
ISSN: 1401-5617

On Dynamical Behaviour of

FitzHugh-Nagumo Systems

Matthias Ringqvist

Research Reports in Mathematics

Number 5, 2006

Department of Mathematics

Stockholm University



Electronic versions of this document are available at
http://www.math.su.se/reports/2006/5

Date of publication: August 23, 2006
Keywords: Dynamical Systems, FitzHugh-Nagumo, Limit Cycles, Bifurcation.

Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.math.su.se/
info@math.su.se



On Dynamical Behaviour of FitzHugh-Nagumo

Systems

Filosofie licentiatavhandling

by

Matthias Ringqvist

To be presented on the 8th of September 2006

Abstract

In this thesis a class of FitzHugh-Nagumo system is studied. By using the theory of

Lyapunov coefficient to analyze Hopf and Bautin bifurcation it is shown that at most

two limit cycles can bifurcate from the origin in this case. Further it is shown that

there exists choices of parameters such that the maximum number of bifurcating

limit cycles is obtained and in this case the inner cycle is unstable while the outer is

stable. In the certain case when one of the parameters are assumed to be very small,

sufficient conditions are presented ensuring the existence of a unique stable limit

cycle. By using a theorem by Lefschetz conditions are given ensuring the existence of

at least one stable limit cycle. Also some conditions, apart from the well known

Bendixson’s criteria, on the parameters giving non-existence of limit cycles are

presented. The thesis also contains a complete saddle-node bifurcation analysis based

on the Center Manifold Theorem as well as a Bogdanov-Takens bifurcation analysis

though not equally complete. Finally the thesis contains sufficient conditions for

bounded solutions and a discussion about coupled system of the same class of

FitzHugh-Nagumo system.
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On dynamical Behavior of FitzHugh-Nagumo Systems

–A summery with some further discussions

In this thesis we deal with a class of polynomial systems

(1)











dx

dt
= −Cy − Ax(x − B)(x − λ) + I

dy

dt
= ε(x − δy)

with non-zero parameters A,B,C, δ, ε, λ and I being an external force which can
be a function of t.

The main results

• The main theorem of this thesis is Theorem 5.2 in Paper II. It states that
at most two limit cycles can bifurcate form the origin via Hopf bifurcation.
Further, it is shown that there exists parameters such that this upper bound
is obtained and that in this case the inner cycle is unstable while the outer
cycle together with the origin are stable. The proof uses the theory of
Lyapunov coefficients and relies heavily on a theorem by Andronov from
the 1960’s, see [2].

• In the certain case when one of the parameters are assumed to be very
small, singular perturbation theory is applied to give sufficient conditions
ensuring existence of a unique stable limit cycle.

• Conditions on existence of at least one stable limit cycle are given based on
a theorem by Lefschetz. Also some conditions, apart from the well known
Bendixson’s criteria, on the parameters giving non-existence of limit cycles
are presented.

• A complete saddle-node bifurcation analysis based on the Center Manifold
Theorem as well as a Bogdanov-Takens bifurcation analysis is presented.
In the saddle-node bifurcation, a bifurcation curve is provided.

• It also contains sufficient conditions for bounded solutions and a discussion
about coupled system of the same class of FitzHugh-Nagumo system.

Motivation

The FitzHugh-Nagumo system described in (1) is commonly referred to as FitzHugh-
Nagumo model because it was based on the system independently used by FitzHugh
and Nagumo in the beginning of 1960s “to expose to view part of the inner working
mechanism of the Hodgkin-Huxley equations”, a popular model in study of neuro-
physiology since 1952. Later this system has been used in various modelling of bi-
ological behavior, ranging from e.g. neurophysiology to modeling of active fibre for
cardiac muscle and to implementation of neuron model, see e.g. [3, 7, 5, 8, 15, 20, 24]
and references therein.

In order to make our motivation clear, we briefly review the development from
Hodgkin-Huxley model to FitzHugh-Nagumo simplified model and current research
of our interests. Hodgkin-Huxley model for the action potential of a space clamped
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squid axon is defined by the four dimensional vector field

(2)































































v̇ = I −
[

120m3h(v + 115) + 36n4(v − 12) + 0.3(v + 10.599)
]

ṁ = (1 − m)Ψ

(

v + 25

10

)

− m
(

4 exp
v

18

)

ṅ = (1 − n)0.1Ψ

(

v + 10

10

)

− n
(

0.125 exp
v

80

)

ḣ = (1 − h)0.07 exp
( v

20

)

− h

1 + exp v+30
10

Ψ(s) =
s

exp(s) − 1

with variables (v,m, n, h) that represent membrane potential, activation of a sodium
current, activation of a potassium current, and inactivation of the sodium current
and a parameter I that represents injected current into the space-clamped axon. Al-
though there are improved models the Hodgkin-Huxley model remains the paradigm
for conductance-based models of neural system. FitzHugh was the first investiga-
tor to apply qualitative phase-plane methods to understanding the Hodgkin-Huxley
model. To make headway in gaining analytic insight, FitzHugh first considered the
variables that change most rapidly, viewing all others as slowly varying parameters
of the system. In this way he derived a reduced two-dimensional system that could
be viewed as a phase plane. Note that the voltage convention adopted by FitzHugh
V = vout − vin is opposite to what subsequently became entrenched in scientific
literature.

From the Hodgkin-Huxley equations FitzHugh noticed that the variables V and
m change more rapidly than h and n, at least during certain time intervals. By
arbitrarily setting h and n to be constant we can isolate a set of two equations which
describe a two-dimensional (V,m) phase plane. The elegance of applying phase-
plane methods and reduced systems of equations to this rather complicated problem
should not be underestimated. Similar ideas are used nowadays in many biological
problems, one of the examples is dynamical analysis of cell cycle regulation, e.g.
[25].

In 1961 FitzHugh proposed to demonstrate that the Hodgkin-Huxley model be-
longs to a more general class of systems that exhibit the properties of excitability
and oscillations. As a fundamental prototype, the van der Pol oscillator was an
example of this class, and FitzHugh therefore used it (after suitable modification).
A similar approach was developed independently by Nagumo in 1962. FitzHugh
proposed the following equations:

u̇ = c[w + u − u3/3 + I],

ẇ = −(u − a + bw)/c.

In these equations the variable u represents the excitability of the system and
could be identified with voltage (membrane potential in the axon); w is a recovery
variable, representing combined forces that tend to return the state of the axonal
membrane to rest. Finally I is the applied stimulus that leads to excitation (such
as input current), or rectangular pulses. In order to obtain suitable behavior,
FitzHugh made the following assumptions about the constants a, b and c:

1 − 2b/3 < a < 1, 0 < b < 1, b < c2.
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Today there are variant formulations of this system, used in a variety of biological
oscillations. The meaning of the variables and parameters are different from the
original FitzHugh-Nagumo’s. The formulation we work on is taken from [8] which
is widely used in literature.

A short but rather complete description of physiology behind the biological neu-
ron and the corresponding derivation of the Hodgkin-Huxley model and its simpli-
fied version, the FitzHugh-Nagumo model, can be found in [20].

The thesis attempts to describing different dynamical behavior exhibited by (1),
in terms of the six parameters, as complete as possible, and therefore to gaining
analytic insight of this widely used system as much as possible. Although the
FitzHugh-Nagumo system is a well-studied object (see e.g. [14, 16, 26, 29, 29, 32]),
there are several reasons that motivate the current study.

It is of mathematical interest to know the number of limit cycles for a polynomial
system although we do not have ambition to solve this problem completely. A
classical solved example is van der Pol equation without external force to which
we know that there is only one stable limit cycle. It is also of interest to give a
satisfactory picture of how bifurcation takes place and which parameters (of the
six) play role in the bifurcation. According to our knowledge, the parameters are
essential in biology and different application areas need different parameters. This
is one of the reasons we do not a priori assume the values of some parameters.

If the above-mentioned problems are considered to be more difficult, we want
to mention that there may not exist a definite answer to some seemingly innocent
questions, for example, there is still no definite answer, in some parameter settings,
to the question that the solution of FitzHugh-Nagumo equations converges to a
fixed point or to a limit cycle [16].

Since the FitzHugh-Nagumo model, defined by (1), is used for investigation of
a single neuron, in reality we have to study the interconnection and coupling of
neurons. In other words, a chain of such systems will be used in more realistic
models for instance, [21]. Therefore we believe that a full description of dynam-
ical behavior of the FitzHugh-nagumo system will benefit to understanding more
complicated systems based on the FitzHugh-Nagumo system, see “A Case Study
on Weakly Coupled FitzHugh-Nagumo Oscillators”.

It is most popular in doing dynamical analysis using computer simulations (even
with little analysis behind), and research areas such as computational biology is
well-established nowadays. Nevertheless some precautions have to be kept in mind.
In [16], it was noted that certain bifurcation could take place in a very narrow
interval (of the magnitude of 10−7 of values of I). It is clear that a rigorous
mathematical analysis, if possible, is highly demanded in such a case.

Mathematical analysis behind the results

Now we summarize the approaches to our main results. To make our point clear
we shall also discuss some relevant issues during the description. Since it is shown
that the solutions are bounded except a bounded set, using Lyapunov function,
the questions of existence of Limit cycles, bifurcations and related issues are of
interesting.

Existence of limit cycles. The main feature of the FitzHugh-Nagumo model is
that it is easier to deal with meanwhile captures the periodic oscillations, the most
important phenomenon of the Hodgkin-Huxley. This is the reason for why we are
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interested in answering question of existence and non-existence of limit cycles and
their bifurcation in terms of the parameters. Although many computer simulations
indicate the existence of limit cycles, it is often difficult to prove it analytically.
Moreover, some cautions must be exercised if a simulation is involved. We shall
come back to this point in our conclusion.

The reason why it is difficult to prove the existence of limit cycle is that there is
no unique way to deal with the problem. In some situations we can find the solution
curve in the phase plane and prove that the curve indeed is closed. Volterra-Lotska
population model is such an example. The drawback of this method is that we are
not always able to solve the equations.

A common technique to show the existence of limit cycles is applying Poincaré-
Bendixson theory and construction of closed curves that bound a limit cycle, e.g.
[19]. Based on results in [19] we show in Paper I that for λ + εδ > 0 the FitzHugh-
Nagumo system has at least one stable limit cycle where A = B = C = 1. It is
worth pointing out that this construction is sometimes very difficult, in particular
when limit cycles are close to each other and the scales of variables are small.

By Bendixson’s criterion and the criterion for a type of Liénard system, e.g. [30],
we are able, in Paper I, to tighten the bound of the parameter regions that ensure
non-existence of limit cycles for (1) with A = B = C = 1 and without external
inputs in comparison with the result in [16].

Although the following topics belong to the same theme we present them in a
separate subsection due to their own interest.

Discontinuous periodic solution. Our further study in existing biological rele-
vant literature shows that some of the parameters in the FitzHugh-Nagumo system
are very small, for example, ε. This brought our attention to singular perturbation
theory, in particular, the so-called discontinuous periodic solution. There is a plenty
of excellent Russian literature, see [22, 23, 27]. In our concrete problems we have
to reformulate some definitions and results provided in the literature. These are
carried out in Section 2 of Paper II. Once the theory is ready for use it is rather sim-
ple to find necessary and sufficient conditions to existence of discontinuous periodic
solution, See Section 4, Paper II. Furthermore, we prove under some assumptions
that for ε � 1 the system has a family of limit cycles and these limit cycles are
unique for each such ε and the limit of these cycles, as ε → 0, is the discontinuous
periodic solution of the system.

Bifurcations. In this thesis we try to portrait a complete picture of system bi-
furcations. We study Hopf-Andronov bifurcation, Bautin (or generalized Hopf)
bifurcation, saddle-node bifurcation and Bogdanov-Takens (or double-zero) bifur-
cation. All these have to do with the situation where the linearized system matrix
at a fixed point, called A, has at least one eigenvalue with zero real part. The Hopf
type of bifurcation occurs when the eigenvalues of A has a pair of purely imaginary
eigenvalues. Saddle node bifurcation appears when one (just one) eigenvalue of A
is zero, and Bogdanov-Takens bifurcation occurs if two eigenvalues are zero.

As a result of Hopf type of bifurcation we are able to show that limit cycles
bifurcation from the origin are at most two. The main tool we use is Lyapunov
coefficients. To computational purpose we also provide a method to calculate the
first and second Lyapunov coefficients which is more efficient in our cases. Note
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that it is the sign of the Lyapunov coefficients that is important (not the exact
expressions).

A complete analysis on saddle node bifurcation is based on the Center Mani-
fold Theorem. Bogdanov bifurcation is also studied, and we prove the existence of
smooth bifurcation curve. It is interesting to note that the analysis of Hopf type
of bifurcation is rather complete. Here is an example of the bifurcation diagram
(from the fixed point which is the origin), where we choose A = B = C = 1. Let
H be the curve corresponding to the Hopf bifurcation. Along this curve the fixed
point, the origin, has eigenvalues λ1,2 = ±i. The Bautin point (that is the parame-
ters such that the first Lyapunov coefficient becomes zero) separates two branches
H+ and H− corresponding to a Hopf bifurcation with positive and with negative
Lyapunov coefficient respectively (sub-critical and super- critical). A stable limit
cycle bifurcates from the origin if we cross H− from left to right, while an unsta-
ble cycle appears if we cross H+ in the opposite direction. The cycles collide and
disappear on the curve T corresponding to a non-degenerate fold bifurcation of the
cycles. Along the curve the system has a critical limit cycle. This curve divide the
parameter plane into three regions: Region 1: the system has a single stable fixed
point and no cycles; Region 2: a unique and stable limit cycle and an unstable fixed
point; Region 3: a stable fixed point, and two limit cycles, the outer cycle is stable
and the inner cycle (between the outer cycle and the fixed point) is unstable. We
place these three regions counterclockwise.

Now let us start our tour around the Bautin point counterclockwise, starting at
a point in Region 1, crossing the Hopf bifurcation boundary H− from Region 1,
where the system has a single stable fixed point and no cycle, to Region 2 implies
the appearance of a unique and stable limit cycle, which survives when we enter to
Region 3. Crossing the Hopf bifurcation boundary H+ creates an extra unstable
cycle inside the first one, while the fixed point regains its stability. Two cycles of
opposite stability exists inside Region 2 and disappear at the curve T through a
fold bifurcation that leaves a single stable fixed point, thus completing the circle.

Conclusions and further remarks

Finally we will conclude this summary by some remarks on our results and
further research investigation.

There are still many problems left unclear. Here is a short list of such questions.
How does the external force effect the bifurcation diagram? Is there any unpre-
dictable strange behavior when external force is introduced? How are parameter
sets related in different bifurcation e.g. the Hopf bifurcation and the Bogdanov-
Takens bifurcation? How do we do a satisfactory analysis in case there are three
fixed points?

No doubt a further analysis on the coupled FitzHugh-Nagumo systems is desired.
In this case, more complicated bifurcations occur. Since this is a four dimensional
system, chaotic behavior may be expected too. This is not an easy issue and
computer simulations will be of great help in further mathematical analysis. We
believe that the dynamics of this system is very rich.

Now we turn to the question concerning Hudgkin-Huxley model and its simplifi-
cation by FitzHugh and Nagumo (1). Since the birth of Hodgkin-Huxley equation
in neurophysiological modelling, researchers have made considerable effort to try to
analyze this system in different way. Extensive efforts have been made to discover
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chaos in many physical and biological systems including neural systems. Chaotic
solutions to the Hodgkin-Huxley equations with periodic forcing [1] and greatly
altered parameters [6] have been discovered but not in the original Hodgkin-Huxley
model with its original parameters. However, (highly unstable) chaotic solutions
were demonstrated numerically by systematic methods in [12], in the Hodgkin-
Huxley model with its original parameters, although the existence of chaos was not
claimed theoretically. If this numerical evidence is correct, then there is a degree
of unpredictability about how the system will respond to stimulation. Here we
do not discuss further what other consequences there would be. But one natural
question is, does FitzHugh-Nagumo system with constant stimulus give rise chaotic
solutions? And do these chaotic solutions (if they are) correspond to the numerical
evidence in the original Hodgkin-Huxley model by [12]? What is the implication
of these discoveries? Recall that this could happen in a fine scale, which in turn
require fine numerical methods. Is there chaos in the brain?
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On Existence and Nonexistence of Limit cycles

for FitzHugh-Nagumo Class Models∗

M. Ringkvist1 and Y. Zhou2

1 Department of Mathematics, Stockholm University, SE-10691, Stockholm,
Sweden. mattias@math.su.se

2 Department of Mathematics, Stockholm University, SE-10691, Stockholm,
Sweden. yishao@math.su.se

Dedicated to Clyde Martin on the occasion of his 60th birthday.

Summary. In this paper we discuss the existence and non-existence of limit cycles
of FitzHugh-Nagumo class models. The purpose is to clarify some unclear facts in
the literature. We show also that this class of model exhibits double cycle bifurcation
in addition to Andronov-Hopf bifurcation.

1 Introduction

In this paper we consider FitzHugh-Nagumo class models common in litera-
ture:











du

dt
= −Cw + Au(B − u)(u − λ) + I

dw

dt
= ε(u − δw)

(1)

where the variable u is the negative of the membrane potential, w is the
quantity of refractoriness, and I is the magnitude of stimulating current, the
parameter A is to scale the amplitude of the curve, the parameter C affects the
coupling strength and ε is added to more easily control the speed of one vari-
able relative to the other. The choice of these parameters together with other
three would produce oscillations which are of primary interests in biological
contexts. The oscillators produced by system (1) are called FitzHugh-Nagumo
type oscillators and are common to many biological mechanism at the cellular
level. In addition to producing oscillations in the barnacle muscle, the same
dynamical structures will appear in mechanistic models of insulin secretion
and Ca2+ oscillations, see details in [3].

∗The work was supported in part by the Swedish Research Council (VR).



2 M. Ringkvist and Y. Zhou

The system defined by (1) is originated from the simplified Hodgkin-
Huxley nerve systems, the famous model of the squid giant axon, see e.g.
[2, 3, 8]:











du

dt
= w − u3

3
+ u + I

dw

dt
= ρ(a − u − bw)

(2)

where the parameters ρ, a, b are assumed to satisfy the conditions: b ∈ (0, 1),
a ∈ R, ρ > 0.

The existence and nonexistence of limit cycles for the nerve system (2)
were investigated e.g. in [4, 10, 12] in case I = 0. It was shown in [9] that
the dynamical system (1) with ε = C = B = 1 exhibits a rich structure of
bifurcation when I 6= 0.

Although the systems (2) and (1) are polynomial systems of same degree,
the dynamical behavior can be different, see Section 0.2. Moreover, it is not
easy to show under which circumstances there are limit cycles and the question
of how many limit cycles the systems have is also left open. Many attempts
have been made in simulations in case a current input I is introduced. The
purpose of this paper is to give a new criterion under which the system (1)
has no limit cycles with three fixed parameters B = C = ε = 1 and with
the quantity I = 0. Moreover, we shall give a rather complete phase portrait
and bifurcation diagram for the system (1) with A = B = C = 1, and we
demonstrate that this system exhibits the double-cycle bifurcation in addition
to the Andronov-Hopf bifurcation.

The paper is organized as follows. In Section 0.2, we point out the dif-
ferences between the two polynomial systems mentioned above. Then we re-
formulate (1) to two different types of Liénard equations. Then we analyze
the nonexistence limit cycles in Section 0.3. In Section 0.4 we give a proof on
existence of limit cycles for the system with a unique unstable fixed point, and
we will show that the system undergoes Andronov-Hopf bifurcation (which is
well-known), Bautin (or generalized Andronov-Hopf) bifurcation and double
cycle bifurcation. And finally we conclude the paper by some further remarks.

2 Preliminaries

In this section we review the theory that is relevant in our study. First consider
the system (1) with B = C = ε = 1











du

dt
= − w + Au(u − λ)(1 − u)

dw

dt
=u − δw

(3)

where 0 < λ < 1 and A, δ > 0. The choice of these three parameters is
motivated by a desire to get a finer criterion of non-existence of limit cycles
than that stated in [9].
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A straightforward calculation shows that the system has origin as its only
fixed point if and only if

(1 − λ)2 − 4

δA
< 0 (4)

Remark 1. Note that (3) can have either one fixed point as stated above, or
two fixed points, origin and (−(λ + 1)/2,−(λ + 1)/(2δ)), if (1−λ)2 − 4

δA
= 0,

or three fixed points, origin and (u±, w±), where

u± = −λ

2
±
√

(λ − 1)2 − 4

Aδ
, w± =

u±

δ

if (1 − λ)2 − 4
δA

> 0. However, (2) has only one fixed point (uI , wI) for each
I ∈ R:

uI =
3

√

(3(I +
a

b
) +

√

9(I +
a

b
)2 + 4(

1

b
− 1)3)/2 +

+
3

√

(3(I +
a

b
) −

√

9(I +
a

b
)2 + 4(

1

b
− 1)3)/2

and

wI =
a − uI

b

under the assumptions.

Remark 2. Let (ue, we) be a fixed point, and h(u) = u(u− λ)(1− u). It is not
hard to show that

(i) if Aδh′(ue) < 1, then (ue, we) is locally asymptotically stable, for Ah′(ue) <
δ and a rebeller for Ah′(ue) > δ;

(ii) if Aδh′(ue) > 1, then (ue, we) is a saddle point;
(iii) if Aδh′(ue) = 1, then (ue, we) is unstable for Ah′(ue) > δ.

Now we make a variable change, to transform the system to a special type
of Liénard system, as follows

{

x = −u,

y = w + δx.

This yields the Liénard system











dx

dt
= y − F (x)

dw

dt
= −g(x)

(5)
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where
{

F (x) = x(δ + A(x + λ)(x + 1))

g(x) = x(1 + δA(x + λ)(x + 1))
(6)

Since the Liénard systems are well-studied planar polynomial systems, our
idea is to apply the known results for this system in our particular case. First
we note that (4) coincides with the condition

xg(x) > 0, ∀x 6= 0. (7)

It is also obvious that
F (0) = 0. (8)

Clearly, the functions F and g are continuous functions on R satisfying the
Lipschitz condition. Let

G(x) =

∫ x

0

|g(ξ)|dξ,

and

M = min

{∫ ∞

0

g(x)dx,

∫ −∞

0

g(x)dx

}

.

It is easy to show that M = ∞ and G(x) is strictly increasing. Therefore the
inverse of G exists and we denote it by G−1. In the sequel we shall make use
of the following theorem for the Liénard systems.

Theorem 1 ([11]). Suppose that the parameters are chosen such that the
origin is the unique fixed point, xg(x) > 0, ∀x 6= 0 and

F (G−1(−w)) 6= F (G−1(w)), ∀w > 0. (9)

Then (5) has no limit cycles.

When nonlinear waves in the nerve or muscle fibers or in the heart collide
with each other, they mutually annihilate. There are, however, cases where
the experiment and theory have shown that the inelasticity of the collisions
is not that drastic. [1] considers the collision properties of nonlinear waves
in an excitable medium of FitzHugh-Nagumo type, which is paradigmatic
to account for quite a variety of biological, biochemical and neurobiological
phenomena. It shows that the system











du

dt
= −w − u(u − 1)(u − λ)

dw

dt
= ε(u − δw)

(10)

exhibits bistability for certain parameters, that is one asymptotically stable
fixed point and one stable limit cycle coexist. Note that we allow the parameter
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λ to be negative. In order to investigate the nonexistence of limit cycles we
make a variable change as before to get the type of Liénard system shown
(5). Let x = −u and y = w + εδx: Then (10) is transformed into the Liénard
system (5) with

F (x) = x3 + (λ + 1)x2 + (λ + εδ)x

g(x) = εδ(x3 + (λ + 1)x2 + (λ +
1

δ
)x

In order to prove the existence of limit cycles, we need another type of Liénard
system to be able to apply a theorem by Lefschetz [7]. Now we change the
variables u and w to

{

x =w

y =ε(u − δw)

the system transforms to











dx

dt
=y

dy

dt
= − f(x, y)y − g̃(x)

(11)

where

f(x, y) = ε(
y2

ε3
+

3δx − (1 + λ)

ε2
y +

3δ2

ε
x2 − 2δ(1 + λ)

ε
x + δ +

λ

ε
) (12)

g̃(x) = ε(δ3x3 − (1 + λ)δ2x2 + (λδ + 1)x) (13)

Before stating the theorem we introduce the function G̃(x) defined by

G̃(x) =

∫ x

0

g̃(s)ds = ε(
δ3

4
x4 − (1 + λ)δ2

3
x3 +

1 + λδ

2
x2)

Theorem 2 ([7]). If the following conditions are fulfilled the system (11) has
at least one stable limit cycle:

1. The origin is the only critical point and it is unstable.
2. f(x, y) and g̃(x) are continuous and satisfies a Lipschitz condition ∀x, y ∈

R.
3. |g̃(x)| → ∞ as |x| → ∞ and g̃(x) > 0 for x > N for some N > 0.

4. g̃(x)

G̃(x)
= O( 1

|x|
).

5. ∃M,m,n > 0 such that f(x, y) ≥ M for |x| ≥ n and f(x, y) ≥ −m for
|x| ≤ n.

3 Analysis on nonexistence of limit cycles

Now we turn to the analysis of limit cycles of (3).
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Proposition 1. Suppose the origin is the only fixed point and
(

λ − 1

2

)2

+
3

4
− 3δ

A
< 0. (14)

Then the system defined by (3) has no limit cycles.

Proof. By Bendixson’s criterion we know that the system has no limit cycles
if

∂

∂u
(−w − Au(u − 1)(u − λ)) +

∂

∂w
(u − δw)

= − 3Au2 + 2A(λ + 1)u − λA − δ

is not equal to zero and does not change sign. This is equivalent to the dis-
criminant of the above polynomial of u is negative, which is in turn (14). ut

From now on we assume that the parameters violate (14). To give a finer
criterion we turn our interest to the properties of the function F . A straight-
forward calculation shows that F (x) has three real zeros if and only if

A(1 − λ)2 − 4δ > 0 (15)

Denote the three zeros of F as


























α = 0

β = −1 + λ

2
+

√

A(1 − λ)2 − 4δ

2A

γ = −1 + λ

2
−
√

A(1 − λ)2 − 4δ

2A

Clearly γ < 0. A short calculation shows that β < 0:

−1 + λ

2
+

√

A(1 − λ)2 − 4δ

2A
< −1 + λ

2
+

√

A2(1 − λ)2

2A
= −λ < 0

To be able to use the Theorem 1, we will show that (9) is satisfied. First
we show that the following proposition holds.

Proposition 2. The condition (9) is equivalent to
(

G(α(η)) + G(β(η)) 6= 0
)

∧
(

G(α(η)) + G(γ(η)) 6= 0
)

∀η ∈ (0, η∗], (16)

where η∗ = F (x), and x and x are the local maximum and local minimum of
the function F , which are

x = −1

3

(

(λ + 1) −
√

(λ + 1)2 − 3(λ +
δ

A
)

)

x = −1

3

(

(λ + 1) −
√

(λ + 1)2 − 3(λ +
δ

A
)

)

and γ ≤ x ≤ β ≤ x < α.
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Proof. This is an immediate consequence of the fact that γ ≤ β < α = 0 and
the function G is strictly increasing. ut

Next we prove

Proposition 3. If

6 − 3δ2 − δA(λ + (1 − λ)2) > 0 (17)

then condition (16) is equivalent to

(6 − 3δ2 − δA(λ + (1 − λ)2))(α(η) + β(η))

< − 3δη + δ(1 + λ)(δ + Aλ), ∀η ∈ (0, η∗]. (18)

x

FHxL

Γ Β Α

ΓHΗL ΒHΗL ΑHΗLΗ

Fig. 1. The zeros of the function F

Proof. From (6)

G(x) =



















x2

12
(3δAx2 + 4δA(1 + λ)x + 6(1 + δAλ), x ≥ 0,

−x2

12
(3δAx2 + 4δA(1 + λ)x + 6(1 + δAλ), x < 0.

(19)

Using

0 = F (α(η)) − η = Aα3(η) + A(1 + λ)α2(η) + (δ + λA)α(η) − η

and the similar computation for β(η) and γ(η) we get
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G(α(η)) =
1

12
((6 − 3δ2 − δA(λ + (1 − λ)2))α2(η)+

+ (3δη − δ(1 + λ)(δ + Aλ))α(η) + δ(1 + λ)η), (20)

G(β(η)) =
1

12
((6 − 3δ2 − δA(λ + (1 − λ)2))β2(η)+

+ (3δη − δ(1 + λ)(δ + Aλ))β(η) + δ(1 + λ)η), (21)

G(γ(η)) =
1

12
((6 − 3δ2 − δA(λ + (1 − λ)2))γ2(η)+

+ (3δη − δ(1 + λ)(δ + Aλ))γ(η) + δ(1 + λ)η). (22)

Using these equations (16) becomes

(6 − 3δ2 − δA(λ + (1 − λ)2))(α(η) + β(η))

6= − 3δη + δ(1 + λ)(δ + Aλ), ∀η ∈ (0, η∗], (23)

(6 − 3δ2 − δA(λ + (1 − λ)2))(α(η) + γ(η))

6= − 3δη + δ(1 + λ)(δ + Aλ), ∀η ∈ (0, η∗], (24)

where η∗ > 0. When η → 0 the right hand side of (23) and (24) becomes
δ(1 + λ)(δ + Aλ) > 0 while the expressions of the left hand side of (23) and
(24) is less than zero due to (17). Thus (16) implies that (18) holds. The
converse implication is true since β(η) > γ(η) for all η ∈ (0, η∗]. ut

In order to analyze inequality (18) it is convenient to introduce a new
parameter ξ instead of η. We study the solutions to the equation

F (x) − F (ξ) = 0, for ξ ∈ [γ, x). (25)

It is clear that ξ is a root of the equation (25). Denoting the other two
roots by α(ξ), β(ξ) gives that







α(ξ) + β(ξ) = −(1 + λ + ξ),

α(ξ)β(ξ) = (1 + ξ)(ξ + λ) +
δ

A
.

Now (18) becomes

H(ξ) := −3δAξ3 − 3δA(1 + λ)ξ2 − (6(δ2 − 1) + δA(1 + λ)2)ξ

+ (1 + λ)(6 − 2δ2 − δA(1 − λ)2) > 0, ∀ξ ∈ (γ, x]. (26)

Since the discriminant of H ′(ξ) is greater than zero, H has a local maximum
and a local minimum, denoted by ξ respectively, ξ:















ξ = −1 + λ

3
−
√

6δA(1 − δ2)

3δA

ξ = −1 + λ

3
+

√

6δA(1 − δ2)

3δA

Now we are in the position to prove the following theorem.



Nonexistence of limit cycles for FitzHugh-Nagumo models 9

Theorem 3. The system (5), and hence the system (3) does not have limit
cycles if (14) holds or if the following sets of inequalities are satisfied:

(1 − λ)2 − 4

δA
<0 (27)

3δ − A((λ − 1

2
)2 +

3

4
) <0 (28)

4δ − A(1 − λ)2 <0 (29)

−6 + 3δ2 + δA((λ − 1

2
)2 +

3

4
) <0 (30)

−H(γ) <0 (31)

−H ′(γ) <0 (32)

Ξ

HHΞL

Γ x
-

Ξ
-

Fig. 2. Illustration of Theorem 3

Note that ξ < x due to (30).

Proof. Due to (27) theorem (1) can be applied. Condition (28) assures that
Proposition 2 is valid and by (30) we can make use of Proposition 3. Thus, it
remains to prove that (26) holds. But this is what (31) and (32) assure. ut
Remark 3. It is worth pointing out that the parameter set formed by in-
equalities (27)-(32) is not empty. For example, take δ = 1

9 and λ = 2
3 then

4 < A < 66 satisfies the inequalities.

As a consequence of Theorem 3, Remark 2 and the boundedness of the
trajectory ([9]), we have the following stronger statement than Proposition 3
in [9]:

Corollary 1. Under the condition the conditions (14) and 4δ > A or the con-
ditions (27)-(32) in Theorem 3, the origin is a globally asymptotically stable
fixed point.
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As for the nonexistence of limit cycles of the system defined by (10), we
first find the fixed points, that are given by the equations

w =u(1 − u)(u − λ)

w =
v

δ

which gives that u = w = 0 is the only fixed point if and only if

u2 − (1 + λ)u + λ +
1

δ

has no real roots, i.e

(1 + λ)2 − 4(λ +
1

δ
) < 0,

or equivalently,

(
1 − λ

2
)2 <

1

δ
.

Then the characteristic equation of the Jacobian matrix is

s2 + (εδ + λ)s + ε(1 + λδ) = 0. (33)

Thus, the origin is locally asymptotically stable if

Re(−(εδ + λ) ±
√

(εδ + λ)2 − 4ε(λδ + 1) < 0,

which is equivalent to, according to Routh test,

εδ + λ > 0 and 1 + λδ > 0, (34)

and is unstable if

Re(−(εδ + λ) ±
√

(εδ + λ)2 − 4ε(λδ + 1) > 0

Now we state the following theorem without detailed proof, since the anal-
ysis is similar.

Theorem 4. Assume that (10) has only one fixed point, that is ( λ−1
2 )2 < 1

δ
.

Then system (10) has no limit cycles if either

(λ − 1

2
)2 < 3(δε − 1

4
)

holds or one of the following sets of inequalities holds






























































−(1 + λ) < 0

−(λ + εδ) < 0

3(δε − 1

4
) − (λ − 1

2
)2 < 0

4εδ − (1 − λ)2 < 0

(λ + 1)2 + 3(λ + εδ) − 6(λ +
1

δ
) < 0

−H̃(γ̃) < 0

−H̃ ′(γ̃) < 0

(35)
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or










































































1 + λ < 0

−(λ + εδ) < 0

3(δε − 1

4
) − (λ − 1

2
)2 < 0

4εδ − (1 − λ)2 < 0

(λ + 1)2 + 3(λ + εδ) − 6(λ +
1

δ
) < 0

H̃(x̃) < 0

H̃(γ̃) < 0

−H̃ ′(γ̃) < 0

(36)

where

H̃(ξ) = −3ξ3 − 3(λ + 1)ξ2 − (6(
1

δ
− εδ) − (1 + λ)2)ξ

+ (λ + 1)(6(λ +
1

δ
) − 2(λ + εδ) − (1 + λ)2)

x̃ = −λ + 1

3
+

1

3

√

(λ − 1

2
)2 +

3

4
(1 − 4εδ)

Ξ = −λ + 1

3
+

1

3

√

6(
1

δ
− εδ)

γ̃ = −λ + 1

2
− 1

2

√

(1 − λ)2 − 4εδ

µ̃ = −λ + 1

2
+

1

2

√

(1 − λ)2 − 4εδ

Remark 4. Note that the fifth inequality in the above sets of inequalities imply
that Ξ < ξ̃.

Remark 5. It follows that if the above sets of inequalities are satisfied then
x, x̃ > ξ.

Remark 6. Note that neither of the sets of inequalities above is empty, e.g.
(35) is satisfied for λ = 2, δ = 1

2 and 0 < ε < 1
2 while (35) is satisfied for

λ = −4, δ = 1
8 and 0 < ε < 50.

Corollary 2. Let the conditions in Theorem 4 hold. Then the origin is globally
asymptotically stable.

We only need to show the following proposition.

Proposition 4. The trajectories of system (10) are bounded.

Proof. Define

V (x, y) =
y2

2
+ G̃(x) =

y2

2
+

ε

12
x2h(x),
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where h(x) = 3δ3x2 − 4(1 + λ)δ2x + 6(1 + λδ). This gives that

V̇ (x, y) = −y2f(x, y)

The idea is to show that V is a Lyapunov function outside a bounded set,
which implies that the trajectories are bounded.

V (x, y) > 0 ∀x, y 6= 0 ⇔ T = 9(1 + λδ) − 2δ(1 + λ)2 > 0.

If T ≤ 0, then h(x) has two zeros x1, x2 and a local minimum point x∗ such

that |x∗| < ∞. Define ŷ = inf{y > 0|y2 + εx̂2

12 h(x∗) > 0}. Then ŷ < ∞. From
this it follows that A = {(x, y) ∈ R

2|V (x, y) < 0} is a subset of A′ = {(x, y) ∈
R

2|x1 < x < x2, |y| < ŷ} which is bounded. Turning our attention to V̇ we
see that

V̇ < 0 ∀(x, y) ∈ R
2 \ {(x, y)|y = 0}

This implies

S = f(x̃, ỹ) = εδ − 1

3
(λ − 1

2
)2 − 1

4
> 0

Let S < 0 then f has a local minimum less than zero. But this combined with
f being a paraboloid gives the existence of x̆, y̆ < ∞ such that

f(x, y) > 0 (x, y) ∈ B′

where B′ = {(x, y) ∈ R
2||x| < x̆, |y| < y̆}. Thus B = {(x, y) ∈ R

2|V̇ > 0}
is bounded by B′. Further we have that V̇ = 0 if (x, y) ∈ C where C =
{(x, y) ∈ R

2|y = 0 or f(x, y) = 0}. On this set the solutions to (10) lies on
curves defined by V (x, y) = c for constants c. The conclusion is that V is
a Lyapunov function on whole of R

2 except for a bounded set and thus the
solutions to (10) must be bounded. ut

4 Proof of existence of stable limit cycles

In Theorem 4 we assumed λ + εδ > 0. Now we shall deal with the case
λ + εδ < 0. It turns out that in this case the system has limit cycles. We
follow the theorem by Lefschetz Theorem 2 to show the following theorem:

Theorem 5. System (10) has at least one stable limit cycle if εδ + λ < 0.

We verify the conditions in Theorem 2. Since εδ +λ < 0, (0, 0) is unstable
by (34), and hence the first condition in Theorem 2 is satisfied.

Now both f(x, y) and g̃(x) are polynomials. So they are continuous and
satisfy the Lipschitz condition ∀x, y ∈ R. Thus condition 2 holds.

It is obvious that |g(x)| → ∞ as |x| → ∞ and that there exists an N
such that g(x) > 0 for x > N since ε, δ > 0. From the fact that G̃(x) is

a polynomial of one degree higher than g̃(x) it follows that g(x)

G̃(x)
= O( 1

|x|
).
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Therefore, conditions 3 and 4 are also satisfied. In choosing M,m,n > 0 we
have a lot of freedom. Taking first derivatives equal to zero yields

x̃ =
1 + λ

3δ
,

ỹ = 0.

The quadratic form of f(x̃, ỹ) is

Q(h, k) = 3δ2h2 +
1

ε2
k2 +

3δ

ε
hk

= 3δ2(h +
1

2εδ
k)2 +

1

4ε2
k2 > 0 h, k 6= 0.

Thus f(x̃, ỹ) = εδ− 1
3 (λ− 1

2 )2 − 1
4 is a global minimal point of the paraboloid

f . Thus, if f(x̃, ỹ) > 0 we can choose M = f(x̃, ỹ) and m,n arbitrary. On the
other hand, if the converse is true there exist M,n > 0 such that f(x, y) > M
for |x| > n and f(x, y) > −m = f(x̃, ỹ) for |x| < n since the graph of f is a
paraboloid. Now the proof of Theorem 5 is complete.

5 Double cycle bifurcation

Let us assume that the origin is the only stable fixed point of the system
defined by (10), which is the main topic of this section. Now we vary the
parameter λ we see that an Andronov-Hopf bifurcation occurs when λ+εδ = 0.
Then the fixed point becomes unstable and bifurcates to at least one stable
limit cycle as shown in Theorem 5. However, the analysis in Section 0.3 showed
that there is a gap in parameter space where the origin is the only globally
asymptotically stable fixed point (nonexistence of limit cycles, see Theorem 4)
and where limit cycles could possibly exist.

In the following we give a numerical example that shows that limit cycles
occur in pair when we allow λ < 0 we see that there is a stable fixed point
and a stable limit cycle, e.g. take ε = 0.015, δ = 3.5 and λ = −0.045, and
furthermore, there are at least two limit cycles. These parameters λ, δ and ε
lie outside the parameter set formed by (35).

The bifurcation diagram of such a system is very interesting. It is possible
to find a combination of the parameters where the first Lyapunov coefficient
(see e.g. [6]) becomes zero, thus a Bautin (or generalized Andronov-Hopf bi-
furcation) occurs, in fact on the boundary of the parameter set formed by (35)
and (35).. Furthermore, double-cycle bifurcation occurs when bistability ex-
ists. A completely theoretical analysis is given in a forthcoming paper, where
both the first and second Lyapunov coefficients are investigated.
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−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.18

Fig. 3. Phase portrait of (10). There is bistability between the limit cycle and
the asymptotically stable fixed point and two limit cycles occur. The inner cycle is
unstable and the outer cycle is stable.

6 Conclusion

In this paper we gave some finer criteria for nonexistence of limit cycles for
FitzHugh-Nagumo type of models, and hence a affirmative answer to the origin
to be a globally asymptotically stable fixed point. Further, we proved the
existence of stable limit cycles for the system (10). We also gave a numerical
example that showed occurrence of double-cycle bifurcation in case bistability
exists.

In our opinion it is a very hard problem to give the exact number of limit
cycles of the FitzHugh-Nagumo system, since the analysis on how many limit
cycles the FitzHugh-Nagumo class model has is in fact a problem that belongs
to the second part of Hilbert’s 16th problem.
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Abstract

The main result of this paper is Theorem 5.2 stating that no more than two limit

cycles can bifurcate from the origin via Hopf bifurcation and that there exists choices

of parameters such that this upper bound is obtained. We also show that for these

parameters the inner cycle is unstable while the outer cycle together with the origin

are stable. The proof uses Lyapunov coefficients and relies on a theorem by

Andronov see [1]. By applied singular perturbation theory we also give sufficient

condition for existence of a unique stable limit cycle under a certain assumption.

Finally we present a saddle-node and Bogdanov-Takens bifurcation analysis.
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1 Introduction

This article is concerned with the analysis of the FitzHugh-Nagumo class model











dx

dt
= −Cy −Ax(x−B)(x− λ) + I

dy

dt
= ε(x− δy),

(1)

with non-zero parameters A,B,C, δ, ε, λ.
Due to the fact that this system is frequently used, e.g. biologic modelling

in brain research and to some extend cardiac movements, it is of great impor-
tance to get a good understanding of it. This is reflected in the number of
articles written in the area see for example [2, 3, 5, 6, 11, 13, 15, 17, 18]. When
modelling using this system of equations with an added stochastic disturbance,
it is desirable to know if the observed behavior is due to the disturbance or is
already built into the deterministic system.

This paper is organized as follows: The second section contains a mixture of
known classical results and some worked up versions of these, covering the areas
of singular perturbation theory and Lyapunov coefficients. For our purpose we
study the boundedness of solutions in Section 3. In the fourth section conditions
on some of the parameters are presented ensuring existence of a unique limit
cycle as a result of singular perturbation theory. The main results in Section
5 is an upper bound of the maximal number of limit cycles that can bifurcate
from the origin via Hopf bifurcation and determination of the sign of the second
Lyapunov coefficient. In Section 6 respectively, Section 7 we study saddle-node
and Bogdanov-Takens bifurcation, which should be viewed as a preparation for
further investigation of coupled system of the above FitzHugh-Nagumo class
type. After the conclusions in section 8 follows an appendix with some plots of
numerically solved system which verifies the theoretic results of section 4 and
section 5.
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2 Preliminaries

This section contains both classical results and some worked up results on sin-
gular perturbation theory and Lyapunov coefficients.

2.1 Singular perturbation analysis

This section is concerned with periodic solutions of planar systems of the form










ε
dx

dt
= f(x, y)

dy

dt
= g(x, y),

(2)

where 0 < ε� 1. In the case when ε� 1 the rescaling of time t = ετ transforms
(2) into











dx

dt
= f(x, y)

θ
dy

dt
= g(x, y),

(3)

where θ = 1
ε
� 1 and thus there is no need for analyzing this case separately.

Before going into a detailed discussion and definition of discontinuous periodic
solutions, DPS, and the possible existence of limit cycles of system (2) let us
start with a sketch of the behavior of its solutions. Assume that we start at
a point (x0, y0) such that f(x0, y0) 6= 0. Since ε is very small, the trajectories
(x(t), y(t)), of (2) will move with almost constant velocity in the y-direction in
comparison to the velocity in the x-direction. This type of motion will continue
until a point (x(t1), y(t1)) is reached such that f(x(t1), y(t2)) is of the same
order as ε. Thus for t ∈ [0, t1] the following approximation of (2) makes sense.











ε
dx

dt
= f(x, y0)

dy

dt
= 0.

(4)

The fixed points of the approximated system are given by the set Fỹ = {(x, ỹ) ∈
R

2|f(x, ỹ) = 0} and the stability is determined by the sign of ∂f
∂x

along S where
S is given by

S = ∪ỹ∈RFỹ.

Thus the trajectories of (4) will approach points of S such that ∂f(x,y)
∂x

< 0.
Close to such points the velocities of x(t) and y(t) will be of the same order
and thus the position of the equilibrium of (4) will start to move, i.e the fixed
points will change continuously between different branches of Fỹ. Thus, the
trajectories will lie in a small neighborhood of S until a point (x(t2), y(t2)) is

reached where ∂f(x(t2),y(t2))
∂x

= 0 and ∂2f(x(t2),y(t2))
∂x2 6= 0. For t ∈ [t1, t2] the

following approximation, also referred to as the reduced system, of (2) is valid,
{

f(x, y) = 0
dy
dt

= g(x, y).
(5)

At the so-called break point (x(t2), y(t2)), the stability is disturbed and the
trajectories of (2) are again approximated by (4) and everything is repeated
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until the trajectories either reach a fixed point of (2) or there are no break
points and the trajectories are trapped in a small neighborhood of the set S.
The motion of system (4) is called fast flow while the motion of the system (5) is
referred to as the slow flow. After this discussion it should come as no surprise
that under certain conditions, system (2) has a family of periodic solutions,Lε,
parametrized by ε. In order to state the major theorem of this section we first
need to define the concept of discontinuous periodic solutions, DPS. We start
by introducing the following sets already mentioned above:

• S = {(p, q) ∈ R
2|f(p, q) = 0},

• K = {(p, q) ∈ S|∂f(p,q)
∂x

= 0},

• L = {(p, q) ∈ S|∂f(p,q)
∂x

< 0},
For the sake of exposition we make the following remarks about solutions to the
approximated systems (4) and (5) respectively.

Remark 2.1. Given a point (x0, y0) ∈ R
2 − S, there exist a unique solution

xFF (t) to the approximation (4) satisfying (xFF (0), y0) = (x0, y0) and

lim
t→∞

(xFF (t), y0) ∈ L.

Remark 2.2. By assumption, the Implicit Function Theorem can be applied to
the equation f(x, y) = 0 in the above approximation. This gives the existence of
a function

h : R ⊃ U → V ⊂ R

such that x = h(y). Thus equation (5) may be written as

dy

dt
= g(h(y), y). (6)

For (x0, y0) ∈ L there exists a unique solution, ySF (t), to equation (6) for
t ∈ [0, T(x0,y0)) where T(x0,y0) satisfies the condition

lim
t→T(x0,y0)

(h(ySF (t)), ySF (t)) ∈ K

and (h(ySF (0)), ySF (0)) = (x0, y0).

With all these preparations done, the definition of DPS is rather straight
forward although rather lengthy.

Definition 2.1. Construct a sequence {pk
(x,y)} of points in R

2 in the following
way.

(i) Let p0
(x,y) = (x, y) ∈ R

2 − S.

(ii) Let p1
(x,y) = (x1, y) ∈ L, where

x1 = lim
t→∞

xFF (t)

and xFF (t) is the solution to the approximated system (4) with initial
condition xFF (0) = x, (see Remark 2.1). Define

FF1 = {(xFF (t), y)|t ∈ [0,∞)}.
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(iii) Let p2
(x,y) = (h(y2), y2) ∈ K, where

y2 = lim
t→T

ySF (t)

and ySF (t) is the solution to the approximated system (5) with initial
condition ySF (0) = y, (see Remark 2.2). Define

SF1 = {(h(ySF (t)), ySF (t))|t ∈ [0, T )}.

(iv) Let p3
(x,y) = (x3, y2) ∈ L, where

x3 = lim
t→∞

xFF (t)

and xFF (t) is the solution to the approximated system (5) which has the
property that

lim
t→−∞

xFF (t) = h(y2)

(see Remark 2.1). Define

FF2 = {(xFF (t), y2)|t ∈ R} ∪ {h(y2), y2}.

The sequence {pk
(x,y)} is now continued in exactly the way. System (2) is said

to have a DPS, Γ0, if there exist m,n ∈ N
+ such that m < n and

pm
(x,y) = pn

(x,y)

for some (x, y) ∈ R
2. Further more, this DPS is given by

Γ0 = ∪n
k=m(FFk ∪ SFk).

Now, finally all preparations have been made in order to state the following
theorem by Mishchenko and Rosov, Theorem 14 in [4].

Theorem 2.1. Let










ε
dx

dt
= f(x, y)

dy

dt
= g(x, y)

(7)

be a dynamical system on the plane and assume that the following conditions
are satisfied:

(i) All second derivatives of f and g are continuous at each point in the plane.

(ii) At all points of S it holds true that

f2
x(x, y) + f2

y (x, y) > 0. (8)

(iii) For all points in K it holds that

∂2f(p, q)

∂x2
6= 0. (9)

(iv) There are no fixed points in the set K ∪ L.

(v) System (7) has a DPS, denoted L0.

Then for each sufficiently small ε system (7) has a unique stable limit cycle, Lε,
and further more

lim
ε→0

Lε = L0. (10)
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2.2 Lyapunov coefficients

In this section we give a theoretical background to the theory of Lyapunov
coefficients that will be used in section 5 for analysis of our specific class of
FitzHugh-Nagumo systems. As a starting point we assume that a dynamical
system is given in the form











dx

dt
= f(x, y, µ)

dy

dt
= g(x, y, µ),

(11)

where f and g are real valued analytic functions on U × V ×W ⊂ R
3 and that

(0, 0, µ0) is a fixed point of (11). Associated to the system and this point is the
system matrix, A, defined by

A =

(

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)

:=

(

a b
c d

)

,

where all derivatives are calculated at the fixed point.

Remark 2.3. The eigenvalues of A solves the equation

s2 − σ(µ0)s+ ∆(µ0) = 0,

where σ(µ0) = trace(A) and ∆(µ0) = det(A).

It is a well known fact that the origin is structurally stable iff <(si(µ0)) 6= 0,
the real part of si(µ0), where si(µ0) are the eigenvalues of A for i = 1, 2. To
put it in another way, for all values of µ close to µ0 the solutions of the per-
turbed systems restricted to a small neighborhood of the origin are topologically
equivalent if <(si(µ0)) 6= 0.

Definition 2.2. Given a real analytic dynamical system

B :











dx

dt
= f(x, y)

dy

dt
= g(x, y)

we say that another system

B̃ :











dx

dt
= f̃(x, y)

dy

dt
= g̃(x, y)

is δ close up to order k to system B in G ⊂ R
2 if

Di < δ, i = 1, 2 (12)

where
D1 = max

(x,y)∈G
|fr+s

xrys − f̃r+s
xrys |, r + s = 0, 1, · · · , k (13)

and
D2 = max

(x,y)∈G
|gr+s

xrys − g̃r+s
xrys |, r + s = 0, 1, · · · , k (14)
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Thus bifurcation can only occur when at least one of the eigenvalues have
zero real part. We are going to study the case where si(µ0) = ±ı∆(µ0), where
ı2 = −1, with ∆(µ0) > 0. To this end we assume that the eigenvalues of A are
given by s(µ) = α(µ) ± ıβ(µ) and that

{

σ(µ0) = 0

∆(µ0) > 0
(15)

for some parameter value µ = µ0. By Remark 2.3 and assumption (15) β(µ) > 0
for all µ in a small neighborhood of µ0 since β(µ) =

√

σ2(µ) − 4∆(µ) and the
determinant and trace functions are continuous. With these assumptions, the
system (11) can be put in the canonical form











dξ

dt
= α(µ)ξ − β(µ)η + f(ξ, η, µ)

dη

dt
= β(µ)ξ + α(µ)η + g(ξ, η, µ)

(16)

by the real non-singular transformation

{

ξ = (a− α(µ))y + cx

η = β(µ)y.
(17)

By introducing a complex variable z = ξ + ıη system (16) is transformed into a
single complex differential equation

ż = (α(µ) + ıβ(µ))z + f(
z + z̄

2
,
z − z̄

2ı
) + ıg(

z + z̄

2
,
z − z̄

2ı
) := s(µ)z +H(z, z̄, µ)

(18)
where H must be analytic since both f and g are. The following two lemmas
show that in a neighborhood of the origin (18) can be put in a canonical form
by a smooth change of coordinates.

Lemma 2.1. Let

ż = s(µ)z + c1(µ)z2z̄ + . . . ck(µ)zk+1z̄k + h(z, z̄, µ), (19)

where

h(z, z̄, µ) =
∑

r+s≥2(k+1)

hrs(µ)
zr z̄s

r!s!
. (20)

Then there exists a smooth change of variables

z = w + ψ(w, w̄, µ) (21)

such that

ẇ = s(µ)w + c1(µ)w2w̄ + · · · + ck(µ)wk+1w̄k + o(|w|2(k+1)+1), (22)

where

ψ(w, w̄, µ) =
∑

r+s=2(k+1)

ψrs(µ)
wrw̄s

r!s!
. (23)
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Proof. We assume that there is a change of coordinates satisfying (21) and (22).
Using (19) and (21) we obtain

ż = s(µ)(w + ψ(w, w̄, µ)) + c1(µ)(w + ψ(w, w̄, µ))2(w̄ + ψ̄(w, w̄, µ)) + · · · +
+ ck(µ)(w + ψ(w, w̄, µ))k+1(w̄ + ψ̄(w, w̄, µ))k

+
∑

r+s≥2(k+1)

hrs(µ)
(w + ψ(w, w̄, µ))r(w̄ + ψ̄(w, w̄, µ))s

r!s!

= s(µ)w + c1(µ)w2w̄ + · · · + ck(µ)wk+1w̄k +

+
∑

r+s=2(k+1)

(s(µ)ψrs(µ) + hrs(µ))
wrw̄s

r!s!
+ o(|w|2(k+1)+1). (24)

On the other hand taking derivatives of (21) and using (22) yields

ż = ẇ + ψw(µ)(w, w̄)ẇ + ψw̄(µ)(w, w̄) ¯̇w

= s(µ)w + c1(µ)w2w̄ + · · · + ck(µ)wk+1w̄k +

+
∑

r+s=2(k+1)

ψrs(µ)(rs(µ) + ss̄(µ))
wrw̄s

r!s!
. (25)

Comparing (24) with (25) gives following expression for ψrs(µ)

ψrs(µ) =
hrs(µ)

(r − 1)s(µ) + ss̄(µ)
. (26)

Since

(r−1)s(µ0)+s ¯s(µ0) = ıβ(µ0)(r−1−s) = ıβ(µ0)(2(k+1)− (2s+1)) 6= 0 (27)

the change of variables is smooth for |µ− µ0| small. Equation (22) now follows
from (26) and (23).

Lemma 2.2. Let

ż = s(µ)z + c1z
2z̄ + · · · + ckz

k+1z̄k + h̃(z, z̄), (28)

where

h̃(z, z̄) =
∑

r+s≥2(k+1)+1

h̃rs

zr z̄s

r!s!
. (29)

Then there exists a smooth change of variables

z = w + φ(w, w̄) (30)

such that

ẇ = s(µ)w + c1w
2w̄ + · · · + ckw

k+1w̄k + ck+1w
k+2w̄k+1 + o(|w|2(k+2)), (31)

where

φ(w, w̄) =
∑

r+s=2(k+1)+1

φrs

wrw̄s

r!s!
. (32)
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Proof. Using the same method as in the preceding lemma gives

φrs =
h̃rs

(r − 1)s(µ) + ss̄(µ)
. (33)

The big different here is that the denominator is zero for r = k+2 and s = k+1.
In order to get a smooth change of variables we put φk+2,k+1 = 0. This results
in

ck+1 =
h̃k+2,k+1

(k + 2)!(k + 1)!
. (34)

Note that by using Lemma 2.1 and Lemma 2.2 alternately all Lyapunov coeffi-
cients can be calculated via equation 34.

When determining the number of limit cycles of system (16) in a small
neighborhood of the origin the following lemma is useful since it shows that the
number remains the same if the higher order terms are dropped.

Lemma 2.3. The system

ẇ = s(µ)w + c1(α)w2w̄ + · · · + ck(α)wk+1wk +O(|w|2(k+1)) (35)

has the same number of limit cycles as

ẇ = s(µ)w + c1(α)w2w̄ + · · · + ck(α)wk+1wk (36)

in a small neighborhood of the origin.

Proof. Introduce the notation cr(α) = ar(α) + ıbr(α) and convert (35) into a
system of differential equations in polar coordinates

{

ṙ = αr + a1r
3 + · · · akr

2k+1 + Φ(r, θ)

θ̇ = β + b1r
2 + · · · bkr2k + Ψ(r, θ),

(37)

where Φ(r, θ) = O(|r|2(k+1)) and Ψ(r, θ) = O(|r|2k+1). Eliminating the time
dependence we get

dr

dθ
=

αr + a1r
3 + · · · akr

2k+1 + Φ(r, θ)

β + b1r2 + · · · bkr2k + Ψ(r, θ)
=

=
αr + a1r

3 + · · · akr
2k+1 + Φ(r, θ)

β
×

1

1 + r2

β
(b1 + · · · bkr2(k−1) + Ψ(r,θ)

r2

. (38)

Since we are interested in the behavior in a small neighborhood of the origin r
is assumed very small. Further more we have by assumption that β 6= 0. Thus
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we can use the formula for geometric series on the last term in (38).

1

1 + r2

β
(b1 + · · · bkr2(k−1) + Ψ(r,θ)

r2

=

= 1 +
r2

β

∑

n1,··· ,nk+1
n1+···+nk+1=2

(

2

n1, · · · , nk+1

)

bn1
1 (b2r

2)n2 · · · (bkr2(k−1))nk

(

βΨ(r, θ)

r2

)nk+1

+

+ · · · +

+

(

r2

β

)k
∑

n1,··· ,nk+1

n1+···+nk+1=k

+

(

k

n1, · · · , nk+1

)

bn1
1 (b2r

2)n2 · · · (bkr2(k−1))nk

(

βΨ(r, θ)

r2

)nk+1

+O(r2(k+1)). (39)

Inserting the above expression in (38) gives

dr

dθ
=

1

β

(

αr + a1r
3 + · · · + akr

2k+1 + d2r
2 + · · · + d2kr

2k +R(r, θ)
)

, (40)

where the coefficients ds neither depend on Ψ nor Φ and R(r, θ) = O(r2(k+1)).
Let r(θ; r0) be the solution to (40) with initial value r0. Since the origin is
assumed to be a fixed point r(θ; 0) = 0. Thus the Taylor expansion of r(θ; r0)
around the origin is given by

r(θ, r0) = u1(θ)r0 + · · · + u2k+1(θ)r
2k+1
0 +O(|r0|2(k+1)). (41)

Differentiating (41) and using (40) shows that the differential equations for
us(θ) is independent of the term R(r, θ). The number of limit cycles can now
be determined as the number of positive real fixed points, r0, of r(2π, r0). Since
the functions us(θ) are independent of R(r, θ) the number of small positive real
fixed points will be the same when the term O(|r0|2(k+1)) is dropped in equation
(35)

Remark 2.4. From (37) we see that the trajectories will move in a counter-
clockwise direction since β(µ) > 0 for all µ close to µ0 by assumption and r is
assumed to be small.

The following corollary, saying that the behavior of the system is determined
by the the functions cr(µ) at µ = µ0 and further that it is only necessary to
compute the first nonzero coefficient, is useful in applications.

Corollary 2.1. In order to study the bifurcations of a general system











dx

dt
= f(x, y, µ)

dy

dt
= g(x, y, µ)

(42)

in a neighborhood of the bifurcation value µ = µ0 it is sufficient to calculate the
first nonzero coefficient ck(µ0).
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Proof. Since all changes of variables transforming (11) into

{

ṙ = α(µ)r + a1(µ)r3 + · · · ak(µ)r2k+1 + Φ(r, θ, µ)

θ̇ = β(µ) + b1(µ)r2 + · · · bk(µ)r2k + Ψ(r, θ, µ)
(43)

are smooth the functions cr(µ) = ar(µ) + ıbr(µ) are also smooth. Thus for
µ close to µ0 the leading terms in the expressions for ṙ and θ̇ are given by
ak(µ0) and bk(µ0) respectively where ck(µ) is the first non-vanishing coefficient
at µ = µ0.

Definition 2.3. Let cm(µ0) = am(µ0)+ ıbm(µ0). Then the real number am(µ0)
is called the m-th Lyapunov coefficient often denoted by Lm.

Definition 2.4. The origin is said to be a focus of multiplicity m of system
(16) if Lm is the first non-vanishing Lyapunov coefficient.

Let us now turn to the question about how many limit cycles that can
bifurcate from a focus of a certain multiplicity. This question is answered by
the following two theorems that can be found in [1].

Theorem 2.2. If O (0, 0) is a multiple focus of multiplicity k (k ≥ 1) of a
dynamic system (A) of class N ≥ 2 + 1 or of analytical class, then

1. there exist ε0 > 0 and δ0 > such that any system (Ã) δ0-close to rank
2k + 1 to system (A) has at most k closed paths in Uε0

(O);

2. for any ε < ε0 and δ < δ0, there exists a system (Ã) of class N or
(respectively) of analytical class which is δ-close to rank 2k+1 to (A) and
has k closed paths in Uε(O).

Theorem 2.3. Let O (0, 0) be multiple focus of multiplicity k of a dynamic
system (A) of class N ≥ 2k + 1 or of analytical class, and let ε0 and δ0 be
positive numbers defined by the first part of Theorem 2.2 and such that any
system (Ã) δ0-close to (A) has a single equilibrium state in Uε0

(O) which is a
focus. Then

1. for any ε and δ, 0 < ε ≤ ε0, 0 < δ ≤ δ0, and for any s, 1 ≤ s ≤ k, there
exists a system (B) of class N (or respectively,analytical) which is δ-close
to rank 2k + 1 to system (A) and has in Uε(O) precisely s closed paths.

2. if system (B) is δ0-close to rank 2k+1 to system (A) and has k limit cycles
in Uε0

, all these cycles, and likewise the focus of system (B) lying in Uε0
,

are structurally stable (simple) i.e. they are either stable or unstable.

Applying the above theorems to (16) gives the following bifurcation table
We have seen that the Lyapunov coefficients plays a crucial role for the

behavior of solutions of a system with a pair of purely imaginary eigenvalues.
The following formulas show how to calculate them explicitly.

L1 =
π

4
√

∆
[3(a30 + b03 + a12 + b21] +

− π

4∆
[2(a20b20 − a02b02) − a11(a02 + a20) + b11(b02 + b20)] (44)
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δ < −ABλ
ε

δ = −ABλ
ε

δ > −ABλ
ε

L1 > 0, σ′(µ0) > 0 Origin stable Origin unstable Origin unstable
Unstable L.C No L.C. No L.C.

L1 > 0, σ′(µ0) < 0 Origin unstable Origin unstable Origin stable
No L.C. No L.C. Unstable L.C.

L1 < 0, σ′(µ0) > 0 Origin stable Origin stable Origin unstable
No L.C. No L.C. Stable L.C.

L1 < 0, σ′(µ0) < 0 Origin unstable Origin stable Origin stable
Stable L.C. No L.C. No L.C.

Table 1: Hopf bifurcation table for system (11)

L2 = − π

24
[a02b20(5a02b11 + 10a02a20 + 4b11

3 + 11a20b11 + 6a20
2 −

− 5a11b20 − 10b20b02 − 4a11
2 − 11a11b02 − 6b02

2) + a20b02(6b02
2 −

− 5a11b02 + 10b02b20 − 2a11
2 − 5a11b20 + 5a20b11 − 6a20

2 − 10a20a02 +

+ 2b11
2 + 5a02b11) + a02b02(5b11

2 − a11
2 − 6a11b02) − a20b20(5a11

2 −
− b11

2 − 6a20b11) + a11
3(a20 + a02) − b11

3(b02 + b20) − 5b20
2(a12 + 3b03) +

+ b02
2(3b21 − 6a12 − 5a30) + a11

2(a12 + a30) + b20b02(5b21 − 5a12 −
− 9b03 + 5a30) − b20a11(4a12 + 9b03 + 5a30) + b02a11(3b21 − a12 +

+ 4a30) − 5a02
2(b21 + 3a30) + a20

2(3a12 − 6b21 − 5b03) +

+ b11
2(b21 + b03) + a20a02(5a12 − 5b21 − 9a30 + 5b03) −

− a02b11(4b21 + 9a30 + 5b03) + a20b11(3a12 − b21 + 4b03) +

+ 4b20b11(2b30 + b12) + b02b11(7b20 − a21 + 5b12 + a03) +

+ 2a11b11(a03 + b30) + 2a20b20(8b30 − 5a21 − b12) + 2a20b02(4b30 −
− 5a21 − 5b12 + 4a03) + a20a11(b30 + 5a21 − b12 + 7a03) −
− 2a02b20(a21 + b12) + 2a02b02(8a03 − 5b12 − a21) + 4a02a11(2a03 +

+ a21) + b11(5b04 − b22 + 2a13 − 3b40) + a02(2b22 + 20b04 + 5a13 +

+ 3a31) + a20(4b22 + 22b04 + 7a13 − 6b40 + 9a31) −
− b20(2a22 + 20a40 + 5b31 + 3b13) − a11(5a40 − a22 + 2b31 − 3a04) +

+ 3a21(2a30 + b03 + a12) − 3b12(2b03 + a30 + b21) + 3a03(a12 +

+ 3b03) − 3b30(b21 + 3a30) − b02(4a22 + 22a40 + 7b31 − 6a04 + 9b13) +

+ 3b41 + 3b23 + 15b05 + 15a50 + 3a32 + 3a14]. (45)

In both formulas it is assumed that the system is in the form











dx

dt
= y + f̃(x, y, µ0)

dy

dt
= −x+ g̃(x, y, µ0)

11



If not, the transformation







y1 = x1

y2 = −ax1 + bx2√
∆

does the trick. The coefficients ars and brs are the Taylor coefficients of f and
g after the above change of coordinates, and are given by



























ars =
r+s
∑

k=s

(

k

s

)

(−1)ka(k−s)∆
s
2

(r + s− k)!k!bk
fr+s−k,k

brs =
r+s
∑

k=s

(

k

s

)

(−1)k+1a(k−s)∆
s−1
2

(r + s− k)!k!bk
(afr+s−k,k + bgr+s−k,k).

Remark 2.5. The exact expressions of the Lyapunov coefficients can be differ-
ent by different transformation of coordinates. However the signs are invariant.
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3 Boundedness of solutions

In this section we are going to present necessary conditions under which our
system











dx

dt
= −Cy −Ax(x−B)(x− λ) + I

dy

dt
= ε(x− δy)

(46)

has bounded solutions. This analysis depends on the construction of a Lyapunov
function. We will restrict to the case I = 0. By making the change of variables

{

u = y

v = ε(x− δy),
(47)

the system can be written in the Lie’nard form











du

dt
= v

dv

dt
= −vf(u, v) − g(u),

(48)

where










f(u, v) = εA(
v2

ε3
+

3δu− (B + λ)

ε2
v +

3δ2

ε
u2 − 2δ(B + λ)

ε
u+

εδ +ABλ

Aε

g(u) = −Aεu(δ3u2 − δ2(B + λ)u+
C +ABδλ

A
.

(49)
Define

V (u, v) =
v2

2
+G(u), (50)

where

G(u) =

∫ u

0

g(s)ds. (51)

Then, with some restrictions on the parameters, V is a Lyapunov function on
the whole R

2 except for a bounded set by the following lemma.

Lemma 3.1. Let

(i) A > 0

(ii) ε > 0

(iii) δ > 0

Then V (u, v) = v2

2 + G(u) is a Lyapunov function on R
2 except for a bounded

set.

Proof. Using the given assumptions, the proof of corollary 1 in [19] goes through.

Corollary 3.1. Let the assumptions of Lemma 3.1 hold. Then the solutions to
system (46) are bounded.
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4 Analysis of a class of FitzHugh-Nagumo sys-

tems with respect to singular perturbation the-

ory

In this section we are going to find conditions on the parameters such that
Theorem 2.1 is applicable. In order to transform our system to the special
form of the previous section we make the time scaling τ = εt and assume that
0 < ε� 1. Doing so gives us the system











ε
dx

dτ
= −Cy +Ax(B − x)(x− λ) := f(x, y)

dy

dτ
= x− δy := g(x, y).

(52)

In the sequel the symbol τ will be replaced by t. The verification of the first
two conditions of Theorem 2.1 is easy since

(i) The functions f and g are polynomials and therefore have continuous
second derivatives.

(ii)
f2

x(x, y) + f2
y (x, y) = A2(x2 + 4(λ+B)2) > 0 (53)

Thus in order to apply Theorem 2.1 it remains to find conditions on the pa-
rameters such that the remaining conditions are satisfied. For this particular
system the sets S, K and L are given by















S = {(x, y) ∈ R
2|y = −A

C
x(x−B)(x− λ) := F (x)}

K = {(x1, F (x1)), (x2, F (x2))}
L = (LA− ∪ LA+),

(54)

where xi are the real roots of F ′(x) = 0 for i = 1, 2 and

LA− = {(x, y) ∈ R
2|y = F (x), x1 < x < x2, A < 0}

and
LA+ = {(x, y) ∈ R

2|y = F (x), x < x1 ∨ x > x2, A > 0}.
The approximation (5) of system (52) can be written as

dx

dt
=
x− δF (x)

F ′(x)
(55)

for (x, y) ∈ L and where F (x) is defined in the expression of S. The following
lemma gives necessary conditions for system (52) to have a DPS.

Lemma 4.1. If system (52) has a DPS then

(i) (B − λ)2 +Bλ > 0

(ii) A > 0

(iii) dx
dt
> 0, x < x1
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(iv) dx
dt
< 0, x > x2

Proof. Let Γ0 be a DPS of (52). Since the minimum number of sections a DPS
can be composed of is four, two slow and two fast, we conclude that system
(52) must have at least two breakpoints, i.e. |K| ≥ 2. By definition |K| is
the cardinality of K. But from the definition of K we know that |K| ≤ 2
and thus we have shown that |K| = 2. This however is equivalent to the first
condition. From the fact that |K| = 2 we know that Γ0 is composed of exactly
two sections of slow flow and two sections of fast flow. From the definition of
DPS we know that these are disjoint sets and that the sections of slow flow are
subsets of L. If A < 0 then L consists of only one connected component. This
contradicts that the sections of slow flow are disjoint and separated by at least
one breakpoint. Thus by assumption that all parameters are nonzero we deduce
that A > 0. Since F (x1) < F (x2) for A > 0 and Γ0 is the DPS the remaining
two statements hold true.

That the above conditions are not sufficient can be seen from the fact that
there might be a fixed point of (52) on L making a DPS impossible. A more
exact answer is given by the following Lemma.

Lemma 4.2. Let αi be the roots of x − δF (x), xi be roots of F ′(x) and let pj

satisfy F (xi) = F (pi). Then system (52) has a DPS iff

(i) αi /∈ [p2, x1]

(ii) αi /∈ [x2, p1]

(iii) (B − λ)2 +Bλ > 0

(iv) A > 0

(v) dx
dt
> 0, x < x1

(vi) dx
dt
< 0, x > x2

Proof. By Lemma 4.1 conditions (iii) − (vi) are necessary for existence of a
DPS. With the extra conditions (i) − (ii) a DPS is given by

Γ0 = ∪2
k=1(SFk ∪ FFk)

where

SF1 = {(x, y) ∈ R
2|y = F (x), p2 ≤ x < x1} ∩ L

FF1 = {(x, y) ∈ R
2|x1 ≤ x < x2, y = F (x1)}

SF2 = {(x, y) ∈ R
2|y = F (x), x2 < x ≤ p1} ∩ L

FF2 = {(x, y) ∈ R
2|x1 < x ≤ p2, y = F (x2)}

The SFi are the sections of slow flow and the SFi are the sections of fast flow
for i = 1, 2.
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4.1 A unique fixed point

When the origin is a unique fixed point of (52), i.e

(B + λ)2 − 4C

Aδ
< 0 (56)

the calculations are quite straightforward. From Lemma 4.2 we know that the
sign of ẋ is crucial for the existence of DPS and from (55) it is given by

sign(
dx

dt
) = sign(x− δF (x))sign(F ′(x)). (57)

An analysis of the separate parts of the above expression shows that

sign(x− δF (x)) =

{

−sign( δA
C

) for x < 0

sign( δA
C

) for x > 0,
(58)

and

sign(F ′(x)) =

{

−sign(A
C

) for x < x1, x > x2

sign(A
C

) for x1 < x < x2.
(59)

Combining (59) and (58) we end up with the following expression for sign( dx
dt

):

sign(
dx

dt
) =

{

sign(δ) for p2 < x < x1

−sign(δ) for x2 < x < p1.
(60)

By application of Lemma 4.2 we have thus shown the following Theorem:

Theorem 4.1. Let the origin be a unique fixed point of system (52). Then it
has a DPS iff the following conditions are fulfilled

(i) Condition (iii) − (iv) of Lemma 4.2.

(ii) x1 < 0 < x2

(iii) δ > 0.

4.2 Three fixed points

This section is devoted to the problem of determining conditions under which
(52) has DPS while at the same time it has three distinct fixed points. This
assumption requires an extended analysis of sign(x0−δF (x0)). Let Ik = (ak, bk)
where

ak =

{

−∞ k = 1

αk−1 k = 2, 3, 4
(61)

and

bk =

{

αk, k = 1, 2, 3

∞, k = 4.
(62)

Then

sign(x− δF (x)) = (−1)ksign(
δA

C
), x ∈ Ik. (63)
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Lemma 4.3. Define p1 and p2 by f(xi) = f(pi) for i = 1, 2 respectively. As-
sume further that all elements in S = {x1, x2, α1, α2, α3} are different where αi

are the zeros of x−δF (x). A necessary condition for (52) to have a DPS is that
the elements of S divide the interval [p2, p1] into an even number of subintervals.

Proof. First note that ẋ only changes sign at points of S. Since they are different
by assumption, corresponding to each of these elements there is a change in sign
for exactly one of (x− δF (x)) and F ′(x). By Lemma 4.2 it is necessary that ẋ
have opposite sign in the intervals [p2, x1] and [x2, p1]. Thus ẋ must shift sign
an odd number of times. But this is equivalent to S dividing [p2, p1] into an
even number of subintervals.

Using Lemma 4.3 yields four possibilities for the existence of a DPS emerging
from the cases of three and five elements of S lying in the interval [p2, p1]. These
are

C1: x1 < α1 < x2 and α2, α3 > p1;

C2: x1 < α2 < x2 and α1 < p2, α3 > p1;

C3: x1 < α3 < x2 and α1, α2 < p2;

C4: x1 < α1 < α2 < α3 < x2.

In these cases sign(ẋ) can be described as follows

sign(
dx

dt
) =

{

(−1)i(Ck)−1sign(δ) for x ∈ [p2, x1]

(−1)i(Ck)sign(δ) for x ∈ [x2, p1].
(64)

where i(Ck) := k. Thus we see that δ has to be greater than zero in the cases
with an even number and less than zero for the odd numbered cases in order
for a DPS to exist. Therefore we have shown the following theorem.

Theorem 4.2. Assume that system (52) has three fixed points. Then it has a
DPS iff the following conditions are fulfilled

(i) Condition (iii) − (iv) of Lemma 4.2.

(ii) One of the cases Ck holds

(iii) δ < 0 for k even and δ > 0 for k odd

4.3 Unstable periodic solutions

Letting τ = −t in (52) leads to











ε
dx

dτ
= Cy −Ax(B − x)(x− λ) := f̃(x, y) = −f(x, y)

dy

dt
= −x+ δy := g̃(x, y) = −g(x, y).

(65)

Proceeding as earlier we get the approximation (5) of system (65) to be

dx

dτ
= −x− δF (x)

F ′(x)
= −dx

dt
, (66)
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for (x, y) ∈ L. In this case

∂f̃

∂x
= −∂f

∂x
⇒ sign(

∂f̃

∂x
) =

{

sign(A), x < x1, x > x2

−sign(A), x1 < x < x2.
(67)

Using that

sign(
dx

dτ
) = −sign(

dx

dt
)

equation (60) yiels that

sign(
dx

dτ
) =

{

−sign(δ) for p2 < x < x1

sign(δ) for x2 < x < p1

(68)

if the origin are the unique fixed point. Further more, applying (64) to this
system gives that

sign(
dx

dτ
) =

{

(−1)i(ck)sign(δ), x ∈ [p2, x1]

(−1)i(ck)+1sign(δ), x ∈ [x2, p1],
(69)

if there are three fixed points. In analogue with Theorems 4.1 and 4.2 the
following conclusions hold true:

Theorem 4.3. Let the origin be a unique fixed point of system (65). Then it
has a DPS iff the following conditions hold true

(i) (B − λ)2 +Bλ > 0

(ii) A < 0

(iii) δ < 0

Theorem 4.4. Assume that system (65) has three fixed points. Then it has a
DPS iff the following conditions hold true

(i) (B − λ)2 +Bλ > 0

(ii) A < 0

(iii) One of the cases Ck holds

(iv) δ > 0 for k even and δ < 0 for k odd

Remark 4.1. Since A has to be greater than zero for positive time and less than
zero for negative time, stable and unstable periodic solutions to (52) emerging
from DPS cannot coexist.

4.4 Analysis for large values of ε

What about the case ε� 1? A scaling of time, t = ετ , transforms (52) to











dx

dτ
= −Cy +Ax(B − x)(x− λ) := f(x, y)

θ
dy

dt
= x− δy := g(x, y)

(70)
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where θ = 1
ε
� 1. For this system the sets S,L and K are given by















S = {(x, y) ∈ R
2|y =

x

δ
:= F̃ (x)}

K = ∅
L = {(x, y) ∈ S|δ > 0}.

(71)

Remark 4.2. Since K is empty there can not exist any DPS.

4.5 A unique limit cycle

After the investigation of occurrences of DPS for system (52) we are now in a
position to apply Theorem 2.1. Thus if we put the pieces together we arrive at
the following theorems for one and three fixed points respectively.

Theorem 4.5. Let the assumptions of Theorem 4.1 hold. Then for ε sufficiently
small, system (52) has a family of limit cycles Lε. Further more, these limit
cycles are unique for every such ε and

lim
ε→0

Lε = L0 (72)

where L0 is the DPS of the system.

Theorem 4.6. Assume that system (52) has three fixed points and that

(i) Condition (iii) − (iv) of Lemma 4.2.

(ii) x1 < α1 < α2 < α3 < x2

(iii) δ < 0

Then for ε sufficiently small, system (52) has a family of limit cycles Lε. Further
these limit cycles are unique for every such ε and

lim
ε→0

Lε = L0 (73)

where L0 is the DPS of the system.

Both theorems are proved by verification of the conditions in Theorem 2.1.
Notice that the possible cases C1, C2 and C3 for DPS do not satisfy the fourth
condition in Theorem 2.1. Thus they have to be pulled out. Finally, observe
also that the conditions on A and δ in the above theorems are very natural since
they ensures boundedness of the solutions by Corollary 3.1.
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5 Hopf and Bautin bifurcation

In the previous section we deduced conditions ensuring a unique limit cycle.
Although this is a very nice result it has the drawback that ε was assumed
to be very small. Natural questions to ask are if there exist limit cycles not
occurring as a result of singular perturbation and how many they are and what
about their stability. A standard method frequently used to answer the first
question is the Hopf Bifurcation Theorem. In order to find some answers to
the remaining ones it is very useful to use the theory of Lyapunov coefficients
introduced in the preliminaries. It should be remarked that all analysis in this
section is focused on the behavior in a small neighborhood of the origin.

5.1 I = 0

The class of FitzHugh-Nagumo systems that we are interested in are, as stated
before, of the form











dx

dt
= −Cy −Ax(x−B)(x− λ)

dy

dt
= ε(x− δy).

(74)

The system matrix for this system is given by

A =

(

−ABλ −C
ε −δε.

)

First of all one verifies that σ = −ABλ − εδ and ∆ = ABδελ + εC. Since we
are interested in the case when (74) has a pair of purely imaginary eigenvalues,
the following restriction on the parameters must hold







δ = δ∗ = −ABλ
ε

∆ = −A2B2λ2 + Cε > 0.
(75)

An application of Hopf Bifurcation Theorem shows that our system has a peri-
odic solution for all sets of nonzero parameters (A,B,C, δ, ε, λ) satisfying (75)
and ε 6= 0. For a more thorough investigation we use the theory of Lyapunov
coefficients introduced in the preliminaries. According to formula (44) the first
Lyapunov coefficient is given by

L1(δ∗) =
−Aπ
4∆

3
2

[2A2Bλ3 +A2B2λ2 + 2A2B3λ+ 3Cε] =
−Aπ
4∆

3
2

p1(λ). (76)

An easy computation shows that d
dλ

(p1(λ)−3ε) has only one zero since −11A4B4 <
0 for all values of A,B,C, ε. Thus, for every ε, there exists a unique solution
λ̄ = λ̄(ε) to the equation L1 = 0 for every ε. From (76) the sign of L1 is given
by

sign(L1) = −sign(A)sign(B)sign(λ− λ̄) (77)

and thus there are eight possibilities:

I A > 0, B > 0 and λ < λ̄;
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δ < −ABλ
ε

δ = −ABλ
ε

δ > −ABλ
ε

Cases I-IV, ε < 0 Origin stable Origin unstable Origin unstable
Unstable L.C No L.C. No L.C.

Cases I-IV, ε > 0 Origin unstable Origin unstable Origin stable
No L.C. No L.C. Unstable L.C.

Cases V-VIII, ε < 0 Origin stable Origin stable Origin unstable
No L.C. No L.C. Stable L.C.

Cases V-VIII, ε > 0 Origin unstable Origin stable Origin stable
Stable L.C. No L.C. No L.C.

Table 2: Hopf bifurcation table for system (74)

II A > 0, B < 0 and λ > λ̄;

III A < 0, B > 0 and λ > λ̄;

IV A < 0, B < 0 and λ < λ̄;

V A < 0, B < 0 and λ > λ̄;

VI A < 0, B > 0 and λ < λ̄;

VII A > 0, B < 0 and λ < λ̄;

VIII A > 0, B > 0 and λ > λ̄.

Application of the Table 1 on our system gives the following bifurcation table
At the parameter value λ = λ̄, the first Lyapunov coefficient can not be used
to draw any conclusions. In this case the second coefficient, L2, has to be
calculated. Using (45) the following expression for L2 is obtained

L2 = −πA
3Bλ̄

24∆
5
2

[16A2Bλ̄3 + 23A2B2λ̄2 + 16A2B3λ̄+ 9Cε] = −πA
3Bλ̄

24∆
5
2

p2(λ̄).

(78)

Theorem 5.1. If A,B,C, ε, λ 6= 0, δ = −ABλ
ε

(σ = 0) and −A2B2λ2 +Cε > 0
(∆ > 0) the origin of system (74) is a multiple focus of order not larger than
two.

Proof. The conditions on σ and ∆ are equivalent to saying that the origin is a
multiple focus. From (76) and (78) and the assumption of nonzero parameters
it follows that
{

L1 = 0

L2 = 0
⇔
{

p1 = p1(A,B,C, ε, λ) = A2Bλ(2λ2 +Bλ+ 2B2) + 3Cε = 0

p2 = p2(A,B,C, ε, λ) = A2Bλ(16λ2 + 23Bλ+ 16B2) + 9Cε = 0

(79)
From this we conclude that L1 = L2 = 0 ⇒ λ = −B by elimination of the term
Cε. Replacement of λ by −B in the expression for p1 gives that A2B4 = Cε.
But this contradicts the assumption that ∆ > 0. Thus we conclude that L1

and L2 can not be zero simultaneously and by definition the origin can not be
a multiple focus of order greater than two since L1 = 0 ⇒ L2 6= 0.
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Corollary 5.1. Let the assumption of Theorem 5.1 hold. If L1 = 0 then L2 < 0
for all parameters fulfilling the requirements.

Proof. Let A = B = 1 and Cε = 1
3 . Further, choose λ such that L1 = 0. This

is equivalent to solve the equation

p1 = 2λ3 + λ2 + 2λ+ 1 = 0. (80)

The solutions to (80) are given by λ = ±ı and λ = −1
2 . Thus λ = −1

2 is the only
real value of λ making L1 = 0. It is also easy to verify that this value together
with A = B = 1 and Cε = 1

3 satisfy the assumptions (∆ = −1
4 + 1

3 > 0).
Plugging in this choice of parameters in (78) we see that L2 < 0. But since
L2 : R

5 → R is continuous and L2 6= 0, by theorem 5.1 it must hold that L2 < 0
for all choices of parameters fulfilling the assumptions.

Theorem 5.2. Let the assumptions of Theorem 5.1 hold and assume that L1 =
0. Then

(i) There exist parameters such that two limit cycles bifurcate from the origin
and this is the maximal number of bifurcating limit cycles.

(ii) A necessary condition for this is that the origin is stable.

(iii) The inner cycle will be unstable while the outer stable.

Proof. (i) Apply Theorem 5.1 and Theorem 2.2.

(ii) − (iii) By Corollary 5.1 the outer cycle has to be stable from the outside and by
Theorem 2.3 part 2 it is thus stable also from the inside. By part 1 of this
Theorem two is the maximal number of limit cycles and thus the inner
cycle has to be unstable from the outside. Applying Theorem 2.3 part 2
once again shows that the inner cycle is unstable and thus the origin has
to be stable.

Remark 5.1. When L1 = 0, the bifurcation is also called Bautin bifurcation or
generalized Hopf bifurcation. The points in the parameter space where Bautin
bifurcation takes place are said to be Bautin points.

5.2 I 6= 0

Now we turn to study the full system











dx

dt
= −Cy −Ax(x−B)(x− λ) + I

dy

dt
= ε(x− δy).

(81)

The equilibrium points of (81) are given by the equations







x = δy

y = −A
C
x(x−B)(x− λ) +

I

C
,

(82)
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which is equivalent to

k(y) := y3 − λ+B

delta
y2 +

ABλδ + C

Aδ3
y =

I

Aδ3
. (83)

Restricting to the case of a unique fix point is equivalent to saying that k′(y)
does not have any real zeros, i.e. the parameters must satisfy the condition

Aδ(λ−B)2 +ABλδ − 3C

Aδ
< 0. (84)

Now, let (x0, y0) denote the unique fixed point and make the change of variables

{

x̃ = x− x0

ỹ = y − y0.
(85)

In thees coordinates the system takes the form

{

˙̃x = −Cỹ −Aφ(x̃) + C1

˙̃y = ε(x̃− δỹ) + C2,
(86)

where










φ(x̃) = −A(x̃3 + x̃2(3x0 − (λ+B)) + x̃(3x2
0 − 2x0(B + λ) +Bλ)

C1 = I − Cy0 −Ax0(x0 −B)(x0 − λ)

C2 = ε(x0 − δy0).

(87)

Remark 5.2. By definition of x0 and y0 we conclude that C1 = C2 = 0.

Depending on the value of x0 two different cases appear. First assume that

x0 ∈ (α− β, α+ β), (88)

where














α =
λ+B

3

β =
−2
√

(λ−B)2 − 2Bλ

3
.

(89)

In this case there exists γ1 and γ2 such that

φ(x̃) = −Ax̃(x̃− γ1)(x̃− γ2) (90)

and which are given by

{

γ1 + γ2 = 3x0 − (λ+B)

γ1γ2 = (x0 −B)(x0 − λ) + x0(2x0 − (λ+B).
(91)

Thus (81) can be written as

{

˙̃x = −Cỹ −Ax̃(x̃− γ1)(x̃− γ2)

˙̃y = ε(x̃− δỹ)
(92)
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and therefore the analysis of this system is exactly the same as for the case I = 0
with the exception that γ1 and γ2 no longer are independent parameter but are
related via the equations (91). When x0 does not satisfies (88) all calculation
has to be made all over again. This will not be done here except for the first
Lyapunov coefficient given by

L1(x0) =
A3π

4∆
3
2

(−27x4
0 + 36(λ+B)x3

0 − 18(λ+B)2x2
0 + 4(λ+B)3x0 +

− (2Bλ3 +B2λ2 + 2B3λ) − 3Cε

A2
). (93)
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6 Saddle-node bifurcation

This section is concerned with the case of exact one eigenvalue of the system
matrix at a fixed point being zero. In this case the fixed point is called a saddle-
node point. We are especially interested in finding a parameter µ and a fixed
point (x0(µ0), y0(µ0)), for µ = µ0, such that there exists a smooth curve of
equilibriums in R

2 ×R which passes through (x0(µ0), y0(µ0), µ0) and is tangent
to the plane R

2 × {µ0}. Further, it should hold that a new fixed point is born
when µ crosses µ0 from one direction and that the fixed point disappear when
µ crosses µ0 in the other direction. In this case we say that (x0(µ0), y0(µ0))
undergoes a saddle-node bifurcation.

6.1 I = 0

In this case the equilibrium points of our system are given by (0, 0) and















x0 =
B + λ

2
±

√

(B + λ)2 − 4C
Aδ

2

y0 =
x

δ
.

(94)

Regardless of which of the parameters A,B,C, δ or λ we choose as a bifurcation
parameter there can not exist a µ0 ∈ R − {0} such that

lim
µ→µ0

(x0(µ), y0(µ)) = (0, 0). (95)

Thus there can not be a saddle-node bifurcation at the origin. Assume now that
system (74) has two fixed points, i.e. that

(B + λ)2 − 4C

Aδ
= 0. (96)

Then

(x0, y0) =

(

B + λ

2
,
B + λ

2δ

)

(97)

and by making the change of variables

{

x̃ = x− x0

ỹ = y − y0,
(98)

the system matrix becomes

A =





−A(− (B+λ)2

4 +Bλ) −C

ε εδ



 .

Exactly one of the eigenvalues are zero iff

{

∆ = 0

σ 6= 0.
(99)
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Using equation (96) gives that

∆ =
Aεδ

2
(B2 + λ2) 6= 0 (100)

since we are assuming that all parameters are nonzero. Thus there can not be
any saddle-node bifurcation from the fixed point (x0, y0).

6.2 I 6= 0

Let I be the bifurcation parameter of the full system











dx

dt
= −Cy −Ax(x−B)(x− λ) + I

dy

dt
= ε(x− δy).

(101)

For I = 0 the eigenvalues of the system matrix at the origin are given by

s1,2 =
σ

2
±

√
σ2 − 4∆

2

and thus it is necessary that

{

σ = −(ABλ+ εδ) 6= 0

∆ = ABδε+ Cε = 0
(102)

for the origin to be a saddle-noddle point. In this case the eigenvalues are given
by 0 and σ with corresponding eigenvectors given by







e0 =
(

1 −ABλ
C

)T

eσ =
(

1 δε
C

)T
.

(103)

Introduce the change of variables

(

x
y

)

=
(

e0 eσ

)

(

u
v

)

⇔
(

u
v

)

=
C

ABλ+ δε

(

δε
C

−1
ABλ

C
1

)(

x
y

)

.

(104)
After some calculations one obtain the system














du

dt
=

Aδε

ABλ+ δε
[(B + λ)(u+ v)2 − (u+ v)3 +

I

A
]

dv

dt
= −(ABλ+ δε)v +

A2Bλ

ABλ+ δε
[(B + λ)(u+ v)2 − (u+ v)3 +

I

A
]

(105)

in the new variables. If we introduce the equation İ = 0 we get the new system






























du

dt
=

Aδε

ABλ+ δε
[(B + λ)(u+ v)2 − (u+ v)3 +

I

A
]

dI

dt
= 0

dv

dt
= −(ABλ+ δε)v +

A2Bλ

ABλ+ δε
[(B + λ)(u+ v)2 − (u+ v)3 +

I

A
]

(106)
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living in R
3 instead of R

2. By assumption this system has two zero eigenvalues
and one nonzero. Thus by the Center Manifold theorem there exist a locally
defined smooth 2-dimensional invariant manifold Σ ⊂ R

3 such that the tangent
plane to Σ is spanned by the coordinate axis of u and I. Thus Σ may be
expressed as a graph

v = h(u, I) = au2 + buI + cI2 +O(3), (107)

where O(3) means terms of order u3, u2I, uI2 and I3. Further, by theorem 5.2
in [14] system (106) is topological equivalent to



























du

dt
=

Aδε

ABλ+ δε
[(B + λ)(u+ v)2 − (u+ v)3 +

I

A
]

dI

dt
= 0

dv

dt
= −(ABλ+ δε)v.

(108)

Due to this fact we only need to study the subsystem of u and I. If we assume
that B 6= −λ the following steps in section 3.3 in [14] are smooth

Step2 Introduction of the new parameter

µ̃ =
δε

ABλ+ δε
I. (109)

Step3 The time-scaling

t =

∣

∣

∣

∣

ABλ+ δε

Aδε(B + λ)

∣

∣

∣

∣

τ (110)

and introduction of the new parameter

µ = µ̃

∣

∣

∣

∣

ABλ+ δε

Aδε(B + λ)

∣

∣

∣

∣

τ. (111)

With these transformations and the use of (107) the differential equation for u
takes the form

du

dt
= µ+ su2 +O(3), (112)

where

s = sign

(

ABλ+ δε

Aδε(B + λ)

)

. (113)

By Lemma 3.1 in [14] the term O(3) may be dropped. Thus we end up with

du

dt
= µ+ su2. (114)

The bifurcation diagrams of (114) are shown in Figures 6.2 and 6.2.
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Μ

u

Figure 1: Bifurcation diagram of (114) for s = −1. The dashed curve consists
of unstable fixed points while the solid are stable.

Μ

u

Figure 2: Bifurcation diagram of (114) for s = 1. The dashed curve consists of
unstable fixed points while the solid are stable.
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7 Bogdanov-Takens bifurcation

In the previous section we discussed the case when our system had exactly one
zero eigenvalue. Now we are going to study the case when both eigenvalues of
the system matrix at the origin are zero. This is called the Bogdanov-Takens
bifurcation. Since the eigenvalues at the origin are given by

s1,2 =
σ

2
±

√
σ2 − 4∆

2
(115)

the condition is that










σ = −(ABλ+ εδ) = 0 ⇔ δ0 = −ABλ0

ε

∆ = ABλεδ + εC = 0 ⇔ λ2
0 =

εC

A2B2
.

(116)

We are now looking for vectors v0, v1, w0 and w1 such that










































Av0 = 0

Av1 = v0

ATw1 = 0

ATw0 = w1

vT
0 w0 = 1

vT
1 w1 = 1

(117)

with A being the system matrix at the origin for δ = δ0 and λ = λ0. After some
calculations we see that the following set of vectors fulfill this requirements



























v0 =
(

−ABλ0

ε
1
)T

v1 =
(

1
ε

0
)T

w0 =
(

0 1
)T

w1 =
(

ε ABλ0

)T
.

(118)

After making the change of variables
{

u =
(

x y
)

w0

v =
(

x y
)

w1

(119)

and calculating the Taylor coefficients a20, b20 and b11 for u̇ and v̇, Theorem 8.4
in [14] can be applied yielding that our system is topological equivalent to the
system











dη1
dt

= η2

dη2
dt

= β1 + β2η1 + η2
1 + kη1η2

(120)

for k = sign[b20(a20 + b11)] and β1 and β2 being parameters. In our case

k = sign[−4A3BCλ0(B + λ0)
2

ε
]. (121)

Explicit calculations of the parameters β1 and β2 is left for future study.
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8 Conclusion

The main result of this paper is that we have shown that at most two limit cycles
can bifurcate from the origin via Hopf and Boutin bifurcations. In connection
to this we have also shown that if the first Lyapunov coefficient is zero then the
second one is always less than zero. A consequence of this is that the origin
has to be stable if two limit cycles are to bifurcate from it. Further, if there is
such a bifurcation the outer limit cycle is stable while the inner one is unstable.
In the particular case of one special parameter being very small we provide
sufficient conditions for the existence of a unique stable limit cycle. A complete
saddle-node bifurcation picture as well as a Bodganov-Taken bifurcation analysis
together with sufficient conditions for boundedness of solutions are also given.
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-0.1 -0.05 0.05 0.1 0.15

0.01

0.02

0.03

Figure 3: The parameter values are; A = B = C = 1, δ = 0.5, ε = 0.015 and
λ = −0.01. Thus the origin is a unique unstable fixed point, L1 < 0 and δ < δ∗.
Further more, x0 = 0.15 and y0 = 0.02.

Appendix

Remark 8.1. Plot 6 and 7 reflects the local propery of the Lyapunov coefficients
and the conclusions presented in Table 2.2. The existence of the stable limit cycle
indicated in the picture can be verified by Theorem 5 in [19].

Remark 8.2. In order to indicate the existence of the claimed unstable limit
cycle for the parameters as in plots 8 and 9, the time is reversed in these plots.
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-0.06 -0.04 -0.02 0.02 0.04 0.06

-0.005

-0.0025

0.0025

0.005

0.0075

0.01

Figure 4: The parameter values are; A = B = C = 1, δ = 0.5, ε = 0.015
and λ = −0.01. Thus the origin is an unique unstable fixed point, L1 < 0 and
δ < δ∗. Further more, x0 = 0.03 and y0 = 0.005.

-0.1 -0.05 0.05 0.1 0.15

-0.005

0.005

0.01

0.015

0.02

0.025

Figure 5: The parameter values are; A = B = C = 1, δ = 2, ε = 0.015 and
λ = −0.01. Thus the origin is a unique stable fixed point, L1 < 0 and δ > δ∗.
Further more, x0 = 0.15 and y0 = 0.02.
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0.15

0.2

Figure 6: The parameter values are; A = B = C = 1, δ = 2, ε = 0.015 and
λ = −0.04. Thus the origin is a unique unstable fixed point, L1 > 0 and δ < δ∗.
Further more, x0 = 0.15 and y0 = 0.02.

-0.4 -0.2 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

Figure 7: The parameter values are; A = B = C = 1, δ = 2, ε = 0.015 and
λ = −0.04. Thus the origin is a unique unstable fixed point, L1 > 0 and δ < δ∗.
Further more, x0 = 1 and y0 = 0.2.
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-0.1 -0.05 0.05 0.1 0.15
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0.01

0.015

0.02

Figure 8: The parameter values are; A = B = C = 1, δ = 3, ε = 0.015 and
λ = −0.04. Thus the origin is a unique stable fixed point, L1 > 0 and δ > δ∗.
Further more, x0 = 0.15 and y0 = 0.02 and the time is reversed.

-0.075 -0.05 -0.025 0.025 0.05 0.075

-0.005

0.005

0.01

0.015

Figure 9: The parameter values are; A = B = C = 1, δ = 3, ε = 0.015 and
λ = −0.04. Thus the origin is a unique stable fixed point, L1 > 0 and δ > δ∗.
Further more, x0 = 0.03 and y0 = 0.01 and the time is reversed.
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Figure 10: The parameter values are; A = B = C = δ = 1, ε = 0.015 and
λ = −1. Thus the origin is a unique unstable fixed point and the conditions in
Theorem 4.5 are satisfied.

35



References

[1] A.A. Andronov and A.A. Aleksandrovic, Theory of Bifurcations of Dynam-
ical System on a Plane, Wiley, 1971

[2] M. Argentina, P. Coullet and V. Krinsky, Head-on collisions of wave in an
excitable FitzHugh-Nagumo system: a transition from wave annihilation
to classical wave behavior, J. Theor. Biol., 205 (2000), 47–52.

[3] D. Brown, J.F. Feng and S. Feerick, Variability of firing of Hodgkin-Huxley
and FitzHugh-Nagumo neurons with stochastic synaptic input, Phys. Rev.
Lett. 82(1999), pp.4731-4734.

[4] J. Cronin, Mathematical aspects of Hodkin-Huxley neural theory,Cambridge
University Press, 1987.

[5] L. Edelstein-Keshet, Mathematical Models in Biology, SIAM Classics in
Applied Mathematics 46, 2004.

[6] C.P. Fall, E.S.Marland, J.M. Wagner, J.J. Tyson, Computational Cell Bi-
ology, Springer, 2002.

[7] J. Guckenheimer, Bifurcations of relaxation oscillations, Normal forms, bi-
furcations and finiteness problems in differential equations, 295–316, NATO
Sci. Ser. II Math. Phys. Chem., 137, Kluwer Acad. Publ., Dordrecht, 2004.

[8] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields, Springer-Verlag, 1983.

[9] J. Guckenheimer, M. Wechselberger, L.-S., Young, Chaotic attractors of
relaxation oscillators. Nonlinearity 19 (2006), pp.701–720.

[10] E. Kaumann and U. Staude, Uniqueness and nonexistence of limit cycles
for the FitzHugh equation, Equadiff 82 (H.W. Knobloch and K. Schmitt,
eds), Lecture Notes in math., vol 1017, Springer-Verlag, 1983, 313–321.

[11] H. Korn and P. Faure, Is there chaos in the brain? II. Experimental evi-
dence and related models, C.R Biologies 326 (2003), pp. 787–840.

[12] T. Kostova, R. Ravindran and M. Schonbek, FitzHugh-Nagumo revisited:
types of bifurcations, periodical forcing abd stability regions by a Lyapunov
functional, Internat. I. Bifur. Chaos, Appl. Sci. Engrg bf 14 (2004), pp.913–
925.

[13] P. Krejci, J. Sainte-Marie, M. Sorine and J.M Urquiza, Modelling and
simulation of an active fibre for cardiac muscle, submitted to Biomechanics
and Modelling in mechanobiology, 2006.

[14] Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-
Verlag, 1995.

[15] B. Linares-Barranco, E. Sánchez-Sinencio, A. Rodŕıguez-Vázquez and J.L.
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On dynamical Behavior of FitzHugh-Nagumo Systems

–A Case Study on Weakly Coupled FitzHugh-Nagumo

Oscillators

Consider the following weakly coupled FitzHugh-Nagumo systems,











































dx1

dt
= −C1y1 −A1x1(x1 −B1)(x1 − λ1) + γ12(x1 − x2)

dy1
dt

= ε1(x1 − δ1y1)

dx2

dt
= −C2y2 −A2x2(x2 −B2)(x2 − λ2) + γ21(x2 − x1)

dy2
dt

= ε2(x2 − δ2y2)

where the parameters are nonzero and the coupling constant γ’s are very small.
This model in original FitzHugh version is designed to emulate two neurons

linked with electrical coupling, i.e. coupling via the flow of ions through the gap
junctions between neurons. From a biological point of view, if we consider the
two neurons to be in a similar region of the brain, it is likely that the parameter
values will be similar but not identical. Thus the focus should be on the case
where the parameters are such that both neurons will be capable of exhibiting
the same qualitative behavior. Nevertheless, to give a basis from which to
start, we consider the behavior when two neurons with identical parameters are
coupled together, and further we assume that the coupling is symmetric, that
is the γ’s are the same, i.e. we drop the index in the parameters











































dx1

dt
= −Cy1 −Ax1(x1 −B)(x1 − λ) + γ(x1 − x2)

dy1
dt

= ε(x1 − δy1)

dx2

dt
= −Cy2 −Ax2(x2 −B)(x2 − λ) + γ(x2 − x1)

dy2
dt

= ε(x2 − δy2)

It is clear that the restriction of identical neurons and the symmetric cou-
pling implies the property that the system is invariant under transformation
(x1, y1, x2, y2) → (x2, y2, x1, y1). In turn the set {(x1, y,x2, y2)|x1 = x2, y1 = y2}
is invariant, i.e. the flow initiated at a point in this set remains in the set.
Physically, the invariance of this subset means that if the two neurons start
with identical conditions then their subsequent behavior will also be identical.

8.1 Possible bifurcations

As a standard analysis, we can start by determining the fixed points of the
equations, and compute the system matrix A at the fixed points. If none of the
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eigenvalues of A are on the imaginary axis then the local stability of the fixed
points is rather simple. However, the global stability is harder. If eigenvalues
lie on the imaginary axis, then many types of bifurcations can occur since the
system is four dimensional.

There can be one, two, three and four zero eigenvalues, there can be one or
two zero eigenvalues and a pair of purely imaginary eigenvalues, there can be
one pair of purely imaginary eigenvalues, and there can be two different pairs of
eigenvalues, or two double eigenvalues. For each eigenvalue the length of Jordan
form also plays important role. Each case is a possible bifurcation.

From the analysis in Paper II we anticipate the saddle-node bifurcation from
the origin as well as Hopf, Bautin and Bogdanov-Takens bifurcations. Moreover,
we expect pitchfork, fold-Hopf, Hopf-Hopf bifurcations. Furthermore, we will
not be surprised if the Z2 symmetric Hopf bifurcation takes place since the
system is symmetric. Maybe our main point is that the system exhibits more
complicated dynamics than limit cycles. This was shown in a study of coupled
van der Pol oscillators, [1]. In this short note we give some examples.

Numerical examples and discussions

Let now A = B = C = 1. We have simulated the system for different
parameters. Further we fix ε = 0.015, λ = −0.04, and δ = 3.56667. Here are the
simulations of three sets of parameters by varying the coupling constants γ. The
time length of each simulation is 150000. Moreover, to have a systematic search
we have a linear transformation of variables: (x1, y1, x2, y2) ↔ (X1, Y1, X2, Y2).
Note that this does not effect the characters of dynamics.

1. γ = 0.077: The simulation seems to show that there is a stable limit cycle.

2. γ = 0.078: It looks like that it undergoes a periodic doubling.

3. γ = 0.086: What can we say about this?

To get affirmative answers on these simulations it is required further analysis.
This is left for future investigation.
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Figure 11: γ = 0.0077: the phase plane X1, Y1.
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Figure 12: γ = 0.0077: the phase plane X1, X2.
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Figure 13: γ = 0.0077: the three dimensional X1, Y1, X2.
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Figure 14: γ = 0.0077: X1 vs t.
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Figure 15: γ = 0.0078: the phase plane X1, Y1.
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Figure 16: γ = 0.0078: the phase plane X1, X2.
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Figure 17: γ = 0.0078: the three dimension X1, Y1, X2.

6



-0.4

-0.2

0

0.2

-0.020
0.02

-0.2

0

0.2

-0.020
0.02

-0.2

0

0.2

Figure 18: γ = 0.0086: the three dimension X1, Y1, X2.
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