2,−1) + (3, 2, 2) = (0, 0, 1)

Z ′
7 = −U ′

3 + U ′
4 = (−3,−2,−2) + (3, 3, 2) = (0, 1, 0)

Z ′
8 = −U ′

4 + V ′
4 = (−3,−3, 2) + (3, 3, 2) = (0, 0, 0).

The unity element in this example is (0, 0, 0). When the unity elements

are removed we finally get U ∨ V = (Z ′
1, . . . , Z

′
7).

4.7 Joins of Factorizations and Semi-Commutative

Images

We are now ready to show the relation between joins of factorizations

and joins of semi-commutative images. We start by proving some lem-

mas.

Lemma 4.10 Assume |Σ| = m. Let M = N
m. Let s and t be two

positive integers and U ∈ M s and V ∈ M t be two sequences such that
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∑

|Ui| =
∑

|Vi| = n. Let FU and FV be the corresponding induced

factorization schemata. Then U and V are compatible if and only if

Ψ∗−1

FU∨FV

(U ∨ V ) 6= ∅. (64)

Proof. Let Z1 = ϕ(1) and Zi = ϕ−1(i−1)ϕ(i) for i = 2, . . . , s as in the

construction of U∨V . First assume that U and V are compatible. Let us

say Σ = {a1, . . . , am}. Since U and V are compatible we have Zi ∈ N
m

where Zi = (c1, · · · , cm) for some ci ∈ N. Then we can construct a

word wi = ac1

1 · · · acm
m and clearly wi ∈ Ψ−1(Zi) for i = 1, . . . , s. Now

since at least for one Zi (e.g. Z0) we have ci 6= 0 and therefore wi 6= ε.

This shows that π(w1, . . . , ws) belongs to the set in the left-hand side

of equation (64).

Now assume Ψ∗−1

FU∨FV
(U ∨V ) is non-empty so that w belongs to the

set. Let (FU ∨ FV )(w) = w1 · · ·ws. Then

ϕ(i) = Ψ(w1 · · ·wi) ≤ Ψ(w1 · · ·wi+1) = ϕ(i + 1)

Which shows that U and V are compatible. �

Lemma 4.11 Let w, u, v ∈ Σ∗. If w = uv then

Ψ(v) = Ψ(u−1w) = −Ψ(u) + Ψ(w) (65)

where u−1 is the inverse of u in 〈Σ〉.

Proof. Let u = u1 · · ·us with ui ∈ Σ for i = 1, . . . , s. Then from (42)

we get

Ψ(v) = Ψ(u−1uv)

= Ψ(u−1) + Ψ(uv)

= Ψ(u−1
s · · ·u−1

1 ) + Ψ(w)

= −Ψ(us · · ·u1) + Ψ(w)

= −Ψ(u) + Ψ(w)

Where we used the obvious fact that the commutative image of a word

remains the same when the order of the letters is reversed. �

The following theorem shows that the join of two semi-commutative

images induced by a factorization is the same as the semi-commutative

image of the join of the corresponding factorizations.

Theorem 4.12 Let w ∈ Σn and F and G be two n-factorization

schemata and take w ∈ Σn. Then

Ψ∗
F∨G

(w) = Ψ∗
F
(w) ∨ Ψ∗

G
(w). (66)
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Proof. Let U = F (w) = (u1, . . . , us+1), V = G(w) = (v1, . . . , vt+1). By

Theorem 3.20 we get (F ∨G)(w) = (z1, . . . , zp+1). By the proof of the

same theorem we have Ūi = u1 · · ·ui and V̄j = v1 · · · vj and ϕU,V is the

ordering function of the elements Ūi and V̄j such that

zi = ϕU,V (i − 1)−1ϕU,V (i) (67)

for i = 1, . . . , p+1. We also note that ϕU,V (i−1) is a prefix of ϕU,V (i)

by Corollary 3.22. By definition we have

Ψ∗
F∨G

(w) = (Ψ(z1), . . . , Ψ(zp+1)). (68)

We now turn to the construction of Ψ∗
F
(w)∨Ψ∗

G
(w). Let U ′ = Ψ∗

F
(w) =

(Ψ(u1), . . . , Ψ(us+1)) and V ′ = Ψ∗
G

(w) = (Ψ(v1), . . . , Ψ(vt+1)). Let

U ′
i = Ψ(ui) for i = 1, . . . , s + 1 and V ′

j = Ψ(vj) for j = 1, . . . , t + 1 and

define Ū ′
i = U ′

1 + · · · + U ′
i and V̄ ′

j = V ′
1 + · · · + V ′

j . Let

Z ′ = (z′1, . . . , z
′
p′+1) = Ψ∗

F
(w) ∨ Ψ∗

G
(w) (69)

be the join defined in Section 3.3 and ϕU ′,V ′ be the ordering of the

elements in {Ū ′
i} ∪ {V̄ ′

j }. Then

z′i = −ϕU ′,V ′(i − 1) + ϕU ′,V ′(i). (70)

Now

|Ū ′
i | = |Ψ(u1) + · · · + Ψ(ui)| = |Ψ(u1 · · ·ui)| = |Ūi|

so the ordered elements of {Ū ′
i} ∪ {V̄ ′

j } and {Ūi} ∪ {V̄j} are put in a

1-1 correspondence by the following equality

ϕU ′,V ′(i) = Ψ(ϕU,V (i)). (71)

Now, using equations (70) and (71) and the fact that ϕU,V (i − 1) is a

prefix of ϕU,V (i) Lemma 4.11 and equation (67) show that

z′i = −ϕU ′,V ′(i − 1) + ϕU ′,V ′(i)

= −Ψ(ϕU,V (i − 1)) + Ψ(ϕU,V (i))

= Ψ(ϕU,V (i − 1)−1ϕU,V (i))

= Ψ(zi). (72)

Finally this gives us

Ψ∗
F
(w) ∨ Ψ∗

G
(w) = (Ψ(z1), . . . , Ψ(zp+1)) = Ψ∗

F∨G
(w). (73)

�
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Remark 4.13 In the second equality in (72) one might think that just

by altering the order of the terms in the sum one would get Ψ(ϕU,V (i))−

Ψ(ϕU,V (i − 1)) = Ψ(ϕU,V (i)ϕU,V (i − 1)−1), which is not Ψ(zi). How-

ever, ϕU,V (i) is not a prefix of ϕU,V (i − 1) so Lemma 4.11 does not

apply.

Corollary 4.14 We have

Ψ∗
F
(w) ∨ Ψ∗

G
(w) = Ψ∗(F (w) ∨ G(w)). (74)

Proof. Theorem 3.20 gives

Ψ∗(F (w) ∨ G(w)) = Ψ∗((F ∨ G)(w))

= Ψ∗
F∨G

(w)

= Ψ∗
F
(w) ∨ Ψ∗

G
(w)

�

Theorem 4.15 Let U, V ∈ (Nm)s+1 and
∑

|ui| =
∑

|vi| = n where

U = (u1, . . . , us+1) and V = (v1, . . . , vs+1). Then U and V are compat-

ible if there exists a word w ∈ Σn and F, G ∈ Fn such that Ψ∗
F
(w) = U

and Ψ∗
G

(w) = V .

Proof. Assume w ∈ Σn and F, G ∈ Fn such that Ψ∗
F
(w) = U and

Ψ∗
G

(w) = V . Then by Theorem 4.12 we have U∨V = Ψ∗
F
(w)∨Ψ∗

F
(w) =

Ψ∗
F∨G

. But then w ∈ Ψ∗−1

F∨G
(U ∨ V ) so by Lemma 4.10 we see that U

and V are compatible. �

We illustrate the theorem by continuing the previous example.

Example 4.16 (Example 4.9 Continued) We have

(F ∨ G)(w) = (aa, b, c, a, b, c, b) (75)

thus

Ψ∗
F∨G

(w) = ( (2, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0),

(0, 1, 0), (0, 0, 1), (0, 1, 0) )

which is exactly the sequence Ψ∗
F
(w) ∨ Ψ∗

G
(w) constructed in Example

4.9.
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Theorem 3.20 and Theorem 4.12 are illustrated by the following

commutative diagram.

Σ∗∗ Ψ∗

// Nm∗

Σ∗

(F,G) %%JJJ
JJ

JJ
JJ

J

F∨G

99ssssssssss

Σ∗∗ × Σ∗∗
(Ψ∗,Ψ∗)

//

∨

OO

N
m∗ × N

m∗

∨

OO

We have stated several results concerning the relation between joins

of factorizations and joins of semi-commutative images. The following

theorem describes how these joins behave when taking inverses of semi-

commutative images.

Theorem 4.17 Let Σ be an alphabet with m letters. Let M = N
m.

Let s and t be two positive integers and U ∈ M s and V ∈ M t be two

compatible sequences such that
∑

|Ui| =
∑

|Vi| = n. Let FU and FV

be the factorization schemata induced by U and V . Then

Ψ∗−1

FU∨FV
(U ∨ V ) = Ψ∗−1

FU
(U) ∩ Ψ∗−1

FV
(V ). (76)

Proof. By Lemma 4.10 we know that Ψ∗−1(U ∨V ) is non-empty so we

may take w ∈ Ψ∗−1

FU∨FV

(U ∨ V ). Then

Ψ∗
FU∨FV

(w) = U ∨ V (77)

so

SFU∨FV
(w) = Ψ∗−1

FU∨FV
(U ∨ V ). (78)

Now FU ≤ FU ∨ FV so by Theorem 4.5

SFU∨FV
(w) ⊂ SFU

(w) = Ψ∗−1

FU

(Ψ∗
FU

(w)) = Ψ∗−1

FU

(U) (79)

and similarly

SFU∨FV
(w) ⊂ Ψ∗−1

FV
(V ),

which shows

w ∈ Ψ∗−1

FU

(U) ∩ Ψ∗−1

FV

(V ).

We have shown

Ψ∗−1

FU∨FV

(U ∨ V ) ⊂ Ψ∗−1

FU

(U) ∩ Ψ∗−1

FV

(V ) (80)

Now conversely, equation (80) also shows that the right hand side is

non-empty. So we may take w ∈ Ψ∗−1

FU

(U)∩Ψ∗−1

FV

(V ). Then Ψ∗
FU

(w) =

U and Ψ∗
FV

(w) = V . By Theorem 4.12

U ∨ V = Ψ∗
FU

(w) ∨ Ψ∗
FV

(w) = Ψ∗
FU∨FV

(w) (81)

which shows that w ∈ Ψ∗−1

FU∨FV
(U ∨ V ). �
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Corollary 4.18 With U and V as in the previous theorem

Ψ∗−1
FU

(U) ∩ Ψ∗−1
FV

(V ) 6= ∅. (82)

Proof. This follows directly from Lemma 4.10. �

5 Decompositions of Monoids

As stated in the introduction, the goal behind the idea of this paper

is to reconstruct a word given some semi-commutative images of the

word. In this section we will discuss some properties of the correspond-

ing factorizations which ensures that the reconstruction is unique. The

idea is to find a family of sets such that if the word is factorized over

this family the join of the corresponding semi-commutative images will

be a Σ-factorization of the word. Or more precisely a Σ◦-factorization,

where Σ◦ is the set of all words consisting of just one of the letters in

Σ.

Lemma 5.1 Let Xi ⊂ Σ∗ for i = 1, . . . , n. Let w ∈ Σ∗. Then w have

an Xi-factorization xi for each i = 1, . . . , n iff w ∈ ∩n
i=1X

∗
i .

Proof. Take w ∈ Σ∗ such that w has an Xi-factorization for all i =

1, . . . , n. Then w = π(xi) ∈ X∗
i for all i = 1, . . . , n. This proves w ∈

∩n
i=1X

∗
i . Take w ∈ ∩n

i=1X
∗
i then since w ∈ X∗

i for each i = 1, . . . , n

there are words x
(i)
j ∈ Xi for j = 1, . . . , si such that w = x

(i)
1 · · ·x

(i)
si

and this gives an Xi-factorization of w. �

Definition 5.2 (Decomposition) Let Xi, Y ⊂ Σ∗ for i = 1, ..n. As-

sume that for all words w ∈ ∩n
i=1X

∗
i and any family {xi}n

i=1 of fac-

torizations of w where xi is an Xi-factorization, the join ∨n
i=1xi is a

Y -factorization of w. Then we call {Xi}n
i=1 a Y -decomposition of Σ∗.

We begin with some general properties of decompositions.

Theorem 5.3 Let Xi, Y ⊂ Σ∗ for i = 1, . . . , n. If {Xi}n
i=1 is a Y -

decomposition of Σ∗ then

n
⋂

i=1

X∗
i ⊂ Y ∗ (83)

Proof. By Lemma 5.1 the intersection on the left is the set of all w ∈ Σ∗

such that w has a Xi-factorization xi for each i = 1, . . . , n. Take one

such w. By the definition of decomposition the join y = ∨n
i=1xi is a

Y -factorization so clearly w = π(y) belongs to Y ∗. �
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For an alphabet Σ we define

Σ◦ =
⋃

a∈Σ

{a}∗ (84)

Clearly every word w ∈ Σ∗ has a unique minimal Σ◦-factorization, say

(w1, . . . , wk), where each wi is a power of a letter in Σ and wi and wi+1

are not powers of the same letter.

Lemma 5.4 Let Σ = {a, b, c, d}. Define X1 = {a, b}, X2 = {c, d},

Y1 = {a, c} and Y2 = {b, d}. Let X = X∗
1 ∪ X∗

2 and Y = Y ∗
1 ∪ Y ∗

2 . If

x ∈ X is a subword of y ∈ Y then x ∈ Σ◦.

Proof. That x is a subword of y means that there exist u and v such

that y = uxv. Assume y ∈ Y ∗
1 . Then since Y1 is generated by letters

we have u, x, v ∈ Y ∗
1 . This means that

x ∈ X ∩ Y ∗
1 = (X∗

1 ∪ X∗
2 ) ∩ Y ∗

1

= (X∗
1 ∩ Y ∗

1 ) ∪ (X∗
2 ∩ Y ∗

1 )

= {a}∗ ∪ {c}∗

which shows x ∈ Σ◦. Similarly the assumption y ∈ Y2 shows x ∈

{b}∗ ∪ {d}∗ ⊂ Σ◦. �

Theorem 5.5 Let Σ = {a, b, c, d}. Define X1 = {a, b}, X2 = {c, d},

Y1 = {a, c} and Y2 = {b, d}. Let X = X∗
1 ∪X∗

2 and Y = Y ∗
1 ∪Y ∗

2 . Then

{X, Y } is a Σ◦-decomposition of Σ∗.

Proof. Assume w ∈ Σ∗. Let u = (u1, . . . , us) and v = (v1, . . . , vt) be

two arbitrary X and Y -factorizations respectively of w.

Let z = (z1, . . . , zk) = u ∨ v. Then z1 = ϕu,v(1) and zi = ϕu,v(i −

1)−1ϕu,v(i) for i = 2, . . . , k. Without loss of generality we may assume

z1 = ϕu,v(1) = u1. Thus z1 ∈ X = {a, b}∗ ∪ {c, d}∗. We may assume

z1 = {a, b}∗. If z1 ∈ {a}∗ or z1 ∈ {b}∗ then z1 ∈ Σ◦. Otherwise, without

loss of generality, we may assume z1 = acbx, for some integer c ≥ 1

and x ∈ {a, b}∗. But then we must have v1 = ac which contradicts

|u1| = |ϕu,v(1)| < |vj | for all j = 1, . . . , t. We have shown z1 ∈ Σ◦.

Assume that zi ∈ Σ◦ for i = 1, . . . , j − 1. We will show that zj ∈ Σ◦.

We have zj = ϕu,v(j − 1)−1ϕu,v(j). If zj ∈ Σ◦ we are done. Otherwise

z is a product of two letters. It does not matter which two and which

order so we may assume zj ∈ {a, b}∗ and that zj = ac′bx′ for some

c′ ≥ 1 and x′ ∈ {a, b}∗. This would mean that ϕu,v(j) = u1 · · ·uk′

for some k′. But then ϕu,v(j − 1)ac = v1 · · · vk′′ for some k′′. Thus

|ϕu,v(j − 1)| < |vk′′ | < |ϕu,v(j)| which is a contraction. Therefore

zj ∈ Σ◦. �
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The following theorem shows that if we are given two semi-commu-

tative images induced by factorizations over a Σ◦-decomposition, then

their inverse sets only have one word in common. We start by proving

some lemmas.

Lemma 5.6 Let F (w) be a Σ◦-factorization of w. Then Ψ∗
F
(w) is a

sequence of base vectors in N
m each scaled by a non-negative integer.

Proof. We have

F (w) = (ac1

i1
, . . . , acn

in
)

where aij
∈ Σ and cj ∈ N for j = 1, . . . , n. Thus

Ψ∗
F
(w) = (c1Ψ(ai1), . . . , cnΨ(ain

)).

�

Theorem 5.7 If F (w) is a Σ◦-factorization of w then

|Ψ∗−1

F
(w)| = 1.

Proof. This follows directly from Lemma 5.6 and equation (47). �

Theorem 5.8 Let w ∈ Σn and F (w) and G(w) be two X and Y

factorizations respectively. Let U = Ψ∗
F
(w) and V = Ψ∗

G
(w). If {X, Y }

is a Σ◦-decomposition then

Ψ∗−1

F∨G
(U ∨ V ) = Ψ∗−1

F
(U) ∩ Ψ∗−1

G
(V ) = {w}. (85)

Proof. The first equality is just Theorem 4.17 and clearly

w ∈ Ψ∗−1

F
(U) ∩ Ψ∗−1

G
(V ).

Since {X, Y } is a Σ◦-decomposition, (F ∨G)(w′) is a Σ◦-factorization

of w so Theorem 5.8 implies that w is the only element in the set. �

6 Conclusion and Further Research

In this paper we have shown that given some semi-commutative images

of factorizations of a word, where the factorizations are taken over a

Σ◦-decomposition, we are able to reconstruct the word by considering

the inverse image of the join of the semi-commutative images.

Let us now return to the biological problem described in the in-

troduction. We then see that the above result applies to the situation

where the scanner delivers precise and error-free measures. Below we

will describe some first steps in the direction of dealing with the situa-

tion where the measurements contain errors. The signal vector, or the
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semi-commutative image, of the word thus gives a more or less accu-

rate indication of the number of each letter in the word. Our interest

lies in the set of possible words that could result in this signal vec-

tor. To study this set we introduce the concepts of commutative and

semi-commutative d-closures. This is the set of words that are “close”

to another word according to some notion of distance. Some possible

distance functions are suggested. Also some natural generalizations of

X -factorizations and decompositions are given. In Appendix A an al-

ternative way of dealing with the problem of inexact measurements is

described.

6.1 Parikh Distances

We begin with some definitions of distance between words. In the

following we will make use of the following norm on Z
m. For u =

(u1, . . . , um) ∈ Z
m we define

|u| =

m
∑

i=1

|ui|

Definition 6.1 (Parikh distance) For two words w, w′ ∈ Σ∗ we de-

fine the Parikh distance

P(w, w′) = |Ψ(w) − Ψ(w′)|

We generalize the above definition to a function where differences

between different letters could be weighted.

Definition 6.2 (Weighted Parikh distance) For |Σ| = m and v ∈

R
m we define

Pv(w, w′) = |v � (Ψ(w) − Ψ(w′))|

where � represent element-wise multiplication.

The following distance function weights both the letters and the

difference in length between two words.

Definition 6.3 (Length and Parikh distance) For d, dl ∈ Z, v ∈

R
m and vl ∈ R let

Pd,dl
v,vl

(w, w′) = |v � (Ψ(w) − Ψ(w′)|d + (vl � | |Ψ(w)| − |Ψ(w′)| |)dl

6.2 Commutative d-closures

We will make use of the previously defined distance functions to give

generalized definitions of commutative and semi-commutative closures.
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Definition 6.4 (Commutative d-closure) Let P be any distance

function defined on Σ∗. For w ∈ Σ∗ and d ∈ R with d ≥ 0 we call

Cd(w) = {w′ ∈ Σ∗|P(w, w′) ≤ d}

the commutative d-closure of w with respect to P.

Definition 6.5 (Semi-commutative d-closure) Let w ∈ Σn and

F ∈ Fn so that F (w) = w1 · · ·ws. Let P be a distance function defined

on Σ∗. For d ∈ R with d ≥ 0 we call

SF,d(w) = {w′ ∈ Σn|w′ = w′
1 · · ·w

′
s,P(wi, w

′
i) ≤ d}

the semi-commutative d-closure of w with respect to P.

6.3 Xd-Factorizations and Yd-Decompositions

It is also possible to generalize X -factorizations and Y -decompositions.

Definition 6.6 (Xd-factorization) Let P be a distance function on

Σ∗. Let X = {Xi}s
i=1 for i = 1, . . . , s where Xi ⊂ Σ∗. Take w ∈ Σ∗

with a factorization w = w1 · · ·ws. If there is w′
i ∈ Xi and d ∈ R with

d ≥ 0 such that P(wi, w
′
i) ≤ d for i = 1, . . . , s, then we call w1 · · ·ws a

Xd-factorization of w with respect to P.

Definition 6.7 (Yd-Decompositions) Let Xi, Y ⊂ Σ∗ for i = 1, ..n.

Assume that for all words w ∈ ∩n
i=1X

∗
i and any family {xi}n

i=1 of fac-

torizations of w where xi is an Xi,di
-factorization for some fixed di ∈

R, di ≥ 0. Further assume that the join ∨n
i=1xi is a Yd-factorization

of w for some fixed d ∈ R, d ≥ 0. Then we call {Xi}n
i=1 a Yd-

decomposition of Σ∗.
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A Fuzzy Languages

A.1 Introduction

In this appendix we will give an alternative way of modeling the prob-

lem given in the introduction of this paper.

We will introduce a model for string representation of polynu-

cleotide sequences such as DNA and RNA where the information about

the exact sequences are more or less certain. The theory of fuzzy sets

will be used to model this uncertainty of the sequence.

The situation in the reconstruction problem is that we have several

partial descriptions of a DNA-sequence. By this we mean that each

partial description on its own is not enough to give an exact description

of the sequence. We will use the concept of fuzzy languages to model

this uncertainty about the information. The membership of each word

in the language then represents how likely it is that that word is indeed

the sequence we want.

We assume that the partial information is represented by sequences

of signal vectors as described in the introduction. We will show how

to generate a fuzzy language from such a signal vector. We will also

show that by taking the intersection of several such fuzzy languages

the fuzziness of the resulting fuzzy language decreases.

A.2 Fuzzy Sets

The notion of a fuzzy subset of a set was introduced by Zadeh in

[Zad65].

Definition A.1 A fuzzy subset A of a set X is a function

µA : X → [0, 1] (86)

where [0, 1] denotes the closed interval of real numbers between 0 and

1.

For a given x ∈ X the function µA of a fuzzy subset A can be thought

of as a measure of the degree of membership of x in A. µA should

be considered a generalization of the characteristic functions used to

define ordinary subsets of X . One would interpret µA(x) = 1 as that x

belongs to the set and µA(x) = 0 would mean that x is not a member

of the set.

Ordinary subsets are often referred to as crisp in the fuzzy set

theory. For the basic theory of fuzzy sets see for example the origi-

nal article of Zadeh [Zad65] where the concept of fuzzy sets first was

introduced in the literature.
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We continue with some basic definitions.

Definition A.2 Let A be a fuzzy subset of X.

1. Let α ∈ [0, 1]. Define µAα
= {x ∈ X |µA(x) ≥ α}. We call the

fuzzy subset Aα described by µAα
for a α-cut.

2. We define the support of A as the set,

supp(A) = {x ∈ X |µA(x) > 0}.

A subset A with a finite support is conveniently denoted as

{(xi, µA(xi))|xi ∈ X, µA(xi) > 0}.

An example of this is

{(−2, 1/3), (3, 2/3)}

Definition A.3 Let A and B be two fuzzy subsets of X. We define

1. the complement Ā of A by

µĀ(x) = 1 − µA(x).

2. the intersection A ∩ B of A and B by

µA∩B(x) = min(µA(x), µB(x)).

3. the union A ∪ B of A and B by

µA∪B(x) = max(µA(x), µB(x)).

for all x ∈ X.

We will sometimes use ∧ to denote the min function and ∨ to denote

the max function. With these symbols we could write

µA∩B(x) = µA(x) ∧ µB(x) (87)

µA∪B(x) = µA(x) ∨ µB(x) (88)

The notion of union and intersection could easily be extended to a

family of fuzzy subsets of X . Let I be an index set and {Ai}i∈I be a

family of fuzzy subsets of X . For x ∈ X we then write µ∩i∈IAi
(x) =

∧i∈IµAi
(x) and µ∪i∈IAi

(x) = ∨i∈IµAi
(x).
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A.3 Measures of Fuzziness

A.3.1 Distance between fuzzy sets

From now on we let X denote a finite set. Consider two fuzzy subsets

F1, F2 ⊂ X . We want a concept of distance between F1 and F2. The

distance can be defined in several ways. It is noteworthy that once

we have a distance function defined for two fuzzy sets we immediately

have a distance defined for a crisp and a fuzzy set. This follows from

the fact that a crisp set can be regarded as a fuzzy set. We also want

to determine the crisp set M which is closest to a given fuzzy set F .

One common definition is the following

Definition A.4 (Generalized Hamming Distance)

Let F1 and F2 be two fuzzy subsets of X. The distance between F1 and

F2 is defined as

d(F1, F2) =
∑

x∈X

|µF1
(x) − µF2

(x)| (89)

The above distance is often called the Hamming distance between F1

and F2 since it is the natural generalization of Hamming distance in

the common set theory. The Hamming distance defined as above fulfills

the general properties of a distance function. Another distance function

is the following.

Definition A.5 (Generalized Euclidean distance)

e(F1, F2) =

√

∑

x∈X

(µF1
(x) − µF2

(x))2 (90)

From the definition it is clear that

0 ≤ e(F1, F2) ≤
√

|X | (91)

where |X | denotes the cardinality of X . Below we give the definition

of the corresponding relative distances.

Definition A.6 (Generalized relative Hamming distance)

δ(F1, F2) =
d(F1, F2)

|X |
=

1

|X |

∑

x∈X

|µF1
(x) − µF2

(x)| (92)

Definition A.7 (Generalized relative Euclidean distance)

ε(F1, F2) =
e(F1, F2)

√

|X |
=

√

1

|X |

∑

x∈X

|µF1
(x) − µF2

(x)| (93)
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For further details about distance functions see [Kau75]. We here re-

state some other definitions and facts presented in [Kau75].

Theorem A.8 (Crisp subset nearest to a fuzzy subset)

The crisp subset M nearest to a fuzzy subset F is given by the mem-

bership function

µM (xi) = 0 if µF (xi) < 0.5,

= 1 if µF (xi) > 0.5,

= 0 or 1 if µF (xi) = 0.5

We follow [Kau75] and define µM (xi) = 0 when µF (xi) = 0.5. One

easily sees that

|µM (xi) − µF (xi)| = µF∩F̄ (xi) (94)

A.3.2 Index of fuzziness

Following [Kau75] we define two measures of the fuzziness of a fuzzy set.

The first is defined with respect to the generalized relative Hamming

distance, and the other with respect to the relative euclidean distance.

Definition A.9 (Linear Index of fuzziness) For a fuzzy set F we

define the linear index of fuzziness of F as the number

ν(F ) =
2

|X |
· d(F, M) (95)

where M is the crisp set given in Theorem A.8.

Definition A.10 (Quadratic Index of fuzziness) For a fuzzy set

F we define the quadratic index of fuzziness of F as the number

η(F ) =
2

√

|X |
· e(F, M) (96)

where M is the crisp set given in Theorem A.8.

The number 2 in the numerator in the above definitions is chosen so

that the following inequalities are valid

0 ≤ ν(F ) ≤ 1 and 0 ≤ η(F ) ≤ 1. (97)

Another way of measuring fuzziness is by use of entropy.

Definition A.11 (Entropy as Index of Fuzziness) Let F ⊂ X be

a fuzzy subset. For each x ∈ X let

πF (x) =
µF (x)

∑

x′∈X µF (x′)
. (98)
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The entropy of F is defined as

H(F ) = −
1

ln |X |

∑

x∈X

πF (x) · ln πF (x). (99)

A.4 Fuzzy Languages

A subset L ⊂ Σ∗ is often called a language in Σ∗. We generalize this

to the notion of a fuzzy language.

Definition A.12 (Fuzzy Language) A fuzzy language is a fuzzy

subset of Σ∗.

We continue with some basic definitions.

Definition A.13 Let A and B be two fuzzy languages of Σ∗. We de-

fine

1. the intersection of A and B as the ordinary intersection of fuzzy

subsets as defined in A.3.

2. the concatenation of A and B denoted by AB as

µAB(x) = ∨{µA(u) ∧ µB(v)|x = uv, u, v ∈ Σ∗}

Later we will have to denote the concatenation of a sequence of fuzzy

subsets. For the sequence Fi, i = 1, . . . k, we will use the following

notation
∏

i=1,...,k

Fi = F1F2 · · ·Fk

Definition A.14 (Fuzzy Integers) We define a fuzzy integer z as

a function

µz : Z → [0, 1]. (100)

A fuzzy integer is thereby a fuzzy subset of Z.

Example A.15 For each integer a ∈ Z we define a function

µã(i) =



















1/3, if |i − a| = 2,

2/3, if |i − a| = 1,

1, if i = a,

0, otherwise

(101)

for all i ∈ Z. ã is then a fuzzy integer. ã should be considered a fuzzy

version or a fuzzification of a. We let Z = {ã|a ∈ Z} be the corre-

sponding fuzzification of Z. In practice we will write expressions like 2̃

when we mean the fuzzification of the integer 2.
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Similarly we define N = {ã|a ∈ N} where N denotes the set of

all non-negative integers. The elements of N are considered to be the

functions of Z restricted to N. This gives us e.g.

0̃ = {(−2, 1/3), (−1, 2/3), (0, 1), (1, 2/3), (2, 1/3)} (102)

for 0̃ ∈ Z but

0̃ = {(0, 1), (1, 2/3), (2, 1/3)} (103)

for 0̃ ∈ N .

A.5 The Shuffle Operator

To continue we will need the following piece of machinery. The defini-

tion is due to [Lot97]

Definition A.16 (Shuffle) The shuffle of two words f, g ∈ Σ∗ is the

subset of Σ∗, denoted by f ◦ g and defined by:

f ◦ g = {h|h = f1g1f2g2 · · · fngn, n ≥ 0,

fi, gi ∈ Σ∗, f = f1f2 · · · fn, g = g1g2 · · · gn}.

The shuffle of two subsets F and G of Σ∗ is denoted F ◦ G and is

defined as

F ◦ G =
⋃

f∈F,g∈G

f ◦ g

We give an easy example of a shuffle.

Example A.17 The shuffle aa ◦ bb is the set

aa ◦ bb = {aabb, abab, baab, abba, baba, bbaa}

One can verify that the shuffle is a commutative and associative oper-

ation on the power set P(Σ∗), see for instance [Lot97].

We now proceed and give our fuzzy version of the shuffle.

Definition A.18 (Fuzzy Shuffle) The shuffle of two fuzzy langua-

ges F and G is the fuzzy subset of Σ∗ denoted by F � G and defined

by:

µF�G(h) = ∨{µF (f) ∧ µG(g)|h = f ◦ g, f ∈ F, g ∈ G}.

Example A.19 Let F = {(a, 0.5), (ε, 1)} and G = {(b, 1), (ab, 1)}.

Then

F � G = {(ab, 1), (ba, 0.5), (aab, 0.5), (aba, 0.5), (b, 1)}
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A.6 DNA-Sequences as Fuzzy Languages

We are now ready to give an alternative way of modeling the problem

given in the introduction to this paper. This way, however, deals with

signal vectors that contain errors.

Given a partial description of a DNA-sequence there could be sev-

eral different sequences which are candidates for the “real” sequence.

However, some of the sequences is probably more likely to be the real

sequence than others. What we will do is to represent the set of all pos-

sible words with a fuzzy language. The membership function of each

word then tells how likely it is that the word is the “real” word.

Assume that we have two fuzzy languages S1 and S2 each repre-

senting partial information about the same word w. By considering the

intersection S1 ∩ S2 we will have a new fuzzy language which should

represent more precise information about w than S1 and S2 does sep-

arately. Our goal is to show that the amount of “fuzziness” decreases

by taking the intersection and thus that we have constructed a repre-

sentation of the word with less fuzziness.

Let us first consider how to construct the fuzzy languages from the

the partial information. As described in the paper the partial informa-

tion is given through signal vectors, i.e. vectors with non-negative real

values. In the case of DNA-sequences the vectors are 4-dimensional,

but for generality we will here discuss vectors in R
m for any given m.

In the paper we have used the commutative image of a word as a

representation of our incomplete knowledge of the word. The commu-

tative image was obtained by the Parikh mapping. We now want to

define a fuzzy version of this Parikh mapping. This would give us a

fuzzy commutative image. The signal vector could be regarded as the

image of a function

σ : Σ∗ → R
m.

The signal vector in it self have real valued positive elements. The

corresponding number of letters in the word measured is however al-

ways an integer. Our goal is to translate the real valued signal vector

into a vector of fuzzy integers. We denote the set of fuzzy integers as

described in Example A.15 by N . We assume that we have some map

Φ : R
m → Nm

that maps signal vectors into vectors of fuzzy integers. The fuzzy

Parikh mapping Ψ̃ would then be defined as

Ψ̃ : Σ∗ → Nm

Ψ̃(w) = (Φ(σ(w)).
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It does not matter for us exactly how Φ and σ are defined. The def-

inition of σ depends on which model we choose for the measurement

process. The definition of Φ then depends on how we wish to transform

the real measurement values into fuzzy integers. Also the choice of how

to define the fuzzy integers reflects how we model errors.

We now want to find a way to map vectors in Nm back to fuzzy

languages in Σ∗. To keep it simple, from here on we let N denote the

fuzzy integers defined by

µã(i) =



















0.6, if i = a − 1,

1, if i = a,

0.4, if i = a + 1,

0, otherwise

(104)

for all i, a ∈ N.

We define the following map which could be interpreted as a “mul-

tiple fuzzy concatenation”. It is a map between the fuzzy integers N

and fuzzy languages in Σ∗. For a fuzzy integer ã ∈ N , a ≥ 1, we define

Γã(w) = {(wa−1, 0.6), (wa, 1), (wa+1, 0.4)}

where w0 = ε and in particular

Γ0̃(w) = {(ε, 1), (w, 0.4)}.

Example A.20 We have

Γ2̃(ab) = {(ab, 0.6), (abab, 1), (ababab, 0.4)}

Using the map Γ and the fuzzy shuffle we are now ready to define a

mapping from Nm to fuzzy languages.

We assume that Σ = {a1 < . . . < am} is an ordered alphabet. Let

Ũ = (ũ1, . . . , ũm) ∈ Nm. We then define

Γ�,Σ(U) = Γũ1
(a1) � · · · � Γũm

(am)

Example A.21 Let Σ = {a < b},U = (2̃, 1̃). We then get

Γ�,Σ(U) = Γ2̃(a) � Γ1̃(b)

= {(a, 0.6), (aa, 1), (aaa, 0.4)}� {(ε, 0.6), (b, 1), (bb, 0.4)}

= {(a, 0.6), (ab, 0.6), (abb, 0.4), (bab, 0.4), (bba, 0.4),

(aa, 0.6), (aab, 1), (aba, 1), (baa, 1)} ∪ (aaa ◦ bb, 0.4)

where we by (aaa ◦ bb, 0.4) mean that µaaa◦bb(w) = 0.4 for all w ∈

aaa ◦ bb.
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A.7 Conclusion and Further Research

The machinery developed in this appendix could be used to reformulate

the reconstruction problem discussed in this paper. Let us say that the

analysis process σ applied to a word w gives us two sequences of signal

vectors s1, s2, . . . , sk and t1, t2, . . . t
′
k in R

m. Our map Φ transforms

these vectors into sequences of vectors in Nm. Say for instance that

Φ(si) = ui and Φ(tj) = vj where ui, vj ∈ Nm for i = 1, . . . , k and j =

1, . . . , k′. 3 By using shuffle and concatenation, each of these sequences

gives us a fuzzy language in Σ∗:

S1 =
∏

i=1...,k

Γ�,Σ(ui)

S2 =
∏

j=1...,k′

Γ�,Σ(vi)

Now what really interests us is the intersection S = S1 ∩ S2 which is

a new fuzzy language. Some questions that we want to answer are the

following: The index of fuzziness of S should be less than for S1 and

S2 and thus closer to its nearest crisp set. How does the closest crisp

set to S, say M , differ from the crisp sets closest to S1 and S2, say M1

and M2? Could it be that all three crisp sets are unequal? And finally,

the goal is to find a process so that for the resulting intersection set it

holds that µS(w) = 1 for the “real” sequence word w and µS(w′) = 0

for all other words w′ 6= w.

B Completion of Parikh-matrices

In this appendix we will show yet another way of dealing with the

reconstruction problem. This approach makes use of Parikh matrices

and assumes that the signal vectors contain exact measurements.

The notion of Parikh matrices was introduced in [MSSY00] and

further extended in [MSSY00]. A Parikh matrix is a generalization

of the Parikh mapping. It is a matrix that contains somewhat more

information of the structure of a word than the simple Parikh mapping.

A Parikh matrix mapping is defined through a so called triangle

matrix. A triangle matrix is a square matrix P = (pi,j)1≤i,j≤m, such

that pi,j is a nonnegative integer for all 1 ≤ i, j ≤ m while pi,j = 0 for

all 1 ≤ j < i ≤ m and pi,i = 1 for all 1 ≤ i ≤ m.

3One could develop an analogy of the notation in the main part of the paper and

introduce the map Ψ̃∗

F
so that Ψ̃∗

F
(w) = (u1, . . . , uk) and Ψ̃∗

G
(w) = (v1, . . . , uk) for some

suitable factorization maps F and G.
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The set of all triangle matrices is denoted by M. The set of all

triangle matrices of dimension m ≥ 1 is denoted by Mm. Clearly

(Mm, ·, Im), where · represents matrix multiplication and Im is the

unit matrix, is a monoid. The following definition is due to [MSSY00].

Definition B.1 (Parikh Matrix Mapping) Let Σ = {a1 < · · · <

am} be an ordered alphabet. The Parikh matrix mapping, denoted as

ΨΣ,m, is the monoid morphism

ΨΣ,m : (Σ∗, ·, ε) → (Mm+1, ·, Im+1) (105)

defined on each letter aq, 1 ≤ q ≤ m by the following condition: If

ΨΣ,m(aq) = (pi,j)1≤,i,j≤m+1, then for each 1 ≤ i ≤ (m + 1), pi,i =

1,pq,q+1 = 1 all other elements of the matrix ΨΣ,m(aq) being 0.

Note that the matrix mapping is defined on the letters in Σ. The map

is then extended to words by the morphism property. In the ordered

alphabet Σ = {a1 < a2 < · · · < am} we denote by ai,j the word

aiai+1 · · · aj , where 1 ≤ i ≤ j ≤ m. We will use the notation |w|scatt−f

to denote the number of scattered occurrences of the word f in w. The

word f occurs as a scatter subword in w if there is a word g such that

w = f ◦g where ◦ denotes the shuffle operator. We restate Theorem 3.1

of [MSSY00] which will give us the basic property of Parikh matrices.

Theorem B.2 Let Σ = {a1, a2, . . . , am} be an ordered alphabet and

assume that w ∈ Σ∗. The matrix ΨΣ,m(w) = (pi,j)1≤i,j≤(m+1), has the

following properties:

1. pi,j = 0, for all 1 ≤ j < i ≤ (m + 1),

2. pi,i = 1, for all 1 ≤ i ≤ (m + 1),

3. pi,j+1 = |w|scatt−ai,j
, for all 1 ≤ i ≤ j ≤ k.

Now let us turn to our reconstruction problem. Let w ∈ Σ be a

word unknown to us. Let us say that we only know the Parikh-vectors

of the factors for some factorizations of w. Our problem is to find a

convenient way of expressing the set of possible w′ that could be w.

In the language of this paper it would be to determine the join of the

semi-commutative closures of w induced by the factorizations.

The approach taken here is to express the information about w

with the help of incomplete Parikh-matrices.

In the following example we consider the word w = abbaca ∈ Σ∗

over the alphabet Σ = {a, b, c}.

We now consider different factorizations of w and investigate the

corresponding Parikh-matrices of these factorizations.
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Now, we do not know w but let us say that we know that it has

a factorization w = w1w2 where w1 and w2 still are unknown to

us but we know the corresponding Parikh-vectors Ψ(w1) = (1, 2, 0)

and Ψ(w2) = (2, 0, 1). We can then construct the following incomplete

Parikh-matrices











1 1 x1 x3

0 1 2 x2

0 0 1 0

0 0 0 1





















1 2 y1 y3

0 1 0 y2

0 0 1 1

0 0 0 1











=











1 3 z1 z3

0 1 2 z2

0 0 1 1

0 0 0 1











The above matrix equation gives us the following equations

z1 = y1 + x1

z2 = y2 + 2 + x2

z3 = y3 + y2 + x1 + x3

The above example corresponds to the factorization w = abb ·aca. The

“real” Parikh-matrices are

abb · aca = abbaca










1 1 2 0

0 1 2 0

0 0 1 0

0 0 0 1





















1 2 0 0

0 1 0 0

0 0 1 1

0 0 0 1











=











1 3 2 2

0 1 2 2

0 0 1 1

0 0 0 1











Say that we also know the Parikh-vectors of another factorization w =

w′
1w

′
2 where Ψ(w′

1) = (1, 1, 0) and Ψ(w′
2) = (2, 1, 1) (in or example this

corresponds to the factorization w = ab · baca). We then obtain the

following incomplete Parikh-matrices











1 1 x′
1 x′

3

0 1 1 x′
2

0 0 1 0

0 0 0 1





















1 2 y′
1 y′

3

0 1 1 y′
2

0 0 1 1

0 0 0 1











=











1 3 z1 z3

0 1 2 z2

0 0 1 1

0 0 0 1











where zi obviously are the same as before. This gives us the following

system of equations

z1 = y′
1 + 1 + x′

1

z2 = y′
2 + 1 + x′

2

z3 = y′
3 + y′

2 + x′
1 + x′

3
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In our example the above incomplete Parikh-matrices really are the

following

ab · baca = abbaca










1 1 1 0

0 1 1 0

0 0 1 0

0 0 0 1





















1 2 0 0

0 1 1 1

0 0 1 1

0 0 0 1











=











1 3 2 2

0 1 2 2

0 0 1 1

0 0 0 1











Say that we also know the Parikh-vectors of a third factorization w =
w̄1w̄2w̄3 with Ψ(w̄1) = (1, 1, 0), Ψ(w̄2) = (0, 1, 0) and Ψ(w̄3) = (2, 0, 1).
We then get the incomplete Parikh-matrices

����
�
1 1 u1 u3

0 1 1 u2

0 0 1 0

0 0 0 1

�����
�

����
�
1 0 v1 v3

0 1 1 v2

0 0 1 0

0 0 0 1

�����
�

����
�
1 2 s1 s3

0 1 0 s2

0 0 1 1

0 0 0 1

�����
� =

����
�
1 3 z1 z3

0 1 2 z2

0 0 1 1

0 0 0 1

�����
�

����
�
1 1 v1 + 1 + u1 v3 + v2 + u3

0 1 2 v2 + u2

0 0 1 0

0 0 0 1

� ���
�

����
�
1 2 s1 s3

0 1 0 s2

0 0 1 1

0 0 0 1

� ���
� =

����
�
1 3 z1 z3

0 1 2 z2

0 0 1 1

0 0 0 1

� ���
�

with the corresponding system of equations

z1 = s1 + v1 + 1 + u1

z2 = s2 + 2 + v2 + u2

z3 = s3 + s2 + v1 + 1 + u1 + v3 + v2 + u3

and the corresponding “real” Parikh-matrices are

ab · b · aca = abbaca����
�
1 1 1 0

0 1 1 0

0 0 1 0

0 0 0 1

� ���
�

����
�
1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1

� ���
�

����
�
1 2 0 0

0 1 0 0

0 0 1 1

0 0 0 1

� ���
� =

����
�
1 3 2 2

0 1 2 2

0 0 1 1

0 0 0 1

� ���
�

The problem is to gather as much information as possible of w

given the different factorizations of w together with the corresponding

Parikh-vectors. In the above example the approach would be to deter-

mine z1, z2, z3 as closely as possible. Probably by determine upper and

lower bounds for these variables. One should take advantage of any

special relations and bounds on xi, x
′
i, si, ui and vi given by that they

are elements in Parikh-matrices.

One should note that even when the above Parikh-matrices are

completed we are not able to determine w. The Parikh-matrices are,

however, a convenient way of representing more of what is known about

the order than what is possible by the Parikh mapping.

Then of course this is an example where |Σ| = 3. The problem is

more complex for higher cardinalities.
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